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DIFFRACTION OF ELASTIC WAVES BY A PENNY-SHAPED CRACK*

A. K. MAL
University of California, Los Angeles

Abstract. The diffraction of axisymmetric, harmonic elastic waves by a circular
crack is considered. It is shown that the potential functions for the diffracted waves
can be obtained from the solution of a pair of dual integral equations. The dual equa-
tions are transformed into integral equations of the second kind suitable for iteration
at low frequencies. The principle of contraction mapping is used to discuss the con-
vergence of the iteration scheme. The solution satisfies an edge condition.

1. The dual integral equations. The iterative solution to the problem of diffraction
of elastic waves by a rigid circular disc was presented earlier [1], In this paper the discus-
sion is extended to the problem of the diffraction of axisymmetric harmonic waves
by a circular crack of vanishing thickness, embedded in an otherwise homogeneous
isotropic infinite elastic medium. Let (r, tp, z) denote the cylindrical polar coordinates
of a point with reference to a system of axes having the origin at the centre of the crack
and the z-axis perpendicular to its plane. Normalize all lengths with respect to the radius
of the crack. Thus the crack is located at z = 0, 0 < r < 1. For axisymmetric waves
the incident as well as the total field are independent of <p. Then the displacement vector
u(r) exp ( — iut) and the stress components rv„(r) exp ( — iwt) in the diffracted field are

ur{r)
£(♦ + £)■
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w*(r) = — + jir +
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T"(r) ~ *d~r\2lte + d?~ + '

- »{21 (S +& + '**) + (2« - «>♦} ■ ®
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where the potential functions $(r) exp ( — iwt) and ^(r) exp ( — ioot) are solutions of the
wave equations

V2$ + k\if> = 0, V2^ + & = 0, (3)

ix is the rigidity of the medium and

/fx = «/a, k2 = w/fi, (4)

a and 0 being the compressional and shear wave velocities in the material.
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Postulate solutions of (3) to he [1]

*(r) = \ [ {=FP(f) + L Q'(f)} exp H)fJ0(fr) df,
CO Jo V Vi )

*(r) = \ |=FQ(f) + LP'U)\exp (-,2 \z\)J0(fr) d{,
0) J 0 v. ^2 J

where

v) = f2 — Rev, >0, j = 1,2. (6)

The =F sign in (5) refer to z ^ 0 respectively. Then for z ^ 0,

rr. = -4 I" |2f,1(p =F £ <2') exp (-„ |z|)

+ (2f2 - kl)(=FQ + £pj exp (~V2 |2|)}rJ,(rr) df,
(7)

exp (-f, |z|)

+ 2ff2^Q =F ̂ "P') exp ( v2 |2|)|f«/o(fr) df.

The boundary conditions on the crack are that the total normal stresses must vanish
on both faces of the crack. If r?2 exp ( — iwt), r22 exp ( — iwt) are the stresses in the incident
waves, we must have, for 0 < r < 1,

lim {rTZ + r°2) = lim (rr2 + t°ti) = 0,
e-*-0 z-+ + 0

lim (r22 + r22) = lim (r22 + r22) = 0.
*-♦-0 2-» + 0

(8)

(9a)

Using (7), the above conditions give,

f {(2f2 - fc2)Q + 2fQ'W^r) df = 0,
Jo

f {(2f2 - fc2)P + 2f2P'}fJ0(fr) df = 0,
Jo

^ ^P + ^ ~ pjrV,(rr) df = +co2/0(r), (10a)

2|"2 Q' + 2v,Q)fJ^i) d{ = —u2g0(r), (10b)

where 0 < r < 1 and

fair) = lim T°ri(x)/n, ga{r) = lim r22(r)//j. (11)
2—»0 *—»0

Since there is no physical discontinuity in the properties of the medium outside
the crack, all the components of the displacement and the stress must be continuous
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across z = 0, for r > 1. In particular, if ur , uz , rr2 and r22 arc to be continuous across
2 = 0, for r > 1, the unknown functions must satisfy the additional conditions

f (P + nrV.Cfr) df = 0, (12a)
Jo

f {Q + Q')fVo(fr) df = 0, (12b)
Jo

f {(2f - kl)Q + 2?Q'}SJtir) df = 0,
(9b)

[ {(2f2 - kl)P + 2f2P'}fJ0(fr) df = 0.
Jo

Combining (9a) and (9b) for all r,

(2f2 - kl)Ptt) + 2f2P'(f) = 0, (2f2 - /c2)Q(f) + 2f2Q'(f) = 0. (13)
Substituting for P', Q' from (13) in (10) and (12),

f {4jVf - (2f2 - kl)2} ̂  /x(fr) df = 2 a2f0(r), 0 < r < 1, (14a)
Jo ^2

f P(0J^r) df = 0, r > 1, (14b)
Jo

f {4f2fic2 - (2f2 - fc2)2} ̂ /„(fr) df = — 2co2gf0(r), 0 < r < 1, (15a)
Jo ^1

[ Q(t)Jo(M df = 0, r > 1. (15b)
Jo

It can be easily verified that (13), (14b) and (15b) are the necessary and sufficient
conditions for the continuity of the displacement and the stresses across z = 0, outside
the area occupied by the crack. Rewrite the above dual integral equations for P(f)
and Q(f) as

[ r^Wittr) df = o»7o(r)/(fc2 - kl) + Mr), 0 < r < 1,
(16)

[ P(.£)Ji(£r) df = 0,
Jo

r > 1

and

where

[ fQGVo(fr) df = —ug0(r)/(kl — kl) + g^r), 0 < r < 1,J° (17)

[ QGVo(fr) df = 0, r > 1,
Jo

/i(r) = r F(t)P(t)Ji(M dt, (18a)
Jo
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f(t) = f - {4fV, - (2f2 - kl)2}/2v2{kl - k\), (18b)

».(r) = [ G(t)Q(i)Jo(ir) df, (19a)
Jo

(?(f) = f - {4r2,^ - (2f2 - kir\/2vM - 74). (19b)

Note that u>2j0(r)/(k\ — /.:2) and co2<70(r)/(/i:f — A^) remain finite for w —> 0 and as f —* 00

p'<« ~ r'l' (20a)
e<»~43t:8(t;'-aa;r'}- (2(,b)

Also, F(f) and (7(f) are finite as f —» 0. The foregoing observations will be relevant
when the integral equations are solved by iteration.

If the right-hand sides of (16) and (17) are considered as known quantities for the
moment, a formal solution for each of the dual integral equations can be written down.
Following Sneddon [2],

P(I) = —f [' (sin - v? cos „r) dn [' ,fA(lLs dt, (21)
7Tf Jo Jo (I — t )

Q«) = ~ [' V sin uf ^ [' n tB(%72 dt, (22)
7T J0 J0 U " U

where

w!/oW i -f V>U\ _4(r) = + /l(r)' B(r) = t + ffi(r)- (23)

After integration by parts and rearrangement,

P(f) = Pott) + J [ - 2 sm^slD r| dt, (24)

Q(f) = Qo(r) + ; [ r'QW(t)^~£ - sm/^ r)} d/, (25)

where

A(f) = fn (sin ''f ~~ cos dri fo (i'-%1/2 (26)

Q..(f) = —A,2"' 72\ f v sin dv f dt. (27)ir(/c2 — /<:,) ./0 Jo (1 — t)

Equations (24) and (25) can also be written conveniently as follows

P(f) = n(D + [ Rp(v) cos ??r di), (28)
Jo

<?(f) = Qo(D + [ Sq(v) sin 7?f dij, (29)
Jo
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where

Rp(v) — ~ f t~'F(t)P(t)(cos t)t — r1 sin t) dt,
TT J 0

with

In (26)

so that

where

2co
Ro(v) ~ n.2 j_2\ir(k2 — k i)

It is to be noted that R0(y) satisfies

SQ(v) -~ft 1G(t)Q(t) sin r)f dt,
TT J o

f Rp(v) dy = 0.
Jo

(a-4

Pott) = f Ro(v) COS ijf dt],
Jo

/„'(i -dt - ((1 ~ fy/2^4}

(30)

(31)

f R0(v) dt] = 0. (32)
Jo

From (27),

Qott) = f So(v) sin dt], (33)

where
o / \  2ojj r t2g0(t]t) .
S°(V) " 7r(/C* - fc?) J„ (1 - 0'/2 ( )

2. Solution of the integral equations. Solutions to the integral equations (24),
(25) will now be obtained under the assumption that Ptt), Q(f) satisfy the following
conditions:

(i) Ptt), Qtt), ?Ptt), fQ(f) are bounded, continuous in [0, <» [

(ii) Ptt) = f P(t) cos f/ d/, Q(f) = f q(t) sin 1//, (35)
*>0 «'0

where 'p(t), q{t) are bounded in [0, 1] and differentiable in 0 < t < 1. In addition, p(t)
satisfies

f p{t) dt = 0. (36)
Jo

Before proceeding to solve the integral equations, however, it must be shown that the
above assumptions are consistent with the formal analysis that led to these equations.
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For z 9^ 0, the integral expressions for the displacements and the stress components
are convergent due to the choice of the branches in (6). However, in applying the bound-
ary conditions in the plane of the crack the orders of the f-integrals have been inter-
changed with the limiting process « —> 0. This interchange is justified if the following
integrals are convergent,

.(r) = f dt, U(r) = f Q(f)./o(fr) dt,
Jo J 0

ato = f mJi(lr) dt, I,(r) = f tQ(t)Jo(M dt,
Jo J o

h(f) = fo F{t)P{t)JM) dt, h(r) = f* G(t)Q(t)Jo(tr) dt.
Using (35), (36)

r*(r) ~ r I (t2-ry/2)dt'

= 0, r > 1,

(r) _ fl <1(0 dt
~~ J (t2 — r2)W2

0 < r < 1,/12 ii-vl(t - r)

= 0, r > 1,

Iz(r) ~ f /j2 ^ 37T72 di, 0 < r < 1,

=0, r > 1,

h(r) = r{/-\)rr2 ~r I dt' r> h

= ~f0 p(-%i/z dt' 0 < r < 1,

/4(r) = M _ + fo dt, r > 1,

SM,r 9'(0 1, n <r- r 1
r + Jo (r2 - f)1"

(37)

(38)

(39)

(40)

The integrals /5 , /6 are absolutely integrable because of (20).
The principle of contraction mapping can now be used to solve the integral equa-

tions (24) and (25). Consider Equation (24) first. Let E be the space of bounded, con-
tinuous functions /(f) on [0, <*>[, such that tjit) is bounded. Let E be normed by

I l/l I = sup |/(f) I + sup |f/(f)|.
f>0 f>0

Then E is a Banach space. Let Tx be the linear operator defined on E as follows:

(7\/)(f) = P0(t) + f R,(v) cos vt dr,. (41)
Jo

It can be shown that Tx takes E into E. Furthermore, for any two /, g in E,

IITJ - Txg|| = sup f {Rf(n) - Ra(v)\ cos vt dv\
f>0 KO

+ sup \t
r>o I

[ \Rf(v) — R„(y) ! cos r)t di7
Jo
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where < |[/ - ff||,

afj = max — t~x sin t), t~2( 1 — t'1 sin t)}-- f \F(t)\ dt. (42)
0<*<«> 7T Jo

Thus, if < 1, Tx is a contraction and equation (24) can be solved by successive ap-
proximations. If we take the first approximation to be equal to P0(f), the error after
the nth iteration is e„ ,

W < r~=^ HPo||. (43)
The solution P(f) obtained by the successive approximations can be shown to satisfy
conditions (i) and (ii) above because of (28), (30).

Now consider Equation (25). Let T2 be the operator defined on E as follows:

(?V)(f) = Qo(f) + f Sf(v) sin dv. (44)
•>0

Then T2 takes E into E. Furthermore, for any two /, g in E,

\\T2f - T2g\\ = sup f {S/r;) - Sa(v)} sin drA
f>0 KO I

+ sup f f {Sf(rj) ~ Ss(t))} sin ri£ dr,
f>o I Jo

- [ |r'(i - r'sin oi \tQ(t) | |c?(0| dt
T Jo

+ - f iq(oi m\dt
IT J0

<

< "2 ||/ ~ ff||,
where

«2 = - [ \G(t)\dt. (45)
IT J o

If Qo(f) is taken to be equal to the first order approximation the error involved after
the wlh iteration is <5„ ,

ki < n^oii.
J- 0-2

Again it can be verified that the solution Q(f) obtained above satisfies conditions (i)
and (ii).

3. Edge condition. It can be seen from Equations (37)-(40) that the displacement
and the stress functions are singular at points on the edge of the crack. In order that
the solution obtained above be physically plausible, it must be verified that the above
singularities do not give rise to real forces at the edge.

It is proved below that if P(f) and Q(f) satisfy conditions (i) and (ii) given above,
no net body forces are induced on the edge. Enclose the edge of the crack by a surface
S, formed by the concentric cylinders r = 1 ± e and the parallel planes z = ±e (e > 0),
and compute the integral

Fi = / Tijtij dS,
Js.

t,] = r, z,
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n, being the outward unit normal to S, . Then

F= — 2tt I" (rr,,),.!., dz + 2ir J (?'r,2)r =, + « dz

/» 1 + < /» 1 + €

— 2t (r..)2=:_fr r/?" + 27r (Tzz)z==(r dr,
*' i - < J i - e

= r J2r (1 _ exp (_Vie)) _ 2|-2 - fci (1 _ exp (—^))}fQ(r)Ir^.Cfr)]!!: rff
w J0 I V, v2 )

- —'- f\dr [ |(2f2 - kl) exp (-„l€) - 2f2 exp (-„*)}.f/J(f)./0(fr) df.
CO «' 1 - f «' 0

In the limit e —^ 0, the first integral in the right-hand side of the above equation vanishes
and the second integral becomes

4irii/j32 lim / r/,(r) dr,
<—»0 «M-«

where It(r) is given by (37). Thus,

lim F, - if lira dr [ P«){l - jjrrpp}

Since r, t are both less than 1, and p(t) is bounded in [0, 1],

Aiviim f'|^\| < f (1 — r + (1 — r2y/2) dr -» 0 as
P Jl-t

0.

m being the upper bound of p(t) in [0, 1], The radial component of force Fr can be treated
similarly.
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