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Abstract: We analyze the far field and near field diffraction pattern 

produced by an amplitude grating whose strips present rough edges. Due to 

the stochastic nature of the edges a statistical approach is performed. The 

grating with rough edges is not purely periodic, although it still divides the 

incident beam in diffracted orders. The intensity of each diffraction order is 

modified by the statistical properties of the irregular edges and it strongly 

decreases when roughness increases except for the zero-th diffraction order. 

This decreasing firstly affects to the higher orders. Then, it is possible to 

obtain an amplitude binary grating with only diffraction orders -1, 0 and +1. 

On the other hand, numerical simulations based on Rayleigh-Sommerfeld 

approach have been used for the case of near field. They show that the edges 

of the self-images are smoother than the edges of the grating. Finally, we 

fabricate gratings with rough edges and an experimental verification of the 

results is performed. 
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1. Introduction 

Diffraction gratings are one of the most important optical components. It can be defined as an 

element which produces a periodical modulation in the properties of the incident light beam. 

Its behaviour in the near and far field is well known [1-7]. Amplitude or phase gratings are 

used in most applications. Also, other kind of gratings is possible, such as polarization 

gratings [8-10] or gratings with random microscopic irregularities in the topography [11-13]. 

In the far field the beam is divided into diffraction orders whose directions are given by the 

well-known grating equation [1]. The intensity of the diffraction orders is obtained as the 

square of the Fourier coefficients of the grating [2]. In the near field, Talbot effect is produced 

when the grating is illuminated with a plane wave [14, 15]. Self-images of the grating are 

formed at Talbot distances given by   2 1/2/ 1 [1 / ]Tz p     where   is the wavelength 

of the incident wave and p  is the period of the grating. When the period of the grating is 

much larger than the wavelength then the Talbot distance simplifies to 
22 /Tz p   [16].  

Theoretical approaches normally assume that the diffraction gratings present an ideal 

optical behaviour. However, this assumption is not always right. Flaws or defects can be 

produced, such as lost strips, during the fabrication process [17-21]. Other non-ideal 

behaviour is owing to roughness on the surface of the gratings, as it happens for steel tape 

gratings. Roughness produces a decreasing of the contrast of the self-images [11, 12]. Also, 

stochastical irregularities in the shape of the edges can be produced. This effect is not 

normally present in chrome on glass gratings or phase glass gratings, but strips with rough 

edges can be detected in some other manufacturing processes, such as laser ablation or 

chemical attack [13, 18]. 

In this work we theoretically, numerically and experimentally analyze the behaviour of 

amplitude gratings with rough edges. In particular, the far field intensity distribution and the 

Talbot effect are studied in detail. Talbot effect is a very important point which must be taken 

into account in devices that include a diffraction grating which works in near field approach. 

Rough edges effect can be very important in self-imaging phenomenon, then we will analyse 

it in detail. In addition, due to the stochastic properties of the edges, a statistical approach 

needs to be used. We theoretically show that the intensity of the diffraction orders depends on 

roughness parameters of the edges. Selecting the roughness level for the edges, we can 

suppress ±3 and higher orders, maintain orders 0 and reduce only slightly orders ±1. 

For the near field, a theoretical analysis is not possible since the integrals cannot be solved 

analytically. Then, a numerical analysis based on Rayleigh-Sommerfeld formalism is 

performed for determining the properties of the self-images produced by the grating with 

rough edges [22]. The properties of the self-images are obtained for single realizations and 

also for statistical averages. In both cases, the edges of the self-images are smoother than the 

edges of the grating. Finally, we fabricate gratings with rough edges and we analyze the near 

field behaviour, which is in accordance to the theoretical results. 

2. Far field approach 

Let us consider an amplitude grating with period p . When the grating presents an ideal 

optical behaviour, the transmittance can be defined as a Fourier series 

#98610 - $15.00 USD Received 11 Jul 2008; revised 9 Sep 2008; accepted 11 Sep 2008; published 14 Nov 2008

(C) 2008 OSA 24 November 2008 / Vol. 16,  No. 24 / OPTICS EXPRESS  19758



   expp nn
t a iqn  , where 2q p  and na  are the Fourier coefficients of the grating 

with n  integer. We assume that the edges of the strips are not straight, but present a certain 

random shape. Therefore, the grating cannot be described as its Fourier series expansion since 

it is not purely periodic, but as a sum of strips. To mathematically characterize the grating, let 

us assume that the left and right edges of a single strip are described as  nf   and 

 ng  , where  ,   are the transversal coordinates at the grating plane and 

... 2, 1,0,1,2...n   . These functions are not analytical functions, but stochastic with the 

same statistical parameters. The exact shape of the edges  nf   and  ng   is not known but 

it is possible to describe these functions by means of some stochastic parameters, such as their 

correlation length T  and their standard deviation   [23]. Let us assume that  nf   and 

 ng   present the same statistical distribution, that  nf   and  ng   are totally uncorrelated, 

and  nf   and  ' 'nf   are also totally uncorrelated except for 'n n . To describe the edges, 

a normal distribution with standard deviation   is assumed. We will also assume a Gaussian 

autocorrelation coefficient with correlation length T .The two-dimensional transmittance of 

the grating  ,t    results 
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An example of the grating proposed is shown in Fig. 1. 

 

Fig. 1. Example of the grating analyzed in this work. 

 

Light passes through the grating and then propagates a distance z. To determine the far 

field diffraction pattern, Fraunhoffer approach is used 
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being   the wavelength of the incident light, 2k   , x  and y  the transversal 

coordinates at the observation plane, z  the propagation direction, and  ,iU    the incident 

field that, for simplicity, we will consider that it is a monochromatic plane wave in normal 

incidence,   0,iU U   . The transmission function only affects to the integration limits into 

eq. (2). Then, the integral is converted into a summatory of finite integrals. Every one of these 

integrals corresponds to the contribution to the intensity of every strip of the grating, which 

has rough edges. Besides, we have truncated the summatory which appears in  ,t    to be 

able to give a clearer equation for the intensity pattern. Thus, the intensity results in 
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 (3) 

where N  is the number of strips and L  is their length. Performing the integrals in   and '  

the intensity results 
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where x x z   and y y z  . Assuming the stochastical description of the functions  nf   

and  ng   given before, the characteristic functions for this distribution result in [23]  
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being in our case yk  . Performing an averaging process in (4), using the relationships 

given in (5), and reorganizing the terms, then the average intensity is 
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where the averaging in the intensity is performed on a supposed ensemble of realizations 

which are obtained, for example, when the grating is moved in the direction parallel to the y 

axis. Let us assume that the length of the strips L  is large, although not infinite. Then, the 

integrals have a simple analytical solution and the average intensity results 
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 (7) 

Comparing this average intensity with that of an amplitude grating without roughness, 0 , 
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we can normalize the Eq. (7) with respect to the maximum intensity of eq. (8), 
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0 0 1 2I U Lp N z    . Also, since N  is normally very high, the sinc functions are 

very narrow and have significant values only when their argument, /y j p  , is nearly zero. 

Then the mean intensity results 
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where     0, , /I x y I x y I  is the normalized average intensity and  j sinc / 2a j . 

The first term of (9) corresponds to the diffraction pattern of an amplitude grating but 

multiplied by a factor which diminishes the intensity of the diffraction orders according to  

  2j j exp 2 / / 2rough perfecta a j p    
. (10) 

In Table 1, the Fourier coefficients for the first five diffraction orders is shown for several 

values of / p .  
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Table 1. Coefficients 
j

rough

a  for the first five diffraction orders of a grating, measured as  2

j
exp[ 2 / / 2]a j p , 

for several values of / p  defined according to (10). 

/ p  j=0 ±1 ±3 ±5 

0.0 0.5 0.3183 -0.1061 0.0637 

0.1 0.5 0.2613 -0.0180 0.0005 

0.2 0.5 0.1445 -0.0001 0.0000 

On the other hand, the second term of Eq. (9) is produced only by the roughness of the edges, 

which affects in both directions, x  and y . Roughness produces a Gaussian halo centred in 

the zero-th order. The width of the halo depends on T  along the x  direction and   along the 

y  direction. In Fig. 2, the far field diffraction pattern along the y-axis for different values of 

T  and   is shown. As it can be seen, when roughness increases, high diffraction orders 

disappear and the halo grows around the zero-th order. The width of the halo in the y-axis 

depends on  . For higher values of  , the width of the halo diminishes. 

Let us analyze two important cases, such as high roughness and low roughness limits. The 

high roughness limit occurs when    .The characteristic functions in (5) are still valid, 

except the autocorrelation function which is now [23] 
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 (11) 

where /FT kT  . With this substitution and performing the integrals, average intensity 

results 
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It is a more simplified result than Eq. (9), since the sum over j disappears.  

On the other hand, the slight roughness limit occurs when   . In this case, Eq. (5) is 

valid, except the autocorrelation function 
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 (12) 

Then, the average intensity results 
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Under this approach the halo disappears and the far field diffraction pattern is equivalent 

to that of a perfect grating with modified Fourier coefficients.  
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Fig. 2. Diffraction orders intensity for different values of the roughness parameters, 

when 20 μmp  , 0.68 μm  , 50 μmT   and 50 μmL  : 0  (solid line), b) 

0.2 μm  (dot line), c), 0.4 μm  (dash line). The order 3 disappears for 0.2 μm   

and 0.4 μm  . 

 

3. Self-imaging process in the near field 

The intensity distribution in the near field can be obtained in a simple way replacing the 

Fraunhofer kernel with the Fresnel kernel in (3). Unfortunately it is not possible to obtain 

analytical solutions for these integrals. As a consequence, we have performed a numerical 

analysis to determine the characteristics of the intensity distribution in the near field. For the 

numerical implementation we have used a fast-Fourier-transform based direct integration 

method which uses the Rayleigh-Sommerfeld approach [22].  

In first place we are interested in how the self-images of this grating with rough edges are 

formed. In Fig. 3 we show for comparison the self-images produced by a perfect grating, that 

is, without rough edges and in Fig. 4 and Fig. 5, two examples of gratings with rough edges 

and the first three self-images for different values of / p . Although the edges of the grating 

present a high roughness, the edges of the self-images are quite smooth. The reason is that 

Talbot effect is a cooperative effect since the intensity at a given point ( , )x y  of the image is 

obtained as an integration of the amplitude at the diffraction grating. It performs an averaging 

in the intensity distribution. In addition, an interferential process happens and produces a kind 

of speckle in the fringes. For the simulation we have considered a grating with size 

150 300m m  . Since the algorithm does not consider that the grating is periodic, an edge 

effect is produced. We show the central region of the intensity pattern to avoid this edge 

effect. 
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Fig. 3. Perfect grating and first three self-images obtained using the Rayleigh-Sommerfeld 

approach. The period of the grating is 20 μmp   and the wavelength is 0.68 μm  . 

  

  

Fig. 4. Grating and first three self-images obtained using the Rayleigh-Sommerfeld approach 

for the same situation of Fig. 3 when the roughness parameters are 0.1 μmT  , .25 μm  . 
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In Fig. 6, a comparison of the average profiles obtained with the perfect grating and the 

rough gratings is shown. In Fig. 7 (Media 1) a video is included where the transition between 

0z  and the first self-image is shown. The intensity distribution at fractional Talbot planes 

is also shown in Fig. 7 (Media 1) for distances / 4Tz z , / 3Tz , / 2Tz , and also the average 

profile for these particular cases. 

 

  

  

Fig. 5. Grating and first three self-images obtained using the Rayleigh-Sommerfeld approach 

for the same situation of Fig. 3 when the roughness parameters are 1 μmT  , 1 μm  . 

 

(a) 

 

(b) 

Fig. 6. Comparison of the average profiles for the first three self-images for two different 

roughness levels a) for the parameters of Fig. 4 (b) for the parameters of Fig. 5. Grating with 

rough edges (solid line), perfect grating, Fig. 3 (dash line). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7. Fractional self-images for a grating with period 20 μmp  , the roughness parameters 

are 1 μmT   and 1 μm  , and the wavelength is 0.68 μm   for positions a) 

/ 4
T

z z , b) / 3
T

z z , c) / 2
T

z z  and d) average profiles for this fractional self-images. 

(Media 1). 

 

3.1. Average intensity distribution 

The grating can be placed in a mobile device and then the intensity pattern will be an average 

over a group of discrete intensity patterns. To characterize this, we calculate the near field 

intensity pattern for several realizations and then we perform an averaging in the intensity of 

these realizations. This procedure is repeated for different self images placed at 
2 /z np  , 

with 1, 2,...n . The average intensity of these self-images is shown in Fig. 8 for an ensemble 

of 100 images. For this case, the self-images are very smooth.  

4. Experimental approach 

To confirm the validity of the results and to use a grating with roughness parameters known, 

we have manufactured a grating with rough edges using a direct laser photoplotter. The 

grating is an amplitude grating made of chrome on glass and its period is 100p m . The 

grating is illuminated with a collimated laser diode whose wavelength is 0.65 m  . In the 

near field approximation, some self-images have been acquired. For this, we have used a 

CMOS camera (ueye, pixel size: 6x6 microns) and a microscope objective in order to get a 

better resolution. In Fig. 9 (Media 2) we can observe the image of the grating using an optical 
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microscope and the first three self-images taken with the CMOS camera. These images 

correspond to just one realization. As it can be seen, experimental results are in total 

accordance with the numerical results. The shape of the self-images is quite smooth compared 

to the shape of the strips edges. In the self-images we can also see a defect in one of the strips 

(rectangle) which gradually disappears as the order of the self-image increases. In Fig. 9 

(Media 2) a video with the experimental images is also shown. 

 

  

  

Fig. 8. Average for the first four self-images obtained using the Rayleigh-Sommerfeld 

approach. The number of samples was 100, the period of the grating is 20 μmp   and the 

roughness parameters are 1 μmT   and 1 μm  . The wavelength of the incident beam is 

0.65 μm  . 

 

The mean profile of these self-images is also shown in Fig. 10 and also the intensity 

distribution of self-image 15. The intensity at 200x m  distribution is very smooth except 

for a dust particle in the optics that we could not eliminate. Comparing this result with that 

shown in Fig. 6, we can validate the results given by the numerical analysis.  
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Fig. 9. Optical image of the manufactured diffraction grating with rough edges and 

experimental first three self-images. The period of the grating is 100 μmp  , the wavelength 

is 0.65 μm  . The roughness parameters used are 50 μmT   and 5 μm  The images 

are captured with a CMOS camera whose pixel size is 6 μm 6 μm  and a 30  microscope 

objective. (Media 2). 

 

(a) 

 

(b) 

Fig. 10 (a) Mean profile of the image and self-images shown in Fig. 9 (Media 2) and (b) 

experimental self image for 15n . The intensity distribution is very smooth. The fluctuations 

at 500 μmx   are due to a dust particle in the optics that we could not eliminate. 
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5. Conclusions 

In this work, we have analyzed the far field and near field diffraction pattern produced by an 

amplitude grating whose strips present rough edges. Due to the stochastic nature of the grating 

a statistical approach is performed. In the far field, the intensity of the diffraction orders 

strongly decreases in terms of the roughness and the index of the diffraction order. Then, a 

possible application of this kind of gratings is to obtain amplitude binary gratings with only 

diffraction orders -1, 0 and +1. For the case of near field, an analytical result is not possible 

and numerical simulations based on a Rayleigh-Sommerfeld approach have been performed. 

The self-images are smoother than the grating, since Talbot effect is a cooperative effect. 

Finally, we have fabricated gratings with rough edges and an experimental verification of the 

theoretical and numerical results is performed. 
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