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1. INTRODUCTION

Most of the known fundamental particles are hadronms, particles with
strong interactions, and evidence for their composite nature is now
overwhelming., Indeed, hadrons are extended in space with typical
dimensions of the order of 1 fm. This is the range of stromg inter-
actions. In a collision the centre of mass energy of two hadrons is

3 .
sec, in a small

thus concentrated, for a time of the order of 10- 2
volume whose transverse dimensions are of the order of 1 fm. Strong
interactions are such that, in collisions at centre of mass

energies much larger than the proton rest maés)there are many possible
final states which, in general, contain many newly produced hadrons.

Since many inelastic interactions can occur, a mnon negligible

fraction of the wave function describing the two initial hadrons is
absorbed as the collision takes place. Thé diffraction phenomena to be
discussed in this paper are to a large extent simple consequences of the
absorption caused by the open inelastic channels, They are éharacterized
by the dimensions of the region of space in which absorption takes

place (1 fm). They are, however, more complicated than simple elastic
diffraction because hadrons apparently have internal degrees of freedom
which may be excited, a strong evidence for their composite nature.

In reviewing this subject we have in mind the non-specialist.  Thus
we build up our arguments starting in section 2 from elementary considera-
tions on optical diffraction. In section 3 we consider hadron—hucleus
collisions. This we find is the best introduction to hadron-hadron

phenomenology since nuclei have well defined dimensions. Within the
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nucleus the incoming hadron wave is absorbed quite independently of the
details of the hadron-nucleon dynamics and the observed scattering
depends essentially upon the dimensions of the nucleus. Sections 4 and
5 are then devoted to describing elastic and inelastic hadron-hadron
diffraction phenomena. A large sample of experimental data is presented
and discussed using both the optical-geometrical point of view developed
in sections 3 and 4 (often referred to as the s-channel approach) and

a simple form of the phenomenological exchange picture (t-channel
approach). The exchange picture of diffraction,with its recent
developments and its predictions,is discussed in more detail 1in the
vlast two sections, where we review somé topical questions at ISR and
Fermilab energies.

It goes without saying that space does not allow for a complete presen-—
tation of this wide subject. We have chosen material which could be
fitted into a logical presentation. Complications and further generali-
zation of the optical analogy develop along the way. We hope this will
help newcomers to follow, and leave them with some self-contained facts
even if their reading does not go until the end. The readers who al-
ready know the subject will find in the last sections detailed presenta-
tions of recent dgvelopments in the interpretation of the phenomena and
throughout the paper many figures in which recent data are compiled.
In‘order to be systematic with such complications, we tried whenever
possible to stick to a uniform convention to represent data points in
the figﬁres which contain data produced at various high energy

accelerators: wFNAL, 00 SLAC, V AGS.,mSerpukhov, @ ISR,Q PS.
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2. DIFFRACTION IN OPTICS AND ITS EXTENSION TO HADRONIC WAVES

2.1 Fresnel-Kirchhoff Theory

Historically the optical analogy has been instrumeﬁtal in the
development of the field reviewed here and many previous presentations
have taken it as a starting point (1 - 4). We shall follow a similar
track using a language which is suitable to the extension to hadronic
physics.

Optics relies on approximations‘(S). Speaking of diffraction theory
one usually refers to the applications of the Huyghens—Fresnei;Kirchhoff
approximate method. It can be applied to the propagation ofw; plane wave of
light behind an opaque screen with a "hole" in it (Figufe 1) iﬁ:tﬁé?f;:
wave length ) is much smaller than the dimensioné R df‘the difﬁiacting
hole: '
| kR >> 1 (short wave length condigfon), ?Z: 1;
where k = 2m/A. The propagation of a plane light wave being descfibed.by
means of a complex scalar function A(x,y,z), the basic formula of the
theory connects the wvalue A0 of this quantity on a plane k, to the

value of the same quantity at some point P of the detector plane (5):

Alx,y,z) = (k/4Ti) J;;dz.a A, S() (1 + cosd') exp(ikd)/d. 2.
The quantity Ab.S(Z) may be interpreted as the amplitude of the wave

"just behind" the plane . The quantity S(z), which corresponds to the

S-matrix of scattering theory,describes the variation introduced in the amplitude by the
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Figure 1 Propagation of a plane wave behind a screen with a hole. Refe-

rence systems and definition of the various quantities.




"hole", When the short wave length condition is satisfied, the diffracted

wave 1s concentrated at small angles and the "inclination factor" is
practically constant: (1 + cosf') = 2, The main variation of the
factor exp(ikd)/d comes from the exponent whenever the distance D of the
detector plane satisfies the inequaiity

R/D << 1 (large distance condition) 3.
The exponent kd may then be written as a power series in the coordinate
x, and y, on the plane I and, as is well known, two regimes are distin-
guished according to the relative values of the quantities kR >> 1 and
R/D << 1:
&

kR?/D << 1 : Fraunhofer diff.; kR2?/D = 1 : Fresnel diff. 4,

In the first case the quadratic terms in x, and y, are negligible and

1
d =~ r - (xx; +yy,)/r, while in the second they cannot be neglected.
Since geometrical optics is obtained in the limit A - O, that is k - ©y
. for any choice of R and D (i.e. also when condition 3 is not satisfied)
one may say that it corresponds to

kR?/D >> 1 (geometrical optics)e 5.

It is seen that the parameter kR?/D determines the propagation regime.

Since Fraunhofer diffraction is of great importance for our purpose,

it is worth rewriting the diffracted amplitude of equation 2 in this

particular case:

A(x,y,2) = <ik/2m) [A_exp(ikr)/x] j;dza 5 (a) exp(ig.a), 6s

-
The two-dimensional momentum transfer q lies in the plane X and has by
definition components kx/r, ky/r), so that

+ .
|q| = ksinb , 7.
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Let us now consider a diffracting absorbing disc, which is a closer
analogy to an absorbing hadron than a screen with a hole., If S(;) is
now the S-matrix for diffraction by the disc, its "profile function" is
defined as
r@ =1-8@) =1
A(;) is the complex phase shift. ImA describes the absorption intro-
duced by the disc and ReA is the actual phase shift given to the in-
coming wave., Introducing S(Z) =1 - F(Z) in equation 6 one obtains the
full amplitude behind the disc. The term proportional to 1 is the

unperturbed plane wave, and the one which contains T'(a) describes the

diffracted wave.

In equation 6 the factor A&exp(ikr/r) represents an outgoing spherical
wave of amplitude A0 emanating from the centre of the diffracting object

to the observation point. The only physically interesting quantity is
the factor multiplying this spherical wave, the so-called "scattering
amplitude" f(g). Since f(a) is proportional to the Fourier transform
of the profile function, the converse is also true and one can write:
£(2) = (ik/27) [d%a I(3) exp(iq.a); T(3) = (1/2mik) |d2qf(Q) exp(-iq3) 9.
When ‘the profile function is spherically symmetric equation 9a simplifies
to

f(q) = ik Jaa a I'(a) Jo(qa). 10.

As much;as 140 years ago a similar expression was used by Airy for computing

the diffraction of a plane light wave from a circular aperture of radius
R. In our notations, he obtained (4)

£(q) = ikR* J (qR)/(qR), 11.




Equation 10 may be integrated analytically in various cases. Some

examples, which will offer a useful guideline later,are presented in

Figure 2.

2.2 The Optical Theorem

The optical theorem relates the forward scattering amplitude to the

total cross~section Ot:

Ot =4m ImfQ)/k. - 12,

For future use we sketch here the derivation of the theorem. The
amplitude of the incoming wave is modified by the screen with the factor
S(;), so that the ratio of the energy fluk absorbed by the screen to the
incident flux is [l—ISIZJ = 2Rel - [T|2, 1In scattering theory, its

integral is the "inelastic cross-section":

X ->
a, =5d2a [2Rel' (@) - |T(@]?]. 13,
m .
Similarly, the differential elastic cross-section do/dQ is defined

as the outgoing energy density per unit solid angle normalized to the

>
incoming flux , so that do/dQ = |f(q)|2. Its integral over
the solid angle (with d = d%q/k?) gives the "elastic cross-section':
= 2 a 2 14-
Ogq J d%a |T'(a) |2,

The sum of these two quantities is the total cross section Oy By

comparing it with equation 9a one obtains the optical theorem of

equation 12,
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2.3 Application of Optical Concepts to Hadronic Waves

Hadrons propagate in free space according to relativistic wave
equations where the wave number k is related to the momentum p, the
total energy E and the mass m by the usual relation k = p/H = (Ez-m%ﬂ)%/kc,
Numerically k ® 5.10'%p(cm GeV/c)~!. As pointed out in the Introduction,
hadrons as well as nuclei are extended o
experiments the r.m.s. radii of the charge distributions are actually
measured (6). The expression R % 1.1 Al/afm fits the data on nuclei and even
gives the reasonable value R = 1.1 fm if for a hédron one takes A =1,
Assuming that hadronic matter has the same distribution as . electric
charge, the relevant quantity to be introduced in the short wave 1ength
condition is th, where k is the wave number in the centre-of-mass sys—
tem, and Rt is the quadratic combination of thelradii of the projectile
and the target. For incoming protons to have th 2 10 the laboratory \
momentum pllhas to be larger than v 5, v 1 and v 0.3 GeV/c when the
targets are protons, 'He nuclei and 208pp, respectively. The same limits
are applicable, within 20%, if the incoming hadrons are pions instead
of protomns.
The large distance condition 3 is always‘satisfied because.the
distance D at which the scattered hadrons are observed behind the scatterer
is at least of the order of 1 cm, so that R/D = 10" '?, Since in all
experiments performed so far kR is never larger than 10*, the éuantity
kR%/D is always smaller than 10™°. Therefore hadron-hadron and hadron-
nucleus scattering is analogous to Fraunhofer diffraction.
Typical diffraction patterns appear in the differential cross-

sections of Figure3. As a first application of optical concepts we
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may consider the calculation of the profile functioms. This already
meets with a problem, since the complex scattering amplitude is needed
in equation 9b, while the differential cross-section gives only informa-
tion on its modulus: |f| = ¥/do/dR. The phase of the amplitude at
Z = 0 may be obtained by measuring the interference between the nuclear
and the Coulomb amplitude; In subsection 4.4 it will be shown that the
amplitude £(0) is essentially imaginary, i.e. that its phase is close
to 90° in hadroﬁ—hadron collisions, at least for laboratory momenta lar-
ger than 10 GeV/c., For 3 + 0 the phase of the nuclear scattering
amplitude must be derived from some model. The simplest one corresponds
to a purely absorbing interaction, i.e. to an imaginary phase-shift
A(;) and a real F(g). This is an over-simplification. Nevertheless
the fact that it is a reasonable one at very high energies justifies
the present interest in optical diffractive models; In this case the )
amplitude of equation 10 is imaginary at all momentum transfers and one
speaks of "shadow scattering". This model is applicable when the energy
is large enough and thus there are many open inelastic channels summing
up to a large inelastic cross-section (I'(0) real and not too far from 1 in
equation 13). In such circumstances the elastic scattering is mainly
the shadow of the inelastic channels and the momentum transfer dependence
reflects the shape of the interacting hadrons. The profile function

plotted in the inset of FiguréiBC has been obtained within this model.

This brings a question and a remark.

' ‘Quéstion. What is the meaning of the parameter 3 in the case of
hadron-hadron collisions? = This may he clarified by writing the incoming

hadron wave as a sum of partial waves of orhital angular momentum £ and




_12_

then by approximating the sum over £ by an integral over the variable
a= (2 + 1/2)/k. 1If the energy is large enough so that a very large
number of partial waves contributes, the wave length is so small that a
semi-classical description of the scattering process is applicable (4).
The quantity 2 is nothing else but the minimum distance of approach between
the centres of the two colliding hadrons. For this reason it deserves the
name of "impact parameter". Since.the range R of the hadron-hadron forces
is finite, their effect drops exponentially at large distances and the
relevant angular momenta may increase in number as zmax < kR&n(kR) . (We
would have kR for a sharp edge). The short wave length condition becomes
zmax >> 1 : the diffraction picture applies in its simplest form when

many partial waves contribute. They are almost purely imaginary and

coherence effects are maxima.

Remark. Experimentally it is found that the hadron-hadron differen-
tial cross—section close to the forward direction is a gaussian in the
‘scattering angle (Figure 3C). Thus the scattering amplitude is well

represented by the form
£(q) = ko _(i+p) exp(-b|t|/2) /4m 15.

where the ratio p between the real and the imaginary part is taken to be
energy independent. The parameter b is the "slope'" of the logarithm of
the differential cross-section plotted versusltl = H%¢2. ! The profile

function corresponding to equation 15 is gaussian and Figure 2D shows

1 The four-momentum transfer squared t is given by t=2 mzc“-Z(ElEz—plpzczcos€»
> >
where (E,,p;) and (Ep,p,) are energies and momenta of the scattered hadron,

with mass ™ before and after the collision.
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that its radius is

L
R =12%% 2 0.3 b%m (b in GeV/c). 16.

For R * 1 fm this relation gives b ¥ 10 (GeV/c)™? |

2.4 Polarization Effects in Optics and Diffraction Dissociation

Our discussion has so far been limited to a scalar amplitude. It
is, however, well known that when polarization is considered, new
phenomena appear in optical diffraction. Let us for instance consider
a screen with a "hole" which has different indices of refraction for
right and left circularly polarized beams (a tube with a sugar solution
iﬁ it). In this case there are two profile functions FR(Z) and
TL(Z) which form a two-by-two diagonal matrix in the representation
which uses right and left circularly polarized states as base vectors.
In a linear polarization basis the profile matrix is no more diagonal,
so that the diffraction of a linearly polarized beam gives rise to two
different waves. The first has the same polarization as the incident
one and scattering amplitude proportional to the Fourier transform of
(T, + FR),.while the second is polarized at 90° and is determined by the

profile function (FL -T)). This second component is not present in

R
the incident wave and may be regarded as the production by diffraction
of a new sfate degenerate in energy (frequency) with the initial state.
We note that such a diffractive production becomes possible since a new
degree of freedom is introduced in the description of the incoming
wave,

About twenty years ago Glauber (12), Feinberg and Pomeranchuk (13),

Good and Walker (14) and others pointed out that similar effects must exist in

the interaction of hadrons with nuclei.In the Good and Walker approach, one views
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the state |i> of a hadron hy which moves through a nucleus as a linear combina-

tion of states |n> which have the same intrinsic quantum numbers as the
hadron and are eigenstates for strong interactions in nuclear matter:

|i> =2Cc |n>. The S-matrix is diagonal in the space spanned by the diffractive
ni

eigenstates |n> and "just behind" the nucleus the wave has the form

5>
o
=3

S(a)]i > =Z¢c [1 ~T_(a)]|a>. 1In general the profile
i n n

the various states |n> are not all equal so that the diffracted wave does
not coincide with the initial physical hadron. Let F(Z) be the profile
function describing diffraction scattering of ho' The leftover diffrac-
ted wave just behind the nucleus is then chiT(Z) - Fn(Z)], which
expresses the fact that each state |n> is present with an amplitude which

is proportional to the difference between the profile function for elastic

scattering of the hadron h and the profile function referring to the eigen-
0

state |ﬁ>. Diffraction dissociation is thus expected to be small where these
differences are small, for instance at the centre of a heavy nucleus

whicﬁ is completely absorbing for most states in>. This already indicates that
diffraction dissociation is expected to be more peripheral, in impact

parameter space, than elastic shadow scattering.

The physical states lf> that are observed far away from the nucleus
are linear combinations of the eigenstates |n> and in general do not
appear as single particle statesbut rather as systems of two or more

hadrons with energy M in their centre-of-mass and of global laboratory

momentum P,Nuclear coherence puts restriction on the possible systems h which
may be diffractively produced. Indeed they must have the same intrinsic quan-—
tum numbers of the incoming hadron h , i.e. the same charge, isotopic spin,

0

nucleon number, strangeness, charge conjugation etc. However, they
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need not keep the spin and parity of h,, because some angular momentum
may be transferred to the internal motion of the hadron while the total
angular momentum stays constant. A further limitation comes from the
request of coherent production: the mass M should not be too different
from the mass m of the incoming hadron. For zero angle production the
momentum transfer is (p=P) ® (M?-m?)c?/2p, so that for a given incoming
momentum p the minimum four-momentum transfer at which the mass M may be
produced is
t .o = [(Pn®)e?/2p] % 17.

In the transition.the wave number k of the incident hadron varies by
Ak = (p-P)h. The condition of coherent production amounts to the request
that the product of Ak by the radius R of the diffracting nucleus has to be
smaller than 1. Only in this case can the waves describing the hadron h,

and h stay in phase within the nucleus. In summary we have 2

coherence condition: M2-m? < 2p/R. 18,

Good and Walker's idéa applies not only to hadron-nucleus, but also
to hadron-hadron collisions. 1In this case the basis |n> is defined as
the set of states which do not mix in the interaction. The coherence
condition is easier to satisfy since the radius R is smaller.

Evidence for diffraction dissociation of negative pions is shown in
Figure 4., The datawere collecte& at the CERN PS by the CERN—Milah—ETH
(Zurich)-Imperial College collaboration (15-20) on the reaction
T + A~ (ﬂ-ﬂ+ﬂ-) + A around 15 GeV/c of laboratory momentum. It is seen

that the mass distributions of the produced three pion system peaks at

.low masses and that masses around 1.7 GeV are relativelv more,sbundant

— 0 PP e R B o - A P - -

From now on we shall put'+i= ¢ = 1, so that energy, mass and momentum

transfer are all measured in GeV.
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with a berillium target than with a tantalium one. This agrees with the
coherence condition which is better satisfied for smaller nuclei. More-
over the angular distributions show a very pronounced forward peak whose
slepe b increases as A2/3, i.e. as R? as predicted by equation 16, These

data will be discussed in more detail in section 3.3

3. DIFFRACTION IN HADRON-NUCLEUS COLLISIONS

We now consider hadron-nucleus scattering as a second step towards
the identification of the general properties of diffraction phenomena
in hadron-hadron collisions. Heavy nuclei are a useful tool bécause
they have a well defined radius R, which may be varied by changing the
mass number, and because hadrons are much absorbed for impact parameters
smaller than R. Moreover a reliable theory exists to describe diffrac-
tion in hadron—nucleus scattering and what hapéens depends more An the

. ,

size of the nucleus than on the details 6f the interaction with each
nucleon, In the following we shall sketch the mgin lines of Glauber -
theory (21-24) not only to discuss elastic hadron-nucleus collisions but

also to prepare the presentation of some geometrical models, of hadron-

hadron scattering.

3.1 Diffraction Theory of Coherent Hadron-Nucleus Scaétexing

t

Glauber theory descriﬁes the scattering. of a hédronic wave by a sySﬁém
composed of various scattering centres. It is applicable to small momen-
tum transfer. scattering. It is based on tﬁree maip hypothesesﬁ- a) -
the nuclear wave function has no time to change during the propagation’ -
of the ﬁadron inside the nucleus; (B) the propagation of fhe hadronic

wave within the nucleus follows the laws of geometrical optiﬁs; (C) the
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phase shifts produced by the individual nucleons combine additively.
We briefly consider the rationale for these hypotheses.

The first hypothesis is satisfied for laboratory momenta of the
incident hadron larger than Vv 1 GeV/c, i.e. whenever the incident energy
is much larger than the excitation energies of the nucleus (25).

According to the discussion of subsection 2.1, the second condition
is satisfied when kR? >> D, where R is the interaction radius in a
hadron-nucleon collision and D is the radius of the nucleus. This
condition is also satisfied for Py 2 1 GeV/c. (Gottfried has shown
that some Fresnel effects are present in hadron-deuteron scattering
below 1 GeV/c (26)).

Condition (C) does not represent a further assumption if the hadron-
nucleon interaction can be described by a local potential (4 ), since
the phase shift depends linearly on the potential and the potentials due
to the different nucleons sum up. However, at high enough energies
the phases Aj(a) due to the interaction of the j—th nucleon with the

incoming hadron are complex and condition (iii) becomes an independent

hypothesis.
The S-matrix for the hadron-nucleus interaction takes the form
A
> > > . > >
SA(a, S, e SA) = ?_1exp[1Aj(a-sji], 19,

- .
where sj is . the transverse position of the j—th nucleon (Figure 5).
The nucleus profile function can then be written as the sum of A terms
-> > > > -> >
I (238, ... s,) =IT,(a=s,) = L T (a=s,)Ts(a-s2) +
. 1 1 . 1 1" J J
i 1>3 20,
> > > > > > '
Z P, ~S. F' -S* - ™ eee O
1(a sl) J(a sJ)Fk(a sk)

i> >k
J
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Figure 5 Definition of transverse positions in the Glauber approach.
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| This equation expresses the nucleus profile function in terms of
.the nucleon profiles and shows that, when the interaction is weak
(Ti X 0), the profile functions of such a "frozen" nucleus is equal to
the sum of the profile functions of its constituent nucleons, This is
not the case in general, however, and the other terms of this "multiple
scattering series' have also to be taken into account. ‘For instance,
the second term represents events in which the incoming hadron is

scattered by two different nucleons in the nucleus, the third term represents

triple scattering and sa on.

3.2 Elastic Scattering of Hadrons on Nuclei

‘For light nuclei the number of terms in the Glauber multiple ex-—
pansion is.sméll and may be computed explicitely by introducing a suit-
able parametrization‘of the hadron-nucleon profile. (A gaussian profile'
is usually used, as implied by equation 15.) In Figure 6 éxperimental
data on‘pion—deuteroﬁ'écatteriné (27-29) are compared with such a
calculation (29-31)?The forward peak‘is associated with the first term
in the expansion. .- It represents singlgnscattéring of the pion either i
" from fhe‘proﬁon or from the neutron in the deuteron acting coherently.
Its mbmentum transfer-deﬁendence is esséﬁtia11y that of the deuteron form factor.
For |t| 2 0.5 Gev 2 however, the second (and last) term in equatlon 20 |

domlnates: this corresponds to double scattering when the pion hits succes-

;

~

3
Proton—nucleus data have been rev1ewed by Saudinos and Wilkin (243) and

by Ciofi degli Att1 (24b).
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sively the neutron and the proton. It requires more localization in

space and hence the t-depepdence is less sharp than in the former case,
For intermediate and heavy nuclei the profile operator of equation

20 conﬁains many terms. The previous method becomes cumbersome and a

simpler and yet reiiable description of hadron-nucleus elastic scattering

is obtained neglecting correlations in the nuclear wave function, so

that the ground sta;e can be described by the nuclear densities pj(;)

of the A nucleons ( d%r pj(;) = 1), Then the expectation value of

‘the S-matrix in the nucleus ground state |0 > takes the form

A
<o|s, (20> = T fdzs dz p,(s,2) [1-T(a-s)], 21,
A se1 i

where r(Z) is the hadron-nucleon profile, For A + « the product of

these A factors may be written in the form exp(iAA) where
. . > 2 > > +oo > 2 > > >
iA,(a) = - Jd%s T(a-s) dz p(s,2z) = - |d°s '(a=s) T(s) 22,

In this equation p = ij is the total nuclear density ( jdsrp = A) and
'T(;) is ﬁhe "thickness function", i.e. the integral of the density
aiong a straight path at impact parameter ;. Equationé 21 and 22 are
the starting point for most calculations of elastic scattering of high
energy hadrons on intermediate and heavy nuclei. TFor instance, the
curves in figure 3A have been computed with equation 21 (7). The
nuélgar matter distribution needed to fit the *%Ca data comes out to be
very similérbfo the charge qistribption measured in electron-nucleus
SCattgring. Similarly, the curve of figure 3B is computed without
adjué;;ble paramters, using a self-consistent density distribution

derived from Hartree-Fock calculations (10Q). In summary the theory of
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hadron-nucleus diffraction is precise enough to provide information on
the nuclear density of accuracy comparable to the one derived from
electron scattering. This conclusion was already reached a few years
ago (32).

To understand how the apparently smooth expression 22 gives rise
to the many oscillationg appearing in the differential cross—section,
it is useful to introduce the Fourier transform of the phase

> ) 2 I - - - 23
AA(q) = (1/2m) \d"a exp(iq.a) 4,(a) = A £(q) F(q)/(ik) e
> ->
f(q) is the hadron-nucleon scattering amplitude and F(q) is the form
factor of the nucleus so normalized that FO) = 1. The hadron-nucleus
3 [ + 3 3 3 +
scattering amplitude fA(q) is the Fourier transform of {1 - exp[lAA(a)]}
and, expanding this exponential, it may be formally written as a series

. >
in AA(q)Inamely

- - s - _ - - ' - e > '
£,(@) = ik®, @ - 2, @ @8, @/2! + 8, D4, @A, @/3! ..). 2.
The convelution of two functions in momentum space is defined as
> >
N(Z)@M(Z) = (1/2m) Sdzq' N(q) M(q-q"). 25.

If the interaction of the hadron with the nucleons is not very strong, the
first term is sufficient, and the differential cross—section is simply

(do/dQ) = A% |£(q)|? F*(q) , | 26.

coher
It has the typical A? dependence of a coherent process. The g-dependence
of this expression is mainly determined by the nuclear form factor, i.e.
by the size of the nucleus. The othér terms in the expansion alternate
in sign and give rise to the typical oscillatory behaviour superimposed
on the rapid decrease determined by the form factor. Note that if

AA(q) is approximated by exp(-cq?), the n-term of the development is
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proportional to exp(-cq /n); so that each successive term gives a flatter
contribution which eventually dominates at larger angles.

An extension of equation 22 has been used by Chou and Yang to inter-—
pret elastic scattering in very high energy proton—proton collisions
(33-36 ). This approach is based on the idea that hadrons are extended
distributions of nuclear matter madg up of an infinite number of very
small constituents. The constituents of the two hadrons interact
locally, i.e. their profile is a delta function. The phase A(Z) of
this model is immediately written down as an extension of equation 22,
which was obtained for a hadron interacting with a nucleus having thick-
néss function T(g). If TA and TB are the thickness functions of the
inferacting hadrons, the Chou and Yang phase is proportional to the
integral S&zs TA(Z—;)TB(;). The thickness function is then obtained
ftém the charge distribution, i.e. from the measured electromagnetic
form factors F, and Fo of the two hadrons. With this hypothesis the

Fourier transform of the phase, defined by equation 23, becomes

FA(q)FB(q). CAB measures the stfength of the interaction and {

Ma) = ¢,
~is the only free parameter of the model. = In the case of proton—proton
scattering the first term of the development 24 gives a cross-section propor-
tional to Fp(q) . The interference with the second term, negative and less
,sfeep, gi?es rise to a minimum at t 1.5 GeV . The curve of Figure 3C is the
result of,such a calculation (11b). The data are very well reproduced. It

must be stressed that the ﬁodel was suggestéd to be valid at infinite

energy, when a limiting angular distribution was supposed to be reached.

As it will be discussed, the results of the CERN Intersecting Storage

Rings have shown that up to 2000 GeV/c no limiting distribution is
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reached, One must conclude that the ChoumYang approach is too simple,

yet it has many appealing features.

3.3 Exclusive Diffraction Dissociation of Hadrons on Nuclei

Pion diffraction dissociation is illustrated in Figure 4, which

contains a sample of the data of the CERN-Milan-ETH-Imperial College
collaboration. More data may be foﬁnd in Lubatti's review article (37),
where results on nuclear targets are presented in parallel with data on
nucleons. Figure 4B shows that the slope of the forward cross—section
increases proportionally to the square of the nuclear radiﬁs.
The mass spectrum of the three pion system peaks around M= 1.1 GeV
and, for light nuclei, it shows another structure at M =z . 1.7 GeV (Figure 3A).
These bumps are associated with the names of "Al and A, enhancements".
The stu&y of their properties has been one of the main issues in the
field of exclusive diffraction dissociation in the past few years.  Some
properties of these systems are illustrated in figure 4C, where, from the
data of the same collaboration,summed over all targets, mass spectra for
pairs of pions have been constructed. While the combination T 7 has
a structureless behaviour, the peaks present in the I comﬁiﬁation show
that the three—pion system of mass smaller than 1.3 GeV/c? decays
predominantly via the channel p°(780) + ﬂ—, while for masses larger -
than 1.5 GeV one finds both P + T and £(1270) + T configurations,
Refined partial wave analysis of the three pion system diffractively
produced on hydrogen targets have been performed by the Illinois group (38)
and will be discussed in subsection 5.2. The same analysis was used both
in the experiment under discussion and in a more recent one performed

at 23 GeV/c at the Brookhaven AGS by the Carnegie Mellon-Northwestern-—
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Rochester collaboration (39-41), In these experiments coherent production on
nuclei was shown to be dominated by states in which the three pions have
total angular momentum and parity JP =0 and 17 in the region of the

A, and 2  in the region of the Aa' Here we meet for the first time with

a regularity which we shall encounter again in the following discussion: the
: pion,‘which has JP = O_, diffractively dissociates in states which belong to

the JP series 0-, 1+, 2 (unnatural parity states).

Kaon diffraction dissociation on nuclei has been studied first in

" heavy liquid bubble chambers and later with counters by the CERN-Milan-
ETH-Imperial College collaboration. (17). The (Kmm) mass spectrum,which presents
similarities to the 37 apecfrum, shows a prominent bump at M(Kmm) =~ 1.3 GeV,
referred to as the Q-enhancement. At larger masses (v 1.75 GeV) a
small structure appears, usually named L-enhancement, which is again not
visibie in heavy nuclei. This is due to the coherent condition. The
Q;enhancement has a strong contribution of 1+ nature and decays mainly
throuéhvthe,channel K*(890)T and pK, thus paralleling the behaviour
bf the A, which decays into pm., Again we see that a 0 particle dis-k
soéiates préfergntially in a 17 state.

Nucleon diffraction dissociation experiments have been recently

performed at the Brookhaven AGS. The Michigan group has studied the
reaction n + A~ (pm ) + A (42) and the Carnegie Mellon—-Northwestern-—

Rochester collaboration has collected high statistics data at p, = 22.5

: . + - e
_GeV/c on the reaction p + A > (pm m ) + A (40, 43). The angular distributions

measured on C, Cu and Pb are plotted in Figure 7 versus t' =t - tmin

together‘with the mass spectra of the (pﬂ+ﬂ—) system, In this case too,there

is a prominent bump at M = 1.4 GeV and,for ~ carbon target,a small enhancement
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around 1.7 GeV, The first is a typical threshold enhancement of spin-
parity 1/2+. (It compares to what was found with the A1 and Q). The
second is very probably due to coherent production of the 5/2+ state
N(1690). Thus for half integer projectile diffraction dissociation

favours transition of the type 1/2+ - 1/2+, 1/2+ > 5/2+.

Proton diffraction dissociation on deuterons has been recently
studied in a very elegant experiment by the Fermilab-Dubna-Rockefeller-
Rochester collaboration working on the circulating proton beam of the
400 GeV/c Fermilab synchrotron (44,45.). The technique, using a gas jet
of hydrogen (or deuterium) as a target for protons circulating in the
méﬁhine during the acceieration cycley has been discussed in detail by
Melissinos and Olsen (46)., By measuring the kinetic energy and the
aﬁgle of the proton (or deuteron), which for small momentum transfers t recoils
at an angle close to 90°, one can determine both the value of t and
the mass M of the produced system. Momentum transfer distributions
Q?tained at P = 275 GeV/c for three values of M are plotted in Figure 8A.
The steep fall-off is mainly determined by the deuteron form factor and is
due to the fact that at very small momentum transfer the double scattering con—
tribution is negligible. 1In analogy with equation 26, the differential
cfoss—section for diffraction dissociation factorizes, namely

2 _ (~Pd, PPy o2 2
(d o/dth)pd = (ct /ot ) F°(t) d°c/dtdM, 27.

where F(t) is the deuteron form factor. The ratio of the cross—section
is v 3.6, and substitutes in equation 26 the factor A? = 4, so as to
take into account shadowing effects. Equation 27 is used to

extract proton - nucleon cross-sections from proton- deuteron data.
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Proton-proton missing mass spectra derived from proton-deuteron data
at p; = 50 and 275 GeV/c are compared in Figure 8B with previous proton-

proton data at 20 GeV/c obtained at the AGS (47). The broad bump at M? =

2 GeV® {$ attributed to the production of the 1.4 GeV "enhancement" and

the structure at 1.7 GeV is identified with the excitation of the well-
knowit resonant state N{1690).

In the above examples diffraction dissociation is identified by the
presence of a large forward peak the slope of which is related to the dimension
of the nucleus. This small sample of data agrees with what is also found in
hadron-hadron dissociation: mnot all energetically possible states are
diffractively produced.Not only the intrinsic quantum numbers are preserved
in the process, but also the Gribov-Morrison empirical rule seems to hold
quite generally (48,49);' This rule is expressed by

' AJ

Pf = Pi (-1) ;- 28.

Pi and P_ represent the parity of the initial and final systems and AJ is

£
the change of spin. In words, the change of parity is that which corre-
sponds to the net gain in spin. This in turn corresponds to the minimum
transfer of orbital angulaf momentum. For diffraction dissociation of the
pseudoscalar mesons (7 and K), the Gribov-Morrison rule allows the production

-, 1+, 2_, 3+ etc., while for dif-

of states with unnatural pafity 0
fraction dissociation of nucleons the allowed sequence is 1/2+, 3/2_, 5/2°,
7/2° etc. For the collision of spinless particles at t = O this rule is
equivalent to the conservation laws of parity and angular momentum (48).
Goldhaber and Goldhaber have shown that, to order A—l, the same behaviour

is predicted for spinless hadrons diffracting on nuclei of non-zero spin (50).

Away from the forward direction the rule implies some selective
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dynamical mechanism. The rule may often be enforced since, as the momentum
transfer increases, the cross-section is damped by the usual factor, which

for coherent production on nuclei is proportional to F2(q) (equation 26).

As a consequence a production amplitude, which is zero in the forward direction,
will never have a chance to become appreciably large. However, this argument
cannot be used to justify a rigorous rulé. Thus equation 28 has to be
considered an empirical relation whose dynamical origin has still to be under-
stood. Indeed some recent data even contradict it. For instance the pion-
dissociation experiment of the Carnegie Mellon-Northwestern-Rochester col-
laboration on C, Al, Cu and Ag targets indicates that the rule is not satis-
fied, since in the partial-wave analysis of the data (4l), evidence is found

for coherent production of the A, (1310) meson (JP= 2+).

3.4 Cross-section of Unstable Particles

Coherent diffraction on nuclei has been used as a tool for measuring
the cross-section of the produced states on the nucleons of the nucleus. In
this application the nucleus acts both as a generator of particle and as a
target. Let us first consider the elastic reaction h + A > h + A in the

» - - + . . . ..
hypothesis that the thickness function T(s) is slowly varying in comparison
. . + *» [ .
with the h-nucleon profile I'(s). The corresponding phase is obtained by
introducing equation 9a and the optical theorem in equation 22:
400
Ly . > :
ia, (@) = -Ot(l—lp)f dzp (3,2)/2. 29.
- OO

When the real part of the h-nucleon scattering amplitude is zero (p=0),
this expression has a very intuitive meaning: t he attenuation introduced by

the nucleus in the probability of finding the hadron h at impact parameter

>
a just behind the nucleus is proportional to the total cross—section and

to the thickness of nuclear matter traversed. In the diffractive process
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'h + A>h' + A, particle h survives up to a depth z in the nucleus and the
diffractive state h' propagates from this point onward. The overall amﬁli—
tude for production of the state h' off the nucleus contains the phase fact-
or 29 describing the attenuation of the incident wave and in addition a
'phase factor containing the total cross-section g, for h'-nucleon
scattering together with the corresponding real to imaginary‘
ratio Py Details may be found in the article by Kdlbig and Margolis (51).
The only point we intend to stress hereis that, by measuring the differen-—
tial cross—-section for coherent production of a state of mass M as a func-
tion of the mass number A, it is possible to determipe the total cross-
section of this unstable state on nucleons because, even though the state
decays very quickly, it does not have time to vary appreciably while still
inside the nucleus.

The curves of Figure 4B represent best fits to the data in which the
total cross—section Oy Was left as a.free parameter (15-17). The same col-

‘laboration has performed phase-shift analysis of the produced three pion
System, so as to derive the total cross-section for states of definite spin
and parity (18). The résults are summarized in %able 1 together with data

_’from' other experimenﬁs.“ It is most iﬁportant to remark that, with the
. exception of thE’O:(ﬂrﬂrﬂf) state, all cross-sections are of the same order

of magnitude as the cross-sections of stable'ha&rons. These experiments
lhave tought us the very important fact phat such states, usually seen as
composife systems, propagate in the.nucleus as single hadrons. For detail-

~ ed discussions of the meaning ofv;his discovery we refer to the literature
(53~56). For completeness in Table 1 we have also collected data obtained
by studying the coherent photoproduction of vector mesons. In subsection 5.7 we

shall show that this is indeed a diffractive process. In this case also, we

have to refer to the literature for more details (57, I8).




Table 1,
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Total cross~sections of unstable hadronic

systems on nucleons obtained by measuring coherent production on nuclei

. P Mass o} ‘
L M
Reaction (GeV/c) State (GeV) (iab) Ref.
- S - -t - - + .
TA>TTTA 15.1 (mmm) 1,0 <M< 1,2 23 £ 1.5 17
- - - + - -+, .P - v '
MTA->TTTA 15.1 (mrrmw)I =0 1.0<M<1,2| 49 38 18
TA->mrnal 15.1 | (rmayat =17 10<m<1.2| 15.8 1.4 18
- -+ - - -+ + o
m™A-> 3T 27 A 15.1 (rmrmwmT) 1,5<M<1,9} 17 =38 15
. ) ) |
KA krtra| 13 &) 1.0<M< 1.4] 26 *2 20
pA - pm'm A 22.5 (prm) 1.b<M<1.6| 24 +3 40
pA = pr°A 22,7 (pm" 1.3 <M< 2 33 *7 52
YA T A <7 0° 0.77 26.7 * 2 57
yA » KK A <5 ¢ 1.02 12 57

1+
e
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4. DIFFRACTION SCATTERING IN HADRON-HADRON COLLISIONS

4.1 Characteristic Features of Hadronic Diffractive Phenomena

Our previous discussion of diffraction phenomena for optical waves
and for hadronic waves on nuclei allow us now to abstract those features
that a particular final state produced in a hadron-hadron collision has to
present in order to be classified under the heading "diffractive phenomenon".

The range of strong interaction is of the order of 1 fm and the short
wave length condition is satisfied if the laboratory momentum of a project-
ile hadron impinging on a nucleon is larger than ~ 5 GeV/c (section 2.3).
Figure 9A shows that at these momenta the inelastic cross-sections of the
usual six stable particles on protons are of the order of the area of a
disc 1 fm in radius: o ~ 30 mb. According to equation 13 these large values
may be obtained only if the hadron-hadron profile functioﬁ is essentially
real and, for small impact parameters, is not very far from the maximum
allowed Qalue: I'(0) ~ 1. This is enough to "drive" shadow phenomena and
one ié left with the problem of recognizing them. Let us consider the
iﬁelastic two-body reaction

a+b-+c+d,

representiﬁg the interaction of the projectile hadron a with the target
" hadron b that produces two hadroniqusystems c and d, which in general are
observed as multiparticle final states. The systems c and d are assumed
well separated and associated with well-defined quantum numbers. This
reaction is labelled "diffractive process" if the following kéy features

are observed.

(a) The differential cross-section has a pronounced forward peak whose
slope is of the order of 5-10 GeV™? (equation 16). Note however, that if

. . >
for some dynamical reasons the process is peripheral in the impact parameter a,
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the forward slope may be substantially larger. (Compare Figures 2B and 2A).
(b) The integrated cross-section is a "slowly" varying function of the momen-
tum of the projectile. This follows from the fact that the hadron-hadron

profile function must vary little with the momentum, as indicated by the

slow variation of the inelastic cross-section (Figure 9A). What is meant
by "slowly" cannot be stated in absolute terms but may be defined only

in comparison with the "fast" energy variation of cross—sections which are
certainly not of diffractive type. Typically they vary as inverse powers

of s, the square of the centre-of-mass energy. In this context a "slow"
variation means, for instance, a logarithmic dependence on s.

(c). The systems c and.i have the same intrinsic quantum numbers as that of the
hadrons E'And b, respectively. Their spin aﬁd'the parity may be different
but are a priori expected to follow the Gribov-Morrison rule of equation 28.
Note that the association of ¢ with a and d with b is unambiguous because
of the 1arge’forward peak required by condition (a).

(d) The cross-sections of processes initiated by a hadron and its antihadron
behave similarly as a function both of momentum transfer and of laboratory
momentum., This is expected from the fact that the range of strong inter-
’éctions is practically universal and that the inelastic cross—sections of a
hadron is numerically close to the cross—section of its antiparticle (Figure
9A). - Annihilations contribute a relatively small part of absorptiom.

.(e) The incoming ﬁomentum has to be large enough to allow for coherence err

. the dimensions of the hadron. According to equation 18, this implies a

‘i:threshold for the laboratory momentum 129 needed to coherently produce on

the target of mass m. a state of mass M:
pp 2 2.5 0 - m?), 30.
. where momentum and masses are measured in GeV and we have taken R=1 fm. As

" 'a numerical example,diffractive excitation of a 3 GeV system, even if al-

lowed by other selection rules, will be depressed if Py is less than about
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25 GeV/c, while for M = 10 GeV p; must be of the order of 250 GeV/c.

In the case of diffractive elastic scattering one also expects the scat-

tering amplitude to be mainly imaginary, at least in the forward direction.

This happens if the interaction is essentially absorptive, so that the phase
is imaginary and the profile function 1is real.

4,2 Exchange Picture of Diffraction

The optical picture of high energy elastic scattering leads to a semi-
classical approach which is very different from the usual quantum field
treatment so successful in electrodynamics. In this framework the basic
process is of an exchange nature, the two interacting particles exchanging
quantz of a field they are coupled to. This is the well-known picture of
Coulomb scattering, where a photon is exchanged. With strong interactions
this is the Yukawa theory, with pion exchange as the basic interaction be-
tween two colliding hadrons. The very nature of strong interactions does
not allow, however, a perturbative expansion. The picture is even more com—
plicated because of the great number of mesons which can be exchanged. Still
the Chew and Frautschi application of Reggeis ideas (60) allows to use a
relativelyAsimple exchange picture to the description of hadron collisions,
which is in fact the result of a tremendous averaging over elementary pro-
cesses. It is out of question to provide here an introduction to Regge
models, for which we refer the reader to recent reviews (61,62). We shall
merely say that, once a reaction can be labelled as proceeding through

the exchange of a particular set of quantum numbers, the corresponding

scattering amplitude can be approximated as
i i a.(t)
R(s,t =Z t 31.
(s,t) . Yab( ) ch(t) n(t) (s/so) i
i .

where s is the square of the centre-of-mass energy (s ~ 2 pi mb). Each term
in the sum corresponds to the exchange of a '"Regge trajectory'", which con-
nects the spin J and the masses M of particles, having the quantum numbers

exchanged in the process, through the relation J = a(M?). It is this
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trajectory, continued from positive arguments (M?) to negative omes (t),
that fixes the phase and the energy dependence of the amplitude. The factors
Yib(t) and Yid(t) may be interpretea as coupling constants of the exchanged
trajectory with the "upper" line, describing the transition a -~ b, and the
"lower" line, describing ¢ > d. The function n(t) is called "signature
factor" and has the explicit form
nce) ={T + exp [—-iﬂ a (t)] }/sin Ta (t) 32.
It brings in the amplitude poles due to the vanishing of the denominator
for odd (even) integer values of a(t) according to the value +1 or -1 taken
by the signature t. In field theory the exchange of a particle gives rise
to a pole in the amplitude. The signature factor is indeed producing this
effect. The scale parameter 8, is of the order of 1 GeV?.
Introducing the relativistic amplitude

F(s,t) = 41 s f(q)/k 33.
the full amplitude for the process a + b > c + d may be written

F(s,t) = R(s,t) + Z(s,t) , 34,
where R sums the contributions from a very few Regge trajectories and Z
stands for the corresponding remainder. One may now summarize over a decade
of Reggeology saying that, whenever R is large, R alone, with the properties
associated with equation 31, meets an impressive amount of data and, as
shown by the recent Fermilab results, is furthermore successful over a
tremendous energy range. However, one is still lacking a satisfactory
form for the remainder Z. This is an important drawback, in particular
whenever R is small. A specific example of a large R(t) is provided by
pion-nucleon charge exchange (ﬂ—p + %), where the exchange trajectories
have to carry one unit of charge and one unit of isospin and be even under

G parity. One known meson meets all these properties, the p~meson. The
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data may be fitted with a single term of equation 31 in the ranges
5 < pL < 100 GeV/c and ]t[ < 1 Gev? with a trajectory of the form

| o(t) = ag +a't , 35,
when 0px 0.5 and a' =~ 0.7 GeV_2 (Figure 10). This trajectory extrapolates
well to the masses of the p and of the g mesons. This success is really im-
pressive and is not isolated. One may also quote n production in Tp col-
lisions, KS regeneration from KL’ total cross—section differences. However
when the Regge pole amplitude is small, the remainder Z may not be neglect-
ed, as indicated for instance by the presence of a sizeable polarization
in ﬂfbcharge exchahge. (61, 64).

It is now tempting to assess the predicting power of a similar approach
when it comes to elastic scattering, which is by all standards a large
amplitude. In such a case one may tentatively introduce a leading Regge
amplitude as

RU(5,6) = v, (6) Yoy (6) mp(0) (o/s )%™ 36
The properties of the Regge trajectory which would give an a priori satis-—
factory form for a diffractive amplitude are readily obtained. The traject-
ory is associated with the exchange of the quantum numbers of the vacuum.
It should be even under C- and G-conjugation and with positive signature.
Since the optical theoremrreads so, = InF (s,0), by neglecting the re-

mainder Z(s,t) the total cross—section becomes
' - 0)-1
ab__ P, P . _ o ap(0)-1 op(
= 0 - +
o, Yaa(O)Ybb(O) Im[nP( )]s so(s/so)
doi i . a3 (0)-1
: Y22 (07, (0 Im[n, (0] s (s/5.) 37.
The sum stands for the contribution of the non-leading trajectories,which

have ai(O) < uP(O). They could be neglected asymptotically (s = ®). The

first term contributes a constant cross-section if GP(O); 1, which implies
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nP(O) = i. This contribution is by construction the same for particle and
antiparticle scattering off the same target (it is even under C). Since
it dominates asymptotically, it satisfies the Pomeranchuk theorem, which
states that the cross-section of a particle and antiparticle off the same

target are asymptotically equal (65). For this reason the trajectory with
GP(O) = 1 is called Pomeron
Since the findings of the CERN Intersecting Storage Rings (66,67) and
of Fermilab (68,69) we know that the total cross-sections increase with s
(Figure.9B). Thus the leading term of the cross—section.should include at
least extra logarithms in s which are not present in the Regge expansion of
eqﬁation 37. For the time being we shall consider the Pomeron amplitude
only as a simple first approximation to the true amplitude describing shadow
phenomena in hadron-hadron collisions. We then point out two consequences
which are proper to the exchange picture of difffagtion processes.
First, since do/dt = IFIZ/(16NSZ), if Pomeron exchange with a(O) =_1
dominates, by using the parametrization of equation 35 one expects
do/dt = Ey:a(t) Y:b(t)]? exp[Zabt Rn(s/so)[/(lbﬂsg)' -3?.
This expression implies that the slope b of the forward elastic scattering

increases proportionally to &n s, i.e. the diffractive peak shrinks with

energy. If,as successfully done, the coupling constants YE; and YE% are
parametrized by exponentials in t, equation 38 also impliés a profile %unct- '
ion which is gaussian in impact parameter (Figure 2D) with an interaction
radius which increases logarithmically with energy: RZ = R02 + 40L'P n (s /so)
(equation 16). Since the total cross-section ié constant, at the same time the

central value of the profile has to decrease: I'(0) « 1/n s.  Clearly

this prediction is very far from any black disc analogy.
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Second, the Pomeron amplitude contains the product Y:; Y;;, which
implies factorization propertiés which are also not obvious in an optical
picture. For instance consider the proton diffractive excitation initiated.
by a proton, a pion or a Kaon. The factorized Pomeron amplitude gives
~olpp > PN')/a(pp > pp) = o(Tp > TN ) /o(rp > Tp) = o(Kp > RN') /o(Kp + KP). 39.
Similarly

[o(op +pN*)]2 = 4o(pp +pp) olpp + N'N*) . 40,
Such relations should'hold for differential as well as total cross-sections.

In the following these two predictions and the general features of dif-

fraction processes discussed in the previous section will be compared with

the experimental data.

4.3 Elastic and Total Cross-Sections

‘Examples of forward hadron-proton differential cross-sections are plot-
ted in Figures 11A and 11B. Beésides the almosf exponential béhaviour in t,
we remark a "cross-over" point at |[t| = 0.2 GeV? between the differential
cross—-sections of particles aﬁ%vantiparticles. This effect may be inter-
preted geometrically as a consequence of the fact that antiparticles are
more extended than particles in impact parameter space, so that both the
forward cross-section and ‘the slépe are larger for antiparticle~hadron than
for particle—hadron‘interactions. " Prom the exchange point of view, since
.the Pomeron is even under charge conjugation, its exchange gives equal
particle and antiparticle cross-sections. Thus the cross-over phenomenon
tells something about the other exchanged Regge trajectories. This point
has been discussed extensively in the literature (71-73) and we do not
dwell uponrit here: The mp and Kp total cross—éections are definitely dif-
ferent at P 2 200 GeV/c (wigure 9B). This implies different forward elast-

ic cross-sections, so that at t=0 the Pomeron, if it acts as an isospin

N
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singlet, does not act as a unitary singlet (i.e. as a singlet under the
SU(3) symmetry group of strong interactions). This however seems to change
with momentﬁm transfer, since there are indications from Fermilab that the
differential cross-section for mp and Kp eventually merge for lt] 2

0.3 GeV? (74). This is connected with the long debated Pomeron—annalogy

. .
- 1.
which we do not d

Information on the secondary exchanges are also obtained by measuring
~ the polarization parametef P in elastic scattering and the differences be-
tween particle and antiparﬁicle cross—sections. In the first type of
g#periment, hadrons are écattered on polarized protons. The technique intro-
‘duced at the PS by the'CERN—Pisa collaboration (75,76) has been recently
‘used at higher energy by the Saclay~Serpukhov-Dubna-Moscow collaboration
working at Serpukhov (77). The energy dependence of the parameter P in ﬂip
. scattering at fixed t may be fitted by the interference of a Pomeron ampli-
tude of slope aé = 0.27 GeV? with a secondary"effectivé’trajectory of the
form o = 0.52 + 0.93 t (77). The difference between particle and anti-

- particle cross-sections gives also information on the effective intercept

‘“;ao of the secondary trajectories (equation 37). The data plotted in

. Figure 12 give &62’0.5, in agreement with the masses of the mesons

T :which-cén be exchanged and withmthe‘polarization data.  This two types of

K3

experiments_are ihéeresting to combine since the latter one is only sensi-
:¥ tive to the imaginary parf'bf thé non-flip secondary exchange contribution,
:’QWh%Ie in the former one, it is the real part of the spin flip secondary ex-
>fffChanée congribution which main1§ matters. In conclusion, the available data

' indicate that the secondary contributions have an effective intercept

%

with respect to the almost con—

-

'-jdd % 0.5, so that they decrease about as s

stant Pomeron cross—section.
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Proton-proton elastic scattering is very well known in large intervals
of energy and momentum transfer. A compilation of data is shown in Figure
13. With increasing laboratory momentum a typical diffraction minimum
develops around [t| = 1.4 GeV2. It occurs as the momentum increases Between
100 and 200 GéV/c, The change between the kink appearing at lower momenta
and the dip is presumably due to the gradual vanishing of the real part at
these t-valueé, as it looses the contribution of the secondary Regge tra-
jectories. The CERN-Hamburg-Orsay-Vienna collaboration working at the CERN
Intersecting Storage Rings has shown that the position of the diffraction
minimum changes from It] = (1.44 £ ,02) GeV? to (1.26 * .03)GeV? when the
centre-of-mass energy passes from 23 to 62 GeV, i.e. when P increases from
300 to 2000 GeV/c (79). This (14 * 3) 7 change of the position of the mini-
mum is equal, within fhe errors, to the (11 * 2) 7 increase of the total
cross—section and to the (12 * 2) 7 increase of the inelastic cross~sections
which are observed in the same energy interval (Figure 9) . From an optical
point of view such a coincideﬁ;e is easily understood, assuming that the
profile function is real and depends upon the incoming momentum only through
,a sca1e dilatation of its argument: F(a,pL) = F[g/R(pL)]- When the
momentum increa§es the value at a = O remains constant, while the rad-
iﬁs.k(pL) e#éands. This form of "geometrical scaling" k80, 81)
implies tﬁat o, and S are-both proportioﬁal to RZ(pL), so that the data
indicate fhat in the ISR energy range the radius of the profile function
increases by ~6%. Since b is proportional to R?, the slope should then in-
crease by 12%. The data plotted in Figure 14A give (13 * 3)Z.

The proton-proton forward peak shrinks with energy and the slope b at

<t>% 0.05 GeV? increases logarithmically with s, as predicted by the Pomeron

amplitude of equation 38. A fit to the data of Figure 14A above pL—vBO GeV/c




- [‘7 -

A5 GeVe
N; 7
(D] A
S s
: =

O.

= T~
E 100 .
ko)

290 (x10%).
1480 (x 10°) 1
4 5

1t] (Gev?)

Figure 13 Compilation of proton—proton differential cross sections. The
data are from Berkeley (5-7 GeV/c, 78a), PS (78b), FNAL (78c) and ISR
(78d). The recent data of the CERN-Hamburg-Orsay-Vienna Collaboration

indicate that there is no other minimum up to |t]| = 8 GeVZ (79).
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' i . - R
gives for the Pomeron slope 0., ~ 0.30 GeV"2. This value agrees with

P
the polarization measurement quoted above and is much smaller than v 0.8
GeV™?, characteristic of all the other Regge trajectories.

Slopes computed at an average momentum transfer <t> = 0.2 GeV? are also
plotted in Figure 14. In the proton—proton channel the slope decreases pass—
ing from <t> = 0.05 GeV? to <t> = 0.2 GeV2. This reflects the sharp rise of
the differential cross—section for momentum transfers smaller than " 0;; Gev?
(84). The compilations of Figure 14 show that, while the slope of'ﬂ_p and
K-p elastic scattering is almost energy independent, the ﬂ+p and the K+p slopes
increase with energy, i.e. their forward elastic peak shrinks. Indeed one
expects strong constructive interfefence between the first and the second term
in expansion 37 for K_p, but practically none for K+p.

Total cross—sections for the usual six channels are plotted in Figure 9A.
For a discussion of the relative values of these cross—sections and their energy
dependence in terms of the quark model we refer fo the recent review by

Wetherell (59a). A comparison between the.energy dépendences of the tqtél cross-

sections (Figure 9) and the slopes (Figure 14) indicates that the channels whose

total cross-section varies more rapidly show also a faster increase of the
slope. This is quantitatively shown in Figure 15, where the ratios b/ct-‘

are plotted versus s (85,86). The fact that this ratio stays chstant;with

* <

energy is in agreement with the hypothesis thatvgeomet;ical scaling is
qualitatively valid in all six channeis. The same conclusion may be reacbed
by considering the enefgy dependence of the ratios oel/ot plotted in Figure
16. This figure demonstrates that at large enoggh energies these ratios

are practically constant. It also shows that iﬁ all channels the ratio
cellct is very far from 1/2, which is the value expected for a black disc
(equations 13 and 14). (For the proton—prbton case the fact that the profile
function is very far from a black disc appears very clearly in the inset of

Figure 3C.)
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imaginary part of the Coulomb amplitude are easily introduced (89), and
the measurement of elastic scattering at very small values of ltl gives in-
formation on p. The experimental data are plotted iﬁ Figure 17. It is seen
that at high energies the parametervp is small, i.e. the nuclear amplitude
is mainly imaginary, as expected fbt a diffractive process driven by a large
absorption.

- In optics the real part_ot the reftactive index of a medium at a given
freduency may be expressed;é; an integral over a function of the imaginary
part of the refraction index extended to all frequencies. Similar dispers-
ion relations, consequence of theucausality'principle, connect the-teal and
imaginary parts of the nuclear scattering amplitude. Since the imaginary
part.of the forward amplitude is proportional to the total cross-section, -
at any given enérgy the value of p ﬁay be expreésed as an intégral of the
total cross—section for particle and antiparticlevover the whole enefgy
range (90, 91). 1In practice‘thé value df p is mainly sensitiﬁe to the'
1ota1 derivative of the total cross-section, since to a first approximation

the result of the dispersion relation may be written in the form (92)

1 - d 1 w4 1 w3 d3
 — t —_— = e T ee—teve— —_— -— . +on‘ - ¢
e Ot ].g( d 2n S)IG . [ + 3 (2) d 2'nss O't(S). 42.

N3
|

This expression assumes that the scattering amplitude is even under crossing,
as it should be asymptotically. It indicates, for instance;Jthat if the
cross-section rises at the maximum rate allowed by the Froissart bound (93),
i.e. as 2n®s, the parameter p approaches zero as 1/%ns from positive

values. This statement is indeed a much more generallcotsequence of field
theory when the total cross-section increases asymptotically. It is the
Khuri-Kinoshita theorem (94). Figure 17 shows that p indeed becomes positive

in all channels in the range 100 <P < 200 GeV/c in agreement with the ob-

served rise in the total cross-sections (Figure 9) and the Khuri-Kinoshita
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theorem. What happens to the real part at even larger energies is a very

relevant question in the field of elastic diffraction, because, as indicated

by equation 42, it could give a hint on the higher energy dependence of the

total cross-section. At present the CERN-Rome collaboration is performing an

ISR experiment which should provide values of p in proton-proton scattering

up to p, = 2000 GeV/c.

4.5 Unitarity and Diffraction Scattering

Probability conservation implies the unitarity of the S-matrix: sTs=1.
By introducing the transition matrix (S = 1+i T ) the unitarity relation
reads i(T—T*)= TfT. Sandwiching this between the initial state |i> of the
two colliding hadrons and the outgoing elastic state [f> , and using the usual

normalization one gets

i £ = S <t wen|ti>e 2 <[t w<alT] > 43.
m el n inel

The left hand side is proportional to the imaginary part of the elastic
scattering amplitude. The expression on the right hand side has been ob-
tained introducing in <fthT|i> a complete set of states, and then disting-
uishing the elastic intermediate state |m> from the inelastic onmes |n>.
Equation 43 is diagrammatically represented in Figure 18. It states that
the imaginary part of the scattering amplitude receives contributions both
from elastic and inelastic intermediate states. Following Van Hove (%),
the two terms on the right of the equation 43 are named elastic and inelastic
overlap functions. They are function.of the momentum transfer t:

4TIm £(t) ke = G (t) + G, (t). 44,
For t=0 this equation reduces to the optical theorem. Indeed the overlap

functions are so normalized that G ,(0) = o . and G, (0) = 0. . If the real
el e in in .

1

part of the elastic amplitudes is negligible, Gel(t) which is expressed
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by the integral - j.f\Q) £f(q - q')d°q", contains only Imf and equation &4
becomes a non—linear ihtegral equation in f(a), once the inelastic overlap func-
tion is supposed to be known. In this "shadow" approximation the knowledge of

the inelastic transition matrix elements <n|T|i> allows the calculation of the

elastic amplitude. This is the program of all s-channel approaches to- high
'energy elastic scattering: use a model for the inelastic processes to com-
‘pute the inelastic overlap function and then solve equation 44 for the'
elastic amplitude.. The first step is the most difficult éne because the
model must specify both the modulus and the phase of the inelastic matrix
elements. Physically this is due to the fact that the phase is related

to the position in space where the particles are produced (97).. Many
attempts have been performed along these lines and the main results may be
summarized as follows. If the production channels are described by an
uncorrelated jet model (96-98), or by a multipériphéral model (99-101)
it is impossible tor/. ~~Ivce the slope of the elastic amplitude. This
difficulty may be cured by introducing correlations among the produced
hadrons (99-101), a phenomenoﬁ which is known to be present in production
processes. | |

‘Above which laboratory momentum is the shadow approxiﬁation expected
to be a good approkimation? Since the integral of the ovérlap fundtion
Gin(a) is proportional to the inelastic Crdés-section, it is5natura1;t9 logk
to the energy dépendence of Oin' Tﬁe data plotted in Figurel9A clearly
indicate that one has to distinguish two cases. In the pp and.K+p channels
the inelastic cross-section rises continuously, while in the othe;é it
decreases with the laboratory momentum up to'gt least 50 GéV/c,
This ﬁehaviour is connected with the absendekof direct fqrﬁgtibn

resonances in the "exotic" channels pp and K+p (87c). Thus these two

reactions are the most suitable to study shadow effects at not too high
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cqrrelation is clearly present between the slope parameter b, describing
the low t-region, and the mass of the (nﬂ+) system.

Concerning the large t-region, outside the diffraction peak, only data
at low-energy are now available. The differential cross-section for the
reaction pp + pN(1690) measured by the CERN-Rome collaboration (78b)up to large
momentum transfer (-t = 6 GeV?) is compared in Figure 25B with the shape of
the elastic cross-section. As shown in Figure 13, at low energies proton-
proton eiastic‘scattering starts to develop a structure which at ISR energies
eventually becomes a very clear diffractive-like minimum. The shape of the
momentum transfer distribution for the reaction pp = pN(1690) at large't
closely follows that of the elastic scattering distribution, providing evi-
dence for a common, diffractive, mechanism. Some e?idence also exists for a

shrinking of the forward peak in the process pp - pN(1690), in close analogy

with the well-known shrinking of the elastic peék, as shown in Figure 25C

where data (47,78b) at AGS-PS energies are compared to a recent ISR result(109).

The energy dependence of the total cross-section for the two-body reac-
tions pp > pN* has been studied over a very wide energy range. The present
experimental situation is illustrated in Figure 27 where data on the dif-
fractive processes with excitation of the N(1400),N(1520) and N(1690) states
are reported together with those referring to the reaction pp pA+(1236),
which involves change of isospin. The difference in energy dependence for
the I = & states, all of which satisfy the Gribov-Morrison rule, and the
I = 3/2 resonance is striking. |

The - energy Hependence o£ two-body inelastic reactions is customarily
represented by means of the power law 0 « 1/pE (49). This is not just a

convenient way of parametrizing the data. In fact in the Regge picture if

the exchange of only one trajectory dominates, then the energy dependence
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In subsection 4.2 factorization in diffraction was presented as a
characteristic feature of the exchange picture, i.e. of the fact that
the Pomeron pole dominates in the t-channel. This kind of factorization
does not arisé naturally from an s-channel point of view (142 ), and at
this stage experimental checks of its validity could be considered as
supporting the fact that diffraction is bettef described by a factorizing
Regge singularity. This statement is, however, inéorrect. Since many
years it has been known that factorization tests at the 10-20% ievel are
not conclusive if they refer to the full cross sections (135). This
has been checked explicitly in various simple optical models. | For
instance, the collision of two hadrons of different radii made up of a
not too large number of constituents (partons) was considered by Fishbane
and Trefil (143 ), 1In éhis case Glauber theory predicts factorization
to better than 20%, almost indebendently of the value of’the parton-par?on
crboss—section, if the ratios of the radii and of the numberé éf consti-
tuents of the two hadrons is within the rangel/3 to 3. Similar conclusions
are reached with other models. It even follows if hadrons are billiard
balls the radii of which are chosen to reproduce the observed total
cross-sections (144 ). These arguments show that factorization tests,
to be really meaningful, should be performed on the differential cross-
sections at the level of precision of a few percent. The rising total
cross sections, which exclude the association of the Pomeron with a simple
Pole, leads us to expect approximate factorization anyway. Concluding
we may say that approximate factorization appears as a general property
of diffractive excitation . Tt may be used to predict at the 10-20Z

level the value of yet unmeasured cross-sections,
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in Figure 32A., The rapidity distribution of the final state particles,
represented by bars drawn at the corresponding rapidities, exhibit a gap
between the rapidity of the quasi elastically scattered proton, which is
very close to that of the incident proton, and those of all other particles.
This is very different from what is now known to prevail for a typical
many particle configuration, with the full rapidity interval rather
uniformly populated. A quasi elastically scattered proton imposes such

a rapidity gap. In effect, the secondaries resulting from the dissocia-
tion of an incident particle into a system of mass M appear on the
rapidity plot as an elongated cluster centered at y zln“(é/Mz)/Z. The
overall rapidity difference between the cluster and the quasi-elastically
scattered proton is about 1n(s/Mm), where m is the proton mass. However,
even an isotopic cluster spreads out over at least two units of rapidity
and thus, ascertaining the presence of a rapidity gap, does indeed
require a high incident energy.

The kinematical configuration indicated in figure 32A is then much
more clearly identified at ISR energies, where the global rapidity inter-—
val covers 8 units, than it is at AGS-PS energies, where it spans only
4 units., The occurrence of a large rapidity gap is readily associated
with dominant Pomeron exchange, as depicted in figure 32A'. The larger
the rapidity gap, the more important is Pomeron exchange as opposed to
other exchange processes. Contributions from normal Regge trajeétories
are also present. However, once M is fixed, only Pomeron exchange will
eventually remain at asymptotic energies.

Before discussing present experimental data on single diffraction

dissociation, we briefly mention two other important diffractive processes,
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The first one is double diffractive dissociation. A typical correspond-
ing rapidity distribution is shown in figure 32B. A large rapidity gap

separates the clustered distributions associated with the fragmenta-
tion of bpth diffractively excited protons. | As mentioned in subsection
5.2, this process has been studied at the ISR omly for the special case
in which the protoﬁs are excited into rather low mass states(110). 'No
data are available at present on déuble diffraction dissociétion into
large mass states, a process that could be studied only with high diffi-
culties at the ISR,even taking advantage of the large rapidity range
which is available. |

The second, presently very interesting diffractive process,is
double Pomeroﬁ exchange (Figure 32C'). The corresponding kinematical
configuratién now shbwé two rapidity gaps as illustrated in Figure 32C.
This process is highly topical, as a diffractivé process with no straight-

forward optical analogy while having a predictable cross section in terms

of the exchange picture of diffraction. It will therefore be discussed

at some length in section 7.

Focussing now on single diffraction dissociation (reaction 47), we
recall that, for any inclusive reaction two different sets of variables
are commonly used. They are either the longitudinal and transverse
component of momentum, p; and P respectively, of the quasi—elastically
scattered proton or the féﬁr—momentum transfer squared t and the in-
variant mass squared M of the producted system X. As usual,

X = 2p1/s%. At very large energies and for x close to one, the
following relations hold

M2 x s(l-x), t = -p;/x . 48,
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Thg momentum transfer distribution in the region of the quasi-
elastic peak has been extensively studied at FNAL and ISR, As an
example we display in figure 34A t-distributions for two different
values of M, measured at the ISR.(151). These data were fitted by means
of the function exp(bt + ct?) in order to reproduce the curvature at
large t.

We close this section with the following remark. If the inclusive
cross section in the region of the diffractive peak actually scales with
energy and if the diffractive production cross section at fixed mass is
energy independent, two properties which are suggested by present data,
then by integrating the 1/M? distribution up to a fixed x value, which
correspoﬁds to a limiting value of M? increasing as s, the total diffrac-
tion cross section GD should increase logarithmically with energy.

Values of OD estimated by the CERN-Hol1and-Lancaster-Manchester collabo;a—

tion (151) are shown in figure 34B together with the trend of ce While

1
it is a definite experimental results that Op is comparable in magnitude
to the elastic cross section Uel (2 7-8 mb), no definite statement can
be made at present about the energy dependence,

From the measured value of O,s Ome can estimate the magnitude of

the double diffraction dissociation cross section 9pp? by using the

=0 %/4. The value o__ =z 2 mb is thus

factorization property GDDUel D oD

obtained.

5.7 Diffraktive Effects in Photoproduction

There are great similarities between photoproduction and meson

scattering. This is due to'the fact that the relative weakness of the
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electromagnetic coupling notwithstanding, the key features of the reaction
are determined by the strong interactions of the hadrons which one finds
in the final state. Regge models developéd to describe the high-energy
behaviour of hadron-hadron scattering have been extended to meson photo-
production . The cross section for the photoproduction of an
exétlusive final state (say, yp > w+n) typically decreases with energy
according to the reievant‘eXchanged Regge trajectory. Of special in-
terest in the context of diffraction scattering is the photoproduction
of those mesons which have quantum numbers identical to those of the
photon (spin 1, negative parity, odd under charge conjugation). In
addition to the well-known vector mesons p ,w and ¢, the recently
discovered J/{ and ¥' resonances satisfy those requirements.

The photoproduction of vector mesons is usually described by the
graph éf figure 35A whereby the photon switches into a vector meson
which diffractively scatters off the target. Because of the diffractive
nature of high-energy meson-nucleon scattering we expect the photoproducs
tion of vector mesons to exhibit typical diffractive—like behaviour.

In the vector meson dominance model a direct coupling, described
by the parameter Yy is introdﬁced between the photon and the vector

meson fields(152).This coupling can be expressed in terms of the partial
width Fe for decay of the vector meson into a lepton pair (e+e_ or P+P—)

as

_a? | 4n
Fe—ﬁ(EZ)MV 50,

where o is the fine structure constant and MV is the vector meson mass.

The partial width Fe has been determined experimentally in two ways, by
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measuring directly the branching ratio I‘e/I‘tot of vector mesons produced
in hadronic in;eractions, and by measuring the total cross section of
therrocess e e - vector meson at the ete colliding beams machines.
From the graph of figure 35A one may express the cross section for
photop;oduction of vector mesons off nucleons, in terms of the elastic

vector meson-nucleon scattering as

o( _ o Yy, 1
YN > VN) = Z'(Zﬁ o (VN » VN) 51,

if we accept to neglect off shell effects.
The elastic cross section g(VN+» VN) can be written in terms of the
vector meson-nucleon total cross section QéVN) and of the slope b, using

the optical theorem and the simplifying assumption that the elastic am—

. plitude is purely imaginary, which should hold at high energy

l_ 5 2 (VN) 52,

o(VN > VN) = 167 "t

By inserting eq.(52) in the expression (51) one may derive the vector -
meson-nucleon total cross section from photoproduction experiments, once
in is' known.

Clearly a photoproduction cross section constant or slowly varying
with energy implies a similar‘treﬁd for the vector meson-nucleon cross
section,

A'compilation of data on pop and ¢p total cross sections from Barger

“and Phillips(153a)is shown in figure 35B. These cross section values

are typical of hadronic interactions and show a weak energy dependence.

In figure 35C present results concerning the J/w(3100)—nuc1eon cross

section are reported {153b). This cross—section quickly rises above thréshold

reaching a plateau at the level of about 1 mb. The sharp rise and
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jet model and on the pérton model where discussed by Bialas and
Kotans#i and by Resnick (156). However progress in this field is
slow and this should not surprise given the difficulties encountered
in computing even the much simpler elastic shadow.

| In connection with elastic unitarity (equation 45), a much
discussed problem concerns the diffractive contribution GD(a) to
the inelastic overlap function Gin(a)° Going back to the Good and
Walker approach (subsection 2.4), it is possible to derive an interest-
: ing bound on GD(a) (157). This bound is based on the hypothesis 
that diffractively produced states are physically distinguishable from
pionization states; so that they do not interfere. The physical
diffraétive.states |h> so defined may be decomposed in diffractive
eigenstates‘|n> , Which by definition are not ﬁixed by tbe interaction.
Their profile functions Fn(a), are supposed to be real. The profile
function of the tramsition |i> » |f£> (whére li> = ZCni|n> and
|f> = ZCannP) is simply Ffi = ZCEanCni. Note that the C's form
a gnitary matrix. The elastic overlap integral is T =_Z|Cnil2rn
and its contribution to the unitarity condition 45 is Iflz. ~ The
contribution to the samé equation of all diffractive final states is
zir_.]? = Zlc .|2f2. Since it comprises also the elastic contribution, to.
£ f; ni’ n - rl
obtain the contribution of the diffraqtive final states one must

subtract ['?:

= 21 2 _ p2 2 -T2 . _ 172
Gy(a) = i'cﬂi‘ r?-rig ilcni; L, =T% =T - T 53.

The inequality needed to obtain the Pumplin bound follows from the

condition Fn £ 1, which expresses probability conservation for the
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to handle all multiperipheral production amplitudes of the class of dia-
grams corresponding to Figure 37A. The corresponding shadow effect can in
principle be calculated. However, the class of diagrams corresponding to
Figure 37B, so far neglected, is different and yet interfers fully with that of
Figure 37A. ‘Taking it into accoun. one can modify in an important way whatever
shadow effect was previously calculated. Despite much past effort to build
up diffraction from inelastic amplitudes (160a), no general and satisfactory
prescription is presently available. Nevertheless, it'remains that, in

the framework of some simple field theories, such as ¢3 theory, the study
of multiperipheral contributions to production amplitudes leads to an
asymptotic energy behaviour for the elastic scattering amplitude which_is
associated with a (Pomeron)>Regge pole (160b). Such a constructed Regge
pole contribution is the shadow effect associated with a certain class of
Feynman diagrams, as calculable in a particulaf theory, éven if is not yet
the full blown Pomeron looked for. It may therefore look as an a priori
valuable input for a further more involved approach, which would include

so far neglected inelastic processes. At present, theoretical approaches
to the Pomeron start from such a ''bare Pomeron" input, which one takes

from some underlying field theory. One attempts to generate from it a
better approximation to the actual diffractive amplitude. Indeed, a

simple Pomeron pole, appealing as it may be, is not enough. We mentioned
already the actually complicated nature of the Pomeron, as it gradually
imposed itself from a phenomenological Regge approach and in particular

after the discovery or rising cross sections.

For these reasons present approaches, starting from a "bare Pomeron"

as previously defined, try to achieve building a full Pomeron amplitude




.
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which takes what one éalls a scaling form:
F(s,t) = is (_R,ns)K g[}t(lns)vl, 54.
as opposed to the simple Regge pole form:
R(s,t) = iB(t) n(t)s exp{la(t)-1] 2ns} . : 55.

Different approaches differ in their values for k and v and in their
predictions for the function g. They nevertheless have the same global
form 54 . .The toéal cross section grows’as (lns)K. The élope éarameter
grows as (2ns)”. The impact parameter picture fdr the asymptotic form 54.

with an exponential for g is rather simple. The overall opacity grows as

V /2

(2ns)<” 4 while the range grows as (2ns)* (the slope as (lnS)v); Con-
versély, its angular momentum plane description is complicéted, with poles
aﬁa ;ﬁts in the general case. It is interesting in any case than an approach
which starts from the Regge pole side eventualiy arives at an amplitude

which is amenable to a simple optical model picture but complicated

Regge picture.

At prééent, reaching an asyﬁptotic expression of the type 54 form
an input "bare Poﬁeron" is- achieved in two main different ways. One uses
an s-channel approach or a t-chahnel approach. What actually goes under
such code names, which relates to the fact that particular attention is
paid to unitarity éonstraints in either the s and t channel, varies with
time and schools. At present, one may say that the first one typically
provides model amplitudesiwhich saturate.the Froissart bound (k=2) (93) while
the second one: flourishes under the name of Reggeon Calculus or Reggeon field

theory (160a; 160c, 161).
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is of course too crude. More sophisticated methods have been devised.

The procedure thus followed are however similar in spirit. One typically
uses unitarity relations which involve themselves diffractive as well as
non diffractive amplitudes as a constraint on the iﬁput amplitude., The
Pomeron contribution is then the solution of an integral equation. Various
values for Kk and v result; depending on the bare Pomeron intercept and on
the conditions required (164,165). The full Pomeron is always a complica-
ted object. One may get theoretically satisfactory asymptotic amplitude.
However, the proton-proton profile function observed at ISR energies is
véry far from a black disc, and models of this type are certainly not

applicable in this energy region.

6.3 :fhe t—channei Approach

| The t—chénnel'approach is of particular iﬁterest at presént since it
relieé on topiéal developments in field theory. Again one tries to achieve
a richer amplitude from a Regge pole input (160,161). The first step is to
translate the rules for Regge exchange (160), as obtained in an underlaying
field théory as ¢3 theory, into those of a fieid theory in two space and
one time dimension where the two-momentum k is such that - k2 = t and the
energy is 1 - a(t). The Lagrangian contains a frée term expressed in terms
of the Pomeron field operator and a coupling term for which one finds good
reasonAto limit oneself to a triple Pomeranvcoupling. In this approach,
one‘takes into account interactions among input Pomeron - as they may
enter unitary from the t—chammel point of view — as apposed to the multiple
exchange of input Pomeron among scattering particles, which enters unitarity

in the s-channel.
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The Regge calculus approach is however very far from having been fully
. explored and interesting developments should be expected. Other types of
Lagrangian, with bare Pomeron originating from other types of underlaying

field theory can be considered. We can but refer the reader to ref. 161.

A conclusion at the present time is not possible. Rising cross
sections have required asymptotic forms for the diffractive amplitude
which are well within reach of available theoretical models. However, the
basic property, the fact that up to logarithms, cross sections are appa-
rentiy constant has to be put into the theory. It does not follow, as one
would certainly wish, from some fundamental property. At the same time,
if cross sectién can rise within present models, there is no understanding
| why they rise.so little. Within the ISR energy range, the s-channel approach
vwéuld find it more natural to see‘the proton cross section rise hundred times
faster (full absorption) whereas the t-channel approach provides an accep-
table asymptotic expression but with values of K and v which have no reason
to apply to present data. It should apply only for large values of &ns!

What we see in present experiments is still very different from the output

.. Pomeron arrived at. How much it resembles to a simple.input Pomeron is unclear,

yet we hope that this section will have convinced the reader that the question

is very much alive.

DIFFRACTION EXCITATION SEEN AS POMERON EXCHANGE

7.1 The Triple Regge Formalism

As discussed in subsection 5.6, single diffractive excitation corresponds

to an important and already rather well explored inelastic mechanism. Its
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Figure 38 Schematic calculation of the inclusive distribution in the triple-
. Regge formalism. A Regge approximation is used for the absorptive part of

the Reggeon proton elastic amplitude.
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the presence of s/M2 translates only the scaling large s and large M2
behaviour. Extra constant terms could also have been included with a

correlated change in o We should therefore only stress that the Pomeron-

p*
. AT . 2 .
proton cross section, after a sharp drop with increasing M”, corresponding

to the faster than M2 fall in Figure 33C, practically levels for M? > 5 GeV2.

pical hadronic behaviour and typical hadronic value.

It shows a t

s

The triple Regge formmalism is also useful at isolating special
kinematical dependences, such as those outlined in fig. 33A, relating
them to specific Reggeon exchanges. One may for instance limit oneself -
to Pomeron P with interceptland secondary Reggeon R with typical intercept
%, and to symmetric terms i = j. The energy behaviour of the inclusive
cross secpioq,together with its mass and x dependences, are then summarized

for small t in Table 5.

It is therefore Pomeron exchange dominance in the Reggeon-proton
amplitude which is connected with the scaling property of the quasi-elastic
peak (ak(o) = 1), whether we deal with Pomeron exchange (diffraction) or
secondary reggeon exchange (standard type of process) in the first placef
With the PPP andbRRP contributions we respectively obtain the dashed and

solid curves of Figure 33A.

7.2 The Pomeron-proton Interaction

Continuing in our analysis of diffraction in terms of a Pomeron—-proton
interaction, next to the total Pomeron-proton cross section comes the in-
clusive distribution of the fragments of the excited proton. As previously

said, when of a low invariant mass they are separated from the quasi
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elastically scattered proton by a large rapidity gap and they cluster

over two units of rapidity. As the mass increases, however, they fill the
kinematically available rapidity interval, which increases as n M2. The
inclusive distributions, as shown in Figure 33B, exhibits a rise of the
rapidity distribution at maximum with increasing M% as the maximum shift
towards the center. It could eventually level off. The key point, how-
ever, is the spread of the rapidity distribution with increasing M2. It
is compatible with &n M2. Indeed, the proton fragments fill all of their
kinematically allowed rapidity range which as_previously discussed, in-
creases as n MZ. All this is extremely similar to what observed in
hadron-hadron collisions. As already remarked, also the associated charged
multiplicity (the integral over the rapidity distributions in Figure 33B)

compares well with what observed in hadron-hadron collisions at Vs = M.

The kinematical spread of the secondaries has a stfiking effect when
' aﬁalyzed in terms of the full CM rapidity. The centre of mass of the

" hadronic system of mass M shifts towards rapidity zero by an amount fn M
from the incident proton rapidity &n /s. However, since secondaries are
spread over a n M segment on either side of their centre of mass rapidity
value, ffagments still yeach the boundary of the rapidity interval whatever
M is. This is compatible with Figure 33B. The use of pseudd rapidity may
however somewhat smear whatever is actually occuring at the kinematical
boundary. At present there are many open questions which call for more
data. The inclusive distribution may well not be symmetric at presently
accessible masses but show some skewness favouring the Pomeron side, in
much the same way as what is observed in photoproduction. Data are com-—

patible with that but certainly not accurate enough yet. The inclusive
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special distribution of Figure 32C. There is of course no reason why the

protons could not flare as well. Yet, in order to maximize the rapidity
gaps so that double Pomeron exchange could be favoured, one is presently.
led to focuse on processes where the two protons are merely quasi—elastigally
scattered (with x > 0.96) and a few slow centre of mass particles (typi-

T system) are also produced.

P

~ e
caiiy a m

The Pomeron exchange picture of diffractive excitation calls for the
occurence of such a process with, in principle, a predictable cross section,
estimate for which are at the 10-20 ub level. 'TheAkinematics of the pro-
cess simplify in the asymptotic limit (large s/s1 and s/sz, large 1 and Sy

and large Mz, using the notations spelled out by Figure 32C'). There are then

two large rapidity gaps

]

2

and M2

2n s/sl, Z n s/s2 ' 63,

2

64,
slsz/s.

To the extent that the four units of rapidity available at PS (AGQ)
energies are enough to get strong evidence for single diffractive excitation,
one may hope that the eight units available at the ISR could be enough to
secure evidence for double Pomeron exchange. Background problems may
however be very important. Furthermore, even at ISR energies, two large
enough rapidity gaps (Z > 3 say) can be achieved only at the expense of
taking a rather small Mz. Despite all that it remains that double Pomeron
exchange has a particular interest in that the optical picture, which can
be advocated for single and double diffraction, no longer readily applies.
We have rather to deal with the hadronic polarization- of the vacuum,
following a process which the Pomeron exchange éicture of diffraction

imposes. It is then worth searching for.
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a%s o 4
X]_X2 (0] Xl (o} X2 [e) 1
2 2 2
9 de2 dx1 de1 dx

Y]
2 9Py, O

2
dx1 del dx

The twidle sign on top of the 0's are here to warn again that the relation
applies only to the Pomeron contribution, to double Pomeron exchange on phe
left hand side, and single Pomeron exchange on the right hand side. What
belongs to Pomeron exchange (large M2 limit) in single diffractive excita-
tion is however not precisely known yet (174). For these reasons one may give
only an order of magnitude estimate for the expected double Pomeron exchange

contribution in the large M2 limit. As anticipated, it is at the 10 ub

level.

“ In the low M2 region, with typically a two-pion state produced, one
may attempt a different estimate based on pion exchange in the central
blob (172,173). The expected cross section has the same order of magnitude.
It is low for a background with hadronic process, but large enough to be
seen. The main question is of course the practical separation of the double
Pomeron contribution associated with expression 65, from background terms,
 the main one being the large mass low multiplicity tail of single diffrac-

tion excitation which could overcome the looked for signal.

It is usually stressed that the double Pomeron contribution is the

only one to include a double pole term as Xy and X, approach one, Indeed,

relation 65, written for a(t) ¥ 1 gives

do 1

v b 68u
dxl dx2 (l—xl)(l—xz)
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involved, simplicity would prevail. Rising cross—sections over the ISR
energy range have shown that nothing seems to stabilize. Asymptopia was
but an elusive concept! If present theories can easily accommodate

rising cross-sections, we have yet no explanation for the slow pace at
which they grow. The Pomeron is now expected to be a complicated object
at extremely high energies, but we have as yet no satisfactory explanation
for the fact that it is empirically so simple at present energies. It was
also usually assumed that diffraction excitation was a relatively unimpor-
tant phenomenon limited to low mass hadronic states. It now appears as a
very sizeable effect cross—section wise and there seems to be no.bound on
the mass of the diffractively excited object, provided the energy is high
enough. When translating it easily in the framework of the triple-Regge

analysis, one partly eludes what it means in terms of the hadron structure.

There are many questions which should be explored experimentally
better than they are at present. Does the elastic peak shrink at 1arge.
momentum transfer? Are diffractive cross—-sections, for specific final
states, constant over the ISR energy range? What are the correlations
among the many particles into which a large mass diffractively excited
system resolves itself?

These are merely a few among many. The existence or not of double-Pomeron
processes is also a very topical question in view of it being characteris-
tic of the exchange picture of diffraction much more than any of the other

processes.

The diffraction of hadronic waves is a very interesting facet of
particle physics. It is simple by the basic concepts it uses, and reward-

ing by the many phenomena it correlates.
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