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SUMMARY 
The diffraction of P, S and Rayleigh waves by 3-D topographies in an elastic half- 
space is studied using a simplified indirect boundary element method (IBEM). This 
technique is based on the integral representation of the diffracted elastic fields in terms 
of single-layer boundary sources. I t  can be seen as a numerical realization of Huygens’ 
principle because diffracted waves are constructed at the boundaries from where they 
are radiated by means of boundary sources. A Fredholm integral equation of the 
second kind for such sources is obtained from the stress-free boundary conditions. A 
simplified discretization scheme for the numerical and analytical integration of the 
exact Green’s functions, which employs circles of various sizes to cover most of the 
boundary surface, is used. 

The incidence of elastic waves on 3-D topographical profiles is studied. We analyse 
the displacement amplitudes in the frequency, space and time domains. The results 
show that the vertical walls of a cylindrical cavity are strong diffractors producing 
emission of energy in all directions. In the case of a mountain and incident P ,  SV and 
SH waves the results show a great variability of the surface ground motion. These 
spatial variations are due to the interference between locally generated diffracted waves. 
A polarization analysis of the surface displacement at different locations shows that 
the diffracted waves are mostly surface and creeping waves. 

Key words: diffraction, numerical techniques, synthetic seismograms, topography, 
wave propagation. 

INTRODUCTION 

Local conditions of topography and geology can produce 
important changes in the ground motion during earthquakes. 
One way to estimate these local effects is carried out by means 
of empirical methods, which are based on the analysis and 
treatment of seismic records (for a review, see Aki 1988). On 
the other hand, numerical methods are helpful for understand- 
ing the origin of these local effects. This subject has been dealt 
with as a problem of diffraction of elastic waves [see e.g. 
Sinchez-Sesma (1996) for a review]. During the last two 
decades there has been a significant research effort, which has 
produced many relevant analytical and numerical solutions. 
Moreover, the recent advances in computer sciences allow for 
the study of more realistic configurations and even for the 
inclusion of source and path effects in the simulations (e.g. Fah 
et al. 1994; Luzon et al. 1995; Olsen, Archuleta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Matarese 

1995). However, there is room for both improvement and 
simplification of existing procedures in order to reduce the gap 
between research and applications. The bulk of the research 
in this field deals with 2-D configurations. In fact, nowadays 
most of the developed techniques are being extended to 
compute more complicated problems such as the 3-D response 
of 2-D configurations, the so-called 2.5-D problem (e.g. 
Furumara & Takenaka 1996; Takenaka, Kennett & Fujiwara 
1996), and 3-D structures (e.g. Clouteau & Aubry 1995; Luzon 
& Sanchez-Sesma 1995; Bouchon & Barker 1996). 

In this work we use a single-layer boundary integral rep- 
resentation for the diffracted waves to study the diffraction of 
elastic waves by 3-D topographical structures. Therefore, 
diffracted waves are built up at the boundaries from where 
they are radiated. We can locate the sources precisely at the 
boundary surface because the singularities of Green’s functions 
are integrable (see e.g. Manolis & Beskos 1988). The uncer- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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tainty that appears in other approaches (see e.g. Sanchez- 
Sesma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Rosenblueth 1979) about the location of the sources 
with their singularities placed outside the region of interest is 
thus eliminated. This method can be classified as an indirect 
boundary element method (IBEM) because the problem is 
formulated in terms of boundary force densities. Source 
strengths must first be obtained in order to evaluate the 
diffracted field. This approach can be seen therefore as a 
numerical realization of Huygens’ principle. It differs from the 
direct boundary element method, where the unknowns are the 
boundary values of displacements and tractions. Both formu- 
lations are closely related and it can be shown that they are 
mathematically equivalent (Sanchez-Sesma & Campillo 1991). 
The IBEM has been applied to study the diffraction of elastic 
waves by 2-D topographical irregularities and 2-D alluvial 
valleys by Sanchez-Sesma & Campillo (1991) and Sanchez- 
Sesma, Ramos-Martinez & Campillo ( 1993), respectively. 
Using the same technique Pedersen, Maupin & Campillo 
(1996) studied the 3-D diffraction by 2-D multilayered struc- 
tures. Sanchez-Sesma & Luzon (1995) also applied the IBEM 
to study 3-D alluvial valleys. 

In the following we present the integral representation used 
in our technique to describe the elastic displacement and how 
a system of linear equations is obtained by means of a 
discretization process of the boundary surfaces. We sub- 
sequently compare some results for a hemispherical cavity with 
those obtained by other authors, and finally we study some 
examples of diffraction of P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and Rayleigh waves by 3-D 
topographies. 

INTEGRAL REPRESENTATION 

Let us consider a continuous surface S, finite or infinite in the 
Euclidean space. If an elastic material occupies the adjacent 
space, then a harmonic displacement field originated in S can 
be written, neglecting body forces, by means of the single-layer 
boundary integral 

where ui(x) is the ith component of the displacement at point 
x, Gij(x,S) is the Green’s function, that is, the displacement 
produced in the direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi at x due to the application of a 
unit force at point 6 in the direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  and b j  (5)  is the force 
density in the direction j at point 5. Therefore, the product 
$j (&)  dS, in the integral is a force distribution over the surface 
S. The subscript in the differential shows the space variable 
over which the integration is carried out. This integral represen- 
tation for displacements can be obtained from Somigliana’s 
identity (see Sanchez-Sesma & Campillo 1991) and was studied 
by Kupradze (1963), who showed that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb j ( 4 )  is continuous 
over S, then the displacement field is continuous across S. 

With the application of Hooke’s law, one can compute the 
stresses and tractions, except at boundary singularities, that is, 
when x is equal to 5 on surface S. From a limiting process 
based on equilibrium considerations around an internal neigh- 
bourhood of the boundary, it is possible to write, for x on S, 

t,(x)=c4i(X)+ $j(OTj(X, W S , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  s, 
where ti is the ith component of traction at the boundary, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc =  

1/2 or c =  - 1/2 if x tends to S from inside the region or x 
tends to S from outside the region, respectively, and T j  (x,&) 
is the traction Green’s function. The first term of the right- 
hand side of eq. (2) must be equal to zero if x is not on the 
surface S. The expressions for the Green’s functions in a 3-D 
full-space can be found in Appendix A. 

The problem that we want to solve is the diffraction of 
elastic waves by topographic features on the surface of an 
elastic half-space, as shown in Fig. 1, where the coordinate 
system is also presented. Surface motion in and around this 
irregular configuration comes from the interference of 
incoming, reflected and diffracted wavefields. The total motion 
in the half-space may be expressed as the superposition of the 
diffracted and the free wavefields: 

where the free-field displacement u!’) is the sdution in the 
absence of the irregularity and contains the,contributions of 
both the incident and reflected fields. This displacement is 
extended to those parts of elevated topographies where z<O 
(see Fig. 1 for a definition of the z-axis), fulfilling the same 

. 

+ Y  

S I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X 

X’  

P 
Figure 1. Surface topographic feature S in an elastic half-space under 
incidence of P and S waves with an angle y with respect to the vertical 
and an azimuth equal to I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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analytical expressions that they satisfy for z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 .  Therefore, the 
free field is continuous everywhere. 

According to eq. ( l ) ,  the diffracted field can be written as 

u!~’(x)= $j(t)G;j(x, 5)dS,. (4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, 
The traction-free boundary condition implies null tractions, 
and therefore from eq. (2) this condition can be expressed by 
means of 

t‘i”(x)+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4i(x)+ 4j(5) IT;j(x, 5) dS,=O,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  b 
which is a Fredholm integral equation of the second kind for 
the boundary sources, that is, those producing the diffracted 
field. This expression is discretized over a finite portion of the 
surface S that includes the topography and part of the lateral 
flat free surface. This is an advantage, particularly if one 
considers the relatively large discretizations needed for tech- 
niques such as finite differences or finite elements, because the 
problem is reduced by one dimension. The lateral extension of 
the discretized flat part of the topography must be large 
enough to avoid significant spurious waves generated at the 
edges of the model. We concluded after several tests that the 
results were quite good when this part has the same length as 
the characteristic horizontal dimension a of the topography. 
Therefore, in the examples treated here the discretization of 
the free surface is extended over a distance 2a. A simplified 
scheme to discretize the surface using circles of various sizes 
that approximately cover the surface S is used. This choice is 
based on the fact that the integrals of the Green’s functions 
Gij(x,Q that must be computed when x is near 5 can easily be 
obtained when the discretized element is circular and flat. 
Nevertheless, in order to partially overcome the effects of this 
approximate discretization scheme, we use at least four aligned 
boundary elements per wavelength of S waves. 

Considering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, (6) to be constant over each of the boundary 
circular elements obtained in the discretization process, and 
denoting the surface of each by AS,, ( p  = 1, . . ., N), the following 
system of 3N linear equations, with 3N unknowns, is obtained 
for these boundary sources: 

CF=l 4 j (Cp)  t;j(xq, t p ) =  -4”’ (xq), 4=1,...,N, (6) 

with 

1 
tij(Xq> 5 p ) =  2 6ij6qp+ IT;j(Xq, t) d S < .  ( 7 )  

[ASD 

These integrals are computed numerically except when x = 
&, in which case we obtain 

because the integral of the Green’s tensor Tij in eq. (7) is zero 
if the integrated surface AS,, is circular and flat, which is the 
case assumed here. In fact, the integrand is a singular odd 
Function on this surface, and therefore its Cauchy principal 
value is null. Once the values of bj(&,,) are calculated, the 
diffracted field at a position x can be computed by means of 
the discretized version of the integral representation for dis- 
placements 

uld’(x)= CpN= 1 4j(tJ gzj (x, t p )  > (9) 

These integrals are also computed numerically except if x is in 
the neighbourhood of 5,. In that case, we used analytical 
integration in polar coordinates of the ascending power series 
for the functions fi and f 2  that appear in the expression for 
the Green’s function. On the other hand, when x=S,,, that is, 
in the centre of the pth circular element, it is possible to show 
that 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

where F,, k =  1,2, is the integral of the functionf,, from zero 
to the radius of the element, and nj  is the j tg  component of 
the normal vector at the pth element. 

DIFFRACTION O F  ELASTIC WAVES BY 3-D 
TOPOGRAPHIES 

We compare results obtained from our numerical technique 
when it is applied to the problem of the diffraction of elastic 
waves by a hemispherical cavity. This configuration was stud- 
ied earlier by Sanchez-Sesma (1983) using an approach based 
on multipolar wave expansions in spherical coordinates, and 
by Mossessian & Dravinski (1989), who relied on an indirect 
boundary integral equation method. 

The comparison among these three solutions is made for 
vertically incident P waves at a normalized frequency q= 
2(af//?) of 0.866, where a is the radius of the cavity, p denotes 
the S-wave velocity and f is the frequency. The half-space 
properties are set so that the Poisson’s ratio v =  1/4. The 
discretization is extended horizontally up to a radius of 2a. 
Displacement amplitudes are shown in Fig. 2 and are plotted 
along the x-axis from x = - 2a to x = + 2a. The results of the 
three techniques show some small discrepancies, but the overall 
agreement is quite good. We obtain similar good agreement in 
other comparisons, not shown here, for incident S waves and 
different frequencies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P waue y=O ~ = 0 8 6 6  

I 

r 

-2.0 -1.0 . o  1.0 2.0 
x/a 

Figure 2. Surface amplitudes for the horizontal, u, and vertical, w, 
displacements due to a vertically incident P wave on a hemispherical 
cavity. Normalized frequency 9 = 0.866. Material properties are given 
in the text. Surface displacement amplitudes are plotted along the x- 
axis from x = - 2a to x = + 2a. Mossesian & DravinskTs (1989) results 
are shown as filled symbols and those of Sanchez-Sesma (1983) are 
shown as empty symbols. Our solution is depicted by solid and dashed 
lines for the w and u motions, respectively. 
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We now study the cases of a cavity and a mountain to 
investigate some effects caused by 3-D topographies. Results 
in the frequency and time domains are shown for the surface 
displacements in two perpendicular cross-sections (x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 and 
y=O).  We illustrate the results in the frequency domain by 
means off-x plots. In this way one can analyse the transfer 
function (relative to the amplitude of incident waves) along a 
specified space direction and also as a function of the frequency. 
This provides spatial patterns of amplification. The time dis- 
placements are computed using the FFT algorithm. We also 
present polarigrams of motion for the case of a mountain 
topography. They are helpful in the interpretation and 
identification of travelling waves; see Luzon et al. (1995). 

Cylindrical cavity and incident zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV and Rayleigh waves 

In this example, we compute the response of a cylindrical 
cavity (as depicted in Fig. 3) under incoming SVand Rayleigh 
waves. The radius of this cavity is set equal to 4 km and the 
depth equal to 1 km. The material properties are such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p=2.5 km s - l  and the Poisson's ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv =  1/3. No damping is 
considered, and an incidence angle y = 30" with azimuth qo = 0" 
is assumed for SV waves. The discretization of the flat sur- 
face of the model, with 368 circular elements, is carried out from 
a radius of 4 km to a radius of 8 km from the origin. The 
cavity has 64 elements that cover the cylindrical wall and 145 
that cover the flat base. 

Figs 4 and 5 show the contours of surface amplitudes 
produced along the x-axis, that is, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and w displacements, 
respectively, caused by incoming SV waves. In both plots the 
space variable goes from x =  -8 km to x =  +8  km, and the 
frequency range extends from 0 to 1.2Hz. Zero frequency 
corresponds to the case when there is no topographical irregu- 
larity. For the u component, the amplitude produced over the 
flat surface that lies to the left of the cavity, from x = - 8 km 
to x =  -4 km, is much larger, due to the constructive inter- 
ference of direct and scattered waves, than the amplitude in 
the region located to the right of the cavity (shadow eflect). 
Inside the cavity this phenomenon is reversed and the largest 
amplitude occurs in the cavity region opposite to the direction 
of the incoming waves. This effect is more pronounced for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rayleig h B 

X 

Z 

Figure 3. Cylindrical cavity in a half-space under incidence of SV 
Rayleigh waves. 

Z 

Figure 3. Cylindrical cavity in a half-space under incidence of SV 
Rayleigh waves. 

and 

u ( x , O )  SV y=30° 

Figure 4. Contours of horizontal displacement amplitude u for surface 
receivers along the x-axis against frequency for a cylindrical cavity 
under incoming SV waves with an incident angle of 30" with respect 
to the vertical. 

w ( x , O )  S V  y=3Oo 
1.2 

1 .0  

-7 

2 .8 
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

. o '  I 
-8 -6 -4 -2 0 2 4 6 8 

X ( k 4  

Figure 5. Contours of vertical displacement amplitude w for surface 
receivers along the x-axis against frequency for a cylindrical cavity 
under incoming SV waves with an incident angle of 30" with respect 
to the vertical. 

higher frequencies, and the largest amplitudes are then 
observed at the edge of the cavity. This remarkable effect is 
also present for the vertical displacement w. In this case, the 
maximum amplitudes are produced over the positive values of 
the x-axis. 

We computed synthetic seismograms for the configuration 
described above using a Ricker wavelet with a characteristic 
period of t ,= 2 s. These time-series calculated at 49 receivers 
along the x-axis and 49 along the y-axis are displayed in Fig. 6. 
Their positions are equally spaced between x =  -7.68 km (or 
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Ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 
8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- -I 

i u  
- 4  

-8 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 

0 4 8 12 16 20 

t i m e  ( s e c )  

Figure 6.  Synthetic seismograms for displacement at 98 points for a 
cylindrical cavity under incoming S V  waves with an incident angle of 
30" with respect to the vertical. 49 receivers are equally spaced along 
the x-axis between x =  -7.68 km and x=7.68 km, and another 49 
receivers are equally spaced along the y-axis between y =  -7.68 km 
and y=7.68 km. The incident waveform is a Ricker wavelet with 
characteristic period t,= 2 s. 

y = - 7.68 km) and x = 7.68 km (or y = 7.68 km). The displace- 
ment u at receivers located along the x-axis, represented by 
u(x,O), shows the amplification effects observed in the frequency 
domain. For example, inside the cavity and near the edge, at 
x = 4  km, a large amplification can be seen to originate from 
constructive interference between direct and scattered waves. 
The latter waves also propagate back and forth across the 
cavity from the curved edge. On the other hand, the seismo- 
grams of displacement u along the y-axis, u(O,y), clearly show 
the emission of diffracted waves from the cavity's edge. These 
waves are produced by a mode-conversion process, and propa- 
gate as SH-wave energy. The displacements w along both axes 
and u along the y-axis are the consequence of the diffracted 
waves radiated from the walls of the cavity, which behave as 
very efficient diffractors. In fact, vertical walls may be very 
efficient in the generation of diffracted waves, as shown by 

8 

7 4  

H ' o  
0 

L 

3 -4 

-8 
8 

- 7 4  
0 
6 0  
L 

3 -4 

-8 
8 

- 7 4  

0- 0 
;n 

L 

3 -4 

-8 
8 

7 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d 0 

? -4 

-8 
8 

- 4  

0- 0 

3 -4 

;n 

L 

;n 

L 

-8 
0 4 8 I2 16 20 

t i m e  ( s e c )  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Synthetic seismograms for displacement at  98 points for a 
cylindrical cavity under incoming Rayleigh waves. 49 receivers are 
equally spaced along the x-axis between x =  -7.68 km and x=  
7.68 km, and another 49 receivers are equally spaced along the y-axis 
between y =  -7.68 km and y=7.68 km. The incident waveform is a 
Ricker wavelet with a characteristic period t,= 2 s. 

Yokoi (1996) in the analysis of a series of field experiments. In 
our example, the waves that propagate away from the topo- 
graphic structure are Rayleigh surface waves, while those 
propagating inside are the so-called creeping waves (see e.g. 
Kawase 1988; Sanchez-Sesma & Campillo 1991). 

The results obtained in the case of incidence of Rayleigh 
waves are presented in Fig. 7. The locations of the receivers 
and the displacement components shown are the same as in 
the SV-incidence case. The motion along the x-axis is charac- 
terized by the backward propagation of Rayleigh waves from 
the edges of the topography, and by the deamplification 
occurring at the rear side of the cavity due to the shadow effect. 

A mountain and incident P and S waves 

In this example, the topographical region that we study is 
defined in the interior of a circumference of radius a, centred 
at the origin (x,y)=(O,O), minus the shared region with a 
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X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/ Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. Perspective view of the 3-D mountain. The incoming zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S waves have an azimuth p = n  radians and an incidence angle y with 
respect to the vertical. 

circumference of radius b, centred at (x,y)=(a,O), with a>b. 
The surface geometry of the mountain is given by the analytical 
expression 

where R = [(x - a)* + y2]1/2,  and c is a parameter that controls 
the height. As we have selected b = 0 . 7 ~  and c = 0.4/a, the 
maximum height is near 0.25~. This topography is depicted in 
Fig. 8, showing incoming P and S plane waves with an azimuth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q = n  radians and an incidence angle y .  

Here we present results for y=30". The value for a is 
assumed to be 2 km, so the top of the mountain is about 
0.5 km. Material properties are such that 8=1 km s-', v =  
0.25 and the quality factor Q is 500 for both P and S waves. 
The surface of the mountain is constructed with 145 circular 
elements, and the flat part of the model has 232 elements. We 
computed synthetic seismograms and considered for the 
incoming wave a Ricker wavelet with a characteristic period 
of t,= 3 s. Results are depicted in Figs 9, 10 and 11 for incident 
P, SV and SH waves, respectively. In these plots we depict all 
the surface displacements different from zero along the x- and 
y-axes. The emission of waves from the irregularity is very 
important. Backward and forward propagation of Rayleigh 
waves are produced by incident P and SV waves. These surface 
waves generated by diffraction have a higher energy when they 
propagate in the same direction as the incoming field. The 
presence of these waves in the direction perpendicular to the 
plane of incidence [v(O,y) and w(O,y)] suggests that they are 
radiated in all directions. We present in Fig. 12 some polari- 
grams, which display the variation of the displacement vectors 
with time, for the SV-wave incidence. The Rayleigh waves can 
be clearly identified in the later arrivals by their characteristic 
elliptical and retrograde motion. 

CONCLUSIONS 

We have applied a simplified indirect boundary element 
method to compute the response of 3-D topographies over the 
surface of an elastic half-space under incoming P, S and 
Rayleigh waves. This mathematical technique, which is based 
on an integral representation of diffracted fields, can be seen 
as a numerical realization of Huygens' principle because 

0 5 1 0  15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 25 70 

l i m p  (sc'c.) 

Figure 9. Synthetic seismograms for u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and w at 49 receivers equally 
spaced along the x- or y- axis at a mountain under incoming P waves 
with an incidence angle of 30" and an azimuth of n: radians. The range 
of locations of receivers on the x- or  y-axis is between -3.84 km and 
3.84 km. The incident waveform is a Ricker wavelet with a character- 
istic period t ,  = 3 s. 

diffracted waves are constructed at the boundaries, from where 
they are radiated by means of boundary sources. 

We have studied the seismic response of a flat cylindrical 
cavity to incoming P, S and Rayleigh waves. The principal 
characteristics inferred are the following: 

(1) the walls of the cylindrical cavity are very good 

(2)  a large part of this energy was identified as Rayleigh 
diffractors, producing an emission of energy in all directions; 

waves. 

In another example, we have investigated the effect of a 
mountain topography on P and S waves. The results in the 
time domain have provided us with a glimpse of the origin of 
the amplifications or attenuations of surface displacements. 
This understanding has been achieved by means of a polari- 
zation analysis of particle motion and the estimation of appar- 
ent wave velocity. The interference between diffracted Rayleigh 
waves, creeping waves and waves generated by mode conver- 
sion produces complicated patterns in displacement 
amplitudes. 

The indirect boundary element method presented is very 
efficient and no approximations are necessary in its implemen- 
tation, except in the discretization process. Any geometry can 
be handled and any type of plane wave, regardless of the 
incidence angle or azimuth, can be considered. Moreover, in 
this technique it is relatively simple to include near-source 
effects, by changing the free-field in eq. (3) to include the 
source field. The limitations of the technique are related to the 
size of the matrix obtained from the system of linear equations, 
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S V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy=30* cp=n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 5 10 15 20 25 30 

t i m e  ( s e c )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. Same as Fig. 9 with incidence of SV waves. 

and consequently to the CPU time; the number of elements in 
the matrix depends on the number of discretized elements, 
which increases with frequency. In any event, this matrix has 
relatively few elements at frequencies for which the associated 
wavelengths are comparable to the characteristic dimensions 
of many real topographies. On the other hand, the use of the 
Green’s functions of the full-space implicitly limits the tech- 
nique as we can only compute the response of topographies 
on top of a homogeneous half-space. Nevertheless, with this 
technique and with appropriate Green’s functions it is still 
possible to take into account a layered structure or a medium 
with a velocity gradient, for example. 
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Figure 11. Same as Fig. 9 with incidence of SH waves 

Figure 12. Polarigrams at 16 receivers equally spaced along the x -  

axis. The time and the horizontal displacements u on the abscissa are 
plotted against the position over the free surface of the configuration 
and the vertical displacements w on the ordinate axis. 
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APPENDIX A: 3-D GREEN'S FUNCTIONS 
I N  A FULL-SPACE 

The displacement Green's functions, for 
dence e'@'. with i the imaginary unity, w the 
and t the time, in a homogeneous elastic fdl-space, can be 
written as 

where r2=(x ,  -51)2+(x2-<2)2+(x3-53)2 and yj=(xj-<j) / r ,  
p=pP2. with p the mass density and B the S-wave velocity, 
and is Kronecker's delta. The functionsf, and f z  are defined 
as 

where k = w/B= S wavenumber, q = w/a = P wavenumber and 
ci is the P-wave velocity. 

The Green's tractions are given by 

where the functions g j ,  j = 1,2,3, are expressed as 

C1j D,j 
g j= [ k rA I j+B l j+  - + ;1 e - i k r + [ k r A 2 j + B 2 j +  

kr (kr) 

The coefficients of this expression are given in Table 

Table Al.  Coefficients of the functions g, of eq. (A5) 

j = l  j = 2  j = 3  

0 
-i 
4 
- 4/lZ/a2 - 
- 12i 
12i 
- 12 
12 

0 
i ( @'/a3 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb/a) 
-2 

6i 

-6 i  p/Rlcc 
6 

1 4P2/a2 - 1 

- 6  

-i 
0 
-3 

6i 

- 6i P/ct 
6 

2p/a2 

- 6  
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