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Suininary 

In this paper we have considered the diffraction of SH-waves from a point 
source by a rigid or fluid spherical core. The medium outside the core is 
assumed to be spherically isotropic about the centre of the core. It is found 
that the propagation of SH-waves in such a medium is characterized by 
two elastic parameters associated with the phase velocities C1 and C, 
along and perpendicular to a radius, respectively. Depending on the 
ratio l/a of these two velocities and the distance of the source from the 
centre, the region of space outside the core can be separated into three 
different regions: (i) an illuminated zone which is reached either by the 
rays going left or right from the source and their reflections from the 
sphere; (ii) a shadow zone, which may be bounded; and (iii) if the shadow 
is bounded, then there is a third zone which may be reached by both 
rays going left and right and their reflections. This classification is true 
provided c1 is greater than one, which is true in most geophysical appli- 
cations. Furthermore, if c1 is 2 2, then there is no shadow when the 
distance b of the source from the centre is large enough. We have 
discussed the solutions for 1 < c1 < 2 and have given simple geometrical 
interpretations to these solutions. 

1. Introduction 

In discussing the free non-axisymmetric vibrations of an elastic homogeneous 
sphere of spherically isotropic material we (Ramakrishnan, Shah & Datta 1969, unpub- 
ished) found that, if the centre of the sphere is also the centre of elastic symmetry, then 
the poloidal and toroidal modes of vibration are independent of each other. Thus, 
SH-waves, in which the displacement has no radial component, can propagate in 
such a medium irdependent of the other coupled P- and S- waves. In this paper we 
have studied the diffraction of SH-waves in such a medium by a rigid or also a fluid 
spherical core. The material is assumed to be transversely isotropic about a radius 
drawn from the centre of the spherical core. The simple harmonic SH-point-source 
is located at a distance b from the centre. We have obtained the solution to this 
problem in the geometrical acoustics’ limit of very short wave-lengths. 

The analysis is quite similar to that by Nussenzveig (1965). So we shall keep the 
details to a minimum-these can be found in the paper by Nussenzveig. 

In Section 2 we have derived the expression for the wave function in a spherically 
isotropic infinite medium without any core. In Sections 3-5 we have discussed the 
effect of a rigid core. Finally, in Section 6, we have indicated the relevant modification 
for a fluid core. 

* Received in original form 1969 September 8. 
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S.  K. Datta and A. H. Shah 34 

2. Equations 
Let the medium outside the core r = a is spherically isotropic, the centre r = o 

being the centre of symmetry. The physical properties of the medium are then 
governed by five elastic constants. The stress-strain relations are given by (see 
Backus (1967), Eq. 5.25) 

Here we have used notations for the elastic constants different from that used by 
Backus. zij and E ~ ,  are the stress and strain components, respectively, in spherical 
polar co-ordinates (r,  8,4). 

For the motion of the SH-type the radial component of the displacement vanishes, 
and the displacement u is then given by 

U = vA(Pr$). (2) 
The equations of motion are 

a2 u 
at 

p- = pF+divT, (3) 

where F is the external force per unit mass, z is the stress tensor. We shall assume 
that 

F = V A (PrK). (4) 

The use of strain-displacement relations in (1) will express the stresses in terms of 
the displacement components and the substitution of these stress components in 
equation (3) will give the three equations for solving the three displacement 
components up, ue and ug. Now, assumptions (2) and (4) imply that 

Fr = ur = 0, and A = 0, ( 5 )  

where A is the dilatation. It can then be shown (Ramakrishnan et al. 1969 unpublished) 
that one of the equations of motion is automatically satisfied and the other two 
are satisfied if $ satisfies the equation 

ae 

where 
a2 = c55/c44, ci2 = C d P .  

For isotropic medium, a2 = 1, and equation (6) reduces to that for the isotropic case. 
Let K be taken as 
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Diffraction of SH-waves 35 

It can be shown that (See Singli & Ben-Menahem (1969, Eq. 2 .18)  

where 
Y,, ,,(d, 4) = P,,"'(cos e) eimd, 

* 
and Ym,n is the complex conjugate of Ym,n. Assuming harmonic time dependence, 
the solution to (6) can now be written as 

Here we have suppressed the time factor 
Wnm(r) satisfies the equation 

where 
p 2  = W2/Cl2. 

The solution to (10) (in the absence of the core) satisfying the boundedness 
condition at  infinity is 

v2 = ~ t ~ ( n + + ) ~ + 9 ( 1 - c 1 ~ ) / 4 .  

Substitution of (11) in (9) gives 

n = O  m = - n  
. ,  

For the isotropic case, c1 = 1 ,  (12) goes to 
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* 
x Ym, n(O,+)  %a, n(OO, 40)s 0 G r < b* (13b) 

But these are well-known expansions (See Duff & Naylor (1966), Eq. 9.4.14) of 

Ko'C12eiflR for r > b or < 6,  
4 r R  

respectively. 
Here 

R = [rz + b2 - 2rb(cos O cos O0 + sin 8 sin Oo cos (4 -40))]*. 

3. Wave propagation in the presence of a rigid spherical core 
In this section we shall discuss the effect of a rigid spherical core, r = a( < b),  

on the solution (10). Without loss of generality we may assume the source to be 
located on the line 8 = 0. Then, from (12), 

iKo/C12 ~0 

*. = - C (2n + 1) H!')(Bb) J,(pr) Pn(cos 0), r < b, ( 14a) 

(14b) 

8(rb)* n = O  
m c  

iK0/Cl2 m - -- C (2n + 1) H;')(Br) J,(flb) Pn(cos 0), r > b. 
8(rb)* n = O  

Let $g be the total field outside r = a. Then, 

$t  = $inc +$r, 
where $r is assumed to be 

iK0ICl2 * *, = ~ C An H,,(')(Br) Pn(cos O) ,  r > a. 
8(rb)+ n = O  

The boundary condition 

is satisfied if 
u = 0, on r = a, 

Using (1 S), (1 6) and (14) in (1 S), one obtains 

where 
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FIG. 1 Contour for Watson's transformation. 

Using Watson's transformation equation (20) can be written as 

where the contour c is shown in Fig. 1. 
Since v(n) = v ( - i t -  l), H,(") = H v ( - n -  1), on C1 we shall replace t by - t -  1. Then 

where L is the contour shown in Fig. 1 and we have used the relation PI = P-,-l .  
Equation (23) can alternatively be written as 

Here 

But on L 
v(1)  = aA[l +q(1 -a2)/4az A']*. 

with 

4. Expressions for $h in the shadow region 

The integrand in equation (28) has poles at the zeros of the function H,")(Ba). 
If Imv > 0, then these zeros are all in the first quadrant of the complex &plane. 
The zeros of greatest physical interest are those with small imaginary parts, which 
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restricts v in the immediate neiglibourhood of (pa, 0). These are (See Nussenzveig 
(1965), Eq. 3.5) given by 

S.  K. Datta and A. H. Shah 

an,, = v, = ~ a + ( p ~ / 2 ) + x , e ' " ' ~ + ~ ( I / ( / l a ) * ) .  (29) 

Here -x, is the n-th zero of the Airy function Ai(x).  
Now, if we close the contour L in the upper half-plane by a large semicircle 

C,: 111 = R,, passing between the poles, it can be shown that for E < 8 < n-E,  ( E  > 0), 
the integral tends to zero as R, -, 00. Thus $, as given by equation (28) can be 
expressed as 

x H,,")(Pb) HV/')(j?r) Pa,-+( -cos O), (30) 

exp (-in/6)(/?u/2)*/[Ai'(-x,)l2. 
1 

r, E - 
2nu 

Note that equation (30) holds good whether r > or -= b. Furthermore, it may 
also be pointed out that the above results remain valid at 8 = n when 

P,,-+(-cOse) = P,,-+(i). 

However, this is no longer true at 8 = 0. 
NOW, if both b-a and r-a are b (pa)+/p, (i.e. when the source and the receiver 

are not too close to the surface of the sphere), and if lA,,l(n-O) b 1, then using the 
asymptotic expansions of Hv:l)(pb), H,/')(pr), PA,-+( - cos O), one gets 

( -* )mKo'>z  exp ( in /3)  2-* a[(bz-a2)(r2-a2)]-* (pa)+ *, 4a+ nqrb) 

exp [ijl{(b2-a2)*+ (rz-a2)*}]  
X C{exp [in, 6, - in/4] (pa sin O)* n 

exp [iA, ym + in /4] } /  [A'( - x,)]', (3 1) 

) (32) 

] (33) 

y, = 2(m+1) n-8-a cos-'(a/b)-a cos-'(a/r), 
6, = 2mn+O-a cos-'(a/b)-a cos-'(a/r). 

In order to interpret the results, let us note that 

yo = 2 n - 8 - a  cos-'(a/b)-a cos-'(a/r), 
a0 = 8 - u  c~s-'(a/b)-cos-~(a/r). 

Thus, the first term in the series (27) becomes exponentially increasing if do < 0, 
i.e. 8 < a[cos-l(a/b)+cos-'(a/r)], so that the series is meaningful only when 
0 > cc[cos-i(a/b)+cos-'(a/r)]. The line 

8 = cc[cos-l(a/b)+cos-l(a/r)] (34) 
has been drawn as the line A,  S' in Fig. 2. This line is tangent to the sphere at A,. 
The series (27) is valid in the region bounded by the curves A, S', A l ' S '  and 
A, Tl T,'A,' (Fig. 2). This region is then the geometric shadow region. Note that 
the line A,' S' is the image of A, S' about the axis SS' in the plane containing SA, S' 
and SOS'. In Section 5 we shall derive the equation for the fundamental ray paths. 
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I 

FIG. 2. Diffracted rays in the physical (r, @-plane. 

39 

Let SA,  S’ and SA,  ‘S’ be the incident rays from S that are tangent to the sphere. It 
will be shown in Section 5 that 

LSOA,(= LSOA,’) = a cos-’(u/b), LPOT,(= LPOT,’) = a cos-’(u/r). 

Here, lines T, P and T,’ P are the rays emanating (tangentially) from T, and T,’. 
Thus, L A ,  OT, = a0, LA,’OT,‘ = yo. Furthermore, the propagation times from 
S to A, (or S to A,’) and T, to P (or T,’ to P)  are (b2-a2)+/c,  and (r2-u2)*/cl, 
respectively. In fact, these results become apparent if one introduces the new 
variable 9 = e/u. This transformation takes the (r, @-plane into the image (r, 9)- 
plane. In terms of these new variables, i,hm becomes 

(pa)+ exp [ip{(b2 - u2)* + (r2 - uZ)*)I 
X C {exp [iv,  6,‘ - in/4] 

(pa sin e)* n 

+exp [ i ~ , y ~ ’ + i n / 4 ] ) / [ A i ’ ( - x ~ ) ] ~ ,  (31a) 
where 

, 2(m+l)n 
Ym = a -9-cos-~(u/b)-cos-‘(u/r).  

In Fig. 3 we have she- the shadow and the illuminated regions in the (r, 9)-plane. 
In this plane the ray paths become straight lines and the straight lines SA, S’ and 
S,’ A , ’ S  are the images of the curved incident rays SA, S’ and SA,’S’  that are 
tangent to the sphere. Here S,‘ is the image of S on the line 9 = n/a. In this image 
plane the disturbances move with constant speed c,. 
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/ 

FIG. 3. Diffracted rays in the image (r, @)-plane. 

So if one employs the concept of propagation along rays at short wavelengths, 
the physical interpretation of each $, in the image plane becomes clear. The 
geometric shadow is shown shaded in Fig. 3. The incident rays reaching A, and 
A,’ excite a series of surface waves emanating from these points. These waves travel 
along the sphere with phase velocity C,/[l + (4a/3)-* xn] ,  which is slightly smaller 
than C,. As they travel along the surface, they shade radiations along tangential 
directions, leading to the angular damping factor exp [ -1m ((v,,/a)L,)], where 
L, = Lo + (2aam/a), m 2 0. Here Lo is the arcual distance A, T, or A,’ T2. The 
point P within the geometrical shadow is reached by rays emanating from T, and 
T2. These are the straight lines from P that are tangent to the sphere. For m = 0, 
the first term within the bracket in the expression for t,bo (equation (31a)) corresponds 
to the ray that has gone along the surface through the distance A, TI before leaving 
the sphere and the second one corresponds to that which has gone along A,‘ T,. 

Thus, the phase factor 

exp [i/3{J(b2 -a2) + J ( r 2  -a2)} +is{ 1 + xn(4/3a)-3} a6,’] 

corresponds to the path SA, T, P. Similarly, the other term containing yo’ corres- 
ponds to the path S,’A1’ T2 P. For m = 1, the corresponding terms in t,b, can be 
interpreted as the rays from S ,  and S2’ ,which are the images of S and S, on the 
lines 9 = -a/a and n/u, respectively. For m > 1, these correspond to the rays 
from S,  and S;+ ,, which are the images of Sh- , and S,  on the lines 9 = - a/u and 
9 = n/a, respectively. The rays emanating from S,  go clockwise crossing the point 
A m-times and those from S:+,’go anticlockwise crossing A‘ m-times. For, note 
that 

6,’ = 2mn+6,’- , m 2 1 ,  a 

7,’ = 2mn+yo’- , m 2 1 .  
a 
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Returning now to the physical (r,  @-plane (Fig. 2), the interpretation of each I), 
is apparent. The incident rays reaching A, and A,' (tangentially) excite a series of 
surface waves emanating from these points. These waves travel along the sphere 
with phase velocity C,/[l +xn(4uS)-*], which is slightly smaller than Cz. As they 
travel along the sphere, they shed radiation along tangential directions, leading to 
the angular damping factor exp [ -Im((A,,/u)L,)], where L, = Lo+2num. Here, Lo 
is the arcual distance A, T, or A,' T,'. For m 2 1, L, correspond to the paths 
that have gone around the sphere m times. Since Im(An) = (1/a)xn(Ba/2)*, the 
damping constant varies as Bi/a. Also, note that the amplitude of I),,, has a factor 
a-*. So, larger a is, faster the decay. 

The shadow boundary given by equation (34) will meet the line 0 = n after being 
tangent to the sphere r = a provided 

n/a - cos-'(u/b) < n/2, 1 < a < 2. (35) 
However, if a > 2, then the relation (35) cannot be satisfied when 

b 2 u sec n/a, 
so that there is no shadow. If a = 2, then there will be no shadow when the source 
recedes to infinity. Henceforth, we shall confine our attention to the case 1 < a < 2, 
which condition is satisfied for most materials. Returning to condition (34), it is 
found that the shadow extends to infinity provided b < u sec [(n/a)-(n/2)]. Other- 
wise, the shadow is confined into a finite region beyond the sphere. (See Fig. 2). 

It can be seen from Figs 2 and 3 that the illuminated region can be divided into 
two sub-regions, I and 11. In sub-region I a point P can be reached only by one 
direct ray that is going left from S. In sub-region 11, P can bc reached by both the 
direct rays going right and left from S. (See also Fig. 4). 

5. Expressions for $ in the illuminated region 
Let us consider the sub-region I in which 

0 27r-0 - < cos-'(a/b)+cos-'(a/r) < -. 
a a 

In this case the term containing a0 will blow up, but the rest will be rapidly con- 
vergent. Hence, we shall re-examine the term 

Using the relation 
PA-+ = QiG+ + Q\2+, (Nussenzveig, Eq. C. 2), (38) 

and noting that the term in a0 arises from Qil?+ after the substitution of (38) in (37), 
we will have to re-examine 

The saddle-point approximation of (39) yields (for details see Nussenzveig (1965), 
P. 4% 

$o(l) = $ inc++ref l?  (40) 
where 
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P 

FIG. 4. Direct and reflected rays in the image (r, @-plane. 

This comes from the saddle-point 

v = pr sin cp = pb sin (n-cpo), 

cp-rp,+e/a = 0. 

Since tan4 = r(de/dr), we get from equations (42) and (43) 

tan 4 = a tan cp. 

(42) 

(43) 

Equation (42) is the Snell’s law and (43) describes the direct ray from the source 
to the point P in the image plane (r,S) (See Fig. 3). Similar relations were also 
obtained by Sat0 & Lapwood (1968) in discussing SH-waves in a transradially 
isotropic cylinder. Equation (41) shows that the amplitude is changed by a factor 
of a-+(sin S/sinO)*, due to the presence of anisotropy. Thus, the equation for a 
ray path from S is, in the (rye)-plane, 

r tan4 
= k,, 

J ( a 2  + tan2 4) 
where ko = b tan~o/[cr2+tan240]* is the ray parameter, 4o being the angle that 
this ray makes with the radial line to S and 4 is the angle made with the radial line 
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to P. A ray path is shown in Fig. 2 as line SP. In the image (r, 9)-plane this line 
becomes the straight line SP in Fig. 3. It can be seen from equation (43) that if 
the ray from S is tangent to the sphere at A , ,  then the angle 0 that the ray S A ,  
subtends at the centre is 

L S O A ,  = a[7~/2-(7~-cpO)] = a COS-'(U/~), 

since cp = n/2 at A ,  and n-cp, = sin-'(u/b). (See Fig. 3). Also, if (r,O) is a point 
on this ray, then 

8 = CL [cos - (a/b) + cos - (u/r)]. 

Thus, this gives the equation for the shadow boundary, which is consistent with the 
results in Section 4. To obtain the angle subtended by the ray T, P that leaves 
(tangentially) the sphere at T, and reaches P(r,O), we 
this ray is, by equations (42) and (43), 

note that the equation for 

d0 cia 
r- = a  tancp = 

dr J(r2 --a2) 

Integrating, one obtains 
8 - eo = cos- (a/r), 

where Oo = LSOT,. Thus, L T, O P  = a cos-'(a/r). These justify the results used 
in Section 4. 

From (41) we have the equation for the wave front as 

(r cos cp -b cos cp,) - C1 t = const., tan cp = a-'  tan 4. 
It can be seen that the wave-front normal is not in general tangent to the ray. Using 
this equation, one derives the phase velocity u at a point (r, $) on the ray path SP as 

1 
21' c,' G2 

cos' cp sin' cp - (c~/c,)' + (c , /c , )~  tan' 4 - c,' + cI2 tan' 4 + - - -  

Thus, if the wave is moving in the radial direction, it can be shown that $ = 0 so 
that the phase velocity u = C,. If it is moving perpendicular to the radius, then it 
can be shown that 4 = 4 2  and so phase velocity v = C2. So the parameter 
a = C,/C,  may be interpreted as the ratio of the phase velocities in directions 
perpendicular and along the radius, respectively. 

Also, using the equations for the wave-front and the ray, one can derive the 
group velocity U at a point ( r ,$ )  as 

1 1 2  2 

u c,  = - cos $ sec cp. 

(See also Sat0 & Lapwood, Eq. 5.1)  

The term I ) ~ ~ ~ ~  comes from the saddle-point between 0 and pa, and this can be 
obtained as 

]* exp ( ~ P ( s A + A P ) ) ,  (44) 
sink cos k 

sin 8 ( S A  . PM + SL . A P )  *ref1 = - 

PM = r cos cp', SL = b cos (n- cpo'). 

Again, it can be seen that the amplitude is changed by the factor of a-*(sin S/sin @*, 
due to anisotropy. The contribution given by (44) comes from the saddle-point 

(45) v = /3r sin cp' = pb sin (n- cpo') = /3a sin k, 
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e 
C ~ ' + I T - C ~ ~ ' +  - -2k = 0. 

U 

Equation (46) describes the ray reflected off the surface of the sphere and reaching 
the point P (See Fig. 4). 

Next we shall consider sub-region I1 of the illuminated region, given by 

e 2n-0  < c o s - l ( g )  -<- 
U U (47) 

In this case point P can be reached by the direct rays going right and left from the 
points S and S1', respectively, and also by their reflections from the sphere. In this 
case the terms containing yo and do both blow up. However, the rest of the terms 
in JI, will still be rapidly convergent if u < 2. So we shall have to re-examine the 
term +o. 

The contribution $O(l) to t,bo is still given by equations (40), (41) and (44). 
Therefore, we evaluate 

1 lgi Q$?:-',(-cosO) exp(inl)dl, 
L 

80' *0'2' = 

by the saddle-point method, and find 

Ko/C12 sin (211.-O)/u) 
x , R1 = r c0sQ-b COS@-,. (49) ( sine 

This contribution to (48) comes from the saddle-point 

v = Br sing = Bb sin (n-p0), 

2n-e q-qo+ - - - 0. 
U 

(50) 

(51) 

This corresponds to the direct ray from S1' to P. As can be seen, this saddle-point 
exists only if (21t-0)/0! < ~os-~(a/b)+cos-'(a/r), i.e. in the region 11. 

Similarly, the contribution to (48) from the saddle-point 

v = br sin q' = Bb sin (7c-g0') = Bb sin E, (52) 

27r-e 
gY+n-@o'+ - -2E = 0, 

U (53) 

is 

I' sin E cos E 
sinB(S,'A,.r cosgY+A, P . b  cos(n-qo,3) 47ru (rb) 

exp [i/3(S,'Al +Al  P)]. (54) 

$ref1 = - a K F h  [ 
So the total field at P in the region I1 is given by 

* = *inc +*ref1 + g i n c  + $refly 

where J/inc etc. are given by equations (41), (44), (49) and (54). 
In Table 1 we have given some values of u-*(sin S/sin O)* for different values of 

8 for two different materials. Note that for zinc this factor first increases, then 
decreases, and then increases again with increasing 8. 
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Table 1 
e 

a 10" 20" 40" 60" 80" 100" 120" 
1.1 0.822 0.828 0.833 0.843 0.854 0.873 0.906 

1.3 0.589 0-606 0.604 0.615 0.639 0.671 0.724 
(Beryl) 

(Zinc) 

Values of a-'Ia (sin S/sin O)i for different angles 0 and for two materials. 

6. Diffraction by a fluid sphere 

In the case where the core is a fluid sphere of radius a the shear stresses 

q0 = q6 = 0 on r = a. (55)  
The use of this boundary condition in place of (17) will give 

Here 
3 3 

s,(pa) = J,'(Pa)- - Jv(/3a), S!''(pa) = Hp' (pa) -  - H y ( p a ) .  
2Ba 28a 

Equation (56) can alternatively be written as 

where 

Proceeding exactly in the same way as in Sections 3 and 4, it can be shown that 

with 

*m = 4(rb)f n 

inKo /CIZ  
(- 1)" 1, rn~,,")(pb)Hv!l)(/?r) exp [ idn(2m+ I)] P,,,-*(-cos e). 

Here v, x a& is a root in the first quadrant of S!')(pa) = 0, and 
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For large pa the roots of SV(’) = 0 that are close to pa (and with positive imaginary 
part) are approximately those of HV(’)’(pa) = 0 and these are given by (Keller, 
Rubinow & Goldstein (1963)) 

v, = pa + 2-* exp (in/3)(pa)* y,, 

- y n  being the n-th zero of Ai’(x) = 0. 

as before, that 
Calculating the residues and using the asymptotic expansions, it can be shown, 

(- 1)” K , / C , ~ .  p-*(a/2)2 exp (in/3) 
4nb cr*(rb)*J(sin 0) [(b’-a2)(r2-a2)]-* II/m = 

xexp [ip(J(b’-a2)+J(r2-a2))] C [exp (ivny,+in/4) 
I1 

+ ~ X P  ( i v n  dm - in/4)I/.~n [Ai( - YJI ’- 
Proceeding in the same way as in Section 5 ,  one can derive expressions for the 

reflected field. 
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