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Abstract  This article deals with verification of radar 

sensors. Although these are very accurate devices, they are 

vulnerable to distortion of the measured value due to false 

reflections. Since this is an assigned measure, it must be 

ensured that results are fixed and reproducible. This places 

the onus on geometric and environmental optimalization to 

minimize false reflections and deliver accurate 

measurements.  
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1. Introduction 

The radar level gauge is a device which measures distance 

using an indirect method without contact. The radar sensor 

uses continuous frequency modulation and consists of two 

basic integrated parts: a transmitter and a receiver. The 

transmitter is a signal generator with directional antenna, 

while the receiver comprises a directional antenna, an 

amplifier, a decoding device, a circuit with the voltage 

comparator and a powerline circuit. The latest sensors are 

non-sensitive to temperature, pressure and density changes 

and also to the composition of the gas in the measuring 

environment.  

The continuous frequency modulated system 

Most current level sensors work through continuous 

frequency modulation, using measurement of the difference 

in transmitter and receiver frequencies. The transmitted 

frequency is swept between two known values f1 and f2, and 

the distinction between the transmitted signal and the return 

signal is measured as in Figure 1. [2] 

 Verification of level gauges  

Verification takes place in the Department for verification 

of radar sensors, located in the long corridor on the ground 

floor of the SLM n.o .building. Fixed beams under the 2.2 m. 

ceiling of the corridor hold the metal guide rail.  

A reflection board simulating the water level in the tank 

moves on the metal bar via a toothed belt and servo drive. A 

large rack is situated at one end of the hall. This holds the 

calibrated level gauge 1.35 m above the floor and the etalon 

of the length - the laser interferometer XL 80. Disturbances 

can occur in this method of verification. For example, 

disturbance reflections appear unless adequate space is 

available. The maximum radiation angle of the level meter is 

13 °, the width of the corridor is 1.93 m and the beams are 

0.85 m distant. From this, we can calculate parasitic 

reflections [3] 

 

Figure 1.  The principle of "continuous frequency-modulated signal" 
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where:  d = distance from the ceiling 

Our verification conditions give beam reflections at 

approximately 7 metres, and therefore distorted measured 

values at distances over 7 m. Since we can not change the 

environment we solve this problem by focusing a ray which 

avoids reflection from the walls. One solution is to build an 

anechoic wall which absorbs electromagnetic waves before 

parasitic reflection can occur. The next problem is to provide 

an upright reflection board towards the level gauge. When 

this is insufficiently upright, it causes distinction between the 

rays floating to the top and bottom parts of the board, and 

therefore distance measurement error occurs. The shape, 

location and edges of the board affect the extension of the 

radar waves, and thus level gauge accuracy verification. 

Figure 2 highlights two different radiation patterns and 

environmental elements which cause measurement errors. 

This article focuses on solving cylindrical beam diffraction 

problems, and clarifying how these beams influence 

electromagnetic fields.  
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Figure 2.  Undesired reflections in level gauge verification 

2. Scattering by Steel Beams
Cylinders form one of the most essential classes of 

geometrical surfaces, and they compose the surface of many 

practical scatters including aeroplane fuselages and missiles. 

The circular cylinder is geometrically simple and is easily 

solved by tabulated functions such as those of Bessel and 

Hankel, and it is studied in detail here because it is used very 

widely in practical scatters..This especially involves 

scattering of both plane and cylindrical waves by circular 

conducting cylinders of infinite length at normal and oblique 

incidences, and the solutions herein are obtained using 

modal techniques. Scattering from finite length cylinders is 

derived from transformation of infinite length scattered 

fields using approximate relationships.  

2.1. Plane Wave Scattering by Conducting Circular 

Cylinder: TM polarization 

When it is assumed that a TM uniform plane wave is 

normally incident on a perfectly conducting circular cylinder 

of radius a, as in figure 3.  

Figure 3.  Uniform plane wave incident on conducting circular 

cylinder, TM polarization 

then, the electric field can be written as; 
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However, equation (2) is inappropriate for further solution 

of the scattered field, as it is transformed into an appropriate 

form for derivation of the diffraction on the cylindrical 

structure. Here, we use Bessel functions of the Fourier series. 

The complex coefficients of the Fourier series have the form 
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The total electric field around the conductive cylinder is; 
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where; E
s 

is the scattered field. Since the scattered fields 

travel in an outward direction, they are expressed by 

cylindrical travelling wave functions, so that E
s
 is; 
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Similar to the situation in the Fourier series’s 

approximation of incidental fields, here cn defines the 

unknown amplitude coefficients. Equation 7 has similar 

form to Equation (4), and the combination of these two 

defines the total field. This then aids solution of cn amplitude 

coefficients which are determined by applying the boundary 

condition, as; 
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Combining (4), (7), and (8) then derives 
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Thus the scattered field of (7) reduces to 
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where; εn is defined by (5). 

3. Problem Formulation 

Our problem centres on the department which verifies 

radar level gauges depicted in Figure 4.  

 

Figure 4.  Department verifying radar level gauges 

A significant increase in measurement error develops in 

verification level gauges at distances longer than 

approximately 7 m. Equation (1) determined that the 

electromagnetic waves focused from the  level gauge onto  

the steal beams at exactly 7.45m, created diffractions and 

distortion around the beams. Therefore the shape of the final 

field around the radiated beams calculated in Figure 5 

presents the geometry required to solve our problem. 

 

Figure 5.  Geometry of the solved problem 

This is achieved by calculating the electric field from the 

three beams at distances r1, r2, r3 from point P and rotated by 

angles ϕ1, ϕ2, ϕ3 to plane x. The distance between the beams 

is  d = 500 mm and the observation plane is at distance h = 

950 mm from the beams. The observation point P is   

moved in 5 mm steps from the border of the first beam to the 

border of the last beam. The distances of relevant points r1, r2, 

r3  are calculated by Equations (12), (13) and (14)  and the 

angles ϕ1, ϕ2, ϕ3 are calculated as in Equations (15), (16) and 

(17).  
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Equation (11) provides diffraction electic fields E1(r1, 

θ, ϕ1), E2(r2, θ, ϕ2), E3(r3, θ, ϕ3) at observation point P, and 

defines the total diffraction field, thus; 

321 EEEEs ++=              (18) 

To determine the total electric field at the observation 

point, it is necessary to calculate the incidental primary 

electric field Ei (ρ, θ, ϕ) according to formula (3), where the 

distance r = ρ. Here, ρ defines the distance of the point from 

the actual start of this system, and therefore from the level 

gauge antenna. This is clearly illustrated in Figure 6.  

 

Figure 6.   Illustration of distance ρ 

The resultant total electric field at observation point P is 

determined by Formula (6). 

4. Results 

Simplifications of formula [1] can not be used to 

calculate diffractions, because of the large dimensions and 

geometry of the department controlling the level gauges. 

The wavelength of the signal presents a problem there, 

where the beams are comparable to the wavelength, 

Therefore, diffraction calculations are derived directly from 

the definition of the diffusion wave (11), where diffraction 

on a metal cylinder is used to verify caculation convergence. 

The mathematical model was created in the Mathematica 

environment without Bessel function approximations. The 

incidental field fits Equation (2), with a field amplitude of 

1V/m. Figure 7 depicts the analytical calculation result for 

the scattering shape, and the combined Figures 7 and 8 
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define the total field. These graphs are identical to those 

featured in worldwide literature [1].  

 

Figure 7.  The diffraction field surrounding one beam  

 

Figure 8.  The total electric field surrounding one beam 

The analytical calculation of the problem formulated in 

section 3 required development of an algorithm for step by 

step alteration of observation point P’s position in the 

direction of the x-axis in ρ to ρ + d intervals. The distances 

r1, r2, r3 for each selected point P are calculated by Equations 

(12), (13) and (14) and  ϕ1, ϕ2, ϕ3 angles by Equations (15), 

(16) and (17). These values are used to calculate diffraction 

fields from each beam, and their summation determines the 

total diffraction field at point P. Figure 9 depicts the 

scattering field calculation performed without considering 

the phase shift in the difraction fields of each beam, while 

Figure 10 allows for delayed formation of the diffraction 

fields. The scattering fields from each beam do not arise 

simultaneously; these depend on the time of the impact of the 

incidental wave. The first beam radiates initially, then the 

second and finally the third, and this phenomenon is included 

in the initial phase of each beam’s scattering field.  

 

Figure 9. The course of the scattering electric field under the beams  - 

without considering the phase shift of the beams 

 

Figure 10.  The course of the scattering electric field under the beams- 

considering the phase shift of the beams 

The sum of the diffraction fields and the incidental field 

is shown in Figure 11. This elucidates the distribution of the 

electric field under the beams along the measuring 

department. 

Precise complex and demanding computations allow a 

clear picture of what is happening in the beam’s fields when 

they are irradiated with the radar signal from the level gauge. 

 

Figure 11.  The course of the total electric field under the beams  - 

considering the phase shift of the beams 
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Figure 11 shows significant inhomogeneity in the electric 

field along the measuring department, thus influencing a 

calibration uncertainty in the radar level gauges which is 

more than coincidental in this case. This graph highlights the 

measuring department’s inappropriate layout and the need to 

alter its design to minimize diffractions on the beams and to 

prevent results such as the ones so clearly illustrated in the 

graph. 

5. Conclusion 

Verification of radar level gauges requires measurements 

performed with minimum error. When these instruments are 

used for very precise measurements, such as the fuel level in 

large tanks, a measurement error of 1 mm creates a vast 

difference in volume. Since the maximum measurement 

error allowed is + / - 0.5 mm, these instruments  must be 

verified annually to detect any source of error.  Although 

several sources of error exist in the verification environment, 

this article concentrates on the influence that the steel beams 

exert on the emitted radar waves. Because the radar level 

gauges operate at 10 GHz frequency and 30 mm wavelength, 

the resultant wave is widely spread, and when the radius of 

the beams was compared to wavelength, no simplified 

calculation for electric field distribution was adequate.  

To verify the precision of the demanding calculations thus 

required, we first established the field around the beam and 

compared our results to those in the literature [1]. These 

corresponded; ensuring that our calculations were correct. 

We then applied this principle to multiple beams, as 

described in section 3. It was essential to establish the 

electric field under the beams because the reflection board 

which simulates water level is situated in close proximity. 

Figure 9 shows the calculated course of the electric field 

under the beams. It is evident that this field was highly 

inhomogeneous due to the presence of the steel beams. These 

combined circumstances effected distance measurement 

errors which grossly devalued the level gauges verification 
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