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Diffraction tomography using multimode surface waves 

T. Meier, • S. Lebedev, G. Nolet, and F. A. Dahlen 
Department of Geosciences, Princeton University, Princeton, New Jersey 

Abstract. A new method is described that makes it feasible to include scattered 

and converted surface waves into waveform inversions for the three-dimensional 

(3-D) structure of the Earth. The single scattering (Born) approximation forms the 
basis of the method. In order to minimize the amplitude of the scattered wave field, 
the background model is first adapted to correct for nonconverted, forward-scattered 
wave energy. We then perform Born inversion of the difference between the measured 
and synthetic waveforms, including a suite of Love and l•ayleigh modes. The Born 
approximation yields linear equations of the form A•?: •u Børn, which allow the 
determination of the three-dimensional perturbations ? to the background model 
from the scattered wave field •u Bøm. This procedure is followed separately for each 
source-receiver pair to allow for optimized background models for each signal, as 
well as to minimize the computational burden. We winnow the data vector for each 
path by performing singular value decomposition using a diagonalization of AA T. 
In a realistic example we found that each vertical component seisrnograrn yields 
30-40 linear constraints on the 3-D Earth, significantly more than with conventional 
pure-path (WKBJ) inversions. In a synthetic test, one seisrnograrn is shown to be 
able to image a simple model of a point scatterer off the great circle. As a spin-off 
of the formulation of the multimode inverse scattering problem, we not only obtain 
a series of eigenvectors that rank the sensitivity of a seisrnogram to Earth structure 
in a series of geometrical patterns, we also can compute the surface wave equivalent 
of a Fresnel zone. 

Introduction 

Seismic surface waves yield information about the up- 
per part of the Earth, in particular about the shear wave 

velocity •true. In the case of long-period multimode 
surface waves the sensitivity extends to the whole up- 

per mantle. The potential horizontal resolution of the 
waves increases with the frequency. However, it is well 
known that high-frequency waves are prone to scatter- 
ing and mode conversions. Where mode coupling the- 
ory can deal with this at normal mode frequencies, a 
more approximate approach is needed for regional sur- 
face WaVeS. 

Different methods for the regional inversion of mul- 
tipathed surface waves have been developed. Snieder 

[1986a] and $nieder and Notet [1987] developed the 
Born approximation for surface waves, and $nieder 

[1988a, b] described a method for the joint inversion of 
many waveforms. Snieder included Love/Rayleigh fun- 
damental mode conversions, but the limitations of corn- 
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purer memory precluded a full multimode treatment of 
scattering. 

It is important to distinguish between inversions of 
the in situ shear velocity and the mapping of local phase 
velocities. Yomo#ida and Aki [1987] also use the Born 
approximation but ignore mode conversions and model 
the wave propagation by assuming the wave propagates 

with a local (i.e., structural) phase velocity, for which 
they invert phase and amplitude data. Tanimoto [1990] 
avoids a simple Born approach on the local phase ve- 

locity but still inverts for the latter. In this paper we 
are concerned with the direct inversion of shear veloc- 

ity (and possibly density). Wielandt [1993] pointed out 
that a difference exists between the dynamical (i.e., 
measured) and the structural phase velocity for non- 
plane waves. Friederich et al. [1994] and Friederich and 
Wielandt [1995] proposed a method for the determina- 
tion of the amplitude and phase of the wave field of the 
fundamental Rayleigh mode using a regional network 
and inverted for the structural phase velocity beneath 
the network to derive a three-dimensional Earth model. 

A coupled mode approach for the modeling of surface 

waves was developed by Kennett [1984], Odom [1986], 
Maupin [1988], and Bos•ock [1992]. Based on this ap- 
proach, Marquering and Snieder [1995] developed an 
approximate inversion method which takes multiple for- 

ward scattering and mode coupling into account. 
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All of the above methods lead to very heavy, often 

unmanageable computations if mode conversions are in- 
cluded and if all data have to be inverted jointly. In 

order to allow for inversion of many data, we shall in 

this paper develop a strategy that combines the Born 
approach with a partitioning of the inversion. 

Nolet [!990] has shown how the partitioning of wave- 
form inversions (PWI) into a nonlinear and linear step 
may greatly facilitate the interpretation of large data 
sets. In this paper we not only use PWI for compu- 
tational efficiency but also to keep errors in the Born 

approximation under control. This met•hod consists of 
two major steps. A first nonlinear waveform inversion 
is carried out for each path separately. Such a nonlinear 
inversion is possible because only a small set of para- 
meters is able to describe an average model for the path. 
The second (linear) step combines the one-dimensional 
models for different paths to obtain a three-dimensional 

model. The method was successfully used for imaging 
the shear wave velocity in the upper mantle beneath 
Central Europe, the Tornquist Zone, and the southwest- 

ern part of the East European Platform [Zielh•is 
Nolet, 1994]. Recently, PWI was applied to construct 
three-dimensional models for the upper mantle beneath 
North America [Van der Lee, 1996] and Philippine Sea 
[Lebedev et al., subm. to Geophys. Res. Left., 1997]. 

The waveform modeling is based on the WKBJ ap- 
proximation, inverting for a laterally homogeneous av- 
erage model along each path. Synthetic waveforms are 
calculated by the summation of surface wave modes. 

The method is limited to a frequency range where the 
WKBJ approximation is valid. Smooth average models 
leave a discrepancy at higher frequencies in the seismo- 
gram, which we shall attempt to model in this paper 
with scattered modes using the Born approximation. 
The WKBJ step is essential to keep the discrepancy 
small, a major condition for the validity of Born, which 
is a single scattering approximation [Srdeder, 1988a, b; 
Friederich et al., !993]. 

Partitioned Waveform Inversion 

In this section we briefly review the partitioned wave- 
form inversion method and describe the determination 

of the background model for the Born inversion. We 
invert for only a single parameter, the S wave velocity. 
We summarize our notation for the various models and 

the corresponding waveforms in Table 1. 
Average perturbations 613 to an initial one-dimen- 

sional model/3 ø are determined by fitting a synthetic 

waveform u wKBJ to an observed seismogram u øb'. The 
seismogram may consist of only the vertical component 
or more components. The synthetic is calculated on the 

basis of the WKBJ approximation for a smooth later- 
ally varying model and a first-order Taylor expansion of 
the wavenumber 

i 

or 

u = + aL 

where the sum extends over the modes, and Aø• is the 
amplitude vector of the mode for the initial model •3 ø. 
The wavenumber k• ø of each mode is perturbed by • to 
fit the seismogram. The Fr•chet kernels 8k•ø/c9l• relate 
the wavenumber perturbation 5k• to the model pertur- 
bation 5•. The radius of the Earth is denoted by a and 

the source-receiver angular distance by A. The syn- 
thetic u wKBJ is fitted to the data u øbs by minimizing 
a least squares penalty function 

F(5/•) - f w(t)[uøbs{t) -- uWKBJ (•, •-•) Ia dt, (3) 
where w(t) is a weighting function designed to equal- 
ize the influence of different arrivals in the seisrnograrn. 
The perturbation 5fl is assumed to be an average per- 
turbation along the path: 

X - )da. (4) 
path 

Adding this to the initial model, we obtain a best fitting 
average one-dimensional (l-D) model •- /•0 + 5/• in 
each source-receiver great circle plane. 

Equation (4) constitutes a linear constraint on the 
true three-dimensional (3-D) Earth •t•u•, where •-• still 
depends on r. With the introduction of a new back- 

ground model/•f, which is the same for all paths, (4) 
is transformed into a system of linear equations of the 
form 

f GiWK•J 5(13true _ fi/ref) dar _ qi (5) 
with uncorrelated errors in the transformed "data" qi. 

The kernel G• wK• (r) samples the path. For details, see 

Table 1. Symbols Used to Denote Various Models and Associated Waveforms 

Model Dimension Path 

Dependent 

Real Earth fpru, 
Initial model fl ø 1-D yes 

Average model • = fl ø + •-• 1-D yes 
Perturbation of average model 5/5/- fi/tru, _/5/ 3-D yes 
Background model for inversion /3 r'f 1-D no 
Perturbation of/•ref 5/•ref = f/tr,, _ f/r,r 3-D no 

Waveform 

U oba 

u o 

uWKBJ 

•U Born 
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Nolet [1990]. For many paths equations (5) are collected 
and inverted for perturbations/•ref = •true- •f. It 
is advantageous to allow the initial model/•0 for each 
path to differ from the reference model • to improve 
the accuracy of the WKBJ approximation. 

Born Approximation 

In most cases the residual 

•u •ø• '- u ø•' - u wK• (6) 

is small for low-passed signals but differs appreciably 
from zero if higher frequencies are included. In these 
cases •U Børn can be seen as a perturbation to the wave- 
form u wKBJ for the laterally homogeneous path-average 

model •- •øo•/•. The Born approximation relates the 
residual /•u linearly to perturbations in the struc- 
tural parameters/• - •t•u• _ •. 

Snieder and Nolet [19873 formulate the Born approx- 
imation for a spherical Earth • follows: 

// exp i(kvaA2 +.•/4)S• • •uBørn -- • P• (sin A•)x/• 

•pi(••, •/4) s• 
' (sinAx)x/• ( 'M) sinSdOd•. (7) 

The indices • and • denote excited and scattered modes, 
respectively. Both Rayleigh and Love modes are in- 
cluded in • and •. The vector p• denotes the polar- 

ization vector of mode • at the receiver, A x is the dis- 
tance between source and the scatterer at colafitude O 

and longitude •, and A• is the distance between scat- 
terer and receiver. The moment tensor is denoted by 
M and the WKBJ strain tensor of mode • by E •. The 

wavenumbers for the background model • are denoted 
by •o or •. 

The sca•ering matrix can be written as 

s • - ](g;•a• • s$•aa • x•ax) a•. (s) 
o 

The integration is over radius and/•p, •/•, •A are per- 
turbations to the background model p, •, A. Here p 
denotes the density whereas/z, • are the Lam• param- 

eters for an isotropic medium. To replace 
$•, •p we make use of the linearized equations 

$• -- •$p + 2• • $fl, (9) 

- - + - 
which can be obtained from • - p(a • - 2fl •) and • - 
p•. 

Because we wan• •o inver• for 5 wave velocity pertur- 

bations $fl only, perturbations in •he density and •he 
P wave velocity are assumed •o be proportional •o •he 

perturbations in •he 5 wave velocity: 

e•- •(•/•) e•, (•) 

e.- •.(•/•) e•. 

This reduces the scattering matrix to 

(12) 

where 

(13) 

K• ø - K; ø [•c•(p/• + 2p •)] + K• ø%(•/•) (14) 
+K• ø [(• - 2•)c•(•/•) + 2•-6½•(•/•)- 4• •]. 

The residual •U Børn becomes a linear function of the 

perturbation to the average model/• - •t•u•-/• _ 
Bt•u•- B0_ •-•. Inserting/•B in (4) yields 

- • - • (• + •) d• (•5) 
path 

and therefore 

,/ o - X • a•x. 
path 

Equation (16) implies that the average of/•/• along the 
great circle path at any depth is zero. This is expected 
since/• is an average model for the great circle plane. 

For the purpose of inversion the perturbation /•/• is 
expanded into three-dimensional basis functions 

/•/•(r) - • 7ihi(r) - • '•ih• (r)h•(O, q•). (17) 
i 

The basis functions hi are assumed to be orthogonal. 
In this paper we choose the angular basis functions 
equal to 1 for a small region Oxi • O • O•i, •xi 
and zero outside, and h• equal to 1 where 
and zero elsewhere. These regions are assumed to be 
small in comparison to the wavelength of the structural 

perturbations. 
The scattering matrix is split up into contributions 

from the different basis functions 

' 

Equation (7) can then be rewritten as 

i v,o 

expi(•oa•x + •/4) Eo 
' (sin•)•/• ( '•) a• •inOaOa4. (•) 

Replacing quantifies such as E ø by •heir values E•'M, 
p• s• • •a (•in•)•/• (sin•)•/• 
of each cell we can simplify (19) to 

•u"ø'" = • •' • P' (sin •=,)•/= 

•p•(•.•A•, + •/4) •' (•0) ß •.••/= (E•.•) ,, . 
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The quantity s• '• accounts for the possibly rapid fluc- 
tuations of the exponential functions in (19)' 

s• '• -- exp i(k,,aSA2i + k•aSA•i) h i sinO dOdqb 

(21) 
where A 1 = •li + 5•1i and •2 = •2i +•2i. For 

• will be approximately equM to small wa•enumbers s i 
the s•rface are• si where A• - 1. 

The following •bbreviafions for (20) are intro•uce•: 

i v,• 

A real linear system of equations for 7 = (7•, 72, ...) can 
be obtained in the frequency domain: 

i 

or in the time domain by a Fourier back transformation 

of (22): 

i 

In the time domain a time window is easier to apply. 
These linear systems of equations will be abbreviated 
by 

•U Børn-- A')'. (25) 

Before linear equations like (25) for different paths are 
combined for an inversion, an approximation of A by 
using singular value decomposition (SVD) [Press et al., 
1992] is introduced in order to reduce the number of 
equations. This method is akin to the method of rank- 

ing and winnowing proposed by Gilbert [1971]. SVD of 
A yields 

A- UAV - fi9 (26) 
where A is a diagonal matrix with the singular values 
of A on its diagonal. For one path the linear prob- 

lem (25) is severely underdetermined. Therefore only 
a small number of the. singular values are nonzero. A 
new diagonal matrix A excluding zero and small sin- 

gular values is used to quell the indet.errnjnacy. The 
columns of the corresponding matrices U, V constitute 
a basis for the range of A and the particular solution, 
respectively. If the number of data is denoted by rn, the 

number of unknowns by n, and the number of nonzero 

singular values by rn', the matrices are of the following 
types U' (mx n), A' (n x n), V' (n x n), U: (mx m'), 

X: (rn' x rn'), 9: (n x rn'). Using (26) and the or- 
thogonali•y Oa'O - I, the linear system (25) can be 
transformed to 

•/rT,), __ /•-10T euBorn __ 0. (27) 

The number of equations is reduced from rn in (25) 

to rn' in (27). From (27) the covariance matrix C. = 
E[•7i•7•] can be obtained: 

- cr•'•, or with C• 

(29) 

Multiplying (27) by A/cr• corresponds to a normaliza- 
tion of (27) to unit variance. 

If the number n of unknown elements in 7 is large, 
SVD of A. is very time and space consuming. Because 
for one path the number of data rn is smaller than the 

number of unknowns n, it is much more efficient to con- 
sider diagonalization of AA a', even though the numer- 
ical precision can decrease. With 7= AS'y, (25) can be 
written as 

5u Bør"-- AAa'y. (30) 

Diagonali•.ation of AA a' yields 

AA a' -- UA:U a' -- O.•:O T, (31) 

•u Børn-- Oi2O•'y. (32) 
From (32) we find that 

•_xfja. SuBor, _ •fja'y _ •1. (33) 

Finally, using (26) we can calculate 

- X- A. 

Using (33) and (34) the linear system of (27) can be 
obtained by diagonali•.ation of AA •'. 

Example I 

Figures 1 and 2 illustrate properties of the Born 
proximation using a source-receiver pair on the Philip- 
pine Sea Plate. Figure I shows the absolute value of 
scattering matrix at 25 mHz for mode conversions from 

Love to Rayleigh modes as well as between Rayleigh 
modes for a single scatterer; 15 Love and 15 Rayleigh 
modes are considered. The scatterer is located at 10 ø N, 
125øE and consists of 5% perturbations in • and/5 and 
2.5% in • between 7 and 410 km depth (cp - 0.5 and 
ca - 1.0). The horizontal extent of the scatterer is 80 
km by 80 km. The plots on the left show the dimension- 

less elements of the matrix S•'•,•si, whereas the plots 
ß 

on the right show the amplitudes [a•'*[ of the resulting 
perturbations to the vertical component waveform at 
the receiver. 

The scattering matrix is shown for near-forward scat- 

tering with a 300 change in the direction of propagation. 
The scattering matrix is dominated by scattering with- 
out mode conversion as well as by scattering between 
neighboring Rayleigh modes. The scattering matrix is 
symmetric for scattering between Rayleigh modes. Love 
modes are scattered mainly to Rayleigh modes with 
mode number which is increased by 1 or 2. The ninth 
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Figure 1. (left) Scattering matrix S • for a scatterer at 100N, 125øE for a frequency of 25 mHz. 
right) Amplitude '[a•'ø[ of scattered waves on the Vertical component in the Born approximation. 
top) Love to Rayleigh conversion. (bottom) Scattering between Rayleigh modes. Absolute values 

are plotted using a base '10 logarithmic scale, that is, -4.00 means 10 -4. The elements of the 
scattering matrix are dimensionless, whereas the amplitude of the scattered waves are given in 
meters. The scatterer has 5% 'perturbations in • and • and 2.5% in • between 7 and 4!0 km 
depth. The horizontal extent of the scatterer is 80 km by 80 km. Incoming modes are plotted 
on the z axis, outgoing modes are plotted on the • axis. See Figure 2 for the source-receiver 
configuration. 

higher Rayleigh mode represents a Stoneley mode at the 
core-mantle boundary. The values of the eigenfunctions 
in the upper mantle for this mode are very small. For 
this mode the elements of the scattering matrix are also 
very small. ' 

The amplitudes of the waveform perturbations or the 
scattered waves at the receiver are dependent on the 

scattering matrix and also on the excitation and the 
polarization vector for the receiver. The influences of 
both geometrical spreading and the size of the scatterer 
are the same for all mode conversions. For this scat- 

terer in particular, Love to Rayleigh conversion is im- 
portant because of the radiation pattern. The Waveform 
perturbations are not symmetric for scattering between 
Rayleigh modes. ß 

Figure 2 illustrates the Born approximation as a func- 
tion of the lateral position of the scatterer (agai'n at 25 

. . 

mHz). In the left column of plot s we show scatter- 
ing from the fundamental Rayleigh mode to itself, in 
the middle column the conversion from the first higher 
Rayleigh mode to the fundamental Rayleigh mode, 'and 

ß 

in the right column the conversion from the fundamen- 
tal Love to the fundamental Rayleigh mocle. The top 
two rows show the real parts of the waveform pertur- 
bations on the vertical component at the receiver as a 
function of the lateral position of the scatterer. The 
first row shows the perturbations without accounting 
for the effect of radiation pattern, and the second row 

includes the factor E•-M. In the notation of (22) [he 
.t,o,,,. ,,na tt, .,ona a,o,,,. 

for three combinations of •r and u. The in•lex i of the 

basis function varies. The depth dependence of the ba- 
sis functions is the same for all lateral positions. The 

scatterers have 5% perturbations in • and • and 2.5% in 
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Figure 2. Waveform perturbations as a function of the lateral position of the scatterer. 
Three examples of mode conversion are considered at a frequency of 25 mHz. (left) Scattering of 
fundamental Rayleigh to fundamental Rayleigh mode. (middle) Scattering of first higher Rayleigh 
to fundamental Rayleigh mode. (right) Scattering of fundamental Love to fundamental Rayleigh 
mode. (top) Real part of the waveform perturbations without radiation pattern accounted for 
•[&•'•]). (middle) Real part of waveform perturbations, including effect of radiation pattern 

(bottom) Amplitude of the waveform perturbations ([a?[) in meters are given on 
a base 10 logarithmic scale. The scaling is the same for the three plots on the bottom. The 
plots in the first two rows are plotted independently. Exponents are shown in the legend, that 
is, -9 denotes 10 -9 . The scatterers are as in Figure 1. The source (square) is the event of April 
13, 1994, at 3.1øS, 136.0øN, depth 29 km. The station (triangle) is the Global Seismic Network 
station TATO. The map shows a region around the Philippine Sea. 

• between 7 and 410 km depth. In the top row curves 
of constant phase are visible. They have an elliptical 
shape if the wavenumber of the incoming and the scat- 

tered mode is equal or an "egg" shape otherwise. The 
amplitude along a curve of constant phase is modulated 
mainly by the angular dependence of the scattering and 
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also by the geometrical spreading. For instance, in the 
case of the fundamental Rayleigh mode, forward and 
backward self-scattering have different signs. This ex- 
plains the nodal plane visible between regions of for- 
ward and backward scattering. For fundamental Love 
to fundamental Rayleigh mode conversions the nodal 
plane coincides with the great circle plane. There is no 
such nodal plane for the conversion from the first higher 
Rayleigh to the fundamental Rayleigh mode; however, 
we see that backward scattering is stronger than for- 
ward scattering. In the second row the symmetry is lost 
because of the radiation pattern. In the third row am- 

plitudes of the waveform perturbations [a•'•[ are shown 
with the same scaling for the three plots. In this ex- 
ample, because of the radiation pattern, self-scattering 
from the fundamental Rayleigh mode is more sensitive 
to the structure northeast of the great circle. The radi- 
ation in the direction of the station is less than half of 

the maximum radiation, which is directed to the NNE. 

Scattering from the fundamental Love mode to the fun- 
damental Rayleigh mode is stronger southwest of the 
great circle. 

Upon linearizing the differentials 5A•i and 5A•.i over 

a fiat, square cell surface [Snieder, 1986b], the factor 
(21) can be approximated by the real number 

sin [•AS(k,, sin (•., + k• sin (•,)] 
s• -- 4 

(k• sin • + k• sin •) 

sin [aAO(k• cos •, + k• cos •,)] 
(k• cos •.i + k• cos ,•i) 

ß (35) 

In (35) •2i is the azimuth toward the station, and • 
is the azimuth toward the source in the center of the 

cell, and A8 denotes the angular half width of the cells. 

Figure 3 shows the ratio si /s• where si is the angular 
cell surface, as a function of the position of the cell for 
k• = k•. The source and receiver are assumed to be at 

-20øS, 50øE and 20øS, 50øE, respectively. In regions 

where the exponential functions in (21) are strongly 
fluctuating, the ratio s• 'ø/si becomes small. The ratio 
becomes larger for a smaller cell size and longer wave- 
lengths. Equation (21) is dependent upon the shape 
of the cell. This is demonstrated in Figure 3d, where 
we have rotated the cells by 450 with respect to those 
shown in Figure 3a. 

Figures 4, 5, 6, and 7 demonstrate the decompo- 
sition of the matrix A governing the Born inversion. 
In Figure 4 (top) the waveform observed on the verti- 
cal component for the source-receiver configuration of 

Figure 2 is shown (solid line). It is compared with the 
synthetic waveform u wKBJ for the average model • re- 
sulting from the first step of the PWI (dashed line). 
The Harvard centroid moment tensor solution was used 

to compute the synthetic. The case shown is an ex- 
treme example, perhaps because the station is situated 
near a node in the radiation pattern of the fundamen- 

tal Rayleigh mode; usually, the synthetic for an average 
model matches the waveform much better [Van der Lee, 
1996, Lebede• et al., 1996]. In the example of Figure 4, 
neither the waveform within a window between the $ 

::-'.•ii"':"•'"•-- "-'..'- --':•- .- .-.'•"--'.-•?-"--';?•J•iiiii"..ii •' ::•11 ............... 'i:i:..::•:. 
20 40 60 80 20 40 60 80 

•i::•i::•!!•i!•ii•::::ii!!•?:i:•::•i•iiii!•ii•::•i•!•i•l•:j ..... •:. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

20 40 60 80' 20 40 60 80 

0 I 

Figure 3. The ratio s• '•/si as a function of longitude 
and latitude. The source is at -20øS, 50øE and the 
receiver at 20øS, 50øE. Results arc for 25 mH•.. (a) 
A8 -- 0.4ø; phase velocity 4 km/s. (b) Like Figure 
3a, but phase velocity 6 km/s. (c) Like Figure 3a, but 
A8 -- 0.25 ø. (d) Like Figure 3a, but with cells rotated 
by 450 . 

arrival and the fundamental mode (720 to 870 s) nor 
the coda (after 950 s) can be modeled with the WKBJ 
approximation. In the middle the residual 5u Børn be- 
tween the observed waveform and the synthetic for the 

average model is shown (solid line). Figure 5 shows 
the first 47 singular values for the SVD of the matrix 
A. About 40 singular values are appreciably different 
from zero. The matrix A has about 200 rows, so in 

this example a reduction of the number of rows by a 
factor of 5 is achieved. This is a desirable feature, 

since it reduces the storage requirements of the pro- 
cedure considerably. A solution for this path can be 

computed using 7= •r•_-l[.I•rSu Børn. The correspond- 
ing synthetic residual A7 is shown in Figure 4 (middle) 
with a dashed line. Figure 4 (bottom) shows the total 

WKBJ 

synthetic waveform u + A7 (dashed.line) corn- 
ohs 

pared to the observed waveform u (solid line). The 
agreement is very good. We conclude that the Born ap- 
proximation enables quite complicated waveforms to be 
modeled. Furthermore, the matrix A can be approx- 

imated using about 40 nonzero singular values in this 
example. 

For the construction of the basis functions hi in this 

example the depth range between 7 and 410 km was 

divided into four layers: 7 to 20 km, 20 to 70 km, 70 
to 200 km, and 200 to 410 km, 5% perturbations in • 
and f• and 2.5% in • are considered within these lay- 
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Figure 4. (top) Waveform for the source-receiver configuration in Figure 2 (solid line). Syn- 
thetic waveform u wEs• for an average model (dashed line) resulting from the first step of the 
PWI. (middle) Residual u ø•- u wKs• (difference between data and synthetic for the average 
model, solid line) and synthetic residual •u l•ør• in the Born approximation (dashed line). (bot- 
tom) Comparison of observed waveform u øb' (solid line) and final synthetic u wKBJ + 5u Børn 
(dashed line). Displacements are shown in nanometers in the frequency ranõe 5 to 30 mHz. Read 
X10 + 4 as x104. 

ers for the construction of the basis function. In Fig- 
ure 6 elements of the first, second, and fifteenth 
sis vector for the depth interval from 20 to 70 km are 

shown. Vectors corresponding to larõe sinõular values 
describe smooth model perturbations, whereas vectors 

corresponding to small singular values describe pertur- 
bations of short wavelength. 

Since the condition number of AA T is the square of 
the condition number of A, there is a valid concern for 

the numerical stability of our method. In Fig•e 7 we 
investigate the accuracy of the calculation of V usin.g 
the diagonMization of AA T. In Figure 7 (top) •r•V 
is shown for • as a result of SVD of A, and in Figure 
• (miaae) •• i, shown for •r as a result of ai•go- 
nalization of AA •r. Only columns of •r corresponding 
to small singular values show deviations from the ex- 

pected orthogonality if they are calculated using (34). 
In Figure 7 (bottom) dot products between columns of 
V calculated using SVD of A (z axes) and using diago- 
nalization of AA •' (Zt axes) are shown. In this example, 
dial•onalization of AA •r provides a very good estimate 
of V, especially for columns of V corresponding to the 
first 40 singular values. 

Inversion for Three-Dimensional Model 

Because of (17) the unknown coefficients and the ba- 
sis functions are defined with respect to a background 

model • - /S O + • which is different for each path. 
We introduce a new background model f•ref which is 
equal for all paths in order to obtain a system of lin- 
ear equations governing the three-dimensional pertur- 
bations 5/S •f. With (17) and 

. 

- 

Figure 5. 

ß 

ß 

oo 

"''øo. - 

t I t I t *[" *'T .... { ....... 
10 20 30 40 

singular value # 

First 47 singular values of the matrix A. 
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Figure 6. SVD of the matrix A yields a basis for the particular solution. Elements of the (top 
left) first, (top right) second, and (bottom left) fifteenth basis vectors for the depth range 20 to 
70 km. The source is denoted by a square; the receiver is denoted by a triangle. 

f •yhi d•r- 5yi, (36) 
where •y - h1 /f h? dSr, the coefficients 3'y can be 
expressed by 

• 5• d3r - 7•. (37) 
Using (37), (27)is written as 

• •'i f • • dar- •i, (38) 
or in the general form 

f Gi • d3r - •. 
A new background model •ef is introduced by 

f _ _ + _ _ 
which yields 

(39) 

(40) 

f Gi 5•ref d•r_ z/i -[- / Gi(• ø -[-5-•- •ref) d3r_ q•. 
(41) 

These equations are of the same form as the linear equa- 
tions of the second step of the PWI (equation (5)). They 
represent linear constraints on the three-dimensional 
model of perturbations in the $ wave velocity. The 
right-hand side of (41) consists of two terms. The first 
term •i is due to perturbations of the laterally homo- 
geneous average model f• and the presence of a nonzero 
5u •øm. The second term depends on the difference be- 
tween • and the background model of the inversion and 
on the result of the first step of the PWI. 

For the final three-dimensional inversion, 5f•ref is ex- 
panded into basis functions 

•}•ref __ Z :E• f•. (42) 

For instance, the three-dimensional basis functions fi 
can be obtained by means of trillnear interpolation in 
a cubic grid containing the Earth [Van der Lee, 1996]. 
The linear system of equations for the determination of 
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For different paths, equations (43) are collected and si- 
multaneously inverted by using LSQR [Paige and Saun- 
ders, 1982]. The large amount of disk space occupied 
by the matrix f Gifj dSr and the computation time is 
a matter of concern, but current technology already en- 

ables us to invert several hundred paths using a 2 Gbyte 
disk partition. 

Example 2 

The Born inversion is illustrated with a synthetic test. 

A synthetic residual for a single point scatterer is in- 
verted. Figures 8 and 9 show a map view and cross 
sections of the resulting model for the Born perturba- 
tion •f•ref for a scatterer located at 10øN, 125øE, away 
from the great circle, and a scatterer on the great circle 
at 10øN, 130øE, respectively. The synthetic residuals 
for the scatterers are shown in Figure 10. If only in- 
tramode scattering is considered, we would expect to 
see an ellipse through the position of the scatterer in a 
map view of the resulting model. Because mode con- 
versions are taken into account, the maximum value in 

the inversion result reproduces the correct position of 
the scatterer fairly well. The maximum amplitude is too 

small, about 5% of the expected value, which is 200 m/s. 
It seems that the scatterer off the great circle is bet- 
ter reconstructed, probably because Love to Rayleigh 
mode conversions contribute to the synthetic waveform 

perturbation. The cross sections show that the verti- 
cal position of the scatterer between 20 and 70 km is 
almost reconstructed. These examples show the possi- 
bility of the lateral and vertical location of structural 

perturbations, and they address the problem of lateral 
and vertical resolution. It is expected that the inversion 
of waveforms for many different source-receiver config- 
urations will increase the resolution. 

We can also use the theory to study the "width" of a 
surface wave path. To this end we artificially set •i - 0 

and fF ef = f•0 in (41) and solved the resulting equations 
for 5fF el. Figure 11 shows a map view of the solution at 
100 km depth. Since this is a minimum norm solution, it 
is a measure of the spatial sensitivity of the seismogram 
and a visualization of the surface wave equivalent of a 
Fresnel zone. 

-5 0 

Figure 7. (top) •rT•r for •r calculated using SVD of 
A. (middle) •rT•r for •r calculated using diagonali,,a- 
tion of AA T. (bottom) Dot product between columns 
of V calculated using SVD of A (z axes) and diagonal- 
i•,ation of AA T (y axes). Base 10 logarithmic scaling is 
used. 

the coefficients zj which has finally to be solved is then 

E :rj / Gif• dSr- qi. (43) 

Discussion and Conclusions 

The partitioning of the inverse problem for scattered 
waves is essential to make the method feasible because 

(1) it makes it possible to introduce different back- 
ground models for different paths, thereby minimizing 
the scattered wave field 5u Børn, and (2) it reduces the 
inverse problem to the manageable size of a single data 
vector, rather than that of the 3-D model vector. The 

reduction in computational effort makes it possible for 
the first time to include conversions between a suite of 

higher Love and Rayleigh modes into the analysis. 
Contrary to common practice, we do not invert for 

phase velocity maps as an intermediate step but solve 
directly for the 3-D Earth model. Phase velocity in- 
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Figure 8. For one seismogram a synthetic inversion test is performed. The solid circle at 10øN• 
125øE denotes the position of the 80 km x 80 km point scatterer. Its depth range is 20 to 70 km. 
The source is denoted by a square; the receiver is denoted by • triangle. (top left) Map view of 
the resulting three-dimensional model at 50 km depth. (top right) Cross section of the resulting 
model, AA'. Perturbations •f are in meters per second. (bottom right) Cross section of the 
resulting model, BB'. 

Figure 9. 
circle. 
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As in Figure 8• but now with the scatterer positioned •t 10øN• 130øE, on the great 



8266 MEIER ET AL' MULTIMODE DIFFRACTION TOMOGRAPHY 

o ! 
-I , I , I • I , I , I • 

600 700 800 900 1000 1100 

I , I , I , I 
600 700 800 900 

time 

looo 11oo 

Figure 10. (top) Synthetic residual for scatterer in Figure 8. (bottom) Synthetic residual for 
scatterer in Figure 9. Read X10 + 3 as x 10 s. 

version would be cumbersome in the case of multimode 

in.version; also, the fact that we allow for wave scat- 
tering violates the common assumption that structural 
and dynamic phase velocity are equal. 

It is well known that the accuracy of the Born approx- 

imation decreases with increasing size of 5u Børn, since 
ß 

multiple scattering is neglected. Because scattering in- 
creases with frequency, the accuracy of the method is 

a strong function of the low-pass filter applied to the 
seismograms, and theoretical errors can be kept under 
hontrol. It is well known that the Born approximation 

•. • :,, :,z.....:..-.x.-.:.........,x,z... :...+: ....... .-• ,.,z,.-...•-. .................. •.•:.•;y.•..::..:.•:.:.:.:......:.:.:.:..•.:.:.:.:.:....:.:..•.:.:.:::2•z..z:.$%:.•.•:..:...:.•.:•.:.:.:...4.•.::•;:. .:•.•..•,•.,.. 

•:..'--'•:.•;..'.'..'?.-:•,• •.½.'..'.. -./'.•:'.-'.'.-.-•:;..".½E•:•: •:::-' :•::.:.--'- ' ......... ::•:*•:-.':.-':•:-:,:• ..... :!:!:::!::•" :::-:::•;...•....`....*:•.::.............•::•:•&.(,....•...i.•...•.•::...1•!..:(ii: 
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Figure 11. The input for this Born inversion is the 

average model for one path. A map view of the resultin• 
model at 100 km depth is shown. Perturbations 5f• TM 
are in meters per second. 

is less accurate than WKBJ to model forward scatter- 

ing; the reason is that the perturbed signal will only 
correctly modify the phase of the direct wave as long as 
the approximation exp(ie) • i + ie is valid. However, 
for waves that scatter at a substantial angle, the direct 
wave plays no role and the Born approximation can be 

used with more confidence, as its widespread use in ex- 

ploration seismics attests. Our application of WKBJ 
removes forward scattered energy that can be modeled 
by an average change of velocity along the path. 

Note also that •U Børn need not be small with respect 
to the data u øb' for a particular path, but small with 
respect to the wave field in general. For example, the 
perturbed signal in Figure 4 is large with respect to 
the direct arrival of the Rayleigh wave, but in this case 

ß 

the station TATO is almost e•actly on a node in the 
Rayleigh wave radiation parterre A check against other 
records away from the node shows that the amplitude of 

the scattered wave is actually small. Such considerable 
influence of the radiation pattern is also evident from 

Figures 1 and 2 and explains an observation that has 
puzzled many seismologists: why seismograms of waves 
traveling along similar paths sometimes differ greatly in 
their content of scattered waves. 

Our numerical experiments indicate that a single, 
vertical, seismogram low passed at 30 mHz yields 30- 
40 independent constraints on Earth structure if al- 

lowance is made for off-path wave propagation. Within 
this subspace of eigenvectors the eigenvalues decrease 

only slightly more than I order of magnitude (Figure 
5).' This explains why we are able to obtain'an almost 
perfect data fit without invoking excessive Velocity gra- 
dients in the model. The question can be r .ised: can 

a similar fit still be obtained in a large inversion ex- 
periment with many paths that may .locally overlap or 
be very close? Such an experiment is currently under 
way with real data. But even for, s•y, 100 paths the 
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total number of independent constraints is still small 

compared to the number of model variables, which was 
23,400 in our example, so that a good fit is still likely. 
Moreover, the introduction of multimode conversions in 

our procedure greatly enhances the accuracy of the in- 
versions. If discrepancies remain, the two most likely 
causes are anisotropy (which can be handled within the 
same formalism as lateral heterogeneity) or errors in the 
source mechanisms. 

The shape and orientation of the cell parameteriza- 
tion is not very critical near the great circle path but 
does have an influence at larger distance, as shown in 
Figure 3. Since the data constrain the Earth most 

strongly near the great circle (Figures 6 and 11), we 
expect little effect of the parameterization on the final 
outcome of the inversion. We conclude that we have de- 

veloped an important new method which enables us to 

invert a large number of observed seismograms for 3-D 
Earth structure while taking the effects of multimode 
scattering into account to first order. 
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