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A technique has been developed that allows determination of the concentration

profiles of colloidal solutions or any kind of fluid under confinement. Currently,

submicrometre-wide channels are sampled with a resolution in the 10 nm range.

The method comprises regular arrays of microfluidic channels and one-

dimensional X-ray phase-retrieval techniques for the analysis of small-angle

X-ray diffraction from the array structures. Recording the X-ray diffraction data

requires a low dose on each individual channel since the sum of the signals from

all channels is detected. The determined concentration profiles represent the

ensemble average rather than individual entities and are obtained in a model-

independent way. As an example, amplitude and phase of the exit field and

concentration profiles for a colloidal fluid within confining channels of different

widths are shown.

1. Introduction

Geometrical confinement can dramatically alter bulk proper-

ties of fluids like viscosity and density. This has important

implications for fundamental processes such as lubrication,

friction, crystallization and transport through narrow pores.

Whereas oscillatory surface forces have been measured for

many confined liquids (Israelachvili, 1991, 1992), structural

information is scarce since the confinement geometry makes

the fluid inaccessible to most structural probes. Optical video-

microscopy requires the system to be transparent and to have

sufficiently large and slow particles. Transmission electron

microscopy is restricted to fluids with very low vapor pressure,

while for atomic force microscopy the generally unknown

shape of the cantilever tip restricts applications in this field.

Determining with high resolution the density profile of a fluid

across the confining container has so far remained impossible,

despite some promising proof-of-principle results using X-ray

wave guiding (Zwanenburg et al., 1999) and X-ray reflectivity

(Seeck et al., 2002).

Instead of investigating single fluid containers, our

approach is to use an array of microfluidic channels etched

into a silicon chip acting as a diffracting grating structure in

small-angle X-ray scattering (SAXS) experiments. This

approach has several advantages: by studying many identical

containers at the same time, the ensemble average rather than

a single entity is investigated, and the scattered X-ray signal is

much stronger. The set-up is insensitive to perturbations such

as vibrations, since the dimensions of the fluid containers are

not variable. Different dimensions of the confining channels

are simply chosen by having a set of different arrays on the

same sample, i.e. the same chip. The X-ray dose per sample

volume is significantly reduced in comparison to studies of

single containers.

The SAXS diffraction patterns of the gratings were

analyzed in a model-independent manner. Fourier transfor-

mation of the recorded intensities of the grating orders cannot

yield density profiles because of the well known phase

problem, i.e. the loss of the X-ray phase information in the

recorded data. To retrieve the phase information, iterative

algorithms turned out to be very useful. However, it has been

shown that phase retrieval in one-dimensional problems

generally is non-unique, while in two-dimensional problems

multiple solutions are less abundant (Bruck & Sodin, 1979).

Nevertheless, there are certain cases reported in which a one-

dimensional phase-retrieval is possible (Walther, 1963;

Vartanyants et al., 2000; Elser, 2003).

For two- and three-dimensional lensless imaging, iterative

phase retrieval has proven to be very helpful. Starting from

first proof-of-principle studies (Miao et al., 1999) and the

imaging of dried Escherichia coli bacteria (Miao et al., 2003),

followed by freeze-dried yeast cells (Shapiro et al., 2005;

Thibault et al., 2006), lead nanocrystals (Pfeifer et al., 2006)

and the reconstruction of the complex field at the focus of a

Fresnel zone plate (Quiney et al., 2006), this leads towards

three-dimensional imaging of a pyramid-like test object
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(Chapman et al., 2006) and many more impressive results than

can be cited here. There is a fundamental difference between

these lensless imaging studies and the technique reported

here, apart from the dimensionality: the earlier investigations

were based on fully coherent illumination of the sample, i.e.

used a minor part of the incident flux. The present study uses

an only partially coherent macroscopic beam (0.5 � 0.5 mm)

and thereby most of the incident flux. In this sense, the current

phase-retrieval problem is closer to the crystallographic

version with only partially coherent illumination, albeit that

the atomicity constraint used in crystallography does not apply

in the present case.

This article is organized as follows. We start by describing

the experimental set-up for the new microfluidic array phase-

profiling (MAPP) technique and the initial treatment of the

recorded data. We then present the iterative phase-retrieval

algorithm that allows determination of amplitude and phase of

the exit field and thereby concentration profiles across the

microfluidic channels in a model-independent way. Finally,

examples with experimental data are presented to demon-

strate the applicability of the technique. For a model-depen-

dent kinematic scattering approach to determine the

concentration profile, we refer to Diaz (2006) and Diaz & van

der Veen (2007).

2. Experimental set-up

The experimental set-up is schematically shown in Fig. 1. The

key component is a silicon (Si) chip with microfluidic arrays,

i.e. periodic arrangements of channels with rectangular cross

section and of identical width and height. The high-aspect-

ratio microfluidic arrays were fabricated by anisotropic wet

etching of h110i-oriented silicon substrates in a potassium

hydroxide solution. The process involved a double-layer mask

created by thermal oxidation, chromium deposition and

electron-beam lithography. Using several etching steps,

microfluidic arrays of high perfection were fabricated. Details

are described elsewhere (Diaz et al., 2005).

The arrays typically have a period on the order of 1 mm, a

channel width of several hundred nanometres, and a height of

5–10 mm. For example, the data described in x5 were recorded
for a chip with microfluidic arrays of 0.50, 0.75, 1.00 and

1.25 mm period and channel widths in the range of 280 to

615 nm. The height of the structures was approximately 6 mm.

A scanning-electron-microscopy (SEM) image of such a

microfluidic array is shown in the inset of Fig. 1.

The channel width of these arrays is not tunable. To over-

come this limitation, several microfluidic arrays with different

widths of the constituent channels are etched on the same

chip. By simply translating the silicon chip it can be chosen

which array structure and thereby which channel width is

illuminated by the synchrotron beam.

The microfluidic arrays are placed under normal incidence

in the monochromatic X-ray beam. The data discussed in this

article were recorded at an X-ray energy of 11.804 keV,

corresponding to a wavelength of 1.050 Å, at the Materials

Science beamline of the Swiss Light Source, Paul Scherrer

Institut (Patterson et al., 2005). The arrays act as diffraction

gratings, and the intensities of the diffraction orders for each

grating were recorded with a high-resolution one-dimensional

microstrip detector (Schmitt et al., 2004). It is a direct

detection photon counting system with silicon strips of

50 mm � 8 mm area and 300 mm thickness. We used three

modules with 1280 strips each. The detector-to-sample

distance was 5 m and the X-ray beam was focused onto the

detector. The resulting angular resolution was 10 mrad

(6� 10�4 nm�1).

Combining three diffraction patterns obtained with

different attenuation settings and with or without beam-stop

for the central part of the diffraction pattern allowed us also to

measure the low-order diffraction intensities, including the

zeroth order, which eliminates the need for special treatment

of missing low-frequency data (Shapiro et al., 2005; Thibault et

al., 2006). The total exposure time for each microfluidic array

was 135 s. This time already includes a triple repeat of each

exposure used to filter out spurious counting events by taking

the median value of the recorded intensities.

3. Initial data treatment

The inaccessible regions between detector modules and

spurious counting events were corrected by a symmetrization

and averaging process that uses the mirror symmetry of the

grating diffraction from the microfluidic arrays. A periodic

array of Gaussian peaks with the same width but individual

intensities on an interpolated background was fitted to the

diffraction pattern for each grating in order to retrieve the

integrated intensities of the array diffraction peaks with high

precision. These integrated intensities are the input values for

the following data analysis.
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Figure 1
Experimental set-up. The X-ray beam impinges under normal incidence
onto the sample chip on which several different microfluidic arrays were
prepared. The sample chip is covered with a glass plate to avoid
evaporation. The diffracted intensity is recorded with a high-resolution
microstrip detector. The inset shows a SEM image of a microfluidic array.



An example is shown in Fig. 2. The intensities are plotted as

a function of the momentum transfer q. The detector pixel

numbers ndet, with ndet ¼ 0 at the direct-beam position, are

converted to momentum transfer using Bragg’s law with wave-

length� ¼ 1:050 Å,absolutevalueofthewavevectork ¼ 2�=�,

detector pixel size sdet ¼ 50 mm and sample-to-detector

distance ddet ¼ 5:03 m: q ¼ 2k sin½ð1=2Þ arctanðndetsdet=ddetÞ� �
kndetsdet=ddet.

The broad background is attributed to diffuse scattering as

will be described in more detail in a separate publication

concerning two-dimensional X-ray scattering data for these

systems.

4. Data analysis

Propagation of X-rays through the microfluidic array changes

both phase and amplitude of the incident field. This is

described by the real part � and the imaginary part � of the

refractive index n:

n ¼ 1� �þ i�: ð1Þ

The goal is to retrieve the complex-valued field at the exit of

the grating in a model-independent unique way from the

measured amplitudes. Using the known � values, we can

calculate the density profile of the fluid across the microfluidic

channels.

We are using a coordinate system in which x is across the

microfluidic channels, y along the channels and z along the

propagation direction of the X-rays towards the detector. The

diffraction measurements average over y. The origin

x ¼ z ¼ 0 is in the center of a channel at the exit of the

grating.

4.1. Phase retrieval

The intensities I measured in the far-field Fraunhofer

regime are proportional to the squared absolute value of the

Fourier transformation F of the complex-valued field

Eðx; z ¼ 0Þ at the exit of the grating structure:

I ¼ jF½E�j2: ð2Þ

We are dealing with discrete data of N intensities and there-

fore the Fourier transform F will practically be implemented

as a discrete fast Fourier transformation.

The goal of the data analysis is retrieving the field from the

measured intensities even though the phase information is lost

in the measurement process.

4.1.1. Resolution. The field EðxÞ is sampled in steps of p=N,

where p is the grating period. The reciprocal-space frequen-

cies f are consequently sampled in steps of f ¼ 1=p up to the

maximum frequency of fmax ¼ N=p.

The theoretical resolution of the method is inversely

proportional to the number of grating diffraction peaks

recorded since the pixel size of the reconstructed field is p=N.

As many similar solutions are averaged, high-frequency noise

will average out and one can estimate the true solution from

the power spectrum of the average solution.

Please note that in a typical plot like the one in Fig. 2 only

ðN � 1Þ=2þ 1 peaks are shown due to the mirror symmetry of

the data about the zeroth order.

4.1.2. Solution set. In the near-field Fresnel regime, the field

at a distance z from the grating exit is well approximated by

multiplying with the Fresnel propagator Pz in Fourier space,

Eðx; zÞ ¼ F�1fPzðf ÞF ½Eðx; 0Þ�g; ð3Þ
where the Fresnel propagator without constant pre-factors is

defined as

Pz ¼ expð�i��zf 2Þ ¼ exp½�izq2x=ð2kÞ�: ð4Þ
A multiplication in Fourier space is usually computationally

easier to implement than a convolution in direct space.

One has to be aware of the fact that all fields Eðx; zÞ at
different positions z along the propagation direction, see Fig. 3

for examples, will result in the same far-field diffraction

pattern since the Fourier transformation of these fields differs

only in phase rather than amplitude – the phase factor in

reciprocal space being the Fresnel propagator Pz. This means

that an unconstrained phase-retrieval algorithm finds an infi-

nite number of complex-valued solutions which all are

consistent with the measured intensities. The possible solu-

tions include back-propagation results for negative z in

equation (3). The back-propagation fields are unphysical in

the sense that they do not physically exist. Nevertheless, it is

important to consider these solutions. Only the constraints

imposed on an iterative phase-retrieval algorithm force

convergence in a specific plane, the focal plane of the recon-

struction. For an extended object of length d, the Fresnel

fringes are present at all positions but are minimized around
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Figure 2
Peak integration. For a grating with 1 mm period, the complete diffraction
pattern (top) and two subregions (bottom) are shown together with a
periodic array of Gaussian peaks on an interpolated background that has
been fitted to the diffraction data. The intensity axes are scaled
logarithmically.



the center of the object at z � �d=2 (cf. Fig. 3), i.e. the field at

the end of the object propagated back through free space by

half the length of the object is obtained (Spence et al., 2002;

Thibault et al., 2006; Chapman et al., 2006). Phase retrieval

with tight constraints will yield the halfway back-propagated

field since the constraints will minimize the Fresnel fringes.

This is the best approximation of the exit field within the thin-

object approximation, even though it has no physical coun-

terpart.

4.1.3. Algorithms. To retrieve the phase of a wavefield from

the absolute values of its Fourier transform, iterative phase-

retrieval algorithms have proved to be beneficial. These

algorithms typically iterate with Fourier transformations

between direct and reciprocal space and apply in each domain

constraints derived from knowledge about the system. In

Fourier space, this simply means that the amplitudes are

known from the measured intensities, see equation (2). In

direct space, this can for example mean that parts of the object

or its range of possible values are known.

For the present case of retrieving one-dimensional density

profiles from diffraction data, we attempted a combination of

standard iterative phase-retrieval algorithms, namely Gerch-

berg–Saxton’s error-reduction algorithm (Gerchberg &

Saxton, 1972), this algorithm with the phase-selection option

(Gerchberg, 1986) and Fienup’s hybrid input–output algor-

ithm (Fienup, 1982). It turns out that the convergence towards

a unique solution is performed by the iterations using the

Gerchberg–Saxton error-reduction algorithm and that using

this algorithm alone is sufficient. Nevertheless, the hybrid

input–output algorithm was included to ensure that no stag-

nation occurs, even though in the present case it does not

converge towards a stable solution. The phase-selection

option was used to damp phase changes and thereby to avoid

oscillatory behavior. This was done by using the average of the

phases before and after an iteration rather than only the phase

after each iteration. But the effect of this modification on the

convergence of the algorithm appears to be minute.

For the examples presented in this article, we applied the

following scheme. We start with a random solution and 15

iterations of the hybrid input–output algorithm, followed by

20 iterations of the Gerchberg–Saxton algorithm with the

phase-selection option repeated five times. We then apply

three cycles of 15 iterations of the hybrid input–output

algorithm, followed by 50 iterations of the Gerchberg–Saxton

algorithm. These are in total 370 iterations with the different

algorithms. The method is computationally fast since we are

dealing with a one-dimensional data set.

To monitor the convergence of the algorithm, we calculate

the mean-squared deviation �2 of the N amplitudes
ffiffiffiffi

In
p

in

Fourier space [equation (2)] from the measured ones for each

iteration i:

�2 � 1

N

X

N

n¼1

ffiffiffiffi

In
p

�
ffiffiffiffiffiffiffiffiffiffiffiffi

In;meas

p

� �2

: ð5Þ

The full number of iterations is always performed according to

the above scheme and finally the solution with the smallest �2

is selected. This solution is virtually identical to the result of

the last iteration and therefore the monitoring of �2 has only

one practical application, namely finding the right object

constraint region as described in x4.1.5.
4.1.4. Parameter spaces. It is sometimes assumed that the

mirror symmetry of the grating diffraction pattern leads to

‘trivial’ phases, i.e. multiples of � in reciprocal space, thereby

significantly simplifying the problem. In the present case, this

assumption is not valid due to the complex-valued refractive

index, i.e. absorption cannot be neglected (cf. also Fig. 8).

The periodic translation-invariant part of the array struc-

ture, i.e. a single channel, is mirror symmetric. If we start with

a symmetric field EðxÞ ¼ Eð�xÞ after a single channel, then its

Fourier transform, given by

F½EðxÞ� ¼
R

1

�1
EðxÞ expð�iqxÞ dx

¼
R

1

0

Eð�xÞ expðþiqxÞ dxþ
R

1

0

EðxÞ expð�iqxÞ dx

¼ 2
R

1

0

EðxÞ cosðqxÞ dx;
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Figure 3
Free-space propagation of the simulated complex-valued field of an
empty zc ¼ 6 mm high channel. The complex field at the exit of the
channel (z ¼ 0 mm) is propagated through free space in the forward
(X-ray beam) and backward directions, and its amplitude is displayed as a
gray-scale image (top) and in four sections (bottom) – the latter are offset
in amplitude for clarity. The amplitude at the channel exit already exhibits
Fresnel fringes, which become further pronounced upon forward
propagation. In the Fraunhofer far-field regime, they will have developed
into the diffraction orders. Free-space back propagation by half the
channel height, i.e. to z ¼ �3 mm, considerably reduces the Fresnel
fringes.



is symmetric in q due to the symmetry of the cosine but it is

generally not real-valued unless EðxÞ itself is real. Therefore,
the only a priori information about the phases in reciprocal

space is their symmetry with respect to q ¼ 0. An intrinsic

ambiguity is the sign of the phase of the wavefield since both E

and the complex conjugate E� yield the same absolute value of

the Fourier transform and thereby the same diffraction

pattern.

4.1.5. Constraints. The constraints are needed to define the

focal plane and thereby to converge to an unique solution, see

x4.1.2. Additionally, in case of a complex-valued object only N

measured amplitudes are known, opposed to 2N parameters,

namely amplitude and phase. This means that the problem is

without constraints or further data underdetermined.

Often it is assumed that the reconstructed object is either

purely absorbing or phase shifting and that positivity

constraints can be applied. Strictly speaking, this is never true

since any realistic object will alter both amplitude and phase

of the incident X-ray wave. In our case of diffraction by a

grating-like structure in transmission geometry, positivity

cannot be used even in an approximate way since a truly

complex valued object has to be reconstructed, cf. also the

discussion of Fig. 8 in x5.
Another constraint commonly used is the support

constraint, assuming that the object is located within a typi-

cally convex support area and that there is nothing outside this

region, i.e. all amplitudes outside the support can be set to

zero. Fluid confined in a microfluidic channel may be seen as

the object and the region of the confining silicon walls as the

area outside the support. In this area, the electron density is

constant but definitely not zero, i.e. we need a modified

support constraint.

Even though a complex object has to be reconstructed, the

number of parameters can nevertheless be almost halved by

coupling amplitude and phase in a large part of the recon-

structed profile. This is possible since we know the real and

imaginary parts of the refractive index [equation (1)] for both

the confining silicon walls and the confined disordered

colloidal fluid. The phase shift �� caused by traversing the

length �z of a medium with real part of the refractive index �

is given by

��ðxÞ ¼ k�ðxÞ�z: ð6Þ
The attenuation coefficient � in the same material is calcu-

lated from the imaginary part of the refractive index � as

� ¼ 2k�. The attenuation of the wave follows the exponential

law Iðzþ�zÞ=IðzÞ ¼ expð��z�Þ. Using equation (2), one

can calculate the change in amplitude from the phase shift:

jEðx; zþ�zÞj
jEðx; zÞj ¼ exp ���ðxÞ�ðxÞ

�ðxÞ

� �

; ð7Þ

assuming that the first Born approximation can be applied. In

each iteration of the phase retrieval, the amplitude can be

calculated from the phase in this way. The phase retrieval will

work without this coupling at least for smaller ratios of the gap

size to the period of the array, i.e. for smaller numbers of free

parameters. See x4.1.6 for a discussion.

In equation (7), �ðxÞ and �ðxÞ are assumed to be constant,

i.e. we are working (locally, for each discrete value of x) with

the homogeneous object approach. Therefore, minor changes

of �ðxÞ and �ðxÞ, e.g. due to ordering of the colloidal particles,

are seen as apparent changes of the sample thickness �z. Vice

versa, one can calculate the refractive index from the phase

under the assumption that the height of the grating structures

is constant, cf. x4.1.8 and equation (8).

Owing to the ambiguity of the sign of the phase shift ��, it

may be necessary to use��� rather than�� to calculate the

amplitude using equation (7).

The iterative phase retrieval described here was performed

on a relative scale using the region of the confining silicon

walls as baseline. Amplitude and phase are given relative to

the change induced by the walls and the refractive-index

values used for equation (7) are implemented as the deviation

from the values for silicon.

The following constraints are used for our MAPP tech-

nique.

(i) The reconstructed complex field EðxÞ has to be

symmetric with respect to x ¼ 0.

(ii) The region of the object O and a non-object region N
are pre-defined. A few pixels in the area of the confining walls

W do not belong to any of these two sets and remain

unconstrained. See Fig. 4 for a sketch.

(iii) The phase of the exit field is zero in the non-object

region N and the amplitude constant.

(iv) In the object region O, amplitude and phase are

coupled via equation (7).

(v) The phase variations in the object region O are limited

to, for example, �0:1 rad relative to the average value.

(vi) If the average phase in the object region O does not

have the pre-chosen sign, then the sign of the phase is

inverted.

The symmetry constraint (i) is well justified since the

ensemble average is retrieved and on average the rather

perfect gratings and the fluid inside will exhibit a symmetric

profile. Finding the regions for constraint (ii) is straightfor-

ward since the algorithm will only find a solution if this is done

correctly, i.e. a fast trial-and-error procedure is successful. To

be precise, the definition of these regions by itself is not a

constraint, instead, the following constraints are applied to

these regions. The assumption that the amplitude is equal

throughout the non-object region, constraint (iii), is justified
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Figure 4
Sketch of the three regions for constraint (ii): objectO, non-objectN and
the wall W in between.



since the silicon outside the channels is unstructured and has

uniform thickness. Setting the phase in this region to zero

defines just the baseline since all phase changes are measured

relative to the change in this region. Using the assumption of

an unstructured wall region in an iterative algorithm is similar

to direct-space solvent flattening used in crystallography, i.e.

the assumption of unstructured solvent regions within the unit

cell (Wang, 1985). The coupling of amplitude and phase,

constraint (iv), can be performed using the average � and �

values for the solution since only minor density fluctuations

are to be detected. In the present implementation, the

amplitude is calculated from the phase in every iteration. The

range constraint, number (v), helps initially to retrieve the

basic shape and thereby the depth of the channels within a few

iterations. Care has been taken that the allowed phase range is

well above the magnitude of the phase oscillations which are

finally retrieved in the object region. The selection of a sign,

constraint (vi), is again not really a constraint since the sign of

the reconstructed phase is ambiguous, as mentioned above.

Preferring one sign over the other just ensures that the

coupling of amplitude and phase can rely on a certain sign

convention and it eases averaging of solutions as described in

x4.1.7.
We would like to point out that the precise position of the

confining walls and thereby the width of the channels, the

height of the channels and the phase profile of the fluid inside

the channels are not constrained. This approach is therefore

truly model-independent: as much prior information as is

available is used but none of the parameters to be determined

is imposed in any way onto the system.

4.1.6. Oversampling. Bragg sampling by measuring

diffraction peaks is usually treated separately from the over-

sampling by recording intensity information at higher

frequencies, i.e. also between the diffraction peaks or in

general by sampling a speckle pattern of an arbitrary non-

translation periodic object. Nevertheless, there can be strong

similarities between these cases as discussed in the following.

We define the degree of oversampling D as the number of

independent data points divided by the number of parameters

to be determined. Mirror symmetry halves in the present case

both the number of independent data points to N=2 and the

number of parameters to be determined. We therefore neglect

this factor two in the following.

With the nomenclature used in Fig. 4, the number of points

within the translation-invariant subunit P is given by

P ¼ N þW þO. With no free parameters in the non-object

region N , amplitude and phase as free parameters in the wall

region W and coupled amplitude and phase in the object

region O, one gets for the degree of oversampling:

D ¼ N þW þO
Oþ 2W

¼ P
P �N þW > 1 for N >W:

The non-object region is always larger than the wall region, i.e.

the degree of oversampling is always greater than one.

If the amplitude and phase are not coupled in the object

region then

D ¼ N þW þO
2W þ 2O ¼ P

2ðP� NÞ > 1 for N >P=2:

This is the standard oversampling criterion, that half the

object must be known. In the present case, this means that the

gap size of the channels must be smaller than half the period of

the channel array if amplitude and phase are not coupled

within the object region O.

From these considerations, it follows that in the present case

more diffraction data are available than non-constant pixels in

the reconstructed field, i.e. the problem is overdetermined and

in this sense the data are oversampled – even though Bragg

sampling is used. The same is valid if the unit cell of a crystal

contains parts of constant electron density like it is used in the

solvent-flattening method (Wang, 1985). Furthermore, the

individual values of the field or electron density are usually

not completely free parameters. ‘Soft constraints’ can be used,

i.e. knowledge about the system limits the parameter space.

An example is the allowed phase range within the object

region, constraint (v).

We conclude that the criteria for oversampling or for a

problem being overdetermined may be less well defined than

one may expect at first sight and that there is a smooth

transition between Bragg sampling of diffraction data and

oversampling of continuous data. This is also reflected by the

strong similarity of some data analysis algorithms used in

crystallography and for example lensless imaging, cf. 4.1.3.

The uniqueness of a solution can for example be shown by

statistical means like averaging many similar solutions, see

x4.1.7.
4.1.7. Statistics. It is important to ensure that a unique

solution has been found. Additionally, one would like to

determine the error bar on the retrieved profiles. To achieve

both objectives, several solutions are averaged.

The iterative phase retrieval was started for each data set,

i.e. for each microfluidic array, 150 times with an initially

random solution. For each of the refined 150 solutions, the

similarity to all other solutions was calculated in the form of

the mean-squared deviation (MSD), see Fig. 5. The refined

solutions are grouped into a large set of similar solutions and a

small set of dissimilar ones. The level of rejection is the median

value of the MSDs plus their standard deviation, as indicated

by the horizontal line in Fig. 5. It turns out that the dissimilar

solutions differ from the majority of the solutions in the

intermediate wall region that is unrestricted in the iterative

phase-retrieval algorithm, cf. x4.1.5. Of the majority of similar

solutions, the average result is calculated. Typically less than

10% of the initial 150 solutions are rejected, i.e. for all the data

presented here, well above 100 solutions are averaged.

4.1.8. Concentration profiles. The phase profile of the

X-ray beam across the microfluidic channels can be deter-

mined in a model-independent way, as described in the

previous sections. To convert the phase profiles into concen-

tration profiles, we use our knowledge about the refractive

indices of the components of the system under investigation.

In the example presented here, the components are:

silicon, �Si ¼ 3:497� 10�6, �Si ¼ 3:832� 10�8; silica colloidal
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particles, �silica ¼ 2:889� 10�6, �silica ¼ 1:776� 10�8; and a

refractive-index-matched solvent of 55% benzyl alcohol

and 45% ethanol, �solvent ¼ 1:521� 10�6 and �solvent ¼
1:301� 10�9. The � and � values are given for the X-ray

wavelength � ¼ 1:050 Å. The � values of the colloidal solution

relative to the confining silicon can be calculated from the

volumetric content c of the colloidal particles: �ðxÞ ¼
cðxÞ�silica þ ½1� cðxÞ��solvent � �Si. Additionally, we know the

height of the microfluidic channels of zc ¼ 6 mm by design and

also from the measurements of the empty channels. Therefore,

we can use equation (6) to convert the determined phase shift

inside the gap��rel, relative to the surrounding silicon, into a

concentration of colloidal particles csilica:

csilica ¼
�Si þ ��rel

kzc
� �solvent

�silica � �solvent
: ð8Þ

Equation (8) can only be applied to binary mixtures. The

concentration profiles shown in x5 are based on this conver-

sion. Using the amplitude will not yield additional information

since the amplitude has been calculated from the phase, see

x4.1.5.

5. Results

To allow the reader to estimate the precision and uniqueness

of the methods, some experimental results are reported here.

The system chosen is a colloidal solution of 10 volume percent

silica spheres of 109.2 nm average diameter in a refractive-

index-matched solvent of 55% benzyl alcohol and 45%

ethanol for a first measurement, and with additionally lithium

chloride (LiCl) in 0.4 M concentration for a second

measurement. The matching of the refractive index for the

solution reduces differences in the electric susceptibility and

thereby the van der Waals interactions between the colloidal

particles. The additional LiCl ions in the salt solution shield

the electrostatic potential of the charged colloid particles. The

silica colloid particles then effectively become a hard-sphere

system: the paradigm of a model fluid. The polydispersity of

the silica spheres is approximately 3%. The concentration is

well below the density for the formation of a crystalline layer

at the wall or even capillary freezing (Dijkstra, 2004).

5.1. Phase profiles, uniqueness, resolution

The determined phase profiles for the first measurements

with charged colloids and the second measurements after the

addition of salt but still with the same microfluidic gratings are

depicted in Fig. 6. The channel widths shown for each profile

are determined as the full width at half average maximum of
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Figure 6
Phase profiles of charged silica colloids (left) and hard-sphere-like
colloids (right) in the same microfluidic arrays. The profiles are offset
vertically for clarity. The determined channel widths are shown for each
profile and layering, i.e. pronounced increased concentration, is indicated
by spheres.

Figure 5
Selecting similar solutions. The iterative phase retrieval was started 150
times with a random initial state. For each of the refined 150 solutions, the
similarity to all other solutions was calculated in the form of the mean
squared deviation (MSD). The MSD is shown as a bar chart in the top
panel. All solutions with a MSD higher than one standard deviation
above the median of the MSD were rejected. This limit is marked with a
horizontal line in the top panel. This procedure leads to the much more
uniform MSD distribution shown in the bottom panel. From these (in the
present case) 138 solutions, the average solution was calculated.



the phase profile. These values agree between the two data

sets for the same array to within 1 nm, which is much better

than the minimal single-pixel resolution of 6 nm and demon-

strates the precision of the method and the uniqueness of the

phase-retrieval results.

The only remaining uncertainty is the distinction between a

solution and its Babinet solution. This means for channels with

a period p and a width w it is difficult to distinguish between

the solution with the correct width w and the Babinet solution

of width p� w. This ambiguity could at least partially be

removed if the intensities were recorded on an absolute scale.

An example of the excellent agreement between measured

and retrieved intensities is shown in Fig. 7. The data are re-

convoluted with the Gaussian peak, cf. x3, to resemble the

original data. Intensities up to a momentum transfer q of

0.5 nm�1 were used, which corresponds to up to

ðN � 1Þ=2þ 1 ¼ 100 diffraction orders in the case of the

gratings with 1.25 mm period. The symmetry of the system

adds a factor of two and the resulting pixel size is approxi-

mately 6 nm in direct space. The inset shows the deviations

that occur for the highest orders due to the averaging of

solutions. There are considerable deviations for a few

diffraction orders but most of the intensities are reproduced

well, even at high momentum transfer. Therefore, we conclude

that twice the pixel size of 6 nm in the present case is also the

resolution.

That the average of many (for the displayed example 138)

solutions reproduces the measured data so well proves that

the one-dimensional phase retrieval leads to unique solutions.

It is instructive to plot amplitude and phase for a deter-

mined profile in the complex plane, see Fig. 8. The points

along the profile inside the silicon walls all have the same

amplitude/phase relation and fall onto a single point marked

‘outside’ in the legend. Six points are in the region directly at

the wall of the channel. These points do not follow a simple

amplitude/phase relationship and can be seen as a local

deviation from the simple Born approximation. All points for

the colloidal solution inside the gap fall onto a single line, as

shown more clearly in the right panel of Fig. 8. The colloidal

solution can be seen as a binary mixture of fluid and colloidal

particles and all amplitude/phase points fall onto the line

connecting the point corresponding to the minimum concen-

tration of colloidal particles towards the point corresponding

to the maximum concentration.
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Figure 7
Experimental data. Retrieved (green line) and measured (blue dots)
intensities on a logarithmic scale for 100 diffraction orders of a grating
with 1.25 mm period and 615 nm channel width.

Figure 8
Retrieved amplitude and phase plotted in the plane of complex numbers
for the complete profile (left) and the section specific to the object, i.e. the
colloidal solution (right).

Figure 9
The silica concentration inside the nanofluidic channels is shown as a
contour plot for several channel widths. The excluded volume effect of
0% concentration at the confining walls as well as pronounced
concentration increase due to the confinement are clearly visible. The
dark red outer region is the area of the confining silicon walls.



5.2. Concentration profiles

Phase profiles can directly be converted to concentration

profiles for the colloidal particles, as described in x4.1.8. As an

example, the phase profiles for the hard-sphere system, shown

in the right part of Fig. 6, are displayed as a concentration plot

in Fig. 9.

The concentration of the silica spheres, spatially resolved

across the confining channels, varies from 0% due to the

excluded volume effect close to the walls to more than 25% in

regions of high concentration. In addition, it is found that the

average density across the channel width oscillates in phase

with the degree of order. This is not unexpected, since the

layering effect allows for a denser packing of the particles. The

channels are in contact with a reservoir between the glass

plate and the chip and these changes of the average density

can therefore occur.

For the hard-sphere fluid, pronounced layering in two, three

and four layers occurs at multiples of approximately 142 nm in

channel width, i.e. at 290, 426 and 561 nm (indicated by

spheres in Fig. 6). This is a clear fingerprint of confinement-

induced oscillatory ordering. Pronounced ordering is observed

only if the given channel width fits to the layering distance of

the colloid inside. The data unequivocally show that the

oscillatory structural forces are directly linked to a sequence

of layering–disordering transitions.

A more detailed discussion of the results on the colloidal

systems is beyond the scope of this work and is published

elsewhere (Bunk et al., 2007).

6. Summary and outlook

Using microfluidic arrays as sample containers for studies of

fluids under confinement allows for a low radiation dose and

the ensemble average is studied rather than individual entities.

A novel one-dimensional X-ray phase-retrieval approach

applied to X-ray diffraction data from such microfluidic arrays

provides unique solutions determined in a model-independent

way. As an example, concentration profiles for colloidal

particles with a resolution in the 10 nm range have been

presented.

Scaling down the channels in these arrays to the range of

10–50 nm will offer unique opportunities for studies of

confinement-induced ordering of proteins in solution.
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