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T
he rapid development of new sources of coherent X-rays,
such as third-generation synchrotrons, high-harmonic-
generation lasers1 and X-ray free-electron lasers2, has led

to the emergence of the new field of X-ray coherent science.
The extension of coherent methods to the X-ray regime makes
possible methods such as coherent diffraction, X-ray photon-
correlation spectroscopy, speckle interferometry and ultrafast
probing at atomic resolution and femtosecond timescales.
Despite rapid improvements in the resolution that conventional
X-ray optics can achieve, new methods for manipulating X-rays
are required to push this to the atomic scale3. Here we
demonstrate a coherent imaging technique that enables us to
image the complex field at the focus of an X-ray zone plate
without the need for conventional X-ray lenses. There are no
fundamental limits on the resolution of this lensless imaging
technique other than the wavelength of the X-rays themselves.
The ability to characterize the beam with one measurement
makes the method ideally suited to characterizing the fields
generated by pulsed coherent X-ray sources.

In ref. 4, it was shown that the Fraunhofer diffraction
pattern from an isolated non-periodic object was sufficient
to fully reconstruct the diffracting object. Methods, based on
modifications5 of the Gerchberg–Saxton6 algorithm developed for
electron microscopy, have been used to demonstrate the reliable
reconstruction of objects from the coherent scattered X-ray data7.
The reconstruction method relies on the knowledge that the
diffracting object has a finite extent. Methods now exist for
the extent of the object to be refined during the course of the
iteration8, but all methods fail for objects that violate what is
known as the oversampling requirement9. This means that the
diffraction data must be sampled at least densely enough to
enable the reconstruction of the autocorrelation function of the
scattering object.

When X-rays pass through a focusing device, the focal
distribution obeys a Fourier transform relationship with the exit
pupil of the optical system. Similarly, if the X-ray distribution
is measured at a sufficiently large distance from the focus then,
provided that a spherical phase curvature from the lens is retained
(see the Methods section), the detected field has a Fourier
relationship with the field at the focus. However, the exit pupil
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Figure 1 Schematic of the experimental arrangement. A logarithmic plot of the

measured intensity for the 2-ID-D experiment is also shown.

of the focusing system is, of necessity, finite and so the focal
distribution has, at least in principle, infinite extent. It is certainly
not possible to impose a well defined spatial support for the
focal distribution, as would be required for the application of the
previously developed approaches to coherent diffractive imaging.
However, it is known that the field is generated from an optical
system for which the shape of the exit pupil is well defined. In
this letter, we use this knowledge as the a priori information
with which to constrain our solution. That is, we use known
support information in a plane other than that of the object to be
recovered. We note that related methods have been used involving
support information from other planes for the characterization of
optical systems10, such as in the Hubble telescope11. The complex
Wigner deconvolution methods for X-ray imaging have also been
used12 and data were obtained that would have allowed the pupil
of the system to be reconstructed, although this step was not
actually taken.

The Gerchberg–Saxton algorithm iteratively finds a solution
consistent with measured data and known constraints. This
idea need not be restricted to the Fraunhofer plane and it
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Figure 2 Plots of the field reconstructed around the focal point of each of the zone plates. a, Isometric plot of the intensity at the focal plane of the 2-ID-B zone plate.

b, A meridional slice through the reconstruction of the three-dimensional intensity distribution. c, A calculation of the data shown in b using the nominal zone-plate

parameters and a central stop. The optical axis of the system runs vertically through b–c and e–f. d–f, As for a–c but for the 2-ID-D zone plate. Note that these data sets are

on different spatial scales and so the scale bar shown in a is 60 nm in length and the scale bar shown in d is 180 nm in length.

has been shown that the solution is unique in the case of
Fresnel diffraction13. It might be expected that iterative phase
recovery should therefore be more reliable when applied to Fresnel
diffraction, and this has been demonstrated using theoretical and
computational arguments14.

Owing to the very small size of the focus, which may be as
small as15 15 nm, it is not practical to use direct methods such
as a knife-edge scan across the focus. Instead, here we apply the
indirect methods of coherent diffractive imaging to the intensity
distribution, measured a large distance downstream of the focus.
As a support constraint on our solution, we require that the field be
fully contained within the known pupil of the zone plate, and this
is enforced by propagating the focal distribution to both the pupil
plane to enforce the support constraint, and to the measurement
data to impose the measured intensity distribution.

The experimental arrangement is very simple and is shown
schematically in Fig. 1. In our experiment, we obtained two sets
of data. The first was acquired at the 2-ID-B intermediate-energy
undulator beamline at the Advanced Photon Source, Argonne
National Laboratory. An X-ray energy of 1.8 keV was used. This
beamline uses a spherical grating monochromator to coherently
illuminate the zone plate, which had an outermost zone width
of 50 nm and a diameter of 80 µm. A 28-µm-diameter central
stop was placed on the exit window of the beamline to remove
the undiffracted beam from the focal region. A 20-µm-diameter
order sorting aperture (OSA) was used to remove higher-order
foci. The intensity of the defocused beam was directly detected
using a back-side-illuminated, liquid-nitrogen-cooled Princeton
Instruments charge-coupled device (CCD) camera with 1,024 ×
1,024 pixels, each 24 µm × 24 µm, placed 27 cm downstream of
the focal spot. The data obtained looked very similar to those that
would be created by a perfect zone plate. In our second data set,
a high-coherence16 8 keV X-ray beam conditioned by slits, mirrors
and a double-crystal monochromator from the undulator beamline
2-ID-D at the Advanced Photon Source was used. The zone-plate
system consisted of two zone plates each with 400 zones, 160 µm

in diameter with an outermost zone width of 100 nm. A 40-µm-
diameter central stop placed on the entrance window and a 30-µm-
diameter OSA were used. Images were recorded using a Mar-USA
fibreoptic-coupled CCD camera with 2,048 × 2,048 pixels, each
80 µm × 80 µm. The detector was placed 2.56 m downstream of
the zone plate focus. The data for 2-ID-D are shown in Fig. 1. It can
be seen that the defocused spot contains a large number of complex
structures and is far from ideal.

The presence of the OSA largely eliminates the contribution
of all orders other than the first; the OSA acts as a spatial filter
on the recovered data and so removes detailed information about
the zone structure of the zone plate. The sampling at the detector
follows the usual rules for coherent diffraction imaging: the real-
space resolution is determined by the highest angle detected, and
the real-space field of view is determined by the sampling rate (that
is, the CCD pixel size). The first-order focus reconstructed here falls
rapidly to negligible levels over the field of view and we collect data
out to angles well-beyond the maximum angle into which light is
scattered. A reconstruction of the complete zone plate would, at
least in principle, be possible but would require removal of the OSA.

The light from a third-generation synchrotron is not fully
coherent and, in the 2-ID-D data here, the zone-plate aperture
is not fully coherently illuminated. The iterative reconstruction
algorithms assume a coherent wavefield. To understand the
consequences of this, we simulated partially coherent illumination
by blurring a simulated coherent experiment, so as to mimic the
effects of a finite but incoherent synchrotron source. We then
applied the coherent reconstruction techniques to these data. We
found that the partial coherence had no effect on the reconstruction
provided that the blurring due to partial coherence did not extend
over more than two pixels at the detector. Within this criterion,
the data are largely indistinguishable from a coherent data set and
so, therefore, is the reconstruction. That is, for data that has high,
but not full, coherence, the method reconstructs the point-spread
function of the optic; it does not recover the broader partially
coherent focus. In the 2-ID-D data, the blurring due to partial
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Figure 3 Logarithmic plot of the intensity of the reconstructed wavefield along

one axis of the focal plane for the 2-ID-B data. The diamonds are from

measurement and the line from theory. The reconstructions from different random

starts fall within the plotted data points. The resolution by the Rayleigh criterion,

which is the distance from the peak to the first minimum, is found to be 63±2 nm.

Note that the details in the sidelobes are accurately reconstructed.

coherence occurs over less than one pixel and so the effects are
not seen in that data set. At the same time, the field of view is
large enough that the reconstructed signal falls to negligible levels
at its edges. Therefore, the partially coherent illumination has not
measurably degraded the resulting image.

The data were reconstructed by iterating between the zone-
plate pupil plane, focal plane and the measurement plane using a
Fresnel diffraction algorithm (see the Methods section). A random
phase was added to the measured amplitudes to begin the iterative
scheme. The algorithm was found to converge smoothly, reliably
and monotonically to the solution. The data sets were found to
converge on very similar solutions, irrespective of the starting
guess, and the differences between solutions were used to estimate
the uncertainty in the reconstruction. To test the reliability of
the reconstruction, different supports were used at the zone-
plate plane. We found that a support that was known to be
too small produced an iteration that failed to converge. A larger
support produced a slower convergence and, with a support that
was matched to the known pupil of the zone plate, convergence
was obtained in 400–1,000 iterations. In both experiments the
beamstop could be moved independently of the zone plate and so
there is some uncertainty in their relative alignment. Accordingly,
the 2-ID-B data used only the diameter of the zone plate as the
support constraint. To improve convergence, the 2-ID-D data used
an annular aperture incorporating a central stop as its support. A
10-µm-diameter stop was imposed to allow for errors in alignment.
The resulting converged iteration showed a central stop with the
correct diameter of 30 µm.

The reconstructed intensity distribution in the focus is shown
in Fig. 2, where the two-dimensional focused intensity is shown as
well as a reconstruction of a slice through the three-dimensional
intensity distribution. This latter reconstruction requires both the
phase and amplitude to be recovered and is compared with the
calculated distribution based on an ideal zone plate with the
nominal parameters. The agreement is excellent in the case of the
2-ID-B data, and the focus is clearly rather poorer than the ideal
case in the 2-ID-D data.

The reconstruction for 2-ID-B data is almost identical to that
for a theoretically ideal zone plate, and shows a focus that would
produce a Rayleigh imaging resolution of (63±2) nm, compared

with an expectation of 61 nm (see Fig. 3). The reconstruction of the
zone-plate pupil indicates that the slightly poorer resolution arises
from non-uniform illumination of the zone plate, not phase errors
in the focusing field. Figure 3 also shows agreement between theory
and measurement of the detailed structure of the reconstructed
focal wavefield, including the pattern of secondary peak values
arising from the annular aperture of the optic, a feature that we
emphasize was not built into the support information.

In the 2-ID-D case, some irregular structures around the
intense focal region were found, as would be anticipated from
an imperfect zone plate. In this case, the Rayleigh resolution of
the zone plate is found to be (180 ± 8) nm. The main source of
uncertainty is the inhomogeneity in the reconstructed focal spot.
This compares to a measured limit to the resolution of over 150 nm,
measured using the fluorescence of a chromium edge17, and an ideal
resolution of 122 nm. The reconstructed phase variation across the
optic is relatively small and is unlikely to broaden the focal spot
greatly. We attribute the non-uniformity to phase errors in the
beryllium entrance window, and to inaccuracies in the alignment of
the two zone plates. This latter contribution is supported by a small,
but significant, asymmetry in the focal spot. However, it was found
that the transmission through the zone plate is very strongly peaked
towards the centre of the optic, implying that the outer zones
will be contributing relatively little to the focus. This deduction
is confirmed by the strong non-uniformities in the measured data
(Fig. 1). It is therefore the limitation on the effective pupil size that
primarily degrades the focus.

This application of coherent diffractive imaging will find use
in the immediate and complete characterization of pulses in the
free-electron lasers currently being developed around the world.
It will also enable the reliable characterization of high-resolution
optical systems.

METHODS

We reconstruct the complex X-ray optical field using an algorithm adapted

from the methods used in coherent diffractive imaging and in this section we

describe the algorithm used.

The propagation in the z-direction of a planar wavefield ψ(ρ i ,zi) from a

plane at zi to ψ(ρ j ,zj) at a parallel plane at zj is given in the paraxial Fresnel

free-space approximation by

ψ(ρ j ,zj) = −
i

lzij

exp

(

2πizij

l

)

exp

(

iπρ2
j

lzij

)

×
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−
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)

dρ i , (1)

where ρ i defines the position in plane zi , l is the wavelength of the illumination

and zij = zj − zi . We may express equation (1) in a form that more accurately

reflects how this is achieved in practice by writing
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]

= A(ρ j ,zij) F̂
[

B(ρ i ,zij)ψ(ρ i ,zi)
]

,

where F̂ denotes the Fourier transform operator, which is defined implicitly by

equation (1). Propagation between any two planes according to equation (1)

simply involves two simple multiplicative functions, A(ρ j ,zij) and B(ρ i ,zij),

and one Fourier transformation.

We define the plane of the zone plate to be at z1, the focal plane to be at z2

and the detector at z3, and the iterative determination of the wavefield follows

the propagation cycle z1 → z2 → z3 → z2 → z1. Numerical control of the
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algorithm is maintained by the substitutions

ψ(ρ1,z1) = P(ρ1)exp

(

−
iπρ2

1

lf

)

(2)

ψ(ρ3,z3) = Q(ρ3)exp

(

+
iπρ2

3

lz23

)

, (3)

where f = z12 is the first-order focal length of the zone plate. The combination

of optical components consisting of the zone plate, OSA and beamstop have the

effect that P(ρ1) may be regarded as the complex pupil function of a thin lens

of focal length f . This pupil function carries all information about

imperfections and aberrations of the lens, and has a finite spatial extent, its

support, which is imposed as a constraint. The most rapidly oscillating part of

the imaged wavefield at z1 is then handled analytically, with the result that the

propagation z1 → z2 involves the Fourier transform of the slowly varying

function P(ρ1). This function is assumed to contain only components of small

spatial frequency. Similarly, the propagation from z3 → z2 requires only the

Fourier transform of the slowly varying function Q(ρ3), rather than of the

complete rapidly oscillating wavefield ψ(ρ3,z3). The function Q(ρ3) is

constrained to have an amplitude deduced from the intensity data in the

detector plane, so that its phase is determined iteratively. The determination of

this phase distribution simultaneously fixes the wavefields in the planes at z1, z2

and z3. Any other wavefield in a plane in the interval z1 ≤ zt ≤ z3 may, as a

consequence, be determined by direct propagation from any of these known

planar fields using equation (1). For the purposes of coherent diffractive

imaging, zt is defined by the position of any sample placed within the beam.

The phase retrieval algorithm may be summarized by the following steps,

derived from specific cases of equation (1) and the substitutions defined by

equations (2) and (3).

(1) Propagate z1 → z2; ψ(ρ2,z2) = A(ρ2,z12) F̂[P(ρ1)].

(2) Propagate z2 → z3; Q(ρ3) = −iexp(2πiz23/l) F̂[B(ρ2,z23)ψ(ρ2,z2)].

(3) Impose wavefield amplitude constraint on Q(ρ3).

(4) Propagate z3 → z2; ψ(ρ2,z2) = A(ρ2,z32) F̂[Q(ρ3)].

(5) Propagate z2 → z1; P(ρ1) = −iexp(2πiz21/l) F̂[B(ρ2,z21)ψ(ρ2,z2)].

(6) Impose support constraint on P(ρ1).

The procedure is initialized with a guessed form for P(ρ1). Steps 1–6 are

repeated until a self-consistent solution is obtained, determined by the

mean-square error in Q(ρ3) at the conclusion of step 2 falling below a certain

value. Although the oscillatory functions A(ρ j ,zij) and B(ρ i ,zij) appear in the

algorithm, they are only ever used to multiply ψ(ρ2,z2). The focal distribution

is so highly localized in the neighbourhood of ρ2 = 0 that the highly oscillatory

regions of these functions make no contribution to the propagation algorithm

from z2 in either direction. Each of the four Fourier transformations appearing

in the algorithm are then adequately sampled, preserving the numerical

stability of the algorithm.
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