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One and two-dimensional diffractive optical devices have 
been fabricated by light assisted trapping and patterning 
of nanoparticles. The method is based on the 
dielectrophoretic forces appearing in the vicinity of a 
photovoltaic crystal, such as Fe:LiNbO3, during or after 
illumination. By illumination with the appropriate light 
distribution, the nanoparticles are organized along 
patterns designed at will. One- and two-dimensional 
diffractive components have been achieved on X- and Z-
cut Fe:LiNbO3 crystals, with their polar axes parallel and 
perpendicular to the crystal surface, respectively. 
Diffraction gratings with periods down to around a few 
micrometers have been produced using metal (Al, Ag) 
nanoparticles with radii in the range of 70-100 nm. 
Moreover, several 2D devices, such as Fresnel zone 
plates, have been also produced showing the potential of 
the method. The diffractive particle patterns remain 
stable when light is removed. A method to transfer the 
diffractive patterns to other non-photovoltaic substrates, 
such as silica glass, has been also reported.  © 2015 
Optical Society of America 

OCIS codes: (230.4000) Microstructure fabrication; (050.1950) 
Diffraction gratings; (050.1965) Diffractive lenses; (050.1970) Diffractive 
optics; (160.5320) Photorefractive materials; (350.4855) Optical 
tweezers or optical manipulation 
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A method for massive parallel trapping and patterning of 
nanoparticles has been recently developed [1-3]. It is based on the high 
bulk photovoltaic (PV) effect of certain ferroelectric materials [4]. This 
effect can generate very intense light-induced electric fields (up to 105 
V/cm at the surface of Fe-doped LiNbO3 crystals) [4, 5]. Moreover, 
using an inhomogeneous illumination pattern an electric field 
distribution (the space charge field) is generated, which has been 
largely studied in the area of photorefractive (PR) non-linear optics [6]. 
This space charge field is here used to attract the nanoparticles to the 

crystal surface. The technique is often called PV tweezers since it 
allows micro- and nanoparticle manipulation [7, 8].  It has been shown 
to offer a great potential for applications in several areas [9-12] 
although reported data are still very scarce in the field of photonics. 

The aim of the present work is to provide an actual demonstration 
of the application of the technique in the field of photonics. Specifically, 
in this letter we demonstrate the feasibility of the method to produce 
diffractive components. These optical devices [13, 14] play a key role in 
a variety of photonic devices. They include diffraction gratings, beam 
deflectors, tunable filters, Bragg reflectors, grating couplers, Fresnel 
zone plates and so on. There are different methods to produce those 
kinds of components [15], such as mechanical or irradiation (laser, 
electrons and ions) engraving of periodic structures and different 
deposition methods. More flexible methods include acoustic-wave 
modulation [16] and photorefractive-induce gratings [17]. 

The technique proposed here is a novel and simple fabrication 
method that allows  achieving periodic nanoparticle patterns designed 
at will using the imaging capabilities of light. The method consists of 
three consecutive steps: 1) a space charge distribution is recorded in a 
photovoltaic Fe-doped LiNbO3 sample by periodic illumination with a 
suitable wavelength [6, 7], 2) then, nanoparticles are approached to the 
surface of the illuminated sample and they are trapped and arranged 
on it by the dielectrophoretic forces associated to the PV field [7, 8], 3) 
the original space charge field is erased by heating (around 250ºC) 
[18], so it will not affect to the device performance. As a result, a 
diffractive pattern appears associated to the periodic distribution of 
particles that remains stable at least during months due to adhesion 
forces. No changes have been observed in the nanoparticle distribution 
as a result of the PV field erasure. 

A number of grating devices, both 1D and 2D, have been fabricated 
to test the method and their optical performance has been 
characterized. Spherical metallic nanoparticles (Al, Ag), having average 
diameters of 70 and 100 nm respectively, have been used. Linear 
gratings with periods down to a few micrometers have been achieved. 
As to 2D devices, Fresnel lenses (strictly speaking, Fresnel zone plates) 
have been fabricated having tight focusing capabilities. Finally, the 
possibility to transfer the diffractive patterns to non-photorefractive 
substrates has been also investigated. This strongly enlarges the 
variety of applications of PV tweezers in photonics and other fields. 



In order to fabricate the diffractive patterns, the substrate is 
illuminated with the appropriate light pattern to generate the 
evanescent PV fields on the surface. Fe:LiNbO3 samples with total iron 
concentrations of 1000 ppm are used as substrates for the 
experiments.  They have been cut with the polar axis parallel (parallel 
configuration) or normal (perpendicular configuration) to the surface. 
The oxidation/reduction ratio [Fe2+]/[Fe3+]  for the iron doping is 
estimated to be around 0.1, that leads to PV fields as high as 104 -105 
V/cm. 

For 1D diffraction gratings we apply a sinusoidal illumination 
obtained by two beam interference on a X-cut Fe:LiNbO3 substrate [8, 
19], using the  parallel photorefractive configuration with the K-vector 
along the ferroelectric c-axis. For 2D gratings, we use a two-
dimensional distribution of light intensity generated by a spatial light 
modulator (HOLOEYE, LC-R 1080). This light distribution is projected 
on a Z-cut Fe:LiNbO3 substrate (perpendicular configuration) that 
allows an accurate reproduction of the 2D light pattern [11, 20]. Light 
comes from a frequency doubled Nd:YAG, operating at 532 nm with 
typical intensities in the range 1-100 mW/cm2. Although Z-cut crystals 
could be also used for 1D patterning, we have used X-cut substrates 
because there are larger experimental experience and theoretical 
background for this cut.  After illumination, the nanoparticles are 
deposited by immersing the substrate in a hexane suspension 
containing them. We have used mostly metal nanoparticles of Al (d ~ 
70 nm) and Ag (d ~ 100 nm). After the pattern fabrication the initial 
bulk photorefractive charge grating is erased by thermal heating [18] 
during about 10 min at T ~ 250ºC to avoid its competition with the 
particle grating. The deposition and light-assisted patterning 
procedures are described in more detail in [8, 19] and [20] for 1D and 
2D, respectively. Finally, it is worthwhile remarking that the method 
can be considered reconfigurable in the sense that the same substrate 
can be reused by simply removing the particles and repeating the 
fabrication process. In fact, we have often used the same substrate for 
several experiments without decreasing the quality of the patterns. 

The simplest case to test the new method is to fabricate 1D 
diffraction gratings that appear schematically illustrated in Fig. 1. They 
can be obtained by illuminating a Fe:LiNbO3 crystal surface (X-cut) 
with a sinusoidal light intensity profile, I=I0[1+mcos(kx)], the x 
coordinate being along the ferroelectric c-axis. It is convenient to use a 
high light contrast, i.e. m ~ 1, in order to enhance the PV fields and 
generate a well-defined particle pattern [19]. The periodicity of the 
final particle patterns coincide with that of the light.  The grating 
period, designated as Λ, is the sum Λ = a + b, a being the width of the 
strips formed by the aggregation of nanoparticles in the PV field and b 
is the inter-strip spacing corresponding to a particle-free Fe:LiNbO3 
surface.  

 
Fig. 1.  Schematic diagram for the 1D diffractive grating. 

 
Fig. 2(a) shows an example of a good quality diffractive pattern. The 

whole pattern extends over an area of about 1 mm2 and it was 
obtained with a sinusoidal light pattern of Λ = 20 µm. It was fabricated 
using spherical Al nanoparticles of diameter d = 70 nm. A smaller 
region of the pattern with higher magnification is shown in Fig. 2(b) 
where the uniformity of fringes, having a width of a ~ 8 µm, is clearly 
appreciated. The regions between fringes (width b ~ 12 µm) are nearly 
free of particles as illustrated in the two micro-photographs of Figs. 
2(a) and 2(b). The corresponding light diffraction profiles in both 
reflection and transmission configurations have been determined 

under plane wave illumination with 4 mW light power  using a He-Ne 
laser emitting at λ = 633 nm. The result in the reflection configuration 
using a probe beam at ~10º from the normal of the sample surface is 
given in Fig. 2(c). It shows seven diffraction orders at angles Ѳn = nλ/Λ 
that perfectly correlate with those expected for the spatial period, Λ = 
20 µm. By using particles of sufficiently small diameter (10-50 nm) 
grating periods down to around 4 µm can be achieved as previously 
reported [19]. As an example the diffraction pattern for a grating with 
Λ = 8.5 µm is also shown in Fig. 2(d). 

 

 
Fig. 2.  (a) Photographic image of a grating device with Al nanoparticles 
(d = 70 nm) and Λ = 20 µm. (b) Local magnified image of a region of the 
pattern in (a). (c) Diffraction intensity diagram generated by reflection 
in (a). (d) Reflection diffraction diagram of a grating device fabricated 
with Ag nanoparticles (d = 100 nm) with a smaller period Λ = 8.5 µm.   

 
As it is well known from basic diffraction theory, the diffraction 

intensity profile results from the convolution of the Airy pattern from a 
single reflecting or transmitting strip-like diffracting element, and the 
interference comb function of the grating. The analysis of the 
intensities of the diffraction orders for the various fabricated gratings is 
consistent with identifying the uncovered Fe:LiNbO3 stripes between 
the nanoparticle fringes (width b in Fig. 1) with the diffracting 
elements, even in reflection configuration. In other words, the metal 
particles strips act as incoherent light scatters that do not contribute to 
the diffraction order intensities. This analysis can be clearly illustrated  
in Fig. 3 using the data corresponding to an Al grating fabricated on 
purpose with the inter-fringe spacing (b = 4 µm) rather different from 
the nanoparticle fringe width (a = 11 µm). The diffracted light intensity 
profiles for both, 4 µm (continuous line) and 11 µm (dashed line) 
diffracting widths, have been calculated and plotted together with the 
measured relative intensity of the first two orders for reflection and 
transmission diffraction. As it is clearly appreciated the intensity data 
fit much better with a diffractive width of 4 µm which corresponds to 
the uncovered Fe:LiNbO3 strips (b in Fig. 1). 

 

 
Fig. 3.  Calculated diffraction intensity profile of a linear grating with 
period Λ = 15 µm and diffractive width b = 4 µm (solid red line) or a = 
11 µm (dashed blue line). The experimental intensity data of the first 
and second orders for reflection (triangles) and transmission (squares) 
diffraction are indicated.  



 
As a further step in our work we have moved to the fabrication of a 

variety of 2D diffractive optical components. To this end we have taken 
advantage of the recently reported [11, 20] new perpendicular 
configuration that uses Z-cut crystals illuminated with 2D light 
patterns. This configuration is a necessary requirement to guarantee 
isotropic particle trapping and patterning over the crystal surface and 
so, good quality patterns.  

 

 
Fig. 4.  (a) Photographic image of a 2D pattern of Al nanoparticles.       
(b) Amplified microscope image showing a local region of the pattern. 
Note that particles are white in (a) and black in (b). (c) Diffraction 
diagram of the 2D pattern. 

In Fig. 4 we show the case of illumination with a mosaic of squares. 
An overall image of the sample is presented in Fig. 4(a) showing that a 
large area of the sample has been uniformly patterned. A detail with 
larger magnification is shown in Fig. 4(b) and the diffraction diagram in 
Fig. 4(c). However, a most common and investigated 2D diffraction 
device is the so-called Fresnel zone plate. The binary plate is 
constituted by alternative opaque and transmitting ring zones whose 
radii obey the relation, RN = (Nfλ)1/2, N being an integer number, λ the 
light wavelength and f the element focal length. Focal lengths of around 
0.1-1 m can be routinely achieved. A typical device made up by 
depositing Al nanoparticles of d = 70 nm is displayed in Fig. 5(a). The 
focal length of this component should be f = 39.5 cm for λ = 633 nm. 
The focalization properties of the pattern have been tested by 
measuring the diffracted light intensity profiles obtained along planes 
parallel to the lens at different distances from it. The results are shown 
in Figs. 5(b) and 5(c). A sharp focalization of the beam is clearly 
observed at a distance of 39 cm that matches with the predicted focal 
length. 

 

 
Fig. 5.  (a) Photography of a Fresnel lens fabricated with Al 
nanoparticles (d = 70 nm). (b, c) Intensity profile of the diffracted light 
along a transversal direction at two distances from the crystal surface 
acting as  zone plate: 32 cm and 39 cm (focus). 

 
So far, nanoparticle patterns in this and previous works have been 

always obtained and kept on the PV substrate. However, for practical 
purposes, it is very convenient to be able to use any kind of substrate, 
particularly silica glass or polymers, as support of the patterns. 
Specifically, for our diffractive devices, this avoids possible absorption 
effects from the doped substrate or the contribution of competing 
photorefractive gratings. The latter can be generated during the 
operation of the device when using PR-sensitive wavelengths. Hence, 
we have tested a simple method to transfer the diffractive patterns 
from the Fe:LiNbO3 surface to other substrates using a thermal release 
tape (supplied by Graphene Supermarket, Graphene Laboratories Inc.). 
First of all, the PV field generated in the active crystal substrate 
(Fe:LiNbO3) is erased by heating it to 230 ºC. As already mentioned, the 
patterns remain stable due to the adhesion forces. Next, the tape is 
stuck to the substrate surface and peeled off, with the particles 
attached to it. No particles remain on the original substrate. Then, the 
tape is firmly stuck to the new substrate, such as silica glass. Finally, the 
tape comes off very easily after a smooth heating process at 100-200 
ºC during a few minutes. This way the diffractive pattern has been 
transferred onto the new surface. The stability of the transferred 
pattern is as good as it was before the transference process. The best 
results have been obtained heating during 3-4 minutes at 200 ºC and 
applying slight pressure at the same time in the last step of the process. 
A careful inspection of the particle patterns images before and after the 
transference allows to make an estimation of the fraction of 
transferred particles, that is in the range of 40-50 %. Figs. 6(a) and 6(b) 
show the comparison between the microscopic images of a Fresnel 
pattern with aluminum particles on Fe:LiNbO3 and the one after 
transferring it to a glass substrate. It can be observed that the 
transferred replica faithfully reproduces the original pattern. 
Moreover, the diffractive pattern for the transferred nanoparticle 
pattern at the Fresnel lens focus (Fig. 6(c)) shows again a sharp peak at 
the distance predicted by theory.  

 

 
Fig. 6.  (a) Microscopic image of a Fresnel pattern of Al nanoparticles 
on the LiNbO3. (b) Pattern transferred to a glass substrate. (c) 2D 
intensity profile at the focus of the transferred Fresnel pattern. 

 
In summary we have proposed and demonstrated the application of 

PV tweezers to the fabrication of 1D and 2D diffractive components, a 
key element for photonic devices. This is one of the first 
demonstrations of the technological applications of this nanoparticle 
patterning technique. The most relevant feature of the novel proposed 
method is its flexibility to easily obtain diffractive patterns at will, with 



rather simple and low cost instrumentation. Recycling capabilities of 
the PV substrates are also a valuable plus. Moreover, the possibility to 
transfer the pattern to other active or passive substrates represents a 
remarkable advance either, for a flexible fabrication of diffractive 
devices, or for other future applications of PV tweezers. Applications of 
the obtained diffractive patterns may include beam steering, or 
integrated optical components. As examples, one could mention the 
use of these structures as optical components such as couplers or un-
couplers in optical waveguides, or as tracks for photonic integrated 
circuits. In fact, the use of optical waveguides as substrates for PV 
trapping has been already reported [10]. 

The results of this work are a good example of the capabilities of this 
emergent nanoparticle manipulation technique. In fact, the further 
development of the method is expected to lead to new applications in 
different fields (nano-photonics, bio-photonics, nano-materials, etc.). 
For instance, using smaller nanoparticles active devices that take 
advantage of plasmonic effects are envisaged. 
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