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ABSTRACT Diffusive correlation spectroscopy (DCS) is an emerging optical technique that measures blood

perfusion in deep tissue. In a DCS measurement, temporal changes in the interference pattern of light, which

has passed through tissue, are quantified by an autocorrelation function. This autocorrelation function is

further parameterized through a non-linear curve fit to a solution to the diffusion equation for coherence

transport. The computational load for this non-linear curve fitting is a barrier for deployment of DCS for

clinical use, where real-time results, as well as instrument size and simplicity, are important considerations.

We have mitigated this computational bottleneck through development of a hardware analyzer for DCS. This

analyzer implements the DCS curving fitting algorithm on digital logic circuit using Field Programmable

Gate Array (FPGA) technology. The FPGA analyzer is more efficient than a typical software analysis

solution. The analyzer module can be easily duplicated for processing multiple channels of DCS data in

real-time. We have demonstrated the utility of this analyzer in pre-clinical large animal studies of spinal

cord ischemia. In combination with previously described FPGA implementations of auto-correlators, this

hardware analyzer can provide a complete device-on-a-chip solution for DCS signal processing. Such a

component will enable new DCS applications demanding mobility and real-time processing.

INDEX TERMS High performance computing, field programmable gate array, diffuse correlation

spectroscopy.

I. INTRODUCTION

DCS is a relatively new optical technology to probemicrovas-

cular blood flow [1]. In the typical implementation, the tissue

of interest is illuminated with a long-coherence length near

infra-red (NIR) laser and the temporal fluctuation of inter-

ference patterns formed on the tissue surface are detected.

This interference (‘speckle’) pattern fluctuates on a time

scale dependent on the motion of scatterers in tissue dom-

inated by red blood cells. Such temporal fluctuations can

be quantified with an autocorrelation function. A correlation

diffusion equation [2] relates tissue optical properties and

motion of scatterers to the correlation decay. By fitting the

measured autocorrelation curve using the theoretical model

The associate editor coordinating the review of this article and approving
it for publication was Sukhdev Roy.

to the diffusion correlation function, a blood flow index (BFI)

can be derived. This technology has been validated against

various techniques, including MRI [3]–[5], microspheres [6],

and Doppler ultrasound [7]. It is fundamentally different

from measurements of blood volume and/or saturation with

Diffuse Optical Spectroscopy (DOS) or Near Infrared Spec-

troscopy (NIRS) devices. DCS probes themotion of scatterers

(including red blood cells) in tissue on scales of ∼ 1 µs,

quantifying this motion every 10-1000 ms, while DOS/NIRS

measures tissue absorption and scattering at >>1 ms time

scales [1].

DCS has been widely used to assess blood flow in tissues

more than 1 cm below the tissue surface, permitting non-

invasive assessment of blood flow. This technique is partic-

ularly useful to measure microvascular cerebral blood flow

and offers some unique advantages over other techniques.
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For example, DCS has been widely applied to measure cere-

bral blood flow in the critically and chronically ill, including

adults with ischemic stroke [8]–[10] or during neuro-critical

care [11], [12] and pediatric patients [13], [14]. This tech-

nology has also been applied to cancer monitoring, as many

tumors have abnormal microvasculature and enhanced blood

flow [15]. Recently, minimally invasive DCS probes have

been developed to allow for measurement of spinal cord

blood flow. These probes can be placed into the spinal canal

within the epidural space through a laminotomy or percuta-

neously via an epidural needle to monitor spinal cord blood

flow. Extensive studies in large animal models have demon-

strated the feasibility of these measurements during a variety

of surgical interventions [16]–[18]. Monitoring spinal cord

ischemia may have utility during aortic surgery, spine recon-

struction procedures, and in the management of patients after

spinal cord injury to prevent secondary ischemia. Recently,

so-called ‘‘Fast DCS’’ has been developed byWang et al.[19],

which measures blood flow dynamics at up to 100 Hz uti-

lizing a software correlator. This higher temporal resolution

enables resolution of blood flow pulsation due to the cardiac

cycle [20], [21].

The DCS data analysis typically requires two steps: (1) cal-

culating a temporal autocorrelation function of the scattered

light intensity and (2) fitting the measured autocorrelation to

a theoretical model, i.e. a solution of the correlation diffusion

equation, to extract a blood flow index. The autocorrelation

function measured in DCS requires a large range of correla-

tion delay times (τ :200 ns-1 ms). In calculating the tempo-

ral autocorrelation function in DCS, a ‘multi-tau’ approach,

which adjusts integration times as τ increases, is generally

used to improve computational efficiency by significantly

reducing the number of correlation values to be calculated.

Multi-tau correlation was first invented by Schatzel et al. [22]

and has been implemented in software [23], [24] and in

hardware using FPGA technology [25]. Both traditional and

fast DCS measurements require a non-linear fit of the auto-

correlation curve at each time point of measurement to a

solution of the correlation diffusion equation. This forms a

computational bottleneck, as these fitting algorithms require

significant computation resources. This fit is frequently per-

formed in post-processing, reducing the utility of DCS mea-

surements, e.g., in guiding surgical interventions in real time.

We have developed a hardware analyzer that implements

the DCS curve-fitting algorithm on a Xilinx FPGA with a

significantly increased processing efficiency. Coupled with

previous work utilizing FPGAs to calculate the correlation

function, this has opened the path to integrate the entire data

processing necessary for DCS on a single silicon chip.

II. METHODS

A. THEORETIC DCS MODEL

We apply the simplest (infinite homogeneous medium,

eqn. 1) and most common (semi-infinite half-space, eqn. 2)

analytical solutions to the diffuse correlation equation. In the

semi-infinite half-space (eqn. 2), there is a planar boundary

between a homogenous diffuse media and a non-diffuse

medium (e.g., tissue-air) at z=0 in the solutions described in

Durduran et al. [1]. For the purposes of these calculations,

tissue optical properties (index of refraction, absorption,

and scattering) and experimental geometry (source-detector

separation) are assumed constants in the fitting procedure.

Combinations of these constants are designated as A, B, F

and H in equations (1) and (2) and defined in Appendix 1. The

resulting simplified equations have only two free parameters:

β and αDB.
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β is the inverse of the number of detected modes. In our

work, β ≤ 1/2 because we detect unpolarized light through

a single mode fiber. In an ideal experiment in which there is

only a single spatial and polarization mode detected, β = 1.

As our device does not select the polarization of the highly

scattered detected light with two polarization modes, β is 1/2.

Any additional modes, background light, etc., will further

reduce this value. Clinical experiments often take place under

non-ideal circumstances and β may change with time and is

a parameter in experimental data fitting. The product αDB is

often termed the ‘‘blood flow index’’ (BFI).

The DCS analysis computes αDB and β values through

the best fit of the theoretical autocorrelation function from

equation (1) or (2) to the acquired experimental intensity

autocorrelation g2e (τ ). The Mean Square Error (MSE) of the

fit is defined using equation 3whereN is the number of values

in g2e(τ ). The best fit criteria is defined as the minimum of

the MSE.

MSE = 1

N

∑N

1
(g2 (τi) − g2e (τi))

2 (3)

We use an iterative, non-linear Nelder-Mead method to

search the minimum value of MSE without the need to calcu-

late its derivative [26]. We have implemented the algorithm

using FPGA for true hardware computing.

B. FPGA COMPUTATION

FPGA was first developed in 1985 by Xilinx and later

expanded by Altera, Actel, Lattice and other semiconductor

companies. An FPGA chip has a huge number of configurable

logic blocks (CLB), digital signal processing (DSP) slices

and distributed memory on one silicon chip. FPGA hard-

ware computing employs the parallel processing technology

and implements algorithms as digital logic circuits using the

CLBs, DSP slices and memory blocks on a FPGA chip.

Compared with software solutions for the same computa-

tion, it eliminates the necessity for an operating system and

guarantees high throughput. Algorithms implemented on an

FPGA can be much faster than those programs in a typical

computer language because the performance of the FPGA is
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not compromised by the overhead of operating systems and

other unrelated processes running in the background.

Numeric representation is the key factor that determines

the complexity of the computing logic. Fixed-point repre-

sentation was popular in the past when the FPGA resources

were not abundant. Its limited resolution can introduce sig-

nificant computing error that could alter the convergence of

the algorithm. Furthermore, the dynamic range of fixed-point

value is also limited and can easily cause overflow during

computation. αDB is roughly 10−8 smaller than β in the

DCS model and thus floating point representation is a better

choice than the fixed point. As the FPGA resources grow

exponentially with the technology development, it becomes

affordable to adopt floating-point representation in FPGA

to address the issues in fixed-point representation. There

are two floating-point representations: single floating-point

representation that uses 32-bit binary and double precision

representation that uses 64-bit binary. Both are defined by

the IEEE Standard for Binary Floating Point Arithmetic

(IEEE 754) [27]. We adopted single floating-point represen-

tation in our DCS analyzer because it consumes moderate

amount of DSP slices and logic cells and offers reasonable

resolution and dynamic range. Double precision can also be

considered if the FPGA resources are sufficient to hold the

computation logic of the double precision operations of the

algorithm. The FPGA can also accommodate the customized

floating point data type for the optimal use of the FPGA

resources [28]. However, it needs an extra step of conversion

to either single precision or double precision data type for

subsequent processing off the FPGA.

It is challenging to build the computing circuits of

arithmetic operations and math functions from scratch.

Fortunately, FPGA manufacturers have provided the solu-

tion by offering FPGA IP cores for the hardware

computation. Xilinx (Xilinx, Inc., San Jose, CA 95124) has

IP cores [28] that adopted the Coordinate Rotation Digital

Computer (CORDIC) algorithm [29], [30] and expanded the

support to cover the basic math functions of trigonomet-

ric, exponential and logarithmic functions. Those IP cores

support the computation in both single precision and dou-

ble precision format as well as customized floating-point

representation.

A ‘‘pipeline’’ is the primary structure for high throughput

parallel processing in FPGA. It divides an algorithm into

multiple steps and each step is implemented as a digital

module in FPGA, which completes its operation within one

FPGA clock cycle. The modules in the pipeline work simul-

taneously under the same FPGA clock signal, which is a

series of digital pulses of fixed frequency. The signal edge

(e.g. the rising edge) moves the data a step forward in the

pipeline. Therefore, the pipeline inputs data one per FPGA

clock and outputs the processed data one per FPGA clock

after a fixed latency (Equ.4). Computing cores are designed

as the pipelines and can be connected in serial to form a larger

pipeline. If M is the number of clocks to process the first data

point through the pipeline and 1T is the clock cycle, M1T

FIGURE 1. The functional diagram of a DCS system. Only one detector is
shown for each probe.

FIGURE 2. DCS probe used in the measurement of microvascular blood
flow in the spinal cord. Source (Src.) and detector (Det.) fibers are
described in the text.

will be the time delay or latency of the FPGA computation

pipeline. The total time needed for the processing N data

points in a pipeline can be determined using the following

equation.

T = (M + N − 1)1T (4)

Data synchronization is the essential mechanism to ensure

the correct data flow in pipeline. If the operands at the inputs

of a core are from different data paths, they must be synchro-

nized to guarantee the correct output. This is achievable by

adjusting the delays in the data flow paths to synchronize the

input data.

C. FPGA DCS ANALYZER

Figure 1 illustrated the composition of the DCS system

with an FPGA analyzer. The computer is a PXI embedded

computer system running Windows 7 (PXIe 8840, National

Instruments, Austin, TX) with a reconfigurable digital I/O

PXIe module powered by Xilinx Kintex 325 (PXIe 7822R,

National Instruments, Austin, TX). The probe consisted of

a pair of single mode detector fibers placed symmetrically

about a source fiber inside a cylindrical sheath of milky plas-

tic (Fig. 2). A long coherence laser (Crystalaser, Reno NV,

785nm) light was coupled into the source fiber and attenuated

to ∼25 mW. Each detector fiber was connected to an indi-

vidual avalanche photodetector (APD). The scattered light

from tissue is collect by a fiber optic probe and a Silicon

APD (Model SPCM-AQ4C, Excelitus Technologies, Water-

town, MA) converts the photons into a series of electronic

pulses. The correlator (correlator.com, NJ) counts the pulses
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FIGURE 3. The computing logic of multi pipelines for the Nelder-Mead
method for numerical modeling. Four pipelines are used for MSE
computing, MSE sorting, Parameters searching and convergence checking.
The execution sequence is controlled by the control logic module based
on the outputs from the pipelines. The paths between MEM and the four
pipelines are bidirectional for data transmission.

and outputs an autocorrelation function. The correlation data

are transferred to the embedded computer through a USB

connection. LabVIEW FPGA (National Instruments, Austin,

TX) was used to program the FPGA chip on the reconfig-

urable digital module. It has the convenience of the graphic

programming tool of LabVIEW and removes the challenge of

using hardware descriptive languages to program the FPGA

chip. The system software is also programmed in LabVIEW.

We utilized the semi-infinite solution to the correlation

diffusion equation to derive the BFI at each time point. In a

preparatory step, some constant values are combined to avoid

redundant computation and save FPGA resources. The values

1/(r1∗H) and 1/(rb∗H) are calculated so that multiplication

replaces division in equation 2. The product of B∗τ is also

calculated in advance where τ is a series of time delays

corresponding to the correlation values. In addition, one is

subtracted from the acquired correlation values so that there is

no need to implement the ‘‘plus one’’ operation in equation 2

for the MSE calculation in equation 3. The modified correla-

tion values and the corresponding product of B∗τ are sent to

FPGA via a first-in-first-out buffer (FIFO1) and stored in two

memory blocks in FPGA memory (MEM). The initial values

of αDB and β and the model constants are sent to FPGA

and stored in registers in MEM for easy access. Figure 3

illustrated the system diagram of the FPGA analyzer. The

computations in the Nelder-Mead algorithm are divided into

four sections that can be implemented as four pipelines:

an MSE pipeline to calculate the MSE of each αDB and

β pair, a sorting pipeline to find the sequence of the latest

three MSEs, a search pipeline to find new pair of αDB and β

values that have a smaller MSE, and a convergence pipeline

to determine when to terminate the curve fitting. The control

logic module receives the status of pipelines from the status

bus and use the rules in the Nelder-Mead algorithm to deter-

mine the operation sequence of the pipelines. The following

is the description of the general flow of the sequence control.

First, the control logic starts the MSE pipeline to calculate

the MSE of three pairs of αDB and β values. The MSEs

are then stored in MEM for future use. Second, the control

logic sends the three MSEs to the sorting pipeline to rank

the MSEs. The output data of the pipeline are the indexes

of αDB and β pairs corresponding to the sorted MSEs and

are stored in registers for the convergence pipeline and the

searching pipeline. Third, the control logic picks the smallest

and largest MSE and sends them to the convergence pipeline

to test if the difference is within the preset range. If the

convergence criterion is met, the control logic outputs αDB

and β values of the smallest MSE via FIFO2. Otherwise,

it starts the searching pipeline using αDB and β pairs of the

two smallest MSEs to find candidates of the new pairs with

the reflection, extension and contraction formulae defined in

the algorithm. The MSEs of those candidates of αDB and β

pairs are computed using the MSE computing pipeline again

and the new αDB and β pair is selected by the control logic so

that itsMSE is at least smaller than the largestMSE calculated

in the previous step. The new αDB and β pair will replace

that of the largest MSE. If it fails to find the new αDB and β

pair, the search pipeline will generate two pairs of αDB and β

values using the shrink formula in the algorithm. The control

logic replaces the αDB and β pairs of two largest MSEs with

the two new αDB and β pairs and computes their MSEs using

the MSE pipeline. The iteration repeats from the second step

until the convergence criteria are satisfied.

The MSE pipeline using equations 2 and 3 is the most

complicated pipeline in the analyzer (Fig. 4). The inputs to the

pipeline are the acquired correlation data g2e(τ ) and B
∗τ . The

two terms inside the parenthesis in equation 2 are identical

operations and therefore two instances of the same module

② are used in parallel. The latencies of the computing cores

in the pipeline are set to one FPGA clock cycle except for the

square root core in ① and exponent core in ③. The square

root core has the latency of four FPGA clock cycles and

the exponent core has the latency of ten FPGA clock cycles.

Based on those settings, module ① has latency of 6 FPGA

clock cycles, module ② has latency of 13 FPGA clock cycles

including the following subtraction, module③ has the latency

of 2 FPGA clock cycles and module ④ has latency of 3 FPGA

clock cycles including the following accumulator (6). Thus,

the entire pipeline has the latency of 24 FPGA clock cycles.

Counters (CTR1 and CTR2) are incremental counters driven

by the FPGA clock and the number of correlation time values

N is their overflow values. The control module resets both

counters to zero as the initial addresses of the two mem-

ory blocks holding the input data through the CTL signal

from the control bus. It also starts the pipeline by enabling

CTR1 to read the B∗τ , and sends them to module① one value

per clock. The output data of module ③ are the theoretical

correlation values from the numerical model. The CTR2 is
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FIGURE 4. The pipeline implementation of the MSE calculation in the DCS analysis. Each block in yellow is an IP core or modular combinations
of IP cores (①, ②, ③ and ④).

∑
is the accumulator core. CTR1 and CTR2 are counters. D is the delay unit of three clock cycles that turns the

counter overflow signal into the STA signal of the pipeline. MEM is the memory storing the correlation delay and experiment data. Bτ and
g2e(τ ) (labeled in red) are inputs to the pipeline. Constants A, r1, rb and H are stored in FPGA memory. αDB and β are iteration parameters.
x and y represent the input data of the cores.

not enabled until the valid signal from module ③ is active.

This synchronizes the theoretical correlation values with the

acquired correlation values at the same time delay for the

following MSE computation. When the CTR1 overflows,

the valid signal to module ① becomes inactive indicating the

end of data input to the pipeline. When CTR2 reaches the

overflow value, the overflow signal enters a delay module (D)

with the latency of 3 FPGA clock cycles, which is the total

latency of the module ④ and the accumulation core. The

output of the delay module is the active completion signal

STA and ensures that the output MSE including the sum of

squared errors of all data points. Since N is a constant during

the fitting, there is no need to divide the MSE by N for the

following sorting step. When the control module receives the

STA signal from the MSE pipeline, it deactivates the CTL

signal to put the MSE pipeline on hold.

D. PHANTOM STUDY

The FPGA analyzer was also tested against a software

analysis scheme in phantoms. Phantoms with a range of

viscosities (and therefore effective diffusion constants DB)

were produced utilizing glycerol, 20% Intralipid (Baxter

Healthcare, Deerfield, IL), and water, following recipes from

Cortese et al. [31] to maintain a constant µ′
s. We produced

four phantoms with four different flow levels. We measured

the flow levels using the DCS systemwith the FPGA analyzer

and an independent DCS system with offline DCS analysis in

a semi-infinite geometry for ∼5 minutes for each phantom.

BFI of the lowest viscosity phantom (no glycerol) was set as

baseline. BFI is normalized to baseline using equation 5 as

the relative BFI or rBFI. The phantom test was conducted in

the room temperature of 25 oC. The rBFI of each phantom

was measured by both DCS systems. Bland Altman plot was

used to compare the consistency of the BFImeasurement with

50 pairs of measurements for each phantom.

rBFI = BFT − BFIBaseline

BFIBaseline
(5)

E. PRE-CLINICAL STUDY

We tested the DCS analyzer in the preclinical study of

ischemia of spinal cord during spinal cord distraction in an

adult sheep model. Details of the study will be reported

separately. The protocol was approved by the IACUC at Stony

Brook University. The sheep was pretreated with glycopyrro-

late (0.02 mg/kg, IM). Anesthesia was induced with ketamine

10 to 20 mg/kg IM, animals were intubated, and anesthesia

was maintained with isoflurane (1.5 to 3.0%). The spine was

exposed sub-periosteally from T11 to L2. Fiber-optic probes

were inserted into the epidural space through a laminotomy

at the L1/L2 level and advanced to the planned distraction

site under fluoroscopic imaging. Pedicle screws (5.5x30mm)

were placed at the lowest two thoracic levels and connected

to 5.5mm bilateral rods. Baseline flow data was obtained at

the start of distraction and the spine was distracted at 2 mm

intervals until a 50% drop in optically measured blood flow

was observed or maximum distraction distance was reached.

The DCS analyzer performed the real-time analysis of DCS

data and presented the real-time rBFI.

III. REULTS

The Bland Altman plot (Fig. 5) demonstrated that the rBFI

differences between the measurements by the FPGA analyzer
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FIGURE 5. rBFI1 is from FPAG analyzer and rBFI2 is from software
analysis. (a) Bland Altman plot of the BFI measurements on four
phantoms by two independent DCS systems. The black line indicated the
difference mean and the red lines define 95% confidence interval
(1.96 standard deviation of the rBFI difference) from the difference mean.
(b) Linear correlation between the rBFIs.

and those by the software analysis were within the 95%

of confidence level. This suggested that both measurements

were consistent. The linear correlation showed high correla-

tion with r2 value of 98% and the slope of 1.01.

We have compared the performance of the FPGA imple-

mentation of the Nelder-Mead method with the software

approach to fit the measured autocorrelation function to the

theoretical model. We added a counter in the FPGA to mea-

sure the total number of clocks used for the curve fitting

of one data set. The computation time of FPGA was the

product of the total number of clocks and the FPGA clock

cycle, which is 25ns at the FPGA frequency of 40MHz.

In addition to the FPGA-based algorithm, we utilized the

MATLAB function fminsearch (Mathworks, Natick, MA),

which also uses Nelder-Mead algorithm to derive BFI from

the same correlation data. We used the MATLAB profiling

tool to measure the CPU time for the fminsearch function to

process the same data set. The MATLAB code was executed

on the Dell Optiplex 9010 (Dell, Round Rock, TX) with a

CPU of i7-3770 quad cores running at 3.4GHz. Twenty-seven

autocorrelation curves were used in the test. Each containing

approximately 60 paired values of tau and g2 were used in

the test. The FPGA implementation used the single precision

float point as the data representation. The initial values of

FIGURE 6. The fitted vs. acquired correlation. (a) At site, baseline (b) at
site, end stretch (c) above site, baseline (d) above site, end stretch.

αDB and β were set the same for both FPGA and MATLAB

computation. The averaged time was 539±127µs for the

FPGA processing and 51±8 ms for the fminseach function

of MATLAB. The BFI values of the same correlation data

set from both methods were also compared. The relative

error, defined as the ratio of the absolute difference between

the FPGA BFI and the software BFI to the software BFI,

is within 0.1%. The difference could be attributed to the

data precision and the convergence criteria used in the two

methods.

We utilized this DCS analysis system in a large-animal pre-

clinical monitor of spinal cord ischemia to demonstrate the

potential utility of real-time DCS analysis. Figure 6 showed

four correlation fitting curves from the FPGA DCS analyzer.

Theywere from two detectors acquired at the beginning of the

stretch (baseline) and the end of stretch in the animal study.

Figure 7 demonstrates a typical time course, in which the

rBFI at and above the distraction levels. It can be seen that

flow falls at the site of distraction and increases above the

site. The distraction started at 0 minutes, defining a baseline

BFI for each site. The rBFI at the distraction site decreased

progressively with increasing distraction to a nadir of ∼-40%

of baseline at 50 minutes. Following release of the distraction

hardware at around 57minutes, blood flow at the site of injury

recovered slowly to nearly the baseline level. During this

period, rBFI at the site superior to the distraction site continue

to increase up to 50%. This increase in blood flowmay be due

to a redirection of blood flow from the distraction site into

alternate paths in the spinal cord vasculature. The results of

the full parametric fit were displayed in the operating room,

enabling clinicians to observe the change of spinal cord blood

flow in real-time throughout the surgery. The correlation data

from animal study were also processed by MATLAB DCS

analysis software offline for the system level comparison

and both results matched well. The minor difference could
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FIGURE 7. Temporal and spatial variations in the relative BFI (rBFI) at two sites on the spinal cord: at and above an injury caused by
vertical stretching of the spinal column in a scoliosis surgery model. The ‘‘at site SW’ and ‘‘above site SW’’ are the data processed offline
by software. The photon count rates were between 100 and 700 k counts/s during the experiment.

be attributed to the difference in the preprocessing of the

correlation data and the post-processing of the BFI data in

the two methods.

IV. DISCUSSION

It is computationally intensive to obtain the BFI from mea-

sured autocorrelation of the scattering lights from tissue using

the analytical DCS model. Curve fitting of the measured

autocorrelation values with the theoretical model is a non-

linear process, which requires the repeated computation of the

theoretical correlation values from the pair of αDB (BFI) and

β parameters in the model until convergence. That process

is time consuming and must be repeated for each time point

and detector channel. Existing real-time fitting algorithms

in software frequently use a simplified fitting procedure, for

example, calculating the half time of the decay, to minimize

the computational load.

We successfully implemented the DCS analysis algorithm

of non-linear fitting on an FPGA chip. We adopted the

Nelder-Mead method because it is used in our offline DCS

analysis and it involves only simple math computations

implementable in FPGA. The phantom study demonstrated

that the DCS system with the hardware analyzer produced

the consistent data compared to the independent DCS system

with offline DCS data analysis. The pre-clinic study has

proved that the DCS analyzer enables the real time processing

of DCS data and the presentation of rBFI to clinicians intra-

operatively. The DCS FPGA analyzer will have a significant

impact on the design of DCS systems. To our knowledge,

this is the first report of implementing the DCS algorithm

on an FPGA chip. Current DCS systems rely on powerful

desktop computers for the DCS data processing. Some use

hardware correlators to relieve the computation burden of the

autocorrelation of the scattered light from the main computer.

A high-end desktop computer is a necessity to provide the

computation power, but it is not suitable for applications

when portability and size of the device is crucial. For exam-

ple, while high end computers are usually integrated into

research DCS systems, DCS clinical monitors which may be

routinely deployed at patient’s bedsides during critical care

requires significant reductions in device size and cost. The

DCS FPGA analyzer has moved the computation task of DCS

algorithm to the FPGA hardware. The associated enormous

reduction in required computing power significantly reduces

the device profile and enables use of computers with limited

capacity, e.g., tablets, for user interface, device control and

data presentation, as well as integration with multi-device

clinical monitors.

Moving forward, a correlator and analyzer may be inte-

grated into the same FPGA chip. This will be the com-

plete device-on-a-chip solution for DCS data processing. The

FPGA chip will accept the output from the photo detector,

compute the correlation of the scattered light intensity, and

derive the BFI as the output. When combined with micro-

controller technology, the FPGA can communicate with the

computing device through a variety of wired or wireless

communication links andmake the DCS system both portable

and with fast real-time processing capability.

The DCS FPGA analyzer provided a full parametric fit of

the DCS theoretical model. It can also be adapted to process

correlation curves calculated from photons binned by detector

arrival time, i.e. time-domain DCS. Current implementation
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utilizes a semi-infinite model. This design is modular:

multiple analyzer modules can be implemented on one FPGA

chip. Our current solution used 12.5% of the total available

CLBs, 2.5% of block RAM and 8% of DSP units on a Xilinx

Kintex 325 FPGA for one channel. The usage is about 1/8 of

the chip capacity, suggesting that at least 6 detector channels

may be analyzed with the same FPGA chip.

Our preliminary performance test showed that the DCS

FPGA analyzer is at least comparable to a typical software

solution. It takes less than 1 ms to finish one curve fitting

on FPGA and enables real-time data display, even for ‘fast’

DCS data collected at ∼100 Hz. Two main factors affect

the performance difference between FPGA and CPU. First,

the software runs under the support of an operating system

and compete resources with other software threads. The CPU

time spent on the DCS analysis is dependent on the number of

concurring threads and their priorities. Even though the CPU

is running at GHz frequency, the effective running speed of

the DCS analysis is much lower. FPGA solution is the digital

circuit entirely dedicated to the DCS analysis algorithm and

at the full speed of FPGA clock. Second, the software solution

processes data in serial. For example, the correlation from

the theoretic model is computed one value at a time. That

means that the next correlation value will not be processed

until the completion of the current correlation value. FPGA

solution uses a pipeline for parallel processing so that the

computation of the correlation values are handled one value

per FPGA clock cycle. Our pipeline takes 21 FPGA clocks

cycles out of 24 clock cycles in the MSE pipeline to com-

pute one correlation value. However, during the 21 FPGA

clocks, there are other 20 correlation values are also being

calculated in the pipeline. Pipeline architecture is efficient

in the resources uses and scalable to accommodate any data

size without the need of additional computation units. In our

analyzer, the pipeline for the computation of one MSE has

the latency of 24 clock cycles. To compute an MSE from

eqn. 2 and a measured autocorrelation function of 50 time

delays (values of τ ), it takes 73 FPGA clock cycles (49+24).

If the same computation is done in serial processing, it will

cost 1200 clock cycles (50∗24) for the same data size. The

difference will be even greater at larger data sizes (number of

τ values). In the DCS analysis, the time saving is significant

using the FPGA pipeline solution because most of the pro-

cessing time is on the repeated computation of the theoretical

correlation values in the curve-fitting algorithm. That is major

factor that FPGA outperforms CPU in the DCSmeasurement.

Note that the performance test was preliminary and was not

intended to accurately measure the performance difference

between the DCS measurement algorithm implemented on a

FPGA or CPU.

Our solution also has limitations. Like all single-

wavelength DCS implementations, this DCS FPGA ana-

lyzer assumes knowledge of the tissue optical properties,

which can be obtained from simultaneous measurements

with time or frequency domain diffuse optical spectroscopy.

A more comprehensive solution should also include the

TABLE 1. Glossary.

optical properties as variables and additional equations from

diffuse optical spectroscopy. Our FPGA analyzer can only

process two variables using the Nelder-Mead algorithm. This

requires major modification in the FPGA logic to accom-

modate the additional variables and new pipelines for the

additional equations.

In conclusion, the DCS hardware analyzer offers a new

data processing solution for DCS technology. This advance is

a critical step towards developing standardized DCS modules

and devices for clinical applications.

APPENDIX

In this appendix, we describe the simplification of the solu-

tions to the diffusion equation solutions for infinite and semi-

infinite media, with the assumption that all tissue optical

properties and probe geometry are known. The solutions

therefore have only αDB and β as free parameters in the fit.

Table 1 is the glossary of variables used in the equations.

A. INFINITE GEOMETRY

The infinite media Green’s function for the non-normalized

electric field autocorrelation function for a source of unit

power in the diffusion approximation is [1]

G1(Er, τ ) = v

4πD|Er|e
−K (τ )|Er| (A1)

where

K (τ ) =
√

3µ′
sµa + α

(

µ′
s

)2
κ2
0 (6DBτ) (A2)

This assumes the mean squared displacement of the scat-

ters is well modeled by a Brownian diffusion coefficient

(< 1r2 >= 6DBτ ). For the purposes of this calculation,

the source and detector positions, tissue optical properties,
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and fraction of moving scatterers are fixed. Letting r = |Er|,
A = 3µ′

sµa, B = 6
(

µ′
s

)2
κ2
0 , andC = v/(4πD) (all constants

for this calculation), the above reduces to

G1 (r, τ ) = C

r
e−r

√
A+BαDBτ (A3)

The normalized temporal field autocorrelation function is

g1 (τ ) = G1 (τ )

< G1(τ = 0) >
(A4)

which is related to the intensity autocorrelation function

through the Siegert relation [32] under the assumptions of the

photon diffusion model,

g2 (τ ) = 1 + β |g1 (τ )|2 (A5)

The intensity autocorrelation function is much easier to

measure experimentally and forms the data input to our fitting

model. This reduces to

g2 (τ ) = 1 + β

∣

∣

∣

∣

∣

e−r
√
A+BαDBτ

F

∣

∣

∣

∣

∣

2

(A6)

where F = e−r
√
A. β and the product αDB are the free

parameters in the fit. αDB is often referred to as the ‘blood

flow index’ (BFI) and it is sensitive to the number of moving

scatterers (α) and their motion DB.

B. SEMI-INFINITE GEOMETRY

The semi-infinite solution utilizes the well-known method

of images [1], placing the image source at rb. Evaluated

on the tissue-air boundary with an extrapolated boundary

condition and separation between the source and detector

of ρ, the Green’s function for the field correlation diffusion

equation is

G1(ρ, z = 0, τ ) = v

4πD

(

e−K (τ )r1

r1
− e−K (τ )rb

rb

)

(A7)

where

r1 =
√

(

1

µ′
s

)2

+ ρ2 (A8)

rb =
√

(

2zb + 1

µ′
s

)2

+ ρ2 (A9)

and the position of the extrapolated boundary above the sur-

face zb = 2
µ′
s

1+Reff
3(1−Reff ) . Reff is the effective Fresnel reflection

coefficient from the interface [33].

G1(ρ, 0, τ )=C

(

e−r1
√
A+BαDBτ

r1
− e−rb

√
A+BαDBτ

rb

)

(A10)

G1(ρ, 0, 0) = C

(

e−r1
√
A

r1
− e−rb

√
A

rb

)

(A11)

g2(ρ, 0, τ ) = 1 + β

(

e−r1
√
A+BαDBτ

r1H
− e−rb

√
A+BαDBτ

rbH

)2

(A12)

where H =
(

e−r1
√
A

r1
− e−rb

√
A

rb

)
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