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Abstract In contrast to almost all other brain tumors,
diVuse gliomas inWltrate extensively in the neuropil. This
growth pattern is a major factor in therapeutic failure.
DiVuse inWltrative glioma cells show some similarities with
guerilla warriors. Histopathologically, the tumor cells tend
to invade individually or in small groups in between the
dense network of neuronal and glial cell processes. Mean-
while, in large areas of diVuse gliomas the tumor cells
abuse pre-existent “supply lines” for oxygen and nutrients
rather than constructing their own. Radiological visualiza-
tion of the invasive front of diVuse gliomas is diYcult.
Although the knowledge about migration of (tumor)cells is
rapidly increasing, the exact molecular mechanisms under-
lying inWltration of glioma cells in the neuropil have not yet
been elucidated. As the eYcacy of conventional methods to
Wght diVuse inWltrative glioma cells is limited, a more
targeted (“search & destroy”) tactic may be needed for
these tumors. Hopefully, the study of original human

glioma tissue and of genotypically and phenotypically rele-
vant glioma models will soon provide information about
the Achilles heel of diVuse inWltrative glioma cells that can
be used for more eVective therapeutic strategies.

Abbreviations
Cdc Cell division cycle
CNS Central nervous system
CT Computerized tomography
CXCR4 Chemokine (C-X-C motif) receptor 4
ECM Extracellular matrix
EGF(R) Epidermal growth factor (receptor)
FAK Focal adhesion kinase
GBM Glioblastoma multiforme
HGF Hepatocyte growth factor
HIF Hypoxia inducible factor
MMP Matrix metalloproteinase
MRI Magnetic resonance imaging
NF-�B Nuclear factor kappa B
NSC Neural stem cell
PI3K Phosphatidylinositol 3-kinase
PTEN Protein phosphatase and tensin homolog
RGD Arginine-glycine-aspartic acid
SDF-1 Stromal cell-derived factor-1
SF Scatter factor
SPARC Secreted protein acidic and rich in cystein
uPA(R) Urokinase-type plasminogen activator (receptor)
VEGF Vascular endothelial growth factor
WHO World Health Organization

Introduction

DiVuse inWltrative gliomas are by far the most common pri-
mary brain tumors in adults, esp. its most malignant form,
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glioblastoma multiforme (GBM) [31]. In contrast to almost
all other brain tumors, such diVuse gliomas are character-
ized by extensive, diVuse inWltration of tumor cells in the
neuropil, i.e., the dense network of interwoven neuronal
and glial cell processes. Based on the resemblance of the
tumor cells with non-neoplastic glial cells, most diVuse gli-
omas are histopathologically typed as astrocytic, oligoden-
droglial, or oligoastrocytic [105]. Partly because of their
growth pattern, curative treatment for diVuse gliomas is
generally impossible. Although patients with low-grade
[World Health Organization (WHO) grade II] diVuse glio-
mas may survive for multiple years, these tumors lead to
death of the patient sooner or later, often after progression
to high-grade (WHO grade III or IV) malignancy. Esp. in
older age groups, diVuse gliomas frequently present as
high-grade malignant lesions and carry a grim prognosis
from the start. A subset of gliomas (e.g., ependymomas,
pilocytic astrocytomas) shows a more circumscribed than
diVuse inWltrative growth pattern, these latter gliomas will
not be further discussed.

In the present review, we will Wrst focus on the pathol-
ogy of diVuse inWltrative glioma growth and its conse-
quences for radiological diagnosis of these tumors. We will
then systematically review the molecular mechanisms and
factors that underlie this growth pattern (without trying to
be complete) and discuss the implications for diVerent ther-
apeutic approaches. In the last part of this review we will
touch on the limitations of in vitro and in vivo models for
the study of diVuse inWltrative glioma growth. For other
excellent recent reviews on (some of) these aspects we refer
the reader to [40, 57, 69, 70, 99, 137, 148, 172]. As diVuse
inWltrative glioma cells show some similarities with gue-
rilla warriors [130], we will use guerilla war as a metaphor
for diVuse glioma growth throughout this manuscript in
order to enhance the understanding of these tumors.

Pathology

Like guerilla warriors, in large areas of diVuse gliomas the
tumor cells tend to invade individually or in small groups in
“foreign” territory and to abuse pre-existent supply lines.

DiVuse inWltrative growth of tumor cells in the neuropil
is almost unique for gliomas. Only very few non-glial
tumors (esp. small cell lung carcinoma, lymphoma) occa-
sionally display “pseudo-gliomatous” growth in the neuro-
pil [12, 144, 189]. One of the pioneers in the study of
glioma growth patterns is Hans-Joachim Scherer [129].
Scherer designated the arrangement of glioma cells that
does not seem to depend on pre-existing tissue but can be
considered as an expression of the intrinsic architectural
potential of the tumor (e.g., canalicular structures, papillary

formations) as “proper structures”. Furthermore, he deWned
“secondary structures” as diVerent patterns of arrangements
of glioma cells that are considered to be dependent on pre-
existing tissue elements. Examples of secondary structures
are perineuronal growth (perineuronal satellitosis), surface
(subpial) growth, perivascular growth, and intrafascicular
growth. “Tertiary structures” were deWned by Scherer as
formations brought about by the interaction of glioma cells
with proliferating mesenchymal tissue of the tumor [157].
In diVuse gliomas, the cells preferentially invade along
myelinated Wbers in white matter tracts (intrafascicular
growth), and subpial, perivascular, and perineuronal accu-
mulation of tumor cells is frequently encountered [57]
(Fig. 1). The most extreme example of diVuse inWltrative
glioma growth is represented by gliomatosis cerebri.
According to the WHO-2007 classiWcation, this neoplasm
involves at least three cerebral lobes, usually bilaterally,
and even the entire neuraxis may be involved [36, 105,
111].

Recognition of diVuse inWltrative versus other types of
glial tumors has signiWcant prognostic and therapeutic
implications. While the diVuse inWltrative growth pattern is
characteristic for both low- and high-grade diVuse gliomas,
esp. high-grade gliomas frequently show marked phenotyp-
ical heterogeneity with spatial diVerences in cellular pheno-
type and malignancy grade. Since molecular genetic studies
demonstrated a common origin in diVerent components of
such heterogeneous diVuse gliomas, these tumors are con-
sidered as clonal lesions [17, 105]. The exact growth pat-
tern of gliomas can not always be assessed in biopsy
specimens, but histopathological features like intrafascicu-
lar growth, perineuronal satellitosis, and subpial accumula-
tion of tumor cells strongly favor a diVuse inWltrative nature
of the glial neoplasm.

In gliomas of high-grade malignancy, Xorid (often
glomeruloid) microvascular proliferation and necrosis
emerge. These changes, which are in fact used as histo-
pathological criteria to diagnose high-grade malignancy
in these tumors [105], are often spatially and temporally
related. While high-grade gliomas may focally show an
extreme angiogenic response, quantitative studies
revealed that the vascular density in many regions of
both low- and high-grade diVuse gliomas and of glioma-
tosis cerebri is in the range of that for normal cerebral
grey or white matter, indicating that in large areas of
these tumors angiogenesis is lacking [19, 191, 192]. In
these latter areas, the diVuse inWltrative glioma cells
seem to behave like guerilla warriors that do not con-
struct their own supply lines but incorporate (“co-opt”)
and abuse pre-existent ones. Around areas of necrosis in
high-grade gliomas the tumor cells often show pseud-
opalisading. Such perinecrotic cells were demonstrated
to be less proliferative and have a higher apoptosis rate
123



Acta Neuropathol (2007) 114:443–458 445
than the tumor cells more distant from necrotic areas.
The pseudopalisading cells also show increased expres-
sion of hypoxia inducible factor 1� (HIF-1�) and vascu-
lar endothelial growth factor (VEGF), two factors that
play a crucial role in the induction of angiogenesis
[22, 23, 49]. There is evidence that the accumulation of
tumor cells in the pseudopalisading zone is the result of
migration of tumor cells away from the necrotic area
[23]. Furthermore, it has been hypothesized that in this
context necrosis selects for tumor cells that are more
aggressive and more resistant to diVerent therapeutic
modalities [138].

Glioma cells can disseminate via white matter tracts,
cerebrospinal Xuid pathways, or meninges and thus give
rise to multifocal gliomas. It is important to note that
glioma growth in the subarachnoid/leptomeningeal com-
partment in itself does not imply malignant progression
[105]. Despite the diVerent ways of spread inside the
CNS, extraneural metastases of diVuse gliomas are
extremely rare and generally occur only after craniot-
omy or shunting [172]. A post mortem study investigat-
ing whole brain sections underscored that multifocal
GBMs can emerge in the background of a better diVeren-
tiated astrocytic neoplasm [26]. Multiple gliomas can
occur as synchronous (diagnosed at initial presentation)
and metachronous (appearing some time after initial
diagnosis) lesions [89]. Widely separated glioma lesions
that can not be attributed to the pathways just mentioned
are called multicentric gliomas [11, 149]. Only a small
percentage of glioma patients (estimated by some
authors as 2%) show multiple, seemingly independent
lesions at initial presentation, most of these patients
appear to have GBM [10, 11, 149].

Radiology

Like in a guerilla war, visualization of the invasive front of
diVuse inWtrative gliomas is problematic.

Magnetic resonance imaging (MRI) is now the gold
standard for deWning brain tumor anatomy in a clinical set-
ting [141]. Low-grade diVuse gliomas are typically hypoin-
tense lesions on T1-weighted MR images with limited
edema and mass eVect and lack of enhancement after the
use of Gadolinium-DTPA [72]. On T2-weighted and
FLAIR sequences low-grade diVuse gliomas are generally
hyperintense. Discrimination of edema and inWltrating gli-
oma is diYcult using T1, T2, and FLAIR MR images. The
lack of neovascularization and the apparently limited
changes to the pre-existent, incorporated vessels explain the
absence of contrast-enhancement in MRI examinations of
these tumors [8]. As, according to the WHO-2007 classiW-
cation [105], the main histopathological diVerence between
WHO grade II and III diVuse astrocytic neoplasms is
increased mitotic activity in the latter, it is not surprising
that part of the non-enhancing diVuse gliomas are histo-
pathologically diagnosed as high-grade lesions at the time
of biopsy [8].

Compared to low-grade diVuse gliomas, high-grade
tumors are often radiologically more heterogeneous and are
accompanied by more severe edema. The occurrence of
contrast-enhancement in diVuse gliomas generally signiWes
a more malignant biological behavior [8, 72, 141]. The
extent of contrast-enhancement is inXuenced by the dosage
of the contrast material [200]. The central area in “ring-
enhancing” high-grade diVuse gliomas most often
represents necrosis, while the enhancing rim contains vital

Fig. 1 Schematic representation of the growth pattern of a GBM (a),
including the following secondary structures of Scherer: perivascular
accumulation of tumor cells (example in area indicated by b; vessels in
red, tumor cells in blue), perineuronal satellitosis (b; neurons in green),
subpial growth of tumor cells (b), and intrafascicular growth in the
corpus callosum (c). Mitotic tumor cells are depicted in black.
Furthermore, in GBMs necrosis (dark grey area) surrounded by pseud-
opalisading tumor cells and adjacent Xorid/glomeruloid microvascular
proliferation (d) are often present. Images b–d on the right represent

the histology of these features: in b asterisk indicates subpial growth,
arrow indicates perineuronal satellitosis, arrowhead indicates perivas-
cular accumulation of tumor cells; image c shows increased cellularity
with diVuse inWltration of tumor cells in the relatively well preserved
myelinated tracts of the corpus callosum; in image d asterisk indicates
area of necrosis, arrow indicates peri-necrotic pseudopalisading tumor
cells, arrowheads indicate glomeruloid microvascular proliferation
[b, d: H&E staining, c: combined Luxol Fast Blue and H&E staining;
original magniWcation £200 (b, c) and £100 (c)]
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glioma tissue with microvascular changes including
increased vascular permeability (Fig. 2). Some therapeutic
interventions (e.g., surgical removal of glioma tissue, radio-
therapy) may induce contrast-enhancement [166, 181]. Fur-
thermore, it is important to note that contrast-enhancement
in non-diVuse gliomas such as pilocytic astrocytomas does
not implicate malignant progression.

Conventional radiological investigations tend to signiW-
cantly underestimate the extent of diVuse inWltrative glioma
growth. Correlation of whole brain histological sections of
high-grade gliomas with computerized tomography (CT)
scans revealed that tumor cells were present even outside
the peritumoral areas of low density [27]. Compared with
MRI, inWltrating glioma cells can be found beyond the
hyperintensive region on T2-weighted images [43, 55]. As
a consequence, radiological distinction between multifocal
and multicentric gliomas can be challenging. Multifocal
malignant progression in a diVuse glioma may radiologi-
cally result in multiple, seemingly independent, contrast-
enhancing lesions (Fig. 2). One study reported that using
MRI, CT, or both, only in 12 out of 26 patients with multi-
ple foci of glioma at initial diagnosis various patterns of
spread were evident or suggested (subarachnoid >
intraventricular > direct brain penetration) [88].

New MR modalities may contribute to better radiologi-
cal classiWcation and delineation of glial brain tumors as
well as assist in identiWcation of the best spot for a biopsy
[30]. With diVusion-weighted imaging (DWI) and a related

approach called diVusion tensor imaging, diVerences in
motility of water due to diVerences in cellularity, cell mem-
brane permeability, intra- and extracellular diVusion, and
tissue structure can be visualized. Theoretically, DWI can
thus be used to image indirectly inWltration of glioma cells
in normal brain tissue [30, 96]. Perfusion weighted imaging
(PWI) is a technique which allows for quantitative assess-
ment of the cerebral blood volume (CBV). With PWI vas-
cularization and perfusion of gliomas can be measured
[192]. The (relative) CBV correlates with both vasculariza-
tion and malignancy grade as assessed by histology. As
long as tumor inWltration is accompanied by changes in
vascularization and perfusion, PWI may also indirectly
visualize the presence of inWltrating glioma cells [3, 78,
173]. Proton MR Spectroscopy (MRS) allows for obtaining
metabolic spectra from (brain) tissue. Such spectra can be
obtained in a single voxel or in multiple voxels in two or
three dimensions [9, 176]. These 2D and 3D approaches are
also known as chemical shift imaging or MRS imaging
(MRSI).

Several studies suggest that MRSI may be helpful for
better delineation of diVuse gliomas [35, 55, 114, 132].
Combining diVerent MR modalities (e.g., DWI, PWI,
MRS) is expected to further improve these results [41,
135]. Up till now, a major drawback of most novel MR
modalities is the limited spatial resolution: for conventional
T1-weighted MRI at 3 T this resolution is about
0.5 mm £ 0.5 mm £ 0.5 mm, while DWI and PWI reach a

Fig. 2 Examples of MR images 
in two glioblastoma patients. In 
patient 1 (a), the T1-weighted 
image reveals bifrontal 
Gadolinium enhancement of a 
tumor that crosses the corpus 
callosum (arrowhead), resulting 
in a so called “butterXy glioma”. 
In the second patient (b–e), the 
T1-weighted images with (b, d) 
and without Gadolinium (c) 
suggest multiple, independent 
lesions. In the T2-weighted 
image (e), however, these 
bifrontal lesions appear to be 
interconnected via the corpus 
callosum (arrowhead), 
indicating that in this latter area 
disruption of the blood-brain 
barrier by inWltrating glioma 
cells is (still) limited. 
a, b: coronal plane; c–e: axial 
plane
123



Acta Neuropathol (2007) 114:443–458 447
resolution of about 2 mm £ 2 mm £ 2 mm, and MRS of
10 mm £ 10 mm £ 10 mm. None of these new imaging
techniques is expected to replace conventional MRI soon.
Obviously, visualization of dispersed inWltrative glioma
cells will improve when the technical development of these
MR imaging modalities advances. Direct visualization of
inWltrative glioma cells may also be performed by positron
emission tomography (PET) and single photon emission
CT (SPECT) imaging [16, 75, 106, 131]. Promising com-
pounds for PET imaging of gliomas are O-(2-18F-Xuoro-
ethyl)-L-tyrosine [134] and 18F-Galacto-arginine-glycine-
aspartic acid (RGD), an �v�3 binding molecule [71]. Fur-
thermore, in the near future MR and PET imaging may be
signiWcantly improved by the application of nanoparticles
[18, 82, 184] and labelled antibodies [61].

Molecular background

Like guerilla warriors, glioma cells posses speciWc 
qualities that allow for diVuse inWltration.

The diVuse inWltrative growth of glioma cells in the neu-
ropil warrants speciWc, tightly regulated and converging
interactions between these cells and their microenviron-
ment. Up till now it is not known what exactly initiates this
behavior of glioma cells. As the group of diVuse gliomas is
genotypically heterogeneous, it is unlikely that one particu-
lar genetic aberration accounts for this growth pattern in all
diVuse gliomas. Several studies suggest that gliomas are
derived from neural stem cells (NSCs) or glial progenitor
cells rather than from derailed mature glial cells [54, 162,
199]. CD133 (Prominin-1) is frequently used as a marker
for identiWcation of NSC features in glioma cells, but other
markers such as nestin, CD90, CD44, CXCR4, musashi
homolog 1 (Msi1), and maternal embryonic leucine zipper
kinase are also used for this purpose [6, 102]. Interestingly,
in in vivo and in vitro experiments CD133-positive glioma
cells displayed a greater tumorigenic potential than CD133-
negative cells, showed increased radio- and chemoresis-
tance, and contributed in a major way to angiogenesis via
VEGF production [6, 7, 102, 163].

During normal embryonic and fetal development of the
CNS, extensive proliferation and migration of stem cells
and progenitor cells is essential. In contrast, in the normal
adult brain only in some locations (e.g., subventricular
zone, hippocampus, dentate gyrus and sub-cortical white
matter, rostral migratory system) some of these phenomena
can still be present [104, 152]. Clues for elucidation of the
molecular mechanisms enabling diVuse inWltrative glioma
growth may thus be provided by the rapidly expanding
research focussing on such stem cells and progenitor cells.
Although the molecular biology underlying NSC migration

is far from clear, molecules like nuclear factor kappa B
(NF-�B), macrophage chemoattractant protein-1, stem cell
factor, stromal cell-derived factor-1 (SDF-1), and platelet
derived growth factor were demonstrated to play an impor-
tant role in the regulation of this process (reviewed in
[194]). For most of these factors, however, the role in gli-
oma cell migration is not yet known.

For a more systematic discussion of the mechanisms and
factors that are relevant for diVuse inWltration of glioma
cells in the neuropil, a comparison with guerilla warriors
may be helpful again. One would not only like to know
what exactly initiates the migratory behavior of such war-
riors, but also which qualities and environmental factors
enable them to successfully perform this behavior. With
regard to these latter aspects, one could recognize (a) an
internal system that coordinates input and output of signals,
(b) a locomotor apparatus, (c) trails to travel on, (d) parts
that directly interact with these trails, (e) tools to remove
obstacles, (f) microenvironmental signals that guide the
way, and (g) other stimulatory or permissive microenviron-
mental factors (Fig. 3). Before discussing these aspects in
more detail it is important to realize that (the interactions
of) these underlying mechanisms are complex, that the list
of factors associated with glioma cell invasion/migration
given below is not complete, and that information about the
exact role of these factors is often obtained in glioma mod-
els that do not exactly mimic diVuse inWltration of glioma
cells in the neuropil.

Intracellular integration of signals

Interactions of glioma cells with their microenvironment
via membrane receptors (integrins, growth factor receptors)
induces intracellular signals which are transmitted through
eVectors like the focal adhesion kinase (FAK) family of
cytoplasmic, non-receptor tyrosine kinases and P311. The
FAK family consists of two proteins, FAK and pyruvate
kinase (Pyk) 2, which both play an important role in intra-
cellular events such as proliferation, migration, survival,
and apoptosis [117]. Glioma cells were reported to show
increased expression of FAK, esp. at the invasive front
[201]. FAK is activated by phosphorylation on critical tyro-
sine residues [161] and subsequently it phosphorylates
cytoskeleton-associated substrates (e.g., Src, paxillin) [99].
While some studies suggest a role for FAK activation
mainly in glioma cell proliferation [101], other studies
show involvement in activation of Rac, which in turn leads
to actin polymerization and formation of cell protrusions,
focal adhesion, and subsequent motility [24, 142]. Pyk2 has
a similar sequence and structure as FAK and can, upon acti-
vation by phosphorylation, interact with many of the same
intracellular proteins as FAK [101]. P311 is a small
polypeptide that was identiWed as migration-associated by
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comparing invasive human GBM cells with cells from the
tumor core. The overexpressed P311 localizes to focal
adhesions and promotes glioma cell migration via Rac1
activation [109, 113]. Transcription factors like FoxM1B
and NF-�B also contribute to intracellular integration of
signals [37, 103, 148]. FoxM1B was shown to be overex-
pressed in human GBMs, while in vitro and in vivo experi-
ments revealed that this factor enhances glioma invasion by
stimulation of matrix metalloproteinase 2 (MMP-2) tran-
scription [37, 103]. The NF-�B level is elevated in actively
migrating glioma cells in vitro and in vivo where it plays an
important role in cell survival [148].

Actin cytoskeleton rearrangements

Cell migration requires dynamic remodeling of the actin
cytoskeleton through assembly, disassembly, and organiza-
tion of actin Wlaments into functional networks, which
direct protrusion at the front of the cell and retraction at the
rear. One of the Wrst steps in cell migration is the formation
of actin-rich structures, termed lamellipodia, at the leading
edge of the motile cell [142]. These lamellipodia are broad,
sheet-like protrusions containing short-branched actin Wla-
ments [133]. In addition to lamellipodia, more slender cyto-
plasmic protrusions containing bundels of cross-linked
actin Wlaments (Wlopodia) can be formed [142]. Members
of the Rho family of small GTP binding proteins, esp. Rac
and cell division cycle protein Cdc42, are pivotal regulators
of these processes. When bound to GTP, these proteins can
interact with downstream target proteins, including protein

kinases, phosphatases, and WASP/WAVE proteins (Wis-
kott-Aldrich Syndrome protein/Wiskott-Aldrich Syndrome
protein family members). These latter proteins are activa-
tors of the Actin-related protein Arp2/3 complex, a nuclea-
tor of new actin Wlaments at the leading edge of the cell and
thereby instrumental for protrusion of lamellipodia and Wlo-
podia [47, 124, 142]. Several studies showed that inhibition
of Rac1, one of the three Rac isoforms, inhibits glioma cell
migration and invasion in vitro [32, 34]. Depletion of the
phosphoinositide phosphatase synaptojanin-2 (another
eVector of Rac1) using small interfering RNA was reported
to inhibit glioma cell invasion through Matrigel and rat
brain slices in vitro [34]. Interestingly, Rac is one of the
downstream targets of phosphatidylinositol 3-kinase
(PI3K), and the eVect of PI3K [i.e., phosphorylation of PI-
4,5-bisphosphate (PIP2)] is counteracted by the tumor sup-
pressor protein phosphatase and tensin homolog (PTEN)
[29]. By dephosphorylating PIP3, PTEN may inhibit gli-
oma cell invasion in two ways: by modulation of glioma
cell motility by inactivating Rac and Cdc42 as well as by
suppression of extracellular matrix (ECM) degradation via
MMPs [53]. As loss of chromosome 10q, which contains
the PTEN gene (locus: 10q23.3), is a frequent event in esp.
GBMs [42, 67], such loss may thus result in increased
migration.

ScaVold for migration

In normal brain, common ECM components such as colla-
gens, laminin, and Wbronectin are essentially restricted to

Fig. 3 Schematic overview of factors and mechanisms important for
diVuse inWltration of glioma cells in the neuropil. As discussed in the
section on the molecular background of diVuse inWltrative glioma
growth, the following aspects relevant for this growth pattern can be
recognized: (a) an intracellular system that coordinates all incoming
and outgoing signals via a complex set of pathways, (b) a locomotor
apparatus in which the actin cytoskeleton plays a crucial role, (c) a
scaVold (ECM, surface of cells/cell processes) on which the glioma

cells can travel, (d) cell–ECM and/or cell–cell receptors that allow di-
rect interaction with the ECM and cellular microenvironment, (e) tools
to remove obstacles like ECM degrading proteases, (f) growth factors
that guide the way, and (g) other stimulatory or permissive microenvi-
ronmental factors (e.g., chemokines derived from inXammatory cells).
In this scheme, the protrusion on the right side of the cell represents the
lamellipodium at the front
123



Acta Neuropathol (2007) 114:443–458 449
the vessel walls and the perivascular and subpial glial limit-
ing membrane [60]. The exact composition of the ECM in
the neuropil is not yet fully elucidated, but hyaluronan, gly-
cosaminoglycans, and proteoglycans are considered to be
major ECM components in this compartment [13, 60, 63].
Due to the dense network of cell processes the volume of
the extracellular space in the normal neuropil is limited. In
diVuse gliomas, this space increases in volume, becomes
more irregular, and abnormal ECM components accumu-
late in this space [204]. The fact that, in contrast to almost
all other tumors, glioma cells have the capacity to diVusely
inWltrate in the neuropil suggests that unique cell–ECM or
cell–cell interactions are involved [179]. Glioma cells may
create their own microenvironment by synthesizing and
depositing ECM molecules such as vitronectin, tenascin-C,
and laminin [21, 74, 84, 112, 128, 153, 180, 202, 204]. The
glycoprotein vitronectin is preferentially expressed at the
advancing margins of gliomas, and its expression level was
described to correlate with glioma grade [180]. Addition-
ally, vitronectin was reported to confer a survival advantage
for tumor cells at the advancing tumor margin [180].
Increased expression of tenascin-C was described to corre-
late with higher malignancy grade [74] as well as to pro-
mote endothelial cell adhesion, spreading, and migration,
which are critical steps in the process of angiogenesis
[202]. Laminin deposits were found in the border zone
between the normal brain and the migrating glioma cells in
an orthotopic glioma animal model [112, 128]. Also
in vitro, glioma cells express and secrete laminin. It was
suggested that laminin production by glioma cells is stimu-
lated by growth factors and gangliosides [84]. Other ECM
components that show an increased expression in gliomas
include osteopontin, secreted protein acidic and rich in
cystein (SPARC), thrombospondin, and brain enriched
hyaluronic acid binding protein [13]. Apart from ECM
components, glioma cells may also use the surface of
neighboring neuronal and glial cells (including myelin
sheaths) as a scaVold for diVuse inWltration in the neuropil.
Interestingly, myelin was reported to be one of the most
permissive substrates for attachment and migration of gli-
oma cells [58]. This phenomenon may at least partly
explain the histopathological Wnding that glioma cells pref-
erentially migrate in white matter tracts.

Cell–ECM and cell–cell interactions

Glioma cell migration requires dynamic expression of adhe-
sion molecules, adequate positioning of these molecules,
attachment to a relevant substrate, and detachment when the
cell moves on. CD44 and integrins are considered to play a
major role in glioma cell–ECM adhesion. CD44 is a
hyaluronan receptor with a high expression in gliomas that
was described to correlate with glioma grade [4, 13].

Engagement of CD44 with its ligand activates the small
GTP binding protein Rac1, leading to actin cytoskeleton
rearrangements and redistribution of CD44 to membrane
ruZes. Proteolytic cleavage of CD44 by a disintegrin and
metalloproteinase 10 produces an intramembranous cleav-
age product which acts as signal transduction molecule that
in turn enhances invasion of glioma cells [120]. Integrins
are a family of calcium-dependent, transmembrane mole-
cules that mediate cell–ECM and cell–cell adhesion and
consist of a non-covalently linked � and � subunit. ECM
binding integrins bind esp. to the RGD sequence in the
ECM components. Through the cytoplasmic domain of the
� subunit, integrin activation can lead to activation of FAK,
and of its intracellular signal transduction pathway [77,
142]. Subsequently, cytoskeletal rearrangements may occur
and lead to cell movement [52]. Integrins that were
described to be upregulated on glioma cells are �3�1, �v�1,
�v�3, �v�5, the two latter integrins being receptors for
vitronectin. In addition, �v�3 can also bind to laminin,
Wbronectin, and tenascin-C [97]. The poliovirus receptor
CD155/PVR, which is recruited to the leading edge of
migrating cells where it co-localizes with actin and �v inte-
grins and binds to vitronectin, was shown to be highly
expressed in GBMs [94]. Expression of this adhesion mole-
cule leads to increased FAK signaling and adhesion-
induced activation of paxillin. Forced expression of CD155
in glioma cells resulted in increased dispersal of these cells
in mice brains, while knock down of this receptor caused a
decrease in migration of U87 cells in vitro [164, 165]. Other
examples of adhesion molecules with a changed expression
pattern in gliomas include adhesion molecule on glia/�2
subunit of Na,K-ATPase (AMOG/�2), ephrin receptor tyro-
sine kinases (EphB2-B3), Wbroblast growth factor inducible
14 receptor (Fn14), and protein tyrosine phosphatases zeta/
beta [50, 121, 122, 158, 178]. For cell–cell interactions in
glioma migration cadherins and neural cell adhesion mole-
cules (NCAM) may be important. Cadherins are calcium-
dependent transmembrane cell–cell adhesion glycoproteins
that form adherens junctions by homophilic interactions.
Intracellularly, they link to the actin cytoskeleton via cate-
nins (p120 catenin) [79]. Instability and disorganization of
cadherin-mediated junctions lead to increased migration and
invasiveness of glioma cells in vitro [5]. NCAM is a mem-
ber of the glycoprotein immunoglobulin receptor superfam-
ily and mediates strong interactions between cells via
homophilic binding. The Wnding that expression of NCAM
is inversely correlated with glioma grade suggests that loss
of this adhesion molecule allows tumor cells to detach from
neighboring (tumor and/or non-neoplastic) cells and to
migrate into the brain parenchyma [125, 155]. Increased
invasion of polysialylated C6 rat glioma cells into the
murine corpus callosum may be explained by attenuation of
homophilic NCAM interactions [174].
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Proteases

In analogy with invasion of other cancer cells it is often
hypothesized that glioma cells remodel their microenviron-
ment by degrading the surrounding ECM to render it per-
missive for migration. Based on in vitro studies, several
glioma derived proteolytic enzymes involved in cell migra-
tion were discovered, such as Cathepsin B; MMP-2 (syno-
nym: Gelatinase A); MMP-9 (Gelatinase B); MMP-12;
urokinase-type plasminogen activator (uPA) [20, 64, 137,
153, 193, 198]. These proteases are synthesized and
secreted as inactive pro-enzymes and activated by proteo-
lytic cleavage outside the cell. For some of these proteases
a role in glioma invasion has been conWrmed in in vivo
studies [64, 90, 156], their expression being correlated with
glioma grade and inWltrative capacity. The expression of
these proteases is tightly regulated and can, for example, be
activated by interaction of the glioma cell with the sur-
rounding ECM. Several studies showed that the activation
of ERK and Akt pathways stimulates secretion of MMP-2
and -9 [81, 187]. In an in vitro study, tenascin-C was
reported to increase invasiveness of glioma cells through
up-regulation of MMP-12 [153]. Overexpression of
SPARC by glioma cells was described to cause increased
expression of uPA, uPAR, MMP-2 and -9, which then leads
to upregulation of PI3K and RhoA [85].

Growth factors and related signaling molecules

While in vitro studies revealed that Epidermal Growth Fac-
tor (EGF), basic Fibroblast Growth Factor (bFGF), and
Transforming Growth Factor � signiWcantly aVect invasion
of glioma cells (for review see [33]), many questions
remain about the origin (tumor cells? inXammatory cells?
pre-existent brain cells?) and exact role of such growth fac-
tors in vivo. Esp. GBM cells often show mutation or ampli-
Wcation of the EGF receptor gene and overexpression of
this receptor on the cell surface [105, 123]. Other studies
indicate that Scatter Factor/Hepatocyte Growth Factor
(HGF) is important for glioma cell migration. HGF binds to
the tyrosine kinase c-Met receptor, and both HGF and its
receptor are frequently overexpressed in gliomas. HGF-
binding to c-Met results in autophosphorylation of the
receptor, subsequent activation of several signaling path-
ways (e.g., MAPK-, Jak/Stat-, PI3K-pathways), and vari-
ous cellular reactions including migration [66]. Recently, it
was shown that hypoxia-induced HIF-1� causes up-regula-
tion of c-Met and thereby enhances the eVect of HGF on
glioma migration [44]. Insulin-like Growth Factor (IGF)
binds with high aYnity with IGF-Binding Protein 2
(IGFBP2), a soluble protein that is frequently overexpres-
sed in high-grade gliomas. Overexpression of IGFBP2
results in upregulation of invasion related genes such as

MMP-2 [186]. The Invasion Inhibitory Protein (IIp45)
inhibits glioma invasion in vitro as well as in vivo in an
orthotopic xenograft model by binding to IGFBP2 [168].
Iip45 was reported to be underexpressed in GBMs due to
inactivation by tumor-speciWc alternative splicing [169].
The expression of the cell surface chemokine receptor
CXCR4 is much higher in invasive than in non-invasive
glioma cells [45]. Binding of its ligand, SDF-1/CXCL12,
leads to activation of Akt and ERK1/2 signaling pathways
and, subsequently, to increased survival, proliferation, and
(via activation of proMMP-2) to increased invasion [145,
195]. Expression of the angiogenic factor angiopoetin-2
(Ang2) was found to be high in esp. the invasive areas of
gliomas and to induce upregulation of MMP-2 in vivo and
in vitro [68, 76, 83, 90].

InXammatory cells and other factors

While high-grade malignant gliomas were described to
contain large numbers of microglial cells and macrophages,
lower numbers of microglial cells were found in low-grade
diVuse gliomas [143]. These cells are able to produce cyto-
kines and growth factors and may contribute to evasion of
immune attack as well as stimulate tumor growth, but the
exact eVect of such inXammatory cells in gliomas is not
known [188]. The Wndings that glioma patients show an
increased number of immune-suppressive regulatory T-
cells (not only in the tumor tissue, but also in peripheral
blood) and that expression of MHC class I and II molecules
is downregulated on invading glioma cells may explain that
diVuse inWltrative glioma cells can evade an immunere-
sponse (a phenomenon that has been called “stealth inva-
sion of the brain”) [46, 202].

Therapy

Like for guerilla warriors, conventional methods to Wght
diVuse inWltrative glioma cells have limited eVect or cause
too much collateral damage, and a “search & destroy”
tactic may be needed.

Conventional therapies

The fact that diVuse inWltrative glioma cells tend to blend in
extensively in the brain microenvironment makes it hard to
plan an eVective counterattack. Whereas surgery of most
other tumors aims at complete resection (with or without a
margin of normal tissue), the diVuse growth of gliomas in
the brain parenchyma precludes complete tumor removal.
Already in the early days of neurosurgery, Dandy and
Gardner noticed that even after performing a hemispherec-
tomy glioma patients were not necessarily cured [38, 56].
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Still, for patients with a high-grade malignant glioma maxi-
mal removal of the contrast-enhancing tissue without wors-
ening neurological impairment is an independent
prognostic factor for overall survival [73, 140]. Intraopera-
tive assessment of the extent of resection by the neurosur-
geon is, however, inaccurate [2, 170]. Also, although
radiotherapy was proven to be beneWcial for malignant gli-
oma patients, eradicating diVuse inWltrative glioma cells by
radiotherapy without signiWcantly damaging the inWltrated
brain parenchyma has been diYcult to achieve [80, 93, 95].
Up till now limited Weld irradiation (generally with an arbi-
trary 2 cm beyond the contrast enhancing mass) rather than
whole brain irradiation is the standard treatment [95]. The
success of chemotherapy is hampered by the marked intra-
tumoral heterogeneity of gliomas [140]. Esp. in areas where
the original tissue architecture is relatively preserved, the
blood-brain barrier may form an obstacle for optimal deliv-
ery of chemotherapeutics to diVuse inWltrative tumor cells.
Patients with malignant oligodendroglial tumors [esp. those
with loss of the short arm of chromosome 1 and of the long
arm of chromosome 19 (-1p/-19q)] often show response to
chemotherapy using alkylating agents [28, 182]. Recently,
temozolomide treatment (concomitant and adjuvant with
radiotherapy) was shown to result in modest improvement
of median overall survival and increased 2 years survival in
GBM patients up to 70 years of age [171]. However, up till
now diVuse glioma patients are far from being cured by
conventional therapies, and there is an urgent need for other
therapeutic approaches [140].

“Anti-invasive” therapies

Interference with glioma cell motility may be exploited as a
novel therapeutic approach [59]. We will now discuss some
examples of experimental studies interfering with diVerent
aspects of glioma cell migration. Inhibition of FAK activa-
tion by TAE226 not only led to reduction of glioma cell
adhesion, migration, and invasion through an artiWcial
ECM, but also to reduced proliferation and enhanced apop-
tosis of these cells [161]. In an in vitro study, the Ras inhib-
itor S-trans, trans-farnesyl thiosalicylic acid was reported to
reduce migration and anchorage-dependent proliferation of
GBM cells by inhibiting PI3K signaling and Rac1 activity
[62]. Application of the �v�5 integrin antagonist SJ749 not
only reduced adhesion of glioma cells to Wbronectin but
also proliferation of these cells in vitro [107], while the
�v�3 inhibitor IS20I exhibited strong anti-mitotic and anti-
migratory eVects in vitro and reduced glioma growth
in vivo in subcutaneous and intracerebral glioma models
[15]. In a recent phase I trial including 51 malignant glioma
patients that were treated with the �v integrin inhibitor
EMD 121974 (cyclo Arg-Gly-Asp-D-Phe-(N-methyl)-Val,
a cyclic RGD pentapeptide) complete response was seen in

two patients and partial response in three patients [196]. In
preclinical trials using orthotopic U87 glioma lesions in
nude mice, this inhibitor was described to induce anoikis
(apoptosis supposedly induced by detachment from the
ECM) in angiogenic blood vessels and brain tumor cells
[175].

Application of the anti-tenascin antibody 81C6 has been
studied in a phase II clinical trial. Injection of 131I-m81C6
(44 Gy) in the surgically created resection cavity of patients
with recurrent malignant glioma followed by standardized
chemotherapy resulted in prolonged median survival [139].
Downregulation of SPARC in glioma cells using short
interfering RNA decreased tumor cell survival and invasion
in vitro by reducing phosphorylation of AKT, FAK, and
integrin-linked kinase [160]. Downregulation of uPA,
uPAR, and MMP-9 by RNA interference was reported to
result in decreased invasion in both Matrigel and spheroid-
assays in vitro, and in regression of orthotopic gliomas in
nude mice [64]. The synthetic MMP inhibitors batimastat
and marimastat reduced glioma invasion in vitro [177].
Local treatment of intracerebral glioma models in mice
with an anti-c-Met antibody (OA-5D5) resulted in major
growth inhibition of U87 lesions, but not of G55 lesions. As
G55 tumors express c-Met but lack HGF expression, only
gliomas where HGF drives tumor growth may thus respond
to anti-c-Met-therapy [110]. EGFR, which is frequently
overexpressed in GBMs, can be targeted with EGFR kinase
inhibitors like geWtinib and erlotinib. Only a small number
of the GBM patients that were treated with such inhibitors
showed response (esp. those in which the glioma cells co-
expressed EGFRvIII and PTEN) [115].

The tyrosine kinase inhibitors emodin and aloe emodin
have been shown to induce anti-cancer eVects in various
tumor types. Emodin was reported to inhibit secretion of
MMP-2 and -9 by glioma cells, invasion through a Matrigel
coated chamber, phosphorylation of FAK, ERK1/2 and
Akt/PKB, and inhibition of glioma invasion in vitro and
in vivo [81, 116]. PEX, a fragment of MMP-2, is an endog-
enous inhibitor of angiogenesis, cell proliferation, and
migration. The expression level in gliomas was described
to be correlated with glioma grade and with expression of
�v�3 integrin to which it is bound. One study showed that,
while endogenous PEX expression was not suYcient to
inhibit glioma growth, administration of PEX inhibited cell
migration in vitro as well as angiogenesis and glioma cell
proliferation in subcutaneous and intracranial human gli-
oma xenografts [14].

Other therapeutic approaches

Driven by the failure of conventional therapeutic
approaches for diVuse glioma patients, several other thera-
peutic strategies for these tumors are being developed or
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already introduced in the clinic. Because of the striking
microvascular changes in high-grade gliomas, these tumors
have since long been considered as good candidates for
anti-angiogenic therapy [51]. However, as in diVuse glio-
mas many intratumoral vessels may be incorporated rather
than newly formed, the actual eVect of anti-angiogenic ther-
apy remains to be seen. Anti-VEGF therapy in experimen-
tal orthotopic GBM models resulted not only in reduction
of vascular changes but also in increased vessel co-option
by the tumor [86, 92].

Unravelling the stem cell aspects of gliomas may pro-
vide new targets for therapy [185]. Furthermore, as non-
neoplastic NSCs were shown to be able to migrate toward
and induce apoptosis of glioma cells, such stem cells may
be used as vehicles to target inWltrating glioma cells
(“search & destroy”) [108, 197]. Further research now con-
centrates on how to optimally arm stem cells for this pur-
pose. In orthotopic glioma models injection of NSCs
transduced with the gene for cytosine deaminase led to a
strong reduction of tumor burden [1]. Similarly, a promis-
ing result was obtained in a study in which orthotopic C6
rat glioma models were injected with NSCs transduced
with herpes simplex virus-thymidine kinase gene (NSCtk)
followed by systemic ganciclovir administration. The NSCs
were shown to migrate actively from injection sites toward
the C6 tumor cells in both the ipsi- and contralateral hemi-
sphere and caused marked inhibition of tumor growth and
increased survival [100].

With convection-enhanced delivery (CED), one or more
small-caliber catheters are placed through a burr hole into
the target tissue under image guidance, and an infusate is
actively pumped into the brain parenchyma. This infusate
will then disperse through the interstitial space [136, 150,
183]. Using CED, diVerent therapeutics (e.g., chemothera-
peutics, endotoxins, radioisotopes, chimeric products) may
reach diVuse inWltrative glioma cells in the brain paren-
chyma [118, 119]. Although the pre-clinical results are
promising [87, 126, 190], it is clear that the positioning of
the catheter is crucial for the success of this approach, and
that the distribution of the infusate should be closely moni-
tored during treatment [151].

Glioma patients can be vaccinated with dendritic cells
that are loaded with tumor-associated peptides. Ideally such
dendritic cells then stimulate a cytotoxic T-cell response
against the tumor. In gliomas, this approach is hampered by
the large inter- and intratumoral antigenic heterogeneity
and the lack of a universally expressed tumor antigen.
Alternatively, dendritic cells can be loaded with a cell
lysate derived from the patient’s own glioma. Using this
latter method, an overall prolonged median survival was
found [39]. As an increased number of immune-suppres-
sive, regulatory T cells was found in GBMs [46], interfer-
ence with such cells also represents a potential target for

immunotherapy of malignant gliomas [65]. Several studies
investigated the potential of oncolytic viruses as vectors for
gene therapy in the treatment of gliomas. Up till now, the
success of virotherapy is limited, partly because of the host
immune response which attenuates the distribution of the
viruses and is diYcult to control. Furthermore, as diVuse
inWltrative glioma cells may show limited proliferative
activity, and virus replication occurs preferentially in pro-
liferating cells, the eVect of virotherapy on the diVuse inWl-
trative part of gliomas remains to be elucidated [48, 159,
167].

Concluding remarks and future perspectives

The unique diVuse inWltrative growth of gliomas in the
brain parenchyma has important diagnostic, prognostic, and
therapeutic implications. While the understanding of diVer-
ent aspects of this growth pattern may be facilitated by
using guerilla war as a metaphor, the analogy is of course
not perfect. For instance, up till now it is unclear if and how
the brain tissue “Wghts back”. Furthermore, it is important
to realize that the diVuse inWltrative growth pattern is not
just the result of malignant progression as both low- and
high-grade diVuse gliomas display this phenomenon. Esp.
the high-grade lesions frequently show marked phenotypi-
cal heterogeneity with spatial diVerences in cellular pheno-
type and malignancy grade. Therefore, in a clinical setting
combination of clinical, radiological, and pathological
information is warranted to avoid diagnostic inaccuracy,
particularly in cases where only small biopsy specimens are
available for histopathological diagnosis.

Unravelling the mechanisms that allow glioma cells to
diVusely inWltrate in the neuropil may provide novel thera-
peutic targets for recognizing, attacking, and killing these
cells. Investigations using glioma models have already pro-
vided a wealth of information on the biological mecha-
nisms responsible for glioma cell migration. However,
many of these experiments were performed in in vitro and
in vivo models that poorly recapitulate the glio ma cell-
microenvironment interactions of human glioma cells in
brain tissue [153]. Moreover, the exact culture conditions
may have a major inXuence on the results obtained. For
example, it was shown that cultured glioma cells may show
a “mesenchymal drift” due to transdiVerentiation [127], and
that GBM cells cultured in vitro with FGF and EGF more
closely mirror the phenotype and genotype of the original
tumors than GBM cells cultured in serum [98].

Even the results obtained in orthotopic animal models
for gliomas should be interpreted with caution, as such
models not always mimic the genotype and/or phenotype of
the original human gliomas. In fact such models often show
a compact, expansive rather than diVuse inWltrative growth
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pattern in the brain [86, 196]. Furthermore, it is important
to realize that diVerent mechanisms may underlie perivas-
cular growth versus diVuse inWltrative growth of glioma
cells in the neuropil, e.g., because conventional ECM com-
ponents are absent in the latter compartment [146].

As has been suggested before [25], diVuse gliomas are
unlikely to be cured by techniques that cannot selectively
destroy the neoplastic cells. While interference with the
mechanisms underlying diVuse glioma growth may be
exploited as a novel therapeutic approach, up till now the
crucial prerequisites for this growth pattern are far from
clariWed. Ideally, studies aiming at further elucidation of
these mechanisms should be performed in original human
glioma tissue and in (orthotopic) models that genotypically
and phenotypically closely mimic the situation in human
glioma patients [147, 154]. It is to be expected that esp.
such studies will ultimately disclose the Achilles heel of the
diVuse inWltrative glioma cells.
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