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Abstract

Simulation of compressible flows became a routine activity with the appear-

ance of shock-/contact-capturing methods. These methods can determine all

waves, particularly discontinuous ones. However, additional difficulties may

appear in two-phase and multimaterial flows due to the abrupt variation of

thermodynamic properties across the interfacial region, with discontinuous

thermodynamical representations at the interfaces. To overcome this diffi-

culty, researchers have developed augmented systems of governing equations

to extend the capturing strategy. These extended systems, reviewed here, are

termed diffuse-interface models, because they are designed to compute flow

variables correctly in numerically diffused zones surrounding interfaces. In

particular, they facilitate coupling the dynamics on both sides of the (diffuse)

interfaces and tend to the proper pure fluid–governing equations far from

the interfaces. This strategy has become efficient for contact interfaces sepa-

rating fluids that are governed by different equations of state, in the presence

or absence of capillary effects, and with phase change. More sophisticated

materials than fluids (e.g., elastic–plastic materials) have been considered as

well.

Diffuse-Interface Capturing
Methods for Compressible

Two-Phase Flows

https://doi.org/10.1146/annurev-fluid-122316-050109
https://doi.org/10.1146/annurev-fluid-122316-050109
http://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050109


1. INTRODUCTION

In this review, we concentrate on recent advances in the methodology for the simulation of

compressible flow with material interfaces. The focus is on advances in the formulation and

their efficient numerical implementation in modern computing architectures; finally, we highlight

selected recent applications in complex flows. Although we try to be exhaustive, we give precedence

to writing a coherent, self-contained description of the state of the art in the field and to discussing

certain problems that, in our opinion, deserve immediate consideration. Unintended omissions of

contributions to this field are unavoidable, and we apologize beforehand.

In addition to the well-known discontinuous waves that arise in single-phase gas dynamics,

a new discontinuity appears as soon as the flow involves two distinct fluids (or materials). This

discontinuity is usually named a contact wave and corresponds to the interface that separates

the two fluids, e.g., air and water. The interface may have additional thermodynamic properties

from those of the two separate phases, which may or may not obey the same type of equation

of state (EOS), e.g., ideal gas and stiffened gas (SG). Interface motion has been addressed by

several classes of computational methods that can be classified as follows. In the first class, the

interface is preserved as a resolved surface, and the grid deforms following the kinematics of

the interface. Prominent examples are the Lagrangian (von Neumann & Richtmyer 1950) and

arbitrary Lagrangian–Eulerian methods (Hirt et al. 1974). These methods can be very accurate if

the deformation of the interface is not too large, but they become limited by mesh distortions at

large deformations. In the second class, the front tracking method (Glimm et al. 1998) attempts

to reduce these distortions by considering fixed meshes for the bulk flow and tracking the moving

interface by Lagrangian markers. The approach requires the management of at least two flow

solvers, and it becomes geometrically challenging as the interface distortion grows. In the third

class, the development of the level set method (Dervieux & Thomasset 1980), which was adapted

to compressible fluids (Aslam et al. 1996), and the more modern ghost fluid method (Fedkiw

et al. 1999), used to compute the pressure in mixture cells, allowed for further simplicity and

generality. To avoid the complexity related to mesh management with previous methods, the

level set method tracks the interface implicitly through an Eulerian function, and two sets of

Euler equations were used to store and evolve the fluid variables when needed, in particular in

mixture cells. The ghost fluid method is used to transfer the boundary conditions at interfaces

from one set of Euler equations to the other. Although apparently simple, this method still requires

careful considerations to ensure robustness and conservation of mass. More details can be found

in previous reviews (Anderson et al. 1998, Scardovelli & Zaleski 1999, Sethian & Smereka 2003).

In this review, we are concerned with computational methods that artificially let the two fluids

develop a small amount of mixing at the otherwise resolved interface: This justifies the term diffuse-

interface methods (DIMs). This presents its own problems because the thermodynamic state of

the mixture needs to be defined as the interface evolves. Typically, the bulk fluids have density and

internal energy that are significantly different from that of the mixture, and in general, it is not

straightforward to compute the mixture thermodynamics and particularly the pressure across the

diffused interface without additional closures. Two subclasses of DIMs are present in the literature.

The first considers physically diffuse interfaces, having a well-defined viscocapillary structure

(Cahn & Hilliard 1958). In order for these methods to work correctly, the spatial resolution

must be sufficiently fine to accurately resolve the interface width, i.e., up to a few nanometers. In

addition, the phase transition between a liquid and its vapor is described through a cubic-type EOS.

In this approach, thermodynamics and capillarity are coupled. To the authors’ knowledge, it has

never been shown that this approach is capable of modeling immiscible interfaces. This approach

is well-suited to the simulation of phase transition in very small systems. The second subclass of



DIMs addresses mixture cells having computational origins instead of physical ones. The volume

of fluid method (Hirt & Nichols 1981) in the frame of incompressible fluids was pioneering work

in this direction. Here, an extra evolution equation is added to the flow model, representing the

volume fraction of a given phase. At this level, the model adopts a two-phase description of the

flow, with subvolumes occupied by the phases and several mass balance equations. Saurel & Abgrall

(1999a) and Kapila et al. (2001) extended this approach to compressible fluids.

The success of compressible two-phase flow simulations is certainly a consequence of the

formidable growth in computational power, readily available to scientists and engineers, combined

with the availability of advanced and efficient numerical methods for the simulation of flows

possessing discontinuities (a hallmark of compressible flow). These advances have made complex

two-phase flow simulations a routine practice in recent years. The great advantage of DIMs is

the use of a single set of equations to describe the two-phase nature of the flow at all of the

computational cells, avoiding the explicit tracking of the interface separating different phases.

This progress has been made possible thanks to the tremendous advances in the development

of methods for single-phase compressible flow simulation that took place in the last century.

It was realized early that shocks and contact discontinuities could be easily captured (instead

of resolved) by the use of enlarged artificial diffusivity without causing errors outside the inner

region of the discontinuity that were too damaging (see von Neumann & Richtmyer 1950). This

is certainly true for simple shock waves, and it allows the prediction of shock propagation in

complex situations by using just a few mesh points across the wave inner region. Later, Godunov

(1959) developed an improved method where cell boundary fluxes were determined using the

fundamental Riemann problem structure, which accounts for all types of wave interactions. Many

researchers have improved and simplified the wave capturing method (van Leer 1979, Roe 1981,

Osher & Solomon 1982, Harten et al. 1983, Toro et al. 1994). Research is still in active progress

to increase accuracy [e.g., essentially nonoscillatory schemes (ENO, WENO) (Harten et al. 1987,

Shu & Osher 1988), discontinuous Galerkin methods (Cockburn & Shu 1989), ADER schemes

(Titarev & Toro 2002)] and to improve robustness for strong shocks or contact interfaces (Zhang

& Shu 2012).

Contrary to shock-capturing schemes, the computation of interfaces separating two immiscible

phases with different thermodynamics has no physical viscous regularization. Consequently, the

approaches of von Neumann–Richtmyer–Godunov (von Neumann & Richtmyer 1950, Godunov

1959) are not as effective as they are for shocks. Traditional shock-capturing methods applied

to contacts generally result in excessive and artificial diffusion. In addition, spurious velocity

and pressure fluctuations appear due to the loss of mechanical equilibrium and may result in

computational failure. Removing the spurious mechanical phenomena requires a well-behaved

relaxation of the mixture thermodynamics as one traverses from one phase to the other (Saurel &

Abgrall 1999a, Kapila et al. 2001, Lund 2012). Furthermore, because the pure phases are governed

by hyperbolic systems of equations (supersets of Euler equations), the mixture thermodynamics

and governing equations must be compatible with this level of description. Some of these problems

have already been addressed (see Abgrall 1996 for formulations separating two ideal gases), and

Shyue (1998) and Saurel & Abgrall (1999b) considered liquid–gas interfaces and added evolution

equations for the SG EOS parameters to compute the termodynamics of the mixture. These

methods were generalized and rationalized with the help of multiphase flow modeling (Saurel &

Abgrall 1999a, Kapila et al. 2001, Allaire et al. 2002, Massoni et al. 2002, Murrone & Guillard

2005, Saurel et al. 2009). In all of these formulations, the aim is to solve interfaces with a unique

set of partial differential equations (an extended flow model) and a unique hyperbolic solver.

Furthermore, one retains the philosophy of shock-capturing methods and abandons the tracking



or reconstruction of the interface because interface deformations in most compressible flows can

become arbitrarily complex.

Finally, it is possible to alleviate the smearing or artificial diffusion introduced by capturing

methods using purely numerical techniques that attempt to sharpen the interfaces (Shukla et al.

2010, Tiwari et al. 2013, Shyue & Xiao 2014, Chiapolino et al. 2017c), as well as to increase the

order of approximation and global accuracy (Loubere et al. 2014). Additional, physical extensions

have been addressed as well, e.g., chemical reactions (Petitpas et al. 2009), phase change (Saurel

et al. 2016), surface tension (Perigaud & Saurel 2005), solid–fluid interfaces (Favrie et al. 2009),

and plastic transformation (Ndanou et al. 2015).

The review is organized as follows. In Section 2 we present several flow models of diffuse

interfaces and explain the link between them. Section 3 presents the main ingredients for the

numerical resolution of some of these models. Section 4 showcases some results to illustrate the

methods’ capabilities.

2. THEORETICAL FORMULATIONS

The various DIMs for compressible flows mentioned in Section 1 are based on reductions or

enhancements of the nonequilibrium Baer & Nunziato (1986) (BN) model. Here, nonequilibrium

refers to the mechanical and/or thermodynamic conditions across the interface; whether it is the

former or the latter is made clear below. The BN model is based on the inviscid Euler equations

for each pure phase, whereas other sets of conservation laws can be appended to include additional

physics. Different models derived from the BN model may change the spatial and temporal scales

required to resolve the fields, reduce the number of fields that need to be solved, or enhance

the physical description to include other effects not present in the original BN model. Figure 1

highlights the two typical scenarios considered in this review. Figure 1a indicates a two-phase

flow composed of a phase that is finely dispersed but otherwise embedded in a carried phase. The

typical size of the fine phase is too small for any reasonable computational grid to resolve its fluid

a b

Disperse flow Resolved-inferface flow

Figure 1

Typical two-phase flow scenarios addressed by the formulations discussed in this review: (a) disperse flow, represented as a
homogenized or averaged mixture, and (b) resolved-interface flow. A prototypical computational grid overlays the two-phase mixture.



and thermochemical details, and therefore, one relies on a homogenized or average description of

the flow; this is termed average mixture in the figure. In the second scenario, the size of both phase

volumes can be resolved by the available computational mesh, and the interface separating the

two phases is accurately captured; this is termed resolved interface in the figure. The conventional

notation in two-phase flow literature is used below: αk is the volume fraction, ρk the density, uk

the velocity, pk the pressure, Ek = ek + 1
2
uk · uk the total energy, and ek the internal energy, for

phase k = 1 or 2.

Lund (2012) provided a rational method to deduce diffuse-interface, two-phase flow models

from the total nonequilibrium BN model on the basis of asymptotic analysis. Furthermore, it

is possible to model additional physics, e.g., solid mechanics with elastic–plastic flows in similar

formulations. We refer readers to Favrie et al. (2009) and Ndanou et al. (2015) for further details

and concentrate below exclusively on two-phase fluid flows.

Subsequently, we will rely on the Noble–Abel stiffened gas (NASG) EOS, because it is conve-

nient and sufficiently general to account for many effects exhibited by compressible fluids:

pk = (γk − 1)
ρk(ek − qk)

1 − ρkbk

− γk p∞,k, 1.

where γk, p∞,k, and bk are characteristic constants of material k, and qk represents the reference

energy of phase k; details can be found in Le Metayer & Saurel (2016). This is a generalization

of the well-known SG EOS to include covolume effects, i.e., short-distance repulsive effects. The

original SG EOS accounts only for thermal agitation through the internal energy contribution

and attractive effects through the term −γk p∞,k. All basic physical molecular effects are thus

considered in the NASG formulation, resulting in an improved thermodynamic description of

matter compared to SG. Obviously, other convex EOSs are possible alternatives.

2.1. Nonequilibrium Model

In this model, the balance equations of phase k are

∂αk

∂t
+ uI ·∇αk = µ(pk − pk∗ ), 2.

∂αkρk

∂t
+ ∇·(αkρkuk) = 0, 3.

∂αkρkuk

∂t
+ ∇·(αkρkuk ⊗ uk) + ∇(αk pk) = p I ∇αk + λ(uk∗ − uk), 4.

∂αkρk Ek

∂t
+ ∇·[αk(ρk Ek + pk)uk] = pIuI ·∇αk − µp ′

I(pk − pk∗ ) + λ(uk∗ − uk)u′
I. 5.

From this point onwards, we refer to the right-hand side terms as interaction terms between the

phases. Index k∗ denotes the conjugate phase to k; i.e., k = 1 implies k∗ = 2, and vice versa.

Relaxation parameters µ and λ denote the rate at which pressures and velocities tend to equilib-

rium, respectively. The quantities p I and uI denote the pressure and velocity of the interfaces,

respectively. The set of coefficients, interfacial pressures, and velocities comprises modeling el-

ements, some introduced by Baer & Nunziato (1986), to produce a flow model whose dynamics

approximates those of immiscible two-phase flows.

Equation 2 represents the k-phase volume fraction αk, transported at velocity uI, defined as

uI = u′
I + sgn(∇αk)

pk∗ − pk

Z1 + Z2

, 6.



where Zk = ρkck is the acoustic impedance and ck is the sound speed of phase k, respectively, and

the interfacial velocity existing inside a droplet or bubble cloud is defined by

u′
I =

Z1u1 + Z2u2

Z1 + Z2

. 7.

During advection, volume variations due to pressure differences between the phases are considered

through the relaxation term µ(pk∗ − pk), with µ controlling the rate at which pressure equilibrium

is reached, defined as

µ =
AI

Z1 + Z2

,

where AI represents the specific interfacial area of the mixture. Equations 3 and 4 express the mass

and momentum balance of phase k, respectively. The velocity relaxation term on the right-hand

side of the momentum equation is λ(uk∗ − uk), where λ is the product of the specific interfacial

area with the pressure drag coefficient:

λ = Z1 Z2µ.

Viscous drag effects can be considered as well through correlations based on the Reynolds num-

ber. The nonconservative term pI∇αk represents the pressure force acting at the droplet cloud

boundaries. The interfacial pressure at this level is approximated as

pI = p ′
I +

Z1 Z2

Z1 + Z2

sgn(∇α1) · (u2 − u1), 8.

where the interfacial pressure acting inside the droplet or bubble cloud is defined by

p ′
I =

Z1 p2 + Z2 p1

Z1 + Z2

. 9.

The expressions above were obtained by Saurel et al. (2003). Finally, Equation 5 expresses the

energy balance of phase k, which is nonconservative due to the term pIuI · ∇αk and the relaxation

terms on the right-hand side. These terms appear in the correct form to ensure thermodynamic

and mechanical consistency. Equations 6–9 are derived from the local Riemann problem solution

that obviously provides correct local interfacial variables, but these linearized solutions should be

replaced by nonlinear solutions when dealing with strong shocks.

The system represented by Equations 2–5 is hyperbolic with wave speeds u I , uk, and uk ± ck,

where ck denotes the sound speed of phase k. There is one additional wave in comparison with

the original BN model because of the interfacial velocity given by Equation 6. Furthermore, each

phase admits the following entropy equation:

∂αkρksk

∂t
+ ∇ · (αkρkskuk) =

1

Tk(Zk + Zk∗ )

×
{

Zk(Zk + Zk∗ )−1
[

(pk∗ − pk) + sgn(∇αk) · (uk∗ − uk)Zk∗

]2
|∇αk|

+ µZk∗ (pk∗ − pk)2 + λZk(uk∗ − uk) · (uk∗ − uk)
}

. 10.

Note that the right-hand side of Equation 10 is nonnegative for all k; this ensures that the mixture

entropy, s =
∑

k ρkαksk, necessarily agrees with the second law of thermodynamics.

Equations 2–5 are a two-phase model for mixture flows evolving in velocity and temperature

nonequilibrium (different temperatures at each side of the interface), e.g., clouds of drops, bubbles,

or granular beds; additional physical effects are needed in the latter case (Bdzil et al. 1999). To

close the system of equations, one needs an estimate for the specific interfacial area AI. The



most convenient method is to supplement Equations 2–5 with evolution equations for the specific

number density of drops (or grains) nk per unit mass of phase k, obeying the equation

∂αkρknk

∂t
+ ∇ · (αkρknkuk) = αkρkṅk,

where the production rate of the number of drops or bubbles ṅk is modeled by known correlations

that depend on the Weber and Reynolds numbers (see Furfaro & Saurel 2016). Knowledge of the

number density nk and volume fraction αk enables the calculation of the temporally and spatially

dependent drops’ radii and associated interfacial areas.

Alternative formulations of the volume fraction transport equation have been proposed recently

(Saurel et al. 2017) with the aim of improving the acoustic properties of the BN model, in particular,

when one of the phases is discontinuous and incapable of effectively propagating sound (e.g., in

dispersed liquid suspensions). For liquid drops suspended in a gas or gas bubbles suspended in a

liquid, the volume fraction of the dispersed phase α1 in Equation 2 is replaced by

∂α1

∂t
+ ∇ · (α1u1) = µ(p1 − p2). 11.

Equation 11 leads to a thermodynamically consistent model, provided that the pressure relaxation

coefficient is stiff (µ → +∞). For liquid drops suspended in gas, the wave speeds are u1, u2,

u2 + c2, and u2 − c2, whereas for gas bubbles suspended in liquid, we have u2, u1, u1 + c1, and

u1 − c1. Moreover, these alternative formulations remain compatible with the reduced models

examined later. In particular, the Kapila et al. (2001) model can be derived from the formulations

given by Saurel et al. (2017).

The above formulation with the described closures is applicable to two-phase mixtures with

velocity nonequilibrium, as well as resolved interfaces separating two pure fluids. In the latter

situation, volume fractions evolve from 0 to 1 in short distances and the specific interfacial area

AI has no meaning. Interface conditions are respected due to the various terms appearing on the

right-hand side of the system and the associated interfacial variables. The system is able to fulfill

the expected interface condition of mechanical equilibrium (continuity of pressure and normal

velocities) under one of two possibilities, λ = µ = 0 or λ = µ → +∞.

In the first possibility, the interface conditions are ensured by the nonconservative terms be-

cause the symmetric interfacial variables in Equations 6–8 model contact interface conditions

as general solutions of local Riemann problems. This possibility has been used by Layes & Le

Metayer (2007) to study shock interaction with a gas bubble. It is also able to deal with permeable

interfaces (boundaries of bubbles or droplets clouds). It has been used for permeable granular in-

terfaces by Saurel et al. (2014), who extended the system of Equations 2–5 to account for granular

effects. This capability is not possible with the original BN model, where the interfacial variables

are estimated as p I = p2 and u I = u1, which turn out to be too crude approximations of the

local interfacial pressure and velocity. The second possibility relies on stiff mechanical relaxation.

In this limit the mixture evolves with a single pressure and single velocity. This approach was

proposed by Saurel & Abgrall (1999a) in a splitting formulation where the hyperbolic system of

Equations 2–5 was solved during a time step in the absence of source terms, followed by pres-

sure and velocity relaxation steps with sources µ(pk − pk∗ ) and λ(uk∗ −uk), respectively, with both

λ = µ → +∞ (Lallemand & Saurel 2000, Lallemand et al. 2005). Rather than solving stiff systems

of ordinary differential equations, pressure and velocity relaxation solvers are built, resulting in

nonlinear algebraic systems free of relaxation parameters. These systems sometimes admit exact

solutions when the EOSs of the individual phases are simple enough; otherwise they are solved

with a Newton method.



The second possibility based on stiff relaxation solvers is very robust, more so than the first

possibility based on nonconservative terms, which has less entropy production. However, the first

possibility enables consideration of permeable and impermeable interfaces (Saurel et al. 2003,

2014), as well as velocity disequilibrium two-phase mixtures. When considering situations with

resolved interfaces only (the main focus of the present review), as schematized in Figure 1, the

method based on stiff relaxation can be simplified to a two-phase mixture model where the phases

evolve in both pressure and velocity equilibria.

2.2. Reduced Model of Kapila et al.

An asymptotic expansion of the system of Equations 2–5 in the limit of stiff mechanical relaxation

(λ = µ → +∞) reduces, to leading order, to the following model due to Kapila et al. (2001):

∂αk

∂t
+ u · ∇αk = βk∇ · u, 12.

∂αkρk

∂t
+ ∇ · (αkρku) = 0, 13.

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ p = 0, 14.

∂ρE

∂t
+ ∇ · [(ρE + p)u] = 0, 15.

where the same notation as before is employed, the mixture density is defined by ρ =
∑

k αkρk,

the mixture total energy is given by ρE =
∑

k αkρk Ek, and the function βk is given by

βk =
ρk∗ c2

k∗ − ρkc2
k

ρkc2
kα

−1
k + ρk∗ c2

k∗α
−1
k∗

. 16.

When two phases are present, the pressure is given by the mixture EOS:

p(ρ, e , α1) =
ρe −

[

α1(1−ρ1b1)γ1 p∞,1

γ1−1
+

α2(1−ρ2b2)γ2 p∞,2

γ2−1

]

α1(1−ρ1b1)
γ1−1

+
α2(1−ρ2b2)

γ2−1

. 17.

Here, each phase has been assumed to be governed by the NASG Equation 1, and the mixture

Equation 17 is obtained as a consequence of the mixture energy definition and pressure equilibrium

p1 = p2. The internal energy ek = ek(p , ρk) is given by the (convex) caloric EOSs as well as the

sound speed ck = ck(p , ρk) of the phases k = 1, 2. Because the pressure is in equilibrium for this

model, each phase is allowed to possess different temperatures Tk, which can be determined with

the help of the thermal EOS ek(ρk, Tk), which is not necessary to integrate the Kapila model.

Furthermore, the right-hand side term of Equation 12 is precisely the limit of the relaxation

term µ(p1 − p2) in Equation 2, and the system of Equations 12–15 admits the following entropy

equations,

∂αkρksk

∂t
+ ∇ · (αkρksku) = 0, 18.

which are thermodynamically consistent. Also, the system of Equations 12–15 is hyperbolic with

wave speeds u and u ± cw, where cw denotes the mechanical equilibrium sound speed (Wood 1930)

given by

1

ρc2
w

=
α1

ρ1c2
1

+
α2

ρ2c2
2

. 19.



Equations 12–15 describe mixtures of compressible fluids in mechanical equilibrium but out of

thermal equilibrium. Although the equations were derived to model granular mixtures of reactive

materials, they are suitable for the computation of interfaces separating pure fluids. The contact

interface conditions of this system have equal pressures and equal normal velocities. In addition,

because it involves two temperatures, the absence of temperature relaxation in numerically diffuse

interfaces produces pressure oscillation–free solutions. This property is absent in the reactive

Euler equations, widely used in combustion, which assume temperature equilibrium among the

constituents and tend to produce spurious (artificial) pressure oscillations (Abgrall 1996).

2.3. Pressure Nonequilibrium Model

The Kapila model introduces numerical difficulties due to the nonconservative term on the right-

hand side of Equation 12. This difficulty is overcome by the homokinetic model in pressure

nonequilibrium (PNE) derived by Saurel et al. (2009). It consists of a hyperbolic overdetermined

system of seven partial differential equations, given by

∂αk

∂t
+ u · ∇αk = µ(pk − pk∗ ), 20.

∂αkρk

∂t
+ ∇ · (αkρku) = 0, 21.

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ p = 0, 22.

∂αkρkek

∂t
+ ∇ · (αkρkeku) + αk pk∇ · u = −µp ′

I(pk − pk∗ ), 23.

∂ρE

∂t
+ ∇ · [(ρE + p)u] = 0, 24.

where

p =
∑

k

αk pk. 25.

The interfacial pressure is defined by Equation 9, and the entropy equations are given by

∂αkρksk

∂t
+ ∇ · (αkρksku) = µ(pk − pk∗ )2 Zk

Zk + Zk∗

. 26.

In this formulation, the volume fraction corresponds to a simple transport equation with relaxation,

for which there is no difficulty in preserving volume fraction positivity. Another advantage of this

model is that it exhibits a mixture sound speed c f defined as

ρc 2
f =

∑

k

ρkc 2
k ,

which is monotonic with respect to the volume fraction, contrary to the Kapila model. This

monotonic behavior simplifies the construction of numerical methods and better respects wave

propagation in diffuse interfaces.

The procedure to solve the overdetermined system of equations is as follows. The internal

energies are just used to determine the volume fractions at the end of the pressure relaxation

process, and the presence of nonconservative terms in these equations is of minor importance.

The latter effects are minor at pressure equilibrium. The volume fraction is then used in the

mixture Equation 17 that takes the mixture internal energy as argument, and not that of the

phases. The mixture internal energy is deduced from the (conservative) total energy equation.

Then, from this mixture pressure p , the phase’s internal energies are reset with their equations



of state ek = ek(p , ρk), removing a possible skid effect related to nonconservative terms. Thanks

to these successive corrections, numerical computations even in extreme conditions have shown

excellent convergence to exact solutions for interface separating (nearly pure) fluids.

2.4. Additional Physics

The previous formulations can be enhanced to include several important physical effects, including

surface tension and phase change, as described below.

2.4.1. Surface tension. Following Brackbill et al. (1992), the surface tension can be incorporated

as a body force, defined by

Fσ = −σκ
∇Yk

[Yk]
,

where Yk = (αkρk)/ρ is the mass fraction of one of the phases (liquid or gas), [Yk] is the mass

fraction jump across the interface, κ is (twice the mean of ) the curvature of the interface, and σ

is the surface tension coefficient, which is assumed constant here. Thanks to this formulation of

capillary effects, the Kapila model can be extended (Perigaud & Saurel 2005) by adding to the

momentum and energy equations the capillary force and power, respectively, and by attaching

one equation for the mass fraction of one of the phases, giving

∂αk

∂t
+ u · ∇αk = βk∇ · u, 27.

∂ρ

∂t
+ ∇ · (ρu) = 0, 28.

∂ρYj

∂t
+ ∇ · (ρYj u) = 0, 29.

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ p = −σκ∇Yj , 30.

∂ρE

∂t
+ ∇ · [(ρE + p)u] = −σκu · ∇Yj , 31.

where j = 1 or 2 (but not both because
∑

k Yk = 1) and κ = ∇ · (∇Yj /
∣

∣∇Yj

∣

∣). Equations 30 and

31 can also be rewritten in conservation form:

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ p = ∇ · (σW), 32.

∂ρ Ẽ

∂t
+ ∇ · [(ρ Ẽ + p)u] = ∇ · (σW · u), 33.

where

W =
∣

∣∇Yj

∣

∣ I −
∇Yj ⊗ ∇Yj

∣

∣∇Yj

∣

∣

, 34.

ρ Ẽ = ρE + σ
∣

∣∇Yj

∣

∣ . 35.

The total energy E is still given by the definition used in the Kapila model.

It is worth remarking that there are some differences between the present formulation and

the second gradient formulation of Cahn & Hilliard (1958). First, the current thermodyna-

mics is independent of capillary effects, by construction. Second, the conservative formulation

in momentum and energy guarantees correct pressure jumps at interfaces, independently of mesh

resolution.



2.4.2. Phase change. Phase transition can be considered as well by adding Gibbs free energy

relaxation effects to the mass and volume fraction equations:

∂αk

∂t
+ u · ∇αk = βk∇ · u +

ρ

ρI

ν(gk∗ − gk), 36.

∂ρYj

∂t
+ ∇ · (ρYj u) = ρν(g j∗ − g j ), 37.

where gk = hk − Tksk is the Gibbs free energy of phase k, and ν is the evaporation/condensation

kinetic rate. To close the system of equations, one uses the appropriate convex EOS (Equation 1)

for each phase. Saurel et al. (2008) specified the interfacial density ρI that appears in the volume

fraction equation to be

ρI =

(

ρ1c 2
1

α1

+
ρ2c 2

2

α2

) (

c 2
1

α1

+
c 2

2

α2

)−1

.

The specific interfacial area must be specified in two-phase mixtures (e.g., bubbly and droplet

flows). The parameter ν is determined by a subscale model based on local saturation conditions

and heat and mass diffusion; readers are referred to Abramzon & Sirignano (1989), Zein et al.

(2010), and Furfaro & Saurel (2016) for details. The local saturation condition p = p sat(T ), a

consequence of g1(T , p) = g2(T , p), is anyway valid in almost all liquid–vapor interface situations.

Therefore, when dealing with resolved interfaces, local thermodynamic equilibrium is enforced by

taking ν → ∞. This treatment is simple and accurate enough to determine the amount of liquid

and vapor at saturation when the energy needed for phase change is already present in the liquid.

This is the case of cavitating and flashing flows, as discussed by Saurel et al. (2016). A method to

deal with stiff phase transition (ν → ∞) is summarized in Section 3.

2.4.3. Boiling flows. When dealing with boiling flows, modeling of additional physics is needed

because the energy responsible for phase change is not present initially in the liquid but comes

from external boundaries. Adding heat diffusion and buoyancy renders the model appropriate

for the computation of boiling flows. However, when heat diffusion is considered, temperature

becomes continuous at interfaces, unlike interfaces with simple mechanical contact. The previous

formulations involving two temperatures may be reduced to a single temperature model, which is

easier to solve because the nonconservative volume fraction equation vanishes. The formulation

uses Equation 37 and considers gravity and heat conduction effects in the momentum and energy

equations (Le Martelot et al. 2014), resulting in

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ p − ∇ · (σW) = ρg, 38.

∂ρ Ẽ

∂t
+ ∇ · [(ρ Ẽ + p)u] − ∇ · (σW · u + λc ∇T ) = ρg · u, 39.

where g is the gravity acceleration vector, λc = α1λ1 + α2λ2 represents the mixture thermal

conductivity, and Ẽ is defined in Equation 35. This system is closed by the mixture EOS

p(ρ, e , Y1) =
A1 + A2 − (P∞,1 + P∞,2)

2
+

√

1

4

[

A2 − A1 − (P∞,2 − P∞,1)
]2

+ A1 A2 40.



where

Ak =
Yk (γk − 1) Cv,k

Y1Cv,1 + Y2Cv,2

[

ρ(e − q ) − P∞,k

]

and q = Y1q1 + Y2q2. This EOS is derived from mixture density and internal energy defi-

nitions under the constraints of equal pressures and equal temperatures. One can verify that

Equations 36 and 37 are hyperbolic and possess the entropy equation,

∂ρs

∂t
+ ∇ ·

(

ρs u − λc
1

T
∇T

)

=
ρν(g2 − g1)2

T
+ λc

(∇T )2

T 2
, 41.

which satisfies the second law of thermodynamics.

3. NUMERICAL METHODS

The mathematical structure of the previous formulations can be described according to the fol-

lowing generic representation:

∂Q

∂t
+ ∇ · F(Q) + B(Q) · ∇Q = S(Q), 42.

where Q is the vector of evolution variables (conserved and not conserved), F is a flux function, B

is the advection matrix of all differential terms that cannot be written in conservation form (i.e.,

not in F), and S is a source. In some of the previous formulations, B or S may be identical to

zero. It is assumed here that all intermediate quantities—uI, u′
I, pI, p ′

I, λ, µ, etc.—are expressed as

functions of Q and eliminated from the list of dependent variables in order for us to retain only

the evolution fields.

The most accepted method to solve Equation 42 for compressible two-phase flows is the finite

volume method (FVM). The FVM has proven to be a robust and reliable numerical approach for

the simulation of compressible flows in the presence of shock wave interactions. The basis of the

FVM is discussed in detail in standard references (Leveque 2002, Toro 2009). The starting point

is a decomposition of the computational domain � into disjoint cells Ci , which may be associated

with a structured or unstructured grid, and one then integrates Equation 42 over each cell and the

interval of time advancement, �t = tn+1 − tn, where tn denotes the times at which the solution is

calculated, resulting in

Q̄
n+1

i = Q̄
n

i −
1

V (Ci )

∫ tn+1

tn

∫

∂Ci

F(Q) · n dSdt −
1

V (Ci )

∫ tn+1

tn

∫

Ci

B(Q) · ∇Q dxdt

+
1

V (Ci )

∫ tn+1

tn

∫

Ci

S(Q) dxdt, 43.

where

Q̄
n

i =
1

V (Ci )

∫

Ci

Q(x, tn) dx, 44.

with V (Ci ) denoting the volume and ∂Ci the surface of cell Ci , respectively. The solution strategy

usually employed to completely define Equation 43 uses operator-splitting techniques (Glowinski

et al. 2010) according to which the flux, nonconservative, and source integrals are determined

sequentially, independently of each other (care must be used if time accuracy higher than first

order is desired). The flux term, second on the right-hand side of Equation 43, can be obtained

by the Godunov (flux difference–splitting) or the Boltzmann (flux vector–splitting) methods. The

details of each of these approaches are beyond the scope of this review; they can be found in

standard books on the FVM (Leveque 2002, Toro 2009).



The general strategy is typically as follows: (a) Use Q̄
n

i to reconstruct Q(x, tn) in each cell.

(b) Solve exact or approximate Riemann problems at the faces of the computational cells (ig-

nore sources). (c) Determine fluxes and nonconservative product contributions, perform the in-

tegrals in Equation 43, and advance to Q̄
∗

i by a Godunov-type method (or higher-order variant).

(d ) Integrate the source contribution (when present) from Q̄
∗

i to Q̄
n+1

i , typically assuming

1

V (Ci )

∫ tn+1

tn

∫

Ci

S(Q) dxdt ≈

∫ tn+1

tn
S(Q̄i (t)) dt. 45.

A difficult challenge in the simulation of compressible two-phase flows in the presence of shocks or

discontinuities is the nonconservative term, the third term on the right-hand side of Equation 43.

For Godunov-type methods based on Riemann problem solutions, the structure of the solution is

determined by both F and B; i.e., operator splitting cannot be used safely. The nonconservative

structure precludes the unique determination of wave speeds, and additional kinematic conditions

must be attached to the formulation (see Dal Maso et al. 1995). Only when shocks are not present

can one resort to the operator-splitting method and discretize the nonconservative integral di-

rectly. In the next section, we describe the general computational aspects that are pertinent to the

different models.

3.1. Methods for Baer-Nunziato-Type Models

BN-type models are perhaps the most delicate systems to solve among those presented above.

They are of particular interest when velocity and temperature are different at each side of the

interface. The Riemann problem has up to six or seven wave speeds depending on the variants

of the formulation, rendering its solution intricate. In addition, many nonconservative terms are

present, and the evolution of the nonconservative volume fraction cell average has no physical sense

in the presence of discontinuities. Several approaches have been developed and improved over the

years to address these difficulties. Saurel & Abgrall (1999a) constructed a Godunov-type method

for these equations, in conjunction with a treatment of nonconservative terms, that preserves

mechanical equilibrium at interfaces. They developed stiff pressure and velocity relaxation solvers

to ensure interface conditions of equal pressures and normal velocities, allowing the model to

deal with diffuse interfaces. Abgrall & Saurel (2003) introduced two improvements. First, the

seven waves present in the flow model are considered through a composite two-phase Riemann

solver, consisting of several Riemann solvers for the Euler equations. Second, the nonconservative

terms are solved accurately by enforcing that a local diffraction occurs each time a nonlinear wave

(shock or expansion) interacts with an interface, rendering both pressure and velocity locally

constant precisely at the location where the volume fraction is discontinuous. Thanks to this

diffraction process, computed with the help of a Riemann solver for the Euler equations, the

various nonconservative products are computed unambiguously. The only remaining issue is the

interpretation of the volume fraction cell average at shocks. Saurel et al. (2007a) and Petitpas et al.

(2007) studied this problem further but a general solution is still lacking. Tokareva & Toro (2010)

and Furfaro & Saurel (2015) have proposed methods that use the Harten-Lax-van Leer-contact

(HLLC)-type Riemann solver including nonconservative products, whereas Dumbser et al. (2010)

and Franquet & Perrier (2012) developed discontinuous Galerkin methods for the BN model. The

methods that follow consider flow models with a single interface velocity.

3.2. Methods for the Kapila Model and Its Variants

The flow model of Kapila is particularly interesting for simulating interfaces separating fluids.

It also has the ability to create interfaces dynamically. This capability is a consequence of the



nonconservative term on the right-hand side of Equation 12. When positive, the velocity diver-

gence term results in subscale bubble growth, giving the appearance of macroscopic interfaces

(e.g., gas cavities). However, this model has two important numerical difficulties. First, under

some conditions, the nonconservative divergence terms just mentioned may produce negative

volume fractions, resulting in immediate simulation failure. Second, the manner by which shock

energy is partitioned between the phases may be ambiguous.

The PNE formulation of Saurel et al. (2009) addressed the first issue by replacing the noncon-

servative term in Equation 12 with the relaxation one in Equation 20. This was achieved at the cost

of inserting extra energy equations to compute pressure imbalance. The method of Saurel et al.

(2009) fits in the frame of Equation 43, where a specific HLLC-type Riemann solver is built based

on the sound speed of the PNE model. The hyperbolic step is followed by pressure relaxation

to reach the equilibrium pressure of the mixture. The method is simple and very robust, even in

extreme flow conditions.

A second issue for the Kapila model is related to shock relations. These relations are needed

when a shock propagates in a two-phase mixture, not when the interface separates two pure (or

nearly pure) fluids. In the single-phase limit, the correct shock speeds are computed, because the

model tends to the Euler equations. Difficulties arise when the two phases are in nonnegligible

proportions (e.g., solid alloys, composite materials, or granular mixtures). Saurel et al. (2007b)

obtained these relations in the weak shock limit. The corresponding system of jump relations

reads

Yk = Y 0
k , 46.

ρ(u − ) = ρ0(u0 − ) = m, 47.

p − p0 + m2(v − v0) = 0, 48.

ek − e0
k +

p + p0

2
(vk − v0

k ) = 0, 49.

where  is the shock speed and v = 1/ρ the specific volume. Variables with superscript 0 denote the

state upstream of the shock. A Riemann solver based on Equations 46–49 can be found in Petitpas

et al. (2007), but imposing the shocked state in a given unsteady computation is challenging.

Indeed, the cell average of the volume fraction produces skid effects and the (strong) shock becomes

a succession of weak shocks. Saurel et al. (2009) derived a method based on interphase artificial

heat exchanges to correctly partition the shock energy among the phases. Petitpas et al. (2009)

derived another simpler, more general method that relies on extra transport equations relative to

the Hugoniot pole (p0, v0
k ), given by

∂p0

∂t
+ u · ∇ p0 = 0,

∂v0
k

∂t
+ u · ∇v0

k = 0. 50.

These pole coordinates are used in the energy jump relation ek − e0
k + (p + p0)(vk − v0

k )/2 = 0

and are directly used in the pressure relaxation solver, based on

ek(p , vk) − e0
k (p0

k , v0
k ) + p̄(vk − v0

k ) = 0, k = 1, 2,

with α1 + α2 = 1, where p̄ = p (the relaxed pressure) at any point and p̄ = (p + p0)/2 inside

the shock layer that needs detection with the PNE flow model. Petitpas et al. (2009) and Schoch

et al. (2013) give the various details. However, this method has an important limitation because

the considered shock must propagate in a uniform mixture. Imposing given shock conditions in

this nonconservative flow model with general initial conditions is still an open research area. But

it is not a limitation for the computation of flows with interfaces between (nearly) pure fluids.



3.3. Methods for Models in Both Temperature and Pressure Equilibria

These models are used in cavitating and boiling flows. The additional temperature equilibrium

condition implies that one of the partial differential equations is not needed. The best option is

to remove the volume fraction equation that is nonconservative. The flow model now involves

four partial differential equations (two mass equations, one mixture momentum equation, and

one mixture energy equation) and is fully conservative and hyperbolic. Excluding surface tension

terms that need special care (Perigaud & Saurel 2005), the numerical approximation of this flow

model is straightforward. The HLLC Riemann solver is recommended and is used with the speed

waves of the Kapila model, which are easier to compute than that of the temperature–pressure

equilibrium model. Better stability and robustness are obtained because these wave speeds are

greater than that of the temperature–pressure equilibrium model. Details of the overall algorithm

are provided by Saurel et al. (2016).

3.4. Approach for Phase Transition

For given mass and energy of a two-phase mixture in both temperature and pressure equilibrium,

the requirement that the Gibbs free energy is equal for the two phases,

g1(T , p) = g2(T , p), 51.

provides enough information to determine the thermodynamic state and concentrations. The

specific volume and internal energy of the mixture can be expressed in terms of the saturation

pressure p = p sat(T ) or temperature T = T sat(p), given by

vmix = Y1v
sat
1 (p) + (1 − Y1)vsat

2 (p), 52.

emix = Y1e sat
1 (p) + (1 − Y1)e sat

2 (p). 53.

This system involves two unknowns, p and Y1, and it is simple to solve unless the thermodynamic

state crosses the phase diagram boundaries into one of the single phases. Rather than solving

this nonlinear system, a particularly simple and robust alternative method has been proposed by

Chiapolino et al. (2017b). It is based on a minmod-type procedure applied to the mass transfer

source term of Equation 37 expressed equivalently as

∂ρY1

∂t
+ ∇ · (ρY1u) = ρν(Y ∗

1 − Y1), 54.

where Y ∗
1 is the mass fraction at thermodynamic equilibrium and ν is a relaxation parameter that is

taken to be very large. From the definitions given in Equations 52 and 53, the following estimates

of the mass fraction at equilibrium are determined:

Y m
1 =

vmix − vsat
2

vsat
1 − vsat

2

, Y e
1 =

emix − e sat
2

e sat
1 − e sat

2

. 55.

The variations between the current local mass fraction are computed as δY m
1 = Y m

1 − Y1 and

δY e
1 = Y e

1 − Y1. These two variations may have the same sign or opposite sign, and their product,

χ = δY m
1 δY e

1 , can be used to estimate the mass fraction at equilibrium by

Y ∗
1 =

{

Y1, if χ < 0,

Y1 + sgn(δY m
1 ) min(

∣

∣δY m
1

∣

∣ ,
∣

∣δY e
1

∣

∣), otherwise.
56.



The mass fraction Y1 is then set to the equilibrium estimate value Y ∗
1 . This method is particularly

simple to manage, even at single phase boundaries. An extension to multicomponent gas mixtures

is given by Chiapolino et al. (2017a).

3.5. Minimizing Numerical Smearing

DIMs based on the models presented above are simple and efficient in a wide range of com-

plex flow situations, even at high-pressure, -temperature, and -velocity conditions (see Section 4).

However, their numerical implementation with shock-/interface-capturing numerical methods

tends to produce solutions that exhibit excessive numerical diffusion. This can be seen clearly in

low-speed transient conditions. Several approaches have been developed to alleviate this weak-

ness. Here, we highlight some of the solutions that have been successfully used to prevent the

artificial smearing of contact interfaces by capturing methods in resolved-interface simulations.

For simplicity, we refer to αk as φ below, unless stated otherwise, and consider the behavior of

the volume fraction–governing equation surrounding an interface, which is usually detected by

requiring that

φ(1 − φ) > ǫ,

where ǫ is typically chosen in the range 10−2–10−4.

3.5.1. Interface compression technique. The idea behind the compression technique is to

modify the volume fraction equation (here for the Euler model) as follows:

∂φ

∂t
+ u · ∇φ = Uo n · ∇ [ǫh |∇φ| − φ(1 − φ)] , 57.

where Uo is a mobility parameter, usually taken to be large with respect to the characteristic

speeds in the flow, ǫh is a length scale that sets the desired thickness of the interface, whose chosen

value should be larger than the grid spacing, and n = ∇φ/|∇φ| is the local normal vector of the

interface. The term on the right-hand side of Equation 57 dominates when Uo is large and drives

the profiles of φ to the equilibrium profile, defined by the vanishing of the term in square brackets in

Equation 57, given by

φ =
1

2

[

1 + tanh

(

n

2ǫh

)]

,

where n denotes a normal coordinate to the interface. This idea was first proposed by Olsson et al.

(2007) in the context of incompressible flow, extended by Shukla et al. (2010) to compressible

flow, and improved for thermodynamic consistency and extended to the Kapila model by Tiwari

et al. (2013). Figure 2a,d shows a comparison of a shock in water, generated by a region of

40-MPa overpressure, interacting with an air cavity without and with interface compression,

respectively (Shukla et al. 2010). Improvements in the solution with interface compression are

self-explanatory. In this example, the compression terms were discretized with a second-order

centered scheme. Shukla (2014) discussed efficient techniques for solving the volume fraction

equation with compression for large Uo .

3.5.2. Interface sharpening technique. The second method is also an Eulerian-sharpening

algorithm referred to as the tangent of hyperbola for interface capturing (THINC) (see Shyue &
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b c

d
With compression With sharpening Overbee

e f

Figure 2

Simulation results without (a–c) and with (d–f ) compression. (a,d ) Volume fraction comparison of
shock–bubble interaction, adapted with permission from Shukla et al. (2010). (b,e) Schlieren of density for
shock interaction simulation with a R22 gas bubble, adapted with permission from Shyue & Xiao (2014).
(c,f ) Unstructured grid simulation results of shock interaction with a gas bubble. In each row, the same
resolution was used in corresponding left and right simulations, with the shock traveling from left to right,
but unfortunately the conditions and resolution varied from the top row to the bottom row.

Xiao 2014). This technique was first applied to the Allaire et al. (2002) model. The key idea of this

method is to replace the linear reconstruction of φ(x) from the cell-averaged φ̄i , used in second-

order MUSCL-type (monotonic upstream-centered scheme for conservation laws) methods, with

a nonlinear reconstruction of the form

φ(x) =
1

2

{

1 + tanh

[

β

(

x − xi−1/2

�x

)

− x̃o

]}

, 58.

here exemplified for a one-dimensional (1D) arrangement in the cell [xi−1/2, xi+1/2] with φ̄i in-

creasing in the positive x direction, where x̃o is the unknown location of the interface and β ≈ 2

is a user parameter. Imposing the conservation constraint on Equation 58, given by

φ̄i =
1

�x

∫ xi+1/2

xi−1/2

φ(x) dx, 59.
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Figure 3

First-order Overbee (solid line) and second-order Superbee (dashed line) limiters and the boundaries of the
first- and second-order total variation diminishing (TVD) regions.

on the cell Ci with �x = xi+1/2 − xi−1/2 and inverting for the unknown x̃o , we have

x̃o = tanh−1 [

α − δ exp(β(2φ̄i − 1))
]

, 60.

where α = (tanh β)−1 and δ = (sinh β)−1. Once x̃o is known, φ(x) can be evaluated at any x from

Equation 58, as required to determine numerical fluxes. This carries over transparently to high-

order methods. An example of the method applied to a Mach 1.22 shock wave traveling over an

R22 gas bubble is shown in Figure 2b,e.

3.5.3. Total variation diminishing limiter technique. Chiapolino et al. (2017c) described a

third method recently developed to sharpen interfaces in unstructured meshes. This approach

can be extended to an arbitrary number of fluid components and is based on the MUSCL recon-

struction scheme applied to the system of Equations 20–24. First, the limiter function of all fields

is set to zero in the interfacial zone, and second, a first-order total variation diminishing (TVD)

limiter is used for φ. Figure 3 shows the classical representation of the limiter function θ as a

function of the slope ratio r (see Leveque 2002 for discussion about limiters). This approach is

unusual in the context of MUSCL-type schemes, where gradient limiters always belong to the

second-order TVD region. Here, the limiter used for volume fraction computation partly resides

outside the second-order region and consequently is inappropriate for smooth flows, but behaves

very well for discontinuous fields like the volume fraction at interfaces. Figure 2c,f shows results

from an example simulation for a Mach 1.5 shock interacting with a Krypton air bubble using an

unstructured triangle-based mesh. The interesting point to note is the difference between com-

puted results with the Superbee limiter (Figure 2c) and the new Overbee limiter (Figure 2f ), the

latter showing clear improvements. When time evolves, the solution with the Superbee limiter

becomes increasingly diffused, whereas that obtained with the Overbee limiter remains sharp.
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Figure 4

Volume fraction iso-surface comparison of collapsing bubble with (a) low-order (i.e., second-order HLLC)
and (b) high-order (i.e., fifth-order, weighted essentially nonoscillatory) methods. The same grid was used in
both simulations, and the volumes of the two bubbles are nearly identical. Adapted with permission from
Tiwari et al. (2013). Abbreviation: HLLC, Harten-Lax-van Leer-contact.

3.6. Numerical Anisotropy

The methods described in previous sections can be used in conjunction with structured or un-

structured grids and for problems concerned with mixtures or resolved interfaces. In addition,

one can use the formulations previously discussed for simulations of coarse (engineering) or fine

(research) levels of detail or complexity. If one is interested in highly accurate simulations, espe-

cially for resolved interfaces, it is desirable to employ advanced numerical methods. This pertains

to low numerical dissipation but also to low phase errors and low geometrical anisotropy errors

because the flows of interest can quickly become geometrically complex. Minimizing numerical

anisotropy (the imprinting of the grid) helps to preserve geometrical detail in these simulations.

This can be accomplished by the use of approximately isotropic discretization methods [see the

wave propagation method (Leveque 1997)], or simply by utilizing high-order methods. For exam-

ple, Figure 4 shows a comparison of a spherical bubble undergoing radial collapse computed with

the same mesh and with low-order (second-order HLLC) and high-order (fifth-order, weighted

essentially nonoscillatory) numerical methods. An initially spherical bubble residing in a Cartesian

cubic mesh implodes due to higher pressure outside the bubble; the results shown correspond to

the time when the bubble reached its minimum size (see Tiwari et al. 2013 for details). Evidently,

the high-order method preserves the sphericity of the bubble much better.

4. SOME RECENT RESULTS

In this section, we briefly discuss some recent applications of DIMs to various physical sit-

uations. Undoubtedly, the problem that has received most attention is shock–bubble interac-

tion, followed by single bubble and cloud cavitation. Shock–bubble interaction has been studied

for many decades, first in two dimensions and only more recently using 3D simulations. The

substantial literature concerned with simulations of 2D shock–bubble interactions is not reviewed

here due to space limitations, but readers are referred to Johnsen & Colonius (2009) for some

further references. More recently, Hejazialhosseini et al. (2013) simulated a 3D shock-bubble in-

teraction using the Kapila model. Meng (2016) also simulated a 3D shock–bubble interaction using

a two-phase Euler model in the stripping breakup regime without what we call relaxation terms,

but using the THINC interface sharpening method of Shyue & Xiao (2014). Figure 5 shows

snapshots of these bubbles after the interaction with the shock. One can appreciate the complex
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Figure 5

Shock–bubble interaction simulations from (a) Hejazialhosseini et al. (2013), with the shock going from left to right, and (b) Meng
(2016), with the shock going from right to left and with isosurfaces of positive (red ) and negative (blue) azimuthal vorticity indicated.
Adapted with permission from Hejazialhosseini et al. (2013) and Meng (2016), respectively.

breakup process and the formation of small-scale secondary bubbles, as well as the generation of

vorticity.

Another situation of interest is the collapse of a bubble cloud near a wall (due to initial over-

pressure inside the bubbles). We highlight the work of Rossinelli et al. (2013) that has taken the

Kapila model to new extremes by simulating the collapse of 15,000 bubbles near a wall. Figure 6

shows a snapshot of that simulation, which was possible thanks to algorithmic improvements rec-

ognized by the Association for Computing Machinery’s 2013 Gordon Bell Prize. Finally, Tiwari

et al. (2015) performed simulations of a 50-bubble-cluster collapse using the Kapila model and

Figure 6

A snapshot from the simulation of a 15,000-bubble-cluster collapse near a wall. Reproduced with permission
from Rossinelli et al. (2013).
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Figure 7

Simulation of liquid oxygen fragmentation (Y1) by a coaxial hydrogen gaseous co-flow (Y2) in conditions of cryotechnic engine
combustion restart. Mass fraction contours shown (a) without phase change Y1, (b) with phase change Y1, (c) with phase change Y1 + Y2,
and (d ) with phase change Y2. Readers are referred to Chiapolino et al. (2017a) for details.

the interface compression of Section 3.5.1. The focus of this investigation was to understand the

induced overpressure at the wall, where one expects the most damage.

Figure 7 shows the atomization of an oxygen liquid jet with a coaxial hydrogen gas flow in

the absence of gravity and surface tension. This is a representative application of cryogenic fuel

injection in the combustion chamber of space launchers. The figure compares the effect of phase

change on the liquid oxygen dynamics. One observes that modeling phase change effects at the

interphase of the oxygen and hydrogen fluids results in, given the same nominal conditions, very

distinct spreading, concentration evolution, and interactions. Figure 8 considers the same flow

model in the presence of both gravity and surface tension effects. Because the Mach number is

very low, implicit time integration and preconditioning are required (Le Martelot et al. 2013).

Finally, we conclude with a recent application of the Kapila model and its PNE variant to

the simulation of hyperelastic materials (Favrie et al. 2009). Additional equations are obviously

needed to express the solid phase stress tensor, whereas the plastic transition is considered fol-

lowing Ndanou et al. (2015). The Kapila model enables the dynamic creation of interfaces, as a

0 ms 50 ms 100 ms 200 ms 300 ms 400 ms

Figure 8

Simulation of boiling flow with a liquid initially at saturation and containing three nucleation sites. Constant and uniform heat flux is
imposed at the bottom wall. Vapor mass fraction contours are shown at 0, 50, 100, 200, 300 and 400 ms. Adapted with permission from
Le Martelot et al. (2013).
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Figure 9

Impact of an iron spherical projectile onto an aluminum plate at 1,000 m/s. In addition to shock waves and interface motion, cracks
appear and propagate dynamically due to the capability of the flow model to deal with the dynamic appearance of the interface in
conjunction with plastic transformation. Adapted with permission from Ndanou et al. (2015).

consequence of pressure relaxation effects, which, when combined with plastic transition, allows

the modeling of dynamic fragmentation and crack propagation. Figure 9 shows an example of a

high-speed impact of a solid projectile on a solid plate.

SUMMARY POINTS

1. DIMs combine the benefits of shock-/interface-capturing numerical methods, often

based on Riemann solvers, with specialized formulations of the multicomponent inviscid

compressible equations.

2. The fluids are allowed to interpenetrate across a small length scale while maintaining

correct interface conditions.

3. Contrary to single-phase flow, the resulting models are not conservative in nature, and

this necessitates special numerical methods.

4. Generalization to problems with surface tension, phase change, boiling, and cavitation

has been implemented. More complex physical situations are still in development.

FUTURE ISSUES

1. It would be desirable to determine which treatment of nonconservative terms in DIMs’

governing equations is best and, in particular, to understand which methods lead to

converged solutions, both in 1D and in multidimensional problems. For example, it is

hard to impose a given system of shock relations at the discrete level. This challenging

problem is compounded by the potential nonlinearities present in the EOSs, which may

complicate the stability of existing methods.

2. A comparative analysis should be performed to determine which sharpening/compression

method produces the best results under a wide range of conditions or, for lack of a general

answer, to determine which methods work best in different circumstances.



3. Robust solvers should be designed for flows at extremely high and low densities to ensure

realizability of all fields in the presence of strong shocks and near vacuum conditions

(cavitation).

4. Methods for low–Mach number flows should be improved. This requires the develop-

ment of efficient preconditioning techniques for two-phase, DNS-like flow simulations.

5. Simple and well-posed (convex) EOSs should be developed in the presence of phase

change. Because DIMs are hyperbolic, cubic EOSs have to be reconsidered, modified,

and simplified in order to be useful in relaxation solvers (to ensure mechanical and

thermodynamical equilibrium).

6. The existing methods should be extended to more complex fluids, e.g., non-Newtonian

materials, elastic–plastic fluids with damage.

7. There is a growing need to develop well-defined test problems that possess unique solu-

tions in order to validate the numerical methods. It is currently not routine in two-phase

flow simulations to carry out convergence studies with grid refinement in multidimen-

sional problems.

8. The multiscale nature of two-phase flows necessitates advanced and adaptive numeri-

cal methods: dynamic grid refinement and method order accuracy adaptation, efficient

load balancing on multiprocessor supercomputers, and the development of hybrid meth-

ods that can blend averaged and resolved-interface formulations (e.g., for secondary

atomization).
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