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Abstract. Given a parabolic cylinder Q = (0, T ) × Ω, where Ω ⊂ RN is a
bounded domain, we prove new properties of solutions of

ut −∆pu = µ in Q

with Dirichlet boundary conditions, where µ is a finite Radon measure in Q.

We first prove a priori estimates on the p-parabolic capacity of level sets of u.

We then show that diffuse measures (i.e. measures which do not charge sets
of zero parabolic p-capacity) can be strongly approximated by the measures

µk = (Tk(u))t − ∆p(Tk(u)), and we introduce a new notion of renormalized

solution based on this property. We finally apply our new approach to prove
the existence of solutions of

ut −∆pu + h(u) = µ in Q,

for any function h such that h(s)s ≥ 0 and for any diffuse measure µ; when h is

nondecreasing we also prove uniqueness in the renormalized formulation. Ex-

tensions are given to the case of more general nonlinear operators in divergence
form.

Key words: parabolic capacity, measure data, nonlinear equations with absorp-
tion, renormalized solutions.

1. Introduction and main results

Given a bounded domain Ω ⊂ RN and T > 0, let Q = (0, T )×Ω. We denote by
M(Q) the vector space of all finite Radon measures in Q equipped with the norm
‖µ‖M(Q) = |µ|(Q). This paper is motivated by the study of the evolution problem

(1.1)


ut −∆pu+ h(u) = µ in Q,
u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω,

where −∆pu = −div
(
|∇u|p−2∇u

)
is the p-Laplace operator, p > 1, µ ∈ M(Q),

u0 ∈ L1(Ω) and h : R → R is a continuous function such that h(s)s ≥ 0 for large
|s|. It is well known (see e.g. [1]) that problem (1.1) may not have a solution for
every measure µ (unless some growth restriction is imposed on h). As suggested
by the stationary case (see [9]), if one looks for a “general solvability” result (i.e.
existence of solutions of (1.1) for any function h), then it is necessary to restrict
the attention to the class of measures µ which do not charge sets of zero capacity.
Here, the notion of capacity which is relevant is the so-called parabolic p-capacity.
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To be precise, we recall that for every p > 1 and every open subset U ⊂ Q, the
p-parabolic capacity of U is given by (see [21, 13])

(1.2) capp(U) = inf
{
‖u‖W : u ∈W, u ≥ χU a.e. in Q

}
,

where

(1.3) W =
{
u ∈ Lp(0, T ;V ) : ut ∈ Lp′(0, T ;V ′)

}
,

being V = W 1,p
0 (Ω) ∩ L2(Ω) and V ′ its dual space. As usual W is endowed with

the norm

(1.4) ‖u‖W = ‖u‖Lp(0,T ;V ) + ‖ut‖Lp′ (0,T ;V ′).

The p-parabolic capacity capp is then extended to arbitrary Borel subsets B ⊂ Q
as

capp(B) = inf
{

capp(U) : B ⊂ U and U ⊂ Q is open
}
.

Henceforth, we call a finite measure µ diffuse if it does not charge sets of zero p-
parabolic capacity, i.e. if µ(E) = 0 for every Borel set E ⊂ Q such that capp(E) = 0.
The subspace of all diffuse measures in Q will be denoted by M0(Q).

One of our goals is to prove that (1.1) admits a solution for every diffuse measure
and every h satisfying the sign condition. In the elliptic case, such result can
be proved using the representation of diffuse measures as elements in L1(Ω) +
W−1,p′(Ω) (see [8]). Moreover, if h is increasing, then (entropy or renormalized)
solutions are unique.

In the parabolic case, the situation is more delicate. According to a representa-
tion theorem for diffuse measures proved in [13], for every µ ∈ M0(Q) there exist
f ∈ L1(Q), g ∈ Lp(0, T ;V ) and χ ∈ Lp′(0, T ;W−1,p′(Ω)) such that

(1.5) µ = f + gt + χ in D′(Q).

In the same paper, in order to deal with nonlinear equations where the source
term is a diffuse measure, the authors introduced a renormalized formulation which
is based on this representation. However, in contrast with the elliptic case, such
representation, as well as the formulation suggested in [13], are not suitable to
handle the case of absorption terms as in (1.1). The main reason is that a solution
of

ut −∆pu = µ = f + χ+ gt in Q
is meant in the sense that v = u− g satisfies

vt −∆p(v + g) = f + χ in Q.

The same approach for problem (1.1) would transform the absorption term h(u)
into h(v+ g). However, since no growth restriction is made on h, this term can not
be easily handled if g is not bounded.

Since the decomposition (1.5) is not uniquely determined, a natural question
would be whether every diffuse measure can be written as (1.5) for some g ∈ L∞(Q).
Unfortunately the answer is no, as we show in Example 3.1 below.

In this paper, we overcome this obstruction by developing a different approach
to deal with diffuse measures. In this way we establish new properties of diffuse
measures (related to different types of approximations) and new results for parabolic
equations (including (1.1)). Both issues are closely related as we will see later.
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As far as diffuse measures are concerned, one of the results that we prove is
that every µ ∈ M0(Q) can be strongly approximated by measures which admit
decomposition (1.5) with g ∈ L∞(Q).

Theorem 1.1. Let µ ∈ M0(Q). Then, for every ε > 0 there exists ν ∈ M0(Q)
such that

(1.6) ‖µ− ν‖M(Q) ≤ ε and ν = wt −∆pw in D′(Q),

where w ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q).

Not only is this density result interesting in itself, but also the construction and
the properties of the approximation ν are important. Indeed, the function w is
constructed as the truncation of a nonlinear potential of µ (we call in this way a
function u such that ut−∆pu = µ). As a consequence, the approximation property
for the measure µ is linked to a property of its nonlinear potential.

The main ingredient in the proof of Theorem 1.1 is a capacitary estimate on
the level sets of u. Such estimates for solutions of parabolic equations have an
independent interest and read as follows.

Theorem 1.2. Given µ ∈M(Q)∩Lp′(0, T ;W−1,p′(Ω)) and u0 ∈ L2(Ω), let u ∈W
be the (unique) weak solution of

(1.7)


ut −∆pu = µ in Q,

u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω.

Then,

(1.8) capp({|u| > k}) ≤ Cmax
{

1

k
1
p

,
1

k
1
p′

}
∀k ≥ 1,

where C > 0 is a constant depending on ‖µ‖M(Q), ‖u0‖L1(Ω) and p.

In (1.8) we have identified u with its cap-quasicontinuous representative, which
exists since u ∈ W (see [13]). In particular, the quantity capp({|u| > k}) is well-
defined.

Given a diffuse measure µ, we apply Theorem 1.2 to construct a measurable
function u : Q→ R such that the truncations Tk(u) satisfy

(1.9) (Tk(u))t −∆p(Tk(u)) = µ+ λk in Q

for a sequence of measures (λk) such that

(1.10) ‖λk‖M(Q) → 0.

We deduce in particular the strong approximation property given in Theorem 1.1.
On the other hand, this result also motivates an alternative formulation of the
concept of renormalized solution of

(1.11)


ut −∆pu = µ in Q,
u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω.

in terms of properties (1.9)–(1.10). Such a formulation, no more based on the
decomposition (1.5), can be extended to problem (1.1) straightforwardly and turns
out to be suitable to tackle the absorption problem.
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We prove that this formulation extends the one given in [4] for L1-data and,
in case of problem (1.11), is equivalent with the definition for diffuse measures
given in [13] (and therefore equivalent with the entropic formulation in [14]). This
formulation we use is largely inspired by (and it is very close to) other versions
of renormalized formulations in the literature as, for example, in [12] for elliptic
equations and [3] for conservation laws.

We obtain in this way a new approach to solve nonlinear problems involving
diffuse measures:

Theorem 1.3. Let µ ∈ M0(Q) and u0 ∈ L1(Ω). Let h : R → R be a continuous
function satisfying

h(s)s ≥ 0 for every |s| > L,

for some L ≥ 0. Then, (1.1) admits a renormalized solution (which is, in particular,
a distributional solution). If in addition h is nondecreasing, then the renormalized
solution is unique.

The proof of Theorem 1.3 strongly relies on the new ingredients developed so far.
The existence of a solution u is obtained as limit of solutions un corresponding to
a smooth approximation µn of the measure µ. In this procedure the difficult point
is to prove the L1-convergence of the lower order term h(un). When the sequence
(µn) is strongly (or even weakly) converging in L1(Q), this is usually deduced (see
e.g. [16]) from the estimate

(1.12)
∫

{|un|>k}

|h(un)| ≤
∫

{|un|>k}

|µn|,

using the equi-integrability of (µn). In our case we extend this idea in the follow-
ing sense: the level sets {|un| > k} are proved to have uniformly small capacity
(Theorem 1.2) and the sequence (µn) is chosen to be equidiffuse (see Definition 3.2
below), a concept introduced in [10]; see also [18]. An example of such sequence is
given by the convolution µn = ρn ∗ µ, where the measure µ is diffuse (see Propo-
sition 3.2 below). Equidiffuse sequences play the same role for the capacity, as
do equi-integrable sequences for the Lebesgue measure. Therefore, coupling the
capacitary estimates with the equidiffuse property of (µn), the right-hand side of
(1.12) is uniformly small, implying the L1-convergence of (h(un)). Finally, when h
is nondecreasing, we obtain uniqueness by proving that the L1-contraction property
holds for renormalized solutions.

The article is organized in the following way. In Section 2, we prove Theo-
rem 1.2. In Section 3, we discuss some properties of diffuse measures related to the
representation (1.5) and we prove Theorem 1.1. In Section 4, we discuss our new
renormalized formulation of problem (1.11): definition, existence and uniqueness
and some properties of renormalized solutions, including a generalized version of
the capacitary estimates of Theorem 1.2 (see Proposition 4.8). In Section 5 we
turn our attention to problem (1.1) and we prove Theorem 1.3. These results will
be actually proved in the context of nonlinear monotone operators in divergence
form. We will briefly sketch in Section 6 some extension to the case of nonmonotone
operators.
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Part of the results of Sections 2 and 3 were announced (and proved for the case
of positive measures) in [20], nevertheless we include here all the details and give a
self contained exposition for the sake of clarity.

2. Capacitary estimates: proof of Theorem 1.2

Let us first recall the following fact that will be used later. A set E ⊂ Q is called
cap-quasi open if for every ε > 0 there exists an open set Aε ⊂ Q such that E ⊂ Aε

and capp(Aε \ E) < ε. The interest in such sets arises since, if a function z has a
cap-quasi continuous representative, then its level sets {(x, t) ∈ Q : z(x, t) > a} are
cap-quasi open. It is well known that the capacity of cap-quasi open sets can be
estimated as follows

Lemma 2.1. Let E be a cap-quasi open subset in Q. Then

capp(E) ≤ inf
{
‖v‖W : v ∈W, v ≥ χE a.e. in Q

}
Proof. Let ε > 0 and Aε be an open set such that E ⊂ Aε and capp(Aε \ E) < ε.
By definition of capacity, there exists another open set Uε such that Aε \ E ⊂ Uε

and capp(Uε) < ε. Then, let wε ∈ W such that wε ≥ χUε
a.e. and ‖wε‖W ≤ ε.

Consider the open set Aε ∪ Uε; for any v ≥ χE a.e. we have v + wε ≥ χUε∪Aε a.e.
in Q, hence by (1.2)

capp(Uε ∪Aε) ≤ ‖v‖W + ‖wε‖W ≤ ‖v‖W + ε.

We deduce that
capp(E) ≤ capp(Aε ∪ Uε) ≤ ‖v‖W + ε,

and letting ε→ 0 we get
capp(E) ≤ ‖v‖W .

Since v is arbitrary we conclude. �

Throughout this paper we consider a sequence of mollifiers (ρn) such that for
every n ≥ 1,

(2.1) ρn ∈ C∞c (RN+1), supp ρn ⊂ B 1
n
(0), ρn ≥ 0 and

∫
RN+1

ρn = 1.

Given µ ∈M(Q), we define the convolution ρn ∗ µ for every (t, x) ∈ R× RN by

(ρn ∗ µ)(t, x) =
∫

Q

ρn(t− s, x− y) dµ(s, y).

Before proving Theorem 1.2, we recall that if u ∈ W , then u is a weak solution
of (1.7) if

(2.2)
∫ T

0

〈ut, v〉 dt+
∫

Q

|∇u|p−2∇u∇v dxdt =
∫ T

0

〈µ, v〉 dt ∀v ∈W,

where 〈·, ·〉 denotes the duality between V and V ′.
If µ ∈ M(Q) ∩ Lp′(0, T ;W−1,p′(Ω)), then (2.2) holds for every v ∈ Lp(0, T ;V ),

and actually for every r ∈ [0, T ] we have

(2.3)
∫ r

0

〈ut, v〉 dt+
∫ r

0

∫
Ω

|∇u|p−2∇u∇v dxdt =
∫ r

0

〈µ, v〉 dt ∀v ∈W,

for every v ∈ Lp(0, T ;V ).
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A useful identity we shall use is the following: if u ∈W , then

(2.4)
∫ t

s

〈ut, ψ
′(u)〉 dt =

∫
Ω

ψ(u(t)) dx−
∫

Ω

ψ(u(s)) dx,

for every s, t ∈ [0, T ] and every function ψ : R → R such that ψ′ is Lipschitz contin-
uous and ψ′(0) = 0. Indeed, since V = W 1,p

0 (Ω) ∩ L2(Ω), we have Lp′(0, T ;V ′) =
Lp′(0, T ;W−1,p′(Ω)) + Lp′(0, T ;L2(Ω)). Using the density of C∞c ([0, T ]×Ω) in W
(see e.g. [13, Theorem 2.11]) and the embedding W ⊂ C0([0, T ];L2(Ω)), one obtains
(2.4).

Proof of Theorem 1.2. We define, for any positive k,

Tk(s) = max
{
−k,min{k, s}

}
∀s ∈ R.

We divide the proof into a few steps.

Step 1. Estimates of Tk(u) in the space L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)).

For every τ ∈ R, let

Θk(τ) =
∫ τ

0

Tk(σ) dσ.

Take r ∈ [0, T ]. Applying (2.3) with v = Tk(u) and (2.4) with ψ = Θk, s = 0 and
t = r, we have∫

Ω

Θk(u)(r) dx+
∫ r

0

∫
Ω

|∇Tk(u)|p dx dt ≤ k‖µ‖M(Q) +
∫

Ω

Θk(u0) dx,

Observing that Tk(s)2

2 ≤ Θk(s) ≤ k|s|, ∀s ∈ R, we have

(2.5)
∫

Ω

[Tk(u)(r)]2

2
dx+

∫ r

0

∫
Ω

|∇Tk(u)|p dx dt ≤ k
(
‖µ‖M(Q) + ‖u0‖L1(Ω)

)
for any r ∈ [0, T ]. In particular, we deduce

(2.6) ‖Tk(u)‖2L∞(0,T ;L2(Ω)) ≤ 2kM and ‖Tk(u)‖p

Lp(0,T ;W 1,p
0 (Ω))

≤ kM,

where

(2.7) M = ‖µ‖M(Q) + ‖u0‖L1(Ω).

Step 2. Estimates in W .

In order to deduce some estimate in W , we use an idea from [21]. By standard re-
sults (see [17]), there exists a unique solution z ∈ L∞(0, T ;L2(Ω))∩Lp(0, T ;W 1,p

0 (Ω))
of the backward problem

(2.8)


−zt −∆pz = −2∆pTk(u) in Q,
z = Tk(u) on {T} × Ω,
z = 0 on (0, T )× ∂Ω.

Let us multiply (2.8) by z and integrate between τ and T . Using Young’s inequality
we obtain∫

Ω

[z(τ)]2

2
dx+

1
2

∫ T

τ

∫
Ω

|∇z|p dxdt ≤
∫

Ω

[
Tk(u)(T )

]2
2

dx+C

∫ T

τ

∫
Ω

|∇Tk(u)|p dxdt
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for every τ ∈ [0, T ]. Using (2.5) with r = T we deduce∫
Ω

[z(τ)]2

2
dx+

1
2

∫ T

τ

∫
Ω

|∇z|p dxdt ≤ Ck
(
‖µ‖M(Q) + ‖u0‖L1(Ω)

)
= CkM

for every τ ∈ [0, T ]. This implies

(2.9) ‖z‖2L∞(0,T ;L2(Ω)) + ‖z‖p

Lp(0,T ;W 1,p
0 (Ω))

≤ CkM.

Recall that V = W 1,p
0 (Ω) ∩ L2(Ω); thus,

‖z‖p
Lp(0,T ;V ) ≤ C

(
‖z‖p

Lp(0,T ;W 1,p
0 (Ω))

+ ‖z‖p
Lp(0,T ;L2(Ω))

)
.

We deduce from (2.9) that

(2.10) ‖z‖Lp(0,T ;V ) ≤ C
[
(kM)

1
p + (kM)

1
2

]
.

Moreover, the equation in (2.8) implies

‖zt‖Lp′ (0,T ;W−1,p′ (Ω)) ≤ C
(
‖z‖p−1

Lp(0,T ;W 1,p
0 (Ω))

+ ‖Tk(u)‖p−1

Lp(0,T ;W 1,p
0 (Ω))

)
.

Hence, using (2.6) and (2.9) we deduce

(2.11) ‖zt‖Lp′ (0,T ;W−1,p′ (Ω)) ≤ C (kM)
1
p′ .

Combining (2.10) and (2.11) we conclude that

(2.12) ‖z‖W ≤ Cmax{(kM)
1
p , (kM)

1
p′ },

where M is defined in (2.7).
Step 3. Proof completed for nonnegative data.

Let us assume that µ ≥ 0 and u0 ≥ 0; hence we have ut −∆pu ≥ 0, and u ≥ 0
in Q. We claim that

(2.13) (Tk(u))t −∆pTk(u) ≥ 0.

To prove (2.13), we consider the following smooth approximation of Tk(u): let us
fix δ > 0 and define Sk,δ : R → R by

(2.14) Sk,δ(s) =


1 if |s| ≤ k,

0 if |s| > k + δ,

affine otherwise,

and finally let us denote by Tk,δ : R → R the primitive function of Sk,δ, that is

(2.15) Tk,δ(s) =
∫ s

0

Sk,δ(σ) dσ;

notice that Tk,δ(s) converges pointwise to Tk(s) as δ goes to zero.
Let ϕ ∈ C∞c (Q) be a nonnegative function, and take T ′k,δ(u)ϕ as test function in

(2.2). We obtain, using that µ ≥ 0 and that Tk,δ(s) is concave for s ≥ 0,

−
∫ T

0

ϕtTk,δ(u) dt+
∫

Q

|∇u|p−2∇u · ∇ϕSk,δ(u) dxdt ≥ 0,

which yields (2.13) as δ goes to 0.
Combining (2.8) and (2.13) we obtain

(2.16) −zt −∆pz ≥ −(Tk(u))t −∆pTk(u).
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Since both z and Tk(u) belong to Lp(0, T ;W 1,p
0 (Ω)), a standard comparison argu-

ment (multiply both sides of (2.16) by (z − Tk(u))−) allows us to conclude that
z ≥ Tk(u) a.e. in Q. In particular, z ≥ k a.e. on {u > k}. On the other hand, since
u belongs to W , it has a unique cap-quasicontinuous representative (still denoted
by u), hence the set {u > k} is cap-quasi open and its capacity can be estimated
with Lemma 2.1. Therefore, we get

capp({u > k}) ≤
∥∥∥ z
k

∥∥∥
W
.

Using (2.12) we obtain (1.8).
Step 4. Comparison with µ+ and µ− when µ is a smooth function.

Let us consider the case where µ ∈ C∞(Q). Then, µ+ ∈M(Ω)∩Lp′(0, T ;W−1,p′(Ω))
and we can consider the unique solution v ∈W of the problem

vt −∆pv = µ+ in Q,
v = u+

0 on {0} × Ω,
v = 0 on (0, T )× ∂Ω.

By comparison principle we have v ≥ u. Using Step 3, we deduce that there exists
a nonnegative function z ∈W such that

z ≥ Tk(v) ≥ Tk(u)

and
‖z‖W ≤ Cmax

{
k

1
p , k

1
p′
}
,

where C = C(‖µ‖M(Q), ‖u0‖L1(Ω), p). Similarly, using the solution of (1.7) with
data −µ− and −u−0 , we deduce that there exists a nonnegative function w ∈ W
such that

Tk(u) ≥ −w
and

‖w‖W ≤ Cmax
{
k

1
p , k

1
p′
}
.

We have thus proved that there exist two nonnegative functions z, w ∈ W such
that

−w ≤ Tk(u) ≤ z and ‖z‖W + ‖w‖W ≤ Cmax{k
1
p , k

1
p′ },

where C depends on ‖µ‖M(Q), ‖u0‖L1(Ω) and p.
Step 5. Proof completed.

Let us fix θ ∈ C∞c (Q) and set µ̃ = θµ. By standard properties of convolutions (see
e.g. [13, Lemma 2.25]), given a sequence of mollifiers (ρn) we have ρn ∗ µ̃ ∈ C∞c (Q),

ρn ∗ µ̃→ µ̃ strongly in Lp′(0, T ;W−1,p′(Ω))

and
‖ρn ∗ µ̃‖M(Q) ≤ ‖µ̃‖M(Q) ≤ ‖µ‖M(Q).

Take now (θj) to be a sequence of C∞c (Q) functions such that θj ↑ 1, and consider
the solutions uj,n of the problem

(2.17)


(uj,n)t −∆puj,n = ρn ∗ (θjµ) in Q,
uj,n = u0 on {0} × Ω,
uj,n = 0 on (0, T )× ∂Ω.
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As n → ∞, the sequence (uj,n) converges in Lp(0, T ;W 1,p
0 (Ω)) to the solution uj

of (1.7) with θjµ as datum. Next, as j → +∞,

uj → u in L∞(0, T ;L1(Ω)).

This is a consequence of a standard L1-contraction argument. Indeed, subtracting
equations (1.7) and (2.17), and taking T1(uj,n − u) as test function, we get (note
that both uj,n and u belong to W ),∫

Ω

|uj,n − u|(t) dx

≤ C‖ρn ∗ (θjµ)− θjµ‖Lp′ (0,T ;W−1,p′ (Ω))‖T1(uj,n − u)‖Lp(0,T ;W 1,p
0 (Ω))

+ C

∫
Ω

T1(uj,n − u)(θj − 1) dµ,

which yields

‖(uj,n − u)(t)‖L1(Ω)

≤ C‖ρn ∗ (θjµ)− θjµ‖Lp′ (0,T ;W−1,p′ (Ω))‖T1(uj,n − u)‖Lp(0,T ;W 1,p
0 (Ω))

+ C‖(1− θj)µ‖M(Q).

Since for j fixed uj,n is bounded in Lp(0, T ;W 1,p
0 (Ω)), as n → +∞ the first term

in the right-hand side tends to 0, hence

‖(uj − u)(t)‖L1(Ω) ≤ C‖(1− θj)µ‖M(Q).

Since the latter term tends to zero as j →∞ by dominated convergence, we deduce
the convergence of uj to u.

By Step 4, there exist nonnegative functions zj,n and wj,n such that

−wj,n ≤ Tk(uj,n) ≤ zj,n

and
‖zj,n‖W + ‖wj,n‖W ≤ Cmax

{
k

1
p , k

1
p′
}
,

where C = C(‖ρn ∗ (θjµ)‖M(Q), ‖u0‖L1(Ω), p). Since

‖ρn ∗ (θjµ)‖M(Q) ≤ ‖µ‖M(Q),

the constant C can be chosen independently of n and j. The sequences (zj,n) and
(wj,n) being bounded in W , they converge weakly up to subsequences to nonnega-
tive functions z, w ∈W and almost everywhere in Q. Thus,

−w ≤ Tk(u) ≤ z a.e. in Q

and
‖z‖W + ‖w‖W ≤ Cmax{k

1
p , k

1
p′ },

where C = C(‖µ‖M(Q), ‖u0‖L1(Ω), p). Since u ∈ W , it admits a uniquely defined
cap-quasi continuous representative, hence the sets {u > k} and {u < −k} are
cap-quasi open. Using Lemma 2.1, we get

capp({|u| > k}) ≤ capp({u > k}) + capp({u < −k}) ≤
∥∥∥ z
k

∥∥∥
W

+
∥∥∥w
k

∥∥∥
W

which yields (1.8). �
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The same argument as above still holds for more general nonlinear operators.
Consider for example the problem

(2.18)


ut − div(a(t, x,∇u)) = µ in Q,
u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω,

where a : Q×RN → RN is a Carathéodory function (i.e., a(·, ·, ξ) is measurable on
Q for every ξ in RN , and a(t, x, ·) is continuous on RN for almost every (t, x) in
Q), such that the following holds:

(2.19) a(t, x, ξ) · ξ ≥ α|ξ|p,

(2.20) |a(t, x, ξ)| ≤ β[b(t, x) + |ξ|p−1],

(2.21) [a(t, x, ξ)− a(t, x, η)] · (ξ − η) > 0,

for almost every (t, x) in Q, for every ξ, η ∈ RN , with ξ 6= η, where p > 1, α and β
are two positive constants, and b is a nonnegative function in Lp′(Q).

We obtain in a similar way the following capacitary estimate:

Theorem 2.2. Assume that (2.19)–(2.21) hold. Given u0 ∈ L2(Ω) and µ ∈
M(Q) ∩ Lp′(0, T ;W−1,p′(Ω)), let u ∈ W be the (unique) weak solution of (2.18).
Then,

capp({|u| > k}) ≤ Cmax
{

1

k
1
p

,
1

k
1
p′

}
∀k ≥ 1,

where C > 0 is a constant depending on ‖µ‖M(Q), ‖u0‖L1(Ω), ‖b‖Lp′ (Q), α, β and
p.

The proof runs exactly as before, replacing ∆p with div(a(x, t,∇(·))) and using
in the standard way the coercivity condition (2.19) (e.g. in Step 1) and the growth
condition (2.20) (e.g. to estimate the right hand side in Step 2).

Let us stress that both Theorem 1.2 and Theorem 2.2 are meant to provide esti-
mates for usual weak solutions, this is why we asked that µ ∈ Lp′(0, T ;W−1,p′(Ω))
and that u0 ∈ L2(Ω) in the statements. However, the estimate only depends on the
norm of µ as a measure and of u0 in L1(Ω). Indeed, in Section 4 we will extend
this result, in a suitable generalized form (see Proposition 4.8), by considering the
larger framework of renormalized solutions.

3. Properties of diffuse measures and the approximation result

The representation result proved in [13] states the following: if µ is a diffuse
measure, then there exist f ∈ L1(Q), g ∈ Lp(0, T ;V ) and χ ∈ Lp′(0, T ;W−1,p′(Ω))
such that

(3.1) µ = f + gt + χ in D′(Q).

The possibility that the above decomposition holds for some g ∈ L∞(Q) has a
special interest, as it was also pointed out in [19]. In particular, one has the
following counterpart.

Proposition 3.1. Assume that µ ∈ M(Q) satisfies (3.1), where f ∈ L1(Q), g ∈
Lp(0, T ;V ) and χ ∈ Lp′(0, T ;W−1,p′(Ω)). If g ∈ L∞(Q), then µ is diffuse.
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Proof. Because of the inner regularity of µ, it suffices to prove that for any compact
set K ⊂ Q such that capp(K) = 0, µ(K) = 0. Now, if capp(K) = 0, then by
[13, Proposition 2.14] there exists a sequence of functions ψn ∈ C∞c (Q) such that
ψn ≥ χK and ‖ψn‖W → 0.

Take a smooth function Φ : R → R such that Φ(0) = 0, 0 ≤ Φ(s) ≤ 1, Φ(s) = 1
if s ≥ 1 and Φ′, Φ′′ are bounded in R. If we set ξn = Φ(ψn), then (ξn) is a sequence
of smooth functions such that ξn = 1 on K and 0 ≤ ξn ≤ 1 in Q. Moreover, we
have

(3.2) ξn → 0 in Lp(0, T ;V ).

Since (ξn)t = Φ′(ψn)(ψn)t, for every φ ∈ L∞(Q)∩Lp(0, T ;V ) with compact support
in Q we have∣∣∣∣∫

Q

(ξn)t φdxdt

∣∣∣∣ ≤ ‖(ψn)t‖Lp′ (0,T ;V ′)‖Φ
′(ψn)φ‖Lp(0,T ;V )

≤ ‖(ψn)t‖Lp′ (0,T ;V ′)

(
‖φ‖L∞(Q)‖Φ′′‖L∞(R)‖ψn‖Lp(0,T ;V ) + ‖Φ′‖L∞(R)‖φ‖Lp(0,T ;V )

)
.

By the strong convergence of (ψn) in Lp(0, T ;V ) and of ((ψn)t) in Lp′(0, T ;V ′),

(3.3) lim
n→∞

∫
Q

(ξn)t φdxdt = 0.

Given ε > 0, let ω ⊂ Q be an open set such that

K ⊂ ω and |µ|(ω\K) ≤ ε,

and let ϕ be a cut-off function for K whose support is contained in ω. We have∫
K

dµ =
∫

Q

ϕξn dµ−
∫

ω\K
ϕξn dµ

so that

|µ(K)| ≤

∣∣∣∣∣
∫

Q

fϕξn dxdt−
∫

Q

g(ϕξn)t dxdt+
∫ T

0

〈χ, ϕξn〉

∣∣∣∣∣ dt+ ε.

It is easy to check, using (3.2), that both∫
Q

fϕξn dxdt and
∫ T

0

〈χ, ϕξn〉 dt,

go to zero as n goes to infinity. Moreover, thanks to (3.3) and since g ∈ Lp(0, T, V )∩
L∞(Q), we deduce that∫

Q

g(ϕξn)t =
∫

Q

g(ϕ)tξn +
∫

Q

gϕ(ξn)t → 0.

Therefore, as n→∞, we get |µ(K)| ≤ ε, and since ε is arbitrary this concludes the
proof. �

There exist diffuse measures whose time derivative part g is essentially un-
bounded. The following example provides a typical case.

Example 3.1. Given 0 < t0 < T , let

µ = δt0 ⊗ h,

where h ∈ L1(Ω). By [13, Theorem 2.15], µ is diffuse. We claim that if (3.1) holds
for some g ∈ L∞(Q), then h ∈ L∞(Ω).
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For simplicity, let p = 2 (the case p 6= 2 can be handled in a similar way by using
the p-Laplacian) and let u ∈ L2(t0, T ;H1

0 (Ω)) ∩ C([t0, T ];L1(Ω)) be a solution of
(see [22]), 

ut −∆u+ |∇u|2 = 0 in (t0, T )× Ω,
u = h on {t0} × Ω,
u = 0 on (t0, T )× ∂Ω.

Denoting by ũ the extension of u in Q as identically zero on (0, t0) × Ω, then
ũ ∈ L2(0, T ;H1

0 (Ω)) and

(3.4) ũt −∆ũ+ |∇ũ|2 = µ in Q.

Let f ∈ L1(Q), g ∈ Lp(0, T ;V ) and χ ∈ Lp′(0, T ;W−1,p′(Ω)) be such that

µ = f + gt + χ in D′(Q).

Since (3.4) also provides a decomposition of µ, by [13, Lemma 2.29] we have

ũ− g ∈ C([0, T ];L1(Ω)).

Set w = ũ− g. Since w ∈ C([0, T ];L1(Ω)), we have for every ϕ ∈ C∞c (Ω),

lim
t↗t0

∫
Ω

|w(t, x)ϕ(x)| dx =
∫

Ω

|w(t0, x)ϕ(x)| dx.

Since we have, for almost every t ∈ (0, t0),∫
Ω

|w(t, x)ϕ(x)| dx =
∫

Ω

|g(t, x)ϕ(x)| dxdt ≤ ‖g‖L∞(Q)‖ϕ‖L1(Ω),

it follows that ∫
Ω

|w(t0, x)ϕ(x)| dx ≤ ‖g‖L∞(Q)‖ϕ‖L1(Ω).

Therefore, w(t0, ·) ∈ L∞(Ω) and

‖w(t0, ·)‖L∞(Ω) ≤ ‖g‖L∞(Q).

On the other hand, since ũ = w + g on Q,∫
Ω

|ũ(t, x)ϕ(x)| dx ≤
∫

Ω

|w(t, x)ϕ(x)| dx+ ‖g‖L∞(Q)‖ϕ‖L1(Ω),

for all ϕ ∈ C∞c (Ω). Hence, using the fact that ũ = uχ[t0,T ) converges to h as t↘ t0,∫
Ω

|hϕ| dx ≤
∫

Ω

|w(t0, x)ϕ(x)| dx+ ‖g‖L∞(Q)‖ϕ‖L1(Ω) ≤ 2‖g‖L∞(Q)‖ϕ‖L1(Ω),

which implies that h ∈ L∞(Ω). �

In view of Example 3.1, Theorem 1.1 is actually the best one can expect, since
it shows that the class of measures written as in (3.1) with g bounded is dense (in
the strong topology) in M0(Q).

Before giving the proof of this result, we point out a few more things. First, it is
often useful to work with measures compactly supported on the parabolic cylinder.
The next lemma provides a tool for such situations. The proof of this result can be
obtained as a straightforward modification of [13, Lemma 2.25].
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Lemma 3.1. Let µ ∈M0(Q). Then, for every θ ∈ C∞c (Q) such that 0 ≤ θ ≤ 1,

µ̃ = θµ

is a diffuse measure with compact support on Q such that

‖µ̃‖M(Q) ≤ ‖µ‖M(Q).

Moreover, if µ = f + gt + χ is a decomposition of µ as in (3.1) with χ = div(H),
H ∈ Lp′(Q), then

µ̃ = f̃ + g̃t + χ̃,

with

f̃ = θf −H · ∇θ − θtg ∈ L1(Q),

g̃ = θg ∈ Lp(0, T ;V ),

χ̃ = div(θH) ∈ Lp′(0, T ;W−1,p′(Ω)).

In particular, if g ∈ L∞(Q), then g̃ ∈ L∞(Q).

We will also need an important property enjoyed by the convolution of diffuse
measures. We first recall the following definition (see [10] and also [18]):

Definition 3.2. A sequence of measures (µn) in Q is equidiffuse if for every ε > 0
there exists η > 0 such that for every Borel measurable set E ⊂ Q,

capp(E) < η =⇒ |µn|(E) < ε ∀n ≥ 1.

Proposition 3.2. If µ ∈M0(Q), then the sequence (ρn ∗ µ) is equidiffuse.

Proof. It suffices to establish the result when µ ≥ 0; in the general case we can
apply the conclusion to the positive and the negative parts of µ.
Assume by contradiction that (ρn ∗ µ) is not equidiffuse. Passing to a subsequence
if necessary, there exist ε > 0 and a sequence (En) of Borel subsets of Q such that

capp(En) ≤ 1
n

and
∫

En

ρn ∗ µ ≥ ε

for every n ≥ 1. By definition of capacity, there exists an open subset ωn ⊂ Q such
that

En ⊂ ωn and capp(ωn) ≤ 2
n
.

Let (ζn) be a sequence in W such that

ζn ≥ χωn
a.e. and ‖ζn‖W ≤ 3

n
.

Let A b Q be an open set such that µ(Q \ A) < ε
2 and let ϕ ∈ C∞c (Q) be such

that
0 ≤ ϕ ≤ 1 in Q and ϕ = 1 on A.

Since ϕ and ζn are nonnegative and T1 is concave on R+,

T1(ζn) ≤ T1(ϕζn) + T1((1− ϕ)ζn).
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Given a sequence (ρn) of mollifiers satisfying (2.1), for every n ≥ 1, we have

ε ≤
∫

ωn

ρn ∗ µdxdt ≤
∫

Q

T1(ζn)(ρn ∗ µ) dxdt

≤
∫

Q

T1(ϕζn)(ρn ∗ µ) dxdt+
∫

Q

T1((1− ϕ)ζn)(ρn ∗ µ) dxdt

≤
∫

Q

ρ̌n ∗ T1(ϕζn) dµ+
∫

Q\A
ρn ∗ µdxdt.

Since A is open, we have (see e.g. [15, Section 1.9, Thm 1])

(3.5) lim sup
n→∞

∫
Q\A

ρn ∗ µdxdt ≤ µ(Q \A).

We now show that

(3.6) lim
n→∞

∫
Q

ρ̌n ∗ T1(ϕζn) dµ→ 0.

Indeed, we have ‖ϕζn‖W → 0 and since ϕ has compact support,

‖ρ̌n ∗ (ϕζn)‖W → 0.

Passing to a subsequence, there exists a Borel set F ⊂ Q such that capp(F ) = 0
and

ρ̌n ∗ (ϕζn)(x) → 0 ∀x ∈ Q \ F.
Since the measure µ is diffuse, we deduce that (ρ̌n ∗ (ϕζn)) converges a.e. with
respect to µ. Since ϕζn is nonnegative,

0 ≤ ρ̌n ∗ T1(ϕζn) ≤ ρ̌n ∗ ϕζn.

Thus,
ρ̌n ∗ T1(ϕζn) → 0 µ-a.e.

Assertion (3.6) is now a consequence of the dominated convergence theorem.
By (3.5)–(3.6), we deduce that

ε ≤ µ(Q \A).

This contradicts our choice of A. Therefore, the sequence (ρn∗µ) is equidiffuse. �

We now present the

Proof of Theorem 1.1. Let µn = ρn ∗ µ, where (ρn) is a sequence of mollifiers sat-
isfying (2.1). We denote by un the solution of (1.7) with data µn and u0 = 0. For
k > 0 and δ > 0, consider the functions Sk,δ and Tk,δ given by (2.14) and (2.15),
respectively. Recall that Tk,δ converges pointwise to Tk as δ → 0.
Given ϕ ∈ C∞c (Q), multiply the equation solved by un by Sk,δ(un)ϕ. We then have

(3.7) Tk,δ(un)t − div
(
Sk,δ(un)|∇un|p−2∇un

)
= Sk,δ(un)µn +

1
δ
|∇un|psign(un)χ{k≤|un|<k+δ} in D′(Q).

Using (1−Sk,δ(un))sign(un) as test function in the equation (1.7) for un we obtain

(3.8)
1
δ

∫
{k≤|un|<k+δ}

|∇un|p ≤
∫

Q

∣∣1− Sk,δ(un)
∣∣|µn| ≤

∫
{|un|>k}

|µn|.
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Let us set
νk

n = (Tk(un))t −∆p(Tk(un)).

Thanks to (3.7), the right-hand side of (3.7) remains bounded in L1(Q) as δ → 0,
then we deduce that νk

n is a finite measure in Q and∫
Q

|νk
n| ≤ lim inf

δ→0

{∫
Q

|Sk,δ(un)µn|+
1
δ

∫
{k≤|un|<k+δ}

|∇un|p
}

≤
∫

{|un|≤k}

|µn|+
∫

{|un|>k}

|µn| = ‖µn‖M(Q) ≤ ‖µ‖M(Q).

In particular, (νk
n) remains uniformly bounded in M(Q) as n→∞.

We now show that

(3.9) νk
n

∗
⇀ νk weakly∗ in M(Q),

where
νk = (Tk(u))t −∆p(Tk(u)).

To this purpose, we recall that by classical results on parabolic equations with
measure data (see e.g. Proposition 4.6 below), there exists a function u ∈ L1(Q)
such that (taking a subsequence if necessary) un → u and ∇un → ∇u a.e. on
Q. In particular, since |∇Tk(un)|p−2∇Tk(un) is bounded in Lp′(Q) and almost
everywhere converges to |∇Tk(u)|p−2∇Tk(u), then it weakly converges to the same
limit in Lp′(Q). Therefore, we have

Tk(un) ⇀ Tk(u) weakly in Lp(0, T ;W 1,p
0 (Ω))

and
∆pTk(un) ⇀ ∆pTk(u) weakly in Lp′(0, T ;W−1,p′(Ω))

as n → ∞. Together with the fact that (νk
n) is uniformly bounded in M(Q), this

implies (3.9). Moreover, since Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), it follows from

Proposition 3.1 that νk is a diffuse measure.
By (3.7)–(3.8) we also have

∫
Q

|νk
n − µn| ≤ lim inf

δ→0

∫
Q

∣∣∣∣Sk,δ(un)µn +
|∇un|p

δ
sign(un)χ{k≤|un|<k+δ} − µn

∣∣∣∣
≤

∫
{|un|>k}

|µn|+ lim sup
δ→0

∫
{k≤|un|<k+δ}

|∇un|p

δ
≤ 2

∫
{|un|>k}

|µn|.

(3.10)

Recall that by Proposition 3.2 the sequence (µn) is equidiffuse. Applying Theo-
rem 1.2 we can fix k > 0 sufficiently large (depending only on ε > 0) so that the
right-hand side of (3.10) is ≤ ε, ∀n ≥ 1. From (3.10) and the lower semicontinuity
of the norm with respect to the weak∗ convergence, we obtain

‖νk − µ‖M(Q) ≤ lim inf
n→∞

∫
Q

|νk
n − µn| ≤ 2 lim inf

n→∞

∫
{|un|>k}

|µn| ≤ ε.

This concludes the proof of Theorem 1.1. �
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4. Renormalized formulation

In this section, we come back to the construction of the approximation in the
proof of Theorem 1.1 and we develop that idea in connection with a renormalized
formulation for solutions of (1.11) when µ is a diffuse measure. Because of the
intrinsic interest of renormalized formulations with measure data, we deal with the
more general initial boundary value problem

(4.1)


ut − div(a(t, x,∇u)) = µ in Q,
u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω.

In all the following, we assume that a : Q× RN → RN satisfies (2.19)–(2.21), that

u0 ∈ L1(Ω)

and that µ is a diffuse measure, i.e.

µ ∈M0(Q).

A notion of renormalized solution for problem (4.1) when µ is a diffuse measure
was introduced in [13] and in the same paper the existence and uniqueness of such
a solution is proved. In [14] a similar notion of entropy solution is also defined, and
proved to be equivalent to that of renormalized solution. Our goal is to give here a
new definition which, in contrast with the previous ones, is not formulated in terms
of a decomposition of µ like in (1.5). The next definition is certainly closer to the
one used for conservation laws in [3] and to one of the existing formulations in the
elliptic case (see [11, 12]).

Definition 4.1. Let µ ∈M0(Q). A function u ∈ L1(Q) is a renormalized solution
of problem (4.1) if Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) for every k > 0 and if there exists a
sequence (λk) in M(Q) such that

(4.2) lim
k→∞

‖λk‖M(Q) = 0,

and

(4.3) −
∫

Q

Tk(u)ϕt dxdt+
∫

Q

a(t, x,∇Tk(u))∇ϕdxdt

=
∫

Q

ϕdµ+
∫

Q

ϕdλk +
∫

Ω

Tk(u0)ϕ(0, x) dx

for every k > 0 and ϕ ∈ C∞c ([0, T )× Ω).

Remark 4.1. It is straightforward to check that, by approximation, one can take as
test function in (4.3) any ϕ ∈W 1,∞(Q) such that ϕ = 0 on ({T}×Ω)∪((0, T )×∂Ω).

Some considerations are in order concerning Definition 4.1. First of all, observe
that (4.3) implies that (Tk(u))t − div(a(t, x,∇Tk(u))) is a finite measure and

(Tk(u))t − div(a(t, x,∇Tk(u))) = µ+ λk in M(Q).

This provides a decomposition of the measure µ + λk of the form (3.1) with g ∈
L∞(Q). In view of Proposition 3.1, the left hand side is a diffuse measure. Since
µ itself is diffuse, the consequence is that the measures λk are diffuse. Moreover,
condition (4.2) implies that the left hand side is a strong approximation of µ. In
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particular, the existence of a renormalized solution in the sense of Definition 4.1
implies as a corollary the statement of Theorem 1.1.

Finally, since Tk(u) ∈ Lp(0, T ;V ), we have (Tk(u))t ∈ W ′1 and, due to assump-
tion (2.20), a(t, x,∇Tk(u)) ∈ Lp′(Q). Therefore, we conclude that

(Tk(u))t − div(a(t, x,∇Tk(u))) ∈W ′ ∩M(Q).

Another important fact is that we can recover from equation (4.3) the standard
estimates known for nonlinear potentials. In order to prove such estimates and
further properties of the renormalized formulation, we will need a few technical
ingredients.

First of all, recall that any z ∈ W admits a unique cap-quasi continuous repre-
sentative; henceforth, by identifying z with its cap-quasi continuous representative,
the integral

∫
Q
z dµ is well defined for every diffuse measure µ and every z ∈ W .

Unfortunately, given z ∈ W , a smooth truncation of z need not belong to W . In
this case, one is led to consider the larger space

S = {z ∈ Lp(0, T ;V ); zt ∈ Lp′(0, T ;W−1,p′(Ω)) + L1(Q)}

endowed with its norm

‖z‖S = ‖z‖Lp(0,T ;V ) + ‖zt‖Lp′ (0,T ;W−1,p′ (Ω))+L1(Q).

Indeed,

Lemma 4.1. For every v ∈W and every function Φ ∈ C2(R) such that Φ′ and Φ′′

are bounded, we have Φ(v) ∈ S and the application v 7→ Φ(v) is continuous from
W to S. Moreover, if vt = div(G) + g with G ∈ Lp′(Q), g ∈ Lp′(0, T ;L2(Ω)), then
we have

(4.4) (Φ(v))t = div(Φ′(v)G) + Φ′(v)g − Φ′′(v)G · ∇v in D′(Q).

Proof. It follows from [13, Theorem 2.11] that C∞c ([0, T ]×Ω) is dense in W . Then
there exists a sequence of smooth functions (vn) converging to v in W . Let vt =
div(G) + g with G ∈ Lp′(Q), g ∈ Lp′(0, T ;L2(Ω)); the convergence of (vn) to
v in W implies that vn → v in Lp(0, T ;V ) and there exist Gn ∈ Lp′(Q) and
gn ∈ Lp′(0, T ;L2(Ω)) such that (vn)t = div(Gn) + gn and Gn → G in Lp′(Q) and
gn → g in Lp′(0, T ;L2(Ω)). Since the equality (4.4) is true for vn, passing to the
limit (which is possible thanks to the properties of Φ) we recover (4.4) for v. The
continuity of T is established in a similar way using identity (4.4). �

Bounded functions in S satisfy a capacitary estimate for the parabolic capacity;
we refer the reader to [19, Theorem 3 and Lemma 2] for a proof of the following

1indeed, for every v ∈ Lp(0, T ; V ), we have vt ∈ W ′ in the following sense:

〈vt, ϕ〉(W ′,W ) = −
Z T

0
〈v, ϕt〉(V,V ′) dt for every ϕ ∈ W

and since ˛̨̨̨Z T

0
〈v, ϕt〉(V,V ′) dt

˛̨̨̨
≤ ‖v‖Lp(0,T ;V )‖ϕt‖Lp′ (0,T ;V ′) ≤ ‖v‖Lp(0,T ;V )‖ϕ‖W

we have vt ∈ W ′ and ‖vt‖W ′ ≤ ‖v‖Lp(0,T ;V ).
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Lemma 4.2. If z ∈ S ∩ L∞(Q), then z admits a unique cap-quasi continuous
representative. Moreover, we have

capp({|z| > k}) ≤ C

k
max

{
[z]

1
p , [z]

1
p′
}
,

where

[z] = inf
{
‖z‖p

Lp(0,T ;W 1,p
0 (Ω))

+ ‖(zt)1‖p′

Lp′ (0,T ;W−1,p′ (Ω))

+ ‖z‖∞ ‖(zt)2‖L1(Q) + ‖z‖2L∞(0,T ;L2(Ω))

}
and the infimum is taken over all decomposition of zt = (zt)1 + (zt)2 with (zt)1 ∈
Lp′(0, T ;W−1,p′(Ω)) and (zt)2 ∈ L1(Q).

We obtain in particular the following corollary which allows one to pass from an
inequality almost everywhere to an inequality cap-quasieverywhere.

Corollary 4.3. If v ∈ W and v ≤ M almost everywhere in Q, then v ≤ M
cap-quasi everywhere in Q.

Proof. Let us take a bounded, nondecreasing function Φ ∈ C2(R) such that Φ′,Φ′′

are bounded, Φ(s) ≡ 0 if s ≤ 0 and Φ(s) > 0 if s > 0. By Lemma 4.1 we deduce that
Φ(v −M) ∈ S ∩ L∞(Q). Since v −M ≤ 0 almost everywhere, then Φ(v −M) = 0
almost everywhere. It follows from Lemma 4.2 that the unique cap-quasicontinuous
representative of Φ(v −M) is the function identically zero, that is Φ(v −M) = 0
cap-quasi everywhere. Therefore v ≤M cap-quasi everywhere. �

We now study the pointwise convergence of sequences in S:

Lemma 4.4. For every bounded sequence (zn) in S ∩L∞(Q), if zn → z in S, then
there exists a subsequence (znk

) converging to z cap-quasi everywhere.

Proof. This is a classical argument; we present it here for the convenience of the
reader. Since (zn) is bounded in L∞(Q) and zn → z in S, we have (with the
notations of Lemma 4.2)

[zn − z] → 0.
Take a subsequence (znk

) such that
∞∑

k=1

2k max
{
[znk

− z]
1
p , [znk

− z]
1
p′
}
<∞ .

Define the sets

Ek =
{
(x, t) ∈ Q : |znk

− z| > 2−k
}
, Fm =

∞⋃
k=m

Ek, F∞ =
∞⋂

m=0

Fm.

By the subadditivity of the parabolic capacity and by the capacitary estimate from
Lemma 4.2, we have

capp(Fm) ≤
∞∑

k=m

capp(Ek) ≤ C
∞∑

k=m

2k max
{
[znk

− z]
1
p , [znk

− z]
1
p′
}
.

Hence capp(Fm) → 0, which implies capp(F∞) = 0. Since znk
(x) → z(x) for every

x ∈ Q \ F∞, the conclusion follows. �

We can now show how to extend the class of test functions in (4.3).



DIFFUSE MEASURES AND NONLINEAR PARABOLIC EQUATIONS 19

Proposition 4.2. If u is a renormalized solution of (4.1), then

(4.5) −
∫ T

0

〈Tk(u), vt〉 dt+
∫

Q

a(t, x,∇Tk(u))∇v dxdt

=
∫

Q

v dµ+
∫

Q

v dλk +
∫

Ω

Tk(u0)v(0, x) dx

for every v ∈W ∩ L∞(Q) such that v = 0 on {T} × Ω.

Proof. Since C∞c ([0, T ]×Ω) is dense inW , there exists a sequence (vn) in C∞c ([0, T ]×
Ω) converging to v in W . Let M such that ‖v‖L∞(Q) ≤ M , and take a function
Φ : R → R which is C∞ and such that Φ(s) = s when |s| < 2M and Φ′ has compact
support. By Lemma 4.1, we have that Φ(vn) → Φ(v) = v in S. Let us then call
wn = Φ(vn). Note that wn is not an admissible function since it need not vanish
on {T} × Ω. For this purpose, choose ϕ = wnξ in (4.3) where ξ ∈ W 1,∞(0, T )
and is compactly supported in [0, T ); ϕ can be used as a test function in view of
Remark 4.1. We get

−
∫

Q

Tk(u)wnξt dxdt−
∫

Q

Tk(u)ξ(wn)t dxdt+
∫

Q

a(t, x,∇Tk(u))∇wnξ dxdt

=
∫

Q

wnξ dµ+
∫

Q

wnξ dλk +
∫

Ω

Tk(u0)wn(0, x)ξ(0) dx.

Since wn → v in S and (wn) is uniformly bounded, we can pass to the limit in the
left hand side. Moreover, since vn → v in W , there exists a subsequence such that
vn → v cap-quasi everywhere, hence µ-a.e. and λk-a.e., since the two measures are
diffuse. Being Φ smooth, we have wn → Φ(v) = v µ-a.e. and λk-a.e. Since (wn)
is uniformly bounded we can pass to the limit in the right hand side by dominated
convergence, obtaining

−
∫

Q

Tk(u)vξt dxdt−
∫ T

0

〈Tk(u)ξ, vt〉 dt+
∫

Q

a(t, x,∇Tk(u))∇v ξ dxdt

=
∫

Q

vξ dµ+
∫

Q

vξ dλk +
∫

Ω

Tk(u0)v(0, x)ξ(0) dx.

Given ε ∈ (0, T ), we now apply this identity with the function ξε : [0, T ] → R given
by ξε(t) = 1 − (t−T+ε)+

ε ; in particular ξε = 1 in (0, T − ε), ξε(T ) = 0 and ξε → 1.
Since v ∈ C0([0, T ];L2(Ω)) and v(T ) = 0, we have∣∣∣∣∫

Q

Tk(u)v(ξε)t dxdt

∣∣∣∣ ≤ 1
ε

∫ T

T−ε

∫
Ω

|Tk(u)v| dxdt ≤ k
1
ε

∫ T

T−ε

‖v(t)‖L1(Ω) dt→ 0.

By dominated convergence we can pass to the limit in all other terms, hence we
deduce (4.5). �

One of the main roles of Proposition 4.2 is to give us a way to use test functions
of the form ψ(u). A difficulty arises from the fact that u (and also Tk(u)) may not
have a cap-quasi continuous representative. In order to overcome this point, our
strategy will be to use approximations through so-called Steklov time-averages for
functions z : (0, T ) × Ω → R. More precisely, given ε ∈ (0, T ), define for every
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h ∈ (0, ε) the functions zh : (0, T − ε)× Ω → R and z−h : [ε, T ]× Ω → R by

(4.6) zh(t, x) =
1
h

∫ t+h

t

z(s, x) ds and z−h(t, x) =
1
h

∫ t

t−h

z(s, x) ds.

In the context of parabolic equations we can deal with Steklov averages as follows.
Given w : Q→ R, if ϕ is a function with compact support in [0, T )× Ω, then whϕ
has a meaning in Q even though the function wh is not defined on [T − h, T ]× Ω.
Concerning w−hϕ, one can consider this function on the parabolic cylinder (ε, T )×
Ω for every h ∈ (0, ε). Once we get the desired estimates independently of the
parameter h, we can let h → 0 and then ε → 0. Another approach consists in
taking a sequence of smooth functions (w0,j) converging in L1(Ω) to w(0, ·) and for
each j we take an extension of w(t, ·) as w0,j if t < 0; once we get uniform estimates
with respect to j, we can let j →∞.

Observe that, for every z ∈ Lp(0, T ;V ), we have zh ∈ W , hence zh admits a
cap-quasi continuous representative. In addition, whenever z ∈ L∞(Q), we have
|zh| ≤ ‖z‖∞ q.e. (i.e. except of a set of zero capacity). Indeed, for any M such
that |z| ≤ M a.e., we also have |zh| ≤ M a.e. and since zh ∈ W we deduce from
Corollary 4.3 that |zh| ≤ M q.e. as well. Some further property of the Steklov
averages with respect to capacity will be useful. For instance,

Lemma 4.5. Let z ∈ S. Then, for every ψ ∈ C∞c (0, T ),

zhψ → zψ in S.

If in addition z ∈ L∞(Q), then for every sequence (hn) of positive numbers con-
verging to 0, there exists a subsequence (hnk

) such that

zhnk
→ z q.e. in Q.

Proof. If ψ ∈ C∞c (0, T ), then zhψ ∈ S. In particular, if zt = div(G) + g, with
G ∈ Lp′(Q), g ∈ L1(Q), since ψ has compact support in (0, T ) we have

(zhψ)t = div(Ghψ) + ghψ + zhψt

where Gh and gh are Steklov averages of G and g, respectively. Since Gh → G
in Lp′(Q), gh → g in L1(Q) and zh → z in L1(Q), we have that (zhψ)t converges
to (zψ)t in Lp′(0, T ;W−1,p′(Ω)) + L1(Q); on the other hand zh converges to z
in Lp(0, T ;V ) so that zhψ → zψ in Lp(0, T ;V ). Therefore, we conclude that
zhψ → zψ in S. If in addition z ∈ L∞(Q), then (zhnψ) is bounded in S ∩ L∞(Q)
and, from Lemma 4.4, we conclude that zhnψ admits a subsequence converging cap-
quasi everywhere. We now take ψj ∈ C∞c (0, T ) such that ψj = 1 in ( 1

j , T−
1
j ); there

exists a subsequence (hnj ) and a set Fj ⊂ Q such that capp(Fj) = 0 and zhnj
→ z

in
(
( 1

j , T −
1
j )×Ω

)
\Fj . Using a diagonal argument we can construct a subsequence

(hnk
) such that zhnk

→ z in Q \ F , where F =
∞⋃

j=1

Fj and capp(F ) = 0. �

The idea of using Steklov averages in connection with the renormalized formu-
lation is developed in [5]. Following this latter paper, we deduce in particular the
following result:
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Lemma 4.6. If u is a renormalized solution of (4.1), then

(4.7)

−
∫

Q

Ψ(Tk(u))ξt dxdt−
∫

Ω

Ψ(Tk(u0))ξ(0, x) dx+
∫

Q

a(t, x,∇Tk(u))∇(ψ(Tk(u))ξ) dxdt

≤
∫

Q

(ψ(Tk(u)))hξ dµ+ ‖ψ‖∞‖ξ‖∞‖λk‖+ o(1)h,

and

(4.8)

−
∫

Q

Ψ(Tk(u))ξt dxdt−
∫

Ω

Ψ(Tk(u0))ξ(0, x) dx+
∫

Q

a(t, x,∇Tk(u))∇(ψ(Tk(u))ξ) dxdt

≥
∫

Q

(ψ(Tk(u)))−hξ dµ− ‖ψ‖∞‖ξ‖∞‖λk‖ − o(1)h,

for every nondecreasing ψ ∈ W 1,∞(R) and every nonnegative ξ ∈ C∞c ([0, T ) × Ω)
such that ψ(0)ξ = 0 on (0, T ) × ∂Ω, where Ψ(r) =

∫ r

0
ψ(s)ds and o(1)h → 0 as

h→ 0.

Proof. We choose in (4.5)

v(t, x) = ξ (ψ(Tk(u)))h = ξ
1
h

∫ t+h

t

ψ(Tk(u))(s, x) ds,

where ξ, ψ have the properties stated above. Using [5, Lemma 2.1] we have

lim inf
h→0

{
−
∫

Q

(Tk(u)− Tk(u0))
(
ξ
1
h

∫ t+h

t

ψ(Tk(u))(s, x) ds
)

t

dxdt

}
≥ −

∫
Q

ξt

∫ Tk(u)

0

ψ(r)dr dxdt−
∫

Ω

ξ(0, x)
∫ Tk(u0)

0

ψ(r) drdx.

Therefore, we get from (4.5)

−
∫

Q

ξt

∫ Tk(u)

0

ψ(r)dr dxdt−
∫

Ω

ξ(0, x)
∫ Tk(u0)

0

ψ(r) drdx

+
∫

Q

a(t, x,∇Tk(u))∇ (ξ(ψ(Tk(u)))h) dxdt

≤
∫

Q

ξ (ψ(Tk(u)))h dµ+
∫

Q

ξ(ψ(Tk(u)))h dλk + o(1)h.

In the energy term we can let h go to zero since the averages are continuous in
Lp(0, T ;W 1,p

0 (Ω)). We also use that |(ψ(Tk(u)))h| ≤ ‖ψ‖∞ cap-quasi everywhere
in the term with λk, and we obtain (4.7). The proof of (4.8) is identical using now
[5, Lemma 2.3] for the time derivative. �

We immediately deduce the following
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Corollary 4.7. If u is a renormalized solution of (4.1), then∫
Ω

∫ u(τ)

0

ψ(r) drdx+
∫ τ

0

∫
Ω

a(t, x,∇u)∇uψ′(u) dxdt

≤
∫

Ω

∫ u0

0

ψ(r) drdx+ ‖ψ‖∞‖µ‖M(Q) for a.e. τ ∈ (0, T ),

for every nondecreasing ψ ∈ W 1,∞(R) such that ψ(0) = 0 and ψ′ has compact
support.

Proof. We use (4.7), where we take ξ = ξ(t), with 0 ≤ ξ ≤ 1. First we estimate in
an obvious way the term with µ. Then we let h→ 0. Finally, since ψ′ has compact
support, it is also possible to let k →∞, using (4.2). With a standard choice of ξ
(e.g. a smooth approximation of χ(0,τ)) we conclude. �

Remark 4.2. When µ ∈ L1(Q), one can pass to the limit in (4.7) and (4.8) when
h → 0 using the continuity of Steklov approximations in L1 and the fact that ψ
is bounded. Choosing ψ′ with compact support also allows to let k → ∞ and one
obtains

−
∫

Q

Ψ(u)ξt dxdt−
∫

Ω

Ψ(u0)ξ(0, x) dx+
∫

Q

a(t, x,∇u)∇(ψ(u)ξ) dxdt

=
∫

Q

ψ(u)ξµ dxdt.

Of course one can replace here ψ with −ψ and ξ with −ξ, hence the equality will be
true for any Lipschitz function ψ and any ξ. We then recover the usual renormalized
formulation in case of L1-data. The asymptotic estimate for the energy will also
be proved later (see (4.26) in Proposition 4.9 below), and this proves that this
formulation is equivalent to the one given in [4] for L1-data.

We are now able to show that any renormalized solution satisfies the usual esti-
mates and is, in particular, a distributional solution. To this purpose, we only need
to precise what we mean by ∇u when u need not belong to any Sobolev space. We
follow the definition of generalized gradient introduced in [2] for functions u whose
truncations belong to a Sobolev space:

Definition 4.3. Let u : Q → R be a measurable function which is almost every-
where finite and such that Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) for every k > 0. Then (see
[2, Lemma 2.1]) there exists a unique vector-valued function U such that

U = ∇Tk(u)χ{|u|<k} a.e. in Q, ∀k > 0.

This function U will be called the gradient of u, hereafter denoted by ∇u. When
u ∈ L1(0, T ;W 1,1

0 (Ω)), it coincides with the usual distributional gradient.

We recall the definition of a distributional solution of (4.1). Notice that such
a definition makes sense for any measure µ, not necessarily diffuse, even if in our
context we are always dealing with diffuse measures.

Definition 4.4. A function u ∈ L1(Q) is a distributional solution of problem (4.1)
if Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) for every k > 0, if |∇u|p−1 ∈ L1(Q), and if

(4.9) −
∫

Q

uϕt dxdt+
∫

Q

a(t, x,∇u) · ∇ϕdxdt =
∫

Q

ϕ dµ+
∫

Ω

u0ϕ(0, x) dx,
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for any ϕ ∈ C∞c ([0, T )× Ω).

We then have

Proposition 4.5. If u is a renormalized solution of (4.1), then for every k > 0
and τ ≤ T ,

(4.10)
∫

Ω

Θk(u)(τ) dx+
∫ τ

0

∫
Ω

|∇Tk(u)|p dxdt ≤ Ck
(
‖µ‖M(Q) + ‖u0‖L1(Ω)

)
,

where Θk(s) =
∫ s

0
Tk(t) dt. Therefore,

u ∈ L∞(0, T ;L1(Ω))

and
|∇u|p−1 ∈ Lr(Q) and a(t, x,∇u) ∈ Lr(Q)

for any r < N+p′

N+1 . Moreover, u is a distributional solution.

Proof. Estimate (4.10) immediately follows from Corollary 4.7 taking ψ = Tk and
using assumption (2.19). When k = 1 one deduces that u ∈ L∞(0, T ;L1(Ω)).
Following the results in [6, 7], one also deduces the regularity for |∇u|p−1, hence
for a(t, x,∇u) in view of (2.20). In particular, we have a(t, x,∇u) ∈ L1(Q), and
letting k → +∞ in (4.3) we obtain (4.9), i.e. u is a distributional solution. �

Remark 4.3. When µ ∈ M(Q) ∩ Lp′(0, T ;W−1,p′(Ω)) and u0 ∈ L2(Ω), there
exists a solution of (4.1) in the usual weak sense (see [17]). Such a solution is also
a renormalized solution. Indeed, in this case u ∈ W and satisfies the capacitary
estimates of Theorem 2.2. Proceeding like in the proof of Theorem 1.1 one obtains
the renormalized formulation for u.

We will now prove that the problem (4.1) is well-posed in the class of renormal-
ized solutions. Thanks to the robustness of the formulation, the easiest part here
is the uniqueness, which comes from the following comparison principle.

Theorem 4.8. Let u1, u2 be two renormalized solutions of problem (4.1) with data
(u01, µ1) and (u02, µ2) respectively. Then we have

(4.11)
∫

Ω

(u1 − u2)+(t) dx ≤ ‖(u01 − u02)+‖L1(Ω) + ‖(µ1 − µ2)+‖M(Q)

for almost every t ∈ (0, T ). In particular, if u01 ≤ u02 and µ1 ≤ µ2 (in the sense
of measures), we have u1 ≤ u2 a.e. in Q. As a consequence, there exists at most
one renormalized solution of problem (4.1).

Proof. Let λk,1, λk,2 be the measures given by Definition 4.1 corresponding to u1,
u2. Proposition 4.2 implies

−
∫

Q

(Tk(u1)− Tk(u2))vt dxdt+
∫

Q

(a(t, x,∇Tk(u1))− a(t, x,∇Tk(u2)))∇v dxdt

=
∫

Q

v d(µ1 − µ2) +
∫

Q

v dλk,1 −
∫

Q

v dλk,2 +
∫

Ω

(Tk(u01)− Tk(u02))v(0, x) dx

for every v ∈W ∩ L∞(Q) such that v(T ) = 0. Consider the function

wh(t, x) =
1
h

∫ t+h

t

1
ε
Tε (Tk(u1)− Tk(u2))

+ (s, x) ds,
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Given ξ ∈ C∞c ([0, T )), ξ ≥ 0, take v = whξ as test function. Observe that both
wh and (wh)t belong to Lp(0, T ;V ) ∩ L∞(Q) for h > 0 sufficiently small, hence
wh ∈W ∩ L∞(Q). Moreover we have

wh →
1
ε
Tε (Tk(u1)− Tk(u2))

+ strongly in Lp(0, T ;W 1,p
0 (Ω)).

Using that 0 ≤ wh ≤ 1 almost everywhere, hence 0 ≤ wh ≤ 1 cap-quasi everywhere,
we have

(4.12) −
∫

Q

[(Tk(u1)− Tk(u2))− (Tk(u01)− Tk(u02))] (whξ)t dxdt

+
∫

Q

(a(t, x,∇Tk(u1))− a(t, x,∇Tk(u2)))∇whξ dxdt

≤ ‖ξ‖∞
(
‖(µ1 − µ2)+‖M(Q) + ‖λk,1‖M(Q) + ‖λk,2‖M(Q)

)
.

Using the monotonicity of Tε(s) we have (see [5, Lemma 2.1])

lim inf
h→0

{
−
∫

Q

[(Tk(u1)− Tk(u2))− (Tk(u01)− Tk(u02))] (wh ξ)t dxdt

}
≥ −

∫
Q

Θ̂ε(Tk(u1)− Tk(u2))ξt dxdt−
∫

Ω

Θ̂ε(Tk(u01)− Tk(u02))ξ(0) dx

where Θ̂ε(s) =
∫ s

0
1
εTε(r)+dr. Therefore, letting h→ 0 in (4.12) we obtain

−
∫

Q

Θ̂ε(Tk(u1)− Tk(u2))ξt dxdt

+
1
ε

∫
Q

(a(t, x,∇Tk(u1))− a(t, x,∇Tk(u2)))∇Tε(Tk(u1)− Tk(u2))+ξ dxdt

≤
∫

Ω

Θ̂ε(Tk(u01)− Tk(u02))ξ(0) dx

+ ‖ξ‖∞
(
‖(µ1 − µ2)+‖M(Q) + ‖λk,1‖M(Q) + ‖λk,2‖M(Q)

)
.

Using (2.21) and letting ε→ 0 we deduce

−
∫

Q

(Tk(u1)− Tk(u2))+ξt dxdt ≤
∫

Ω

(Tk(u01)− Tk(u02))+ξ(0) dx

+ ‖ξ‖∞
(
‖(µ1 − µ2)+‖M(Q) + ‖λk,1‖M(Q) + ‖λk,2‖M(Q)

)
and letting k →∞ we obtain, thanks to (4.2),

−
∫

Q

(u1 − u2)+ξt dxdt ≤ ‖ξ‖∞
(
‖(u01 − u02)+‖L1(Ω) + ‖(µ1 − µ2)+‖M(Q)

)
for every nonnegative ξ ∈ C∞c [0, T ). Of course the same inequality holds for any
ξ ∈W 1,∞(0, T ) with compact support in [0, T ). Take then ξ(t) = 1− 1

ε Tε(t− τ)+,
where τ ∈ (0, T ); since u1, u2 ∈ L∞(0, T ;L1(Ω)), by letting ε→ 0 we have

−
∫

Q

(u1 − u2)+ξt dxdt =
1
ε

∫ τ+ε

τ

∫
Ω

(u1 − u2)+ dxdt→
∫

Ω

(u1 − u2)+(τ) dx

for almost every τ ∈ (0, T ). Using in the right hand side that ‖ξ‖∞ ≤ 1 we get
(4.11). �
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Remark 4.4. The above result continue to hold if we replace condition (2.21) with
the more general

[a(t, x, ξ)− a(t, x, η)] · (ξ − η) ≥ 0 ∀ξ, η ∈ RN .

Remark 4.5. If µ ∈ M(Q) ∩ Lp′(0, T ;W−1,p′(Ω)), then µ+ is a diffuse measure
(since µ is diffuse) but we can not infer that µ+ belongs to Lp′(0, T ;W−1,p′(Ω)).
However, if u is a standard weak solution corresponding to µ, and v is a renormalized
solution corresponding to µ+, one can deduce that u ≤ v. It is enough to proceed
as in the above proof using

(t, x) 7−→ ξ(t)
1
h

∫ t+h

t

1
ε
Tε (u− Tk(v))+ (s, x) ds

as test function.

We immediately deduce the L1-contraction estimate.

Corollary 4.9. Let u1, u2 be two renormalized solutions of problem (4.1) with data
(u01, µ1) and (u02, µ2) respectively. Then we have

(4.13)
∫

Ω

|u1 − u2|(t) dx ≤ ‖u01 − u02‖L1(Ω) + ‖µ1 − µ2‖M(Q)

for almost every t ∈ (0, T ).

As usual for nonlinear equations with measure data, we will prove the existence of
solutions through approximation of the data µ, u0 with smooth functions. We will
need the following proposition which collects some known results in the literature.

Proposition 4.6. Let (un) be a sequence of solutions of problem

(4.14)


(un)t − div(a(t, x,∇un)) = µn in Q,

un = u0n on {0} × Ω,
un = 0 on (0, T )× ∂Ω,

where (u0n) strongly converges to u0 in L1(Q) and (µn) is a bounded sequence in
L1(Ω). Then,

(4.15) ‖un‖L∞(0,T ;L1(Ω)) ≤ C,

and

(4.16)
∫

Q

|∇Tk(un)|p dxdt ≤ Ck ∀k > 0.

Moreover, there exists a measurable function u such that Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω))

for any k > 0, u ∈ L∞(0, T ;L1(Ω)), and, up to a subsequence, we have

un → u a.e. in Q and strongly in L1(Q),

Tk(un) ⇀ Tk(u) weakly in Lp(0, T ;W 1,p
0 (Ω)) and a.e. in Q,

∇un → ∇u a.e. in Q.

|∇un|p−2∇un → |∇u|p−2∇u in L1(Q).

(4.17)
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Proof. Estimates (4.15)-(4.16) are classical since the work [7]. The a.e. convergence
of (un) can be proved by using properties of truncations and the Marcinkiewicz
estimates, see e.g. [4] or [22]. The a.e. convergence of (∇un) is proved in [6] when
u0n = 0; however, their proof extends to the case of sequences (u0n) converging in
L1, the only difference being to include the initial condition u0n in the so-called
Landes approximation. This latter technical point can be found e.g. in [22]. �

In order to prove the existence of a renormalized solution, we consider the con-
volution

µn = ρn ∗ µ,

where ρn is a sequence of standard mollifiers. In this way, we can use the equi-
diffusion property (see Proposition 3.2) which plays a crucial role in our approach.
We will state the convergence result in a slightly more general form which can be
applied in case of lower order terms as well.

Proposition 4.7. Let (u0n) be a sequence converging strongly to u0 in L1(Ω), let
(fn) be a sequence of bounded functions converging to f strongly in L1(Q), and let
µn = µ ∗ ρn. Let un be the solution of

(4.18)


(un)t − div(a(t, x,∇un)) = fn + µn in Q,

un = u0n on {0} × Ω,
un = 0 on (0, T )× ∂Ω.

Then there exists a function u such that (4.17) holds true up to subsequences and
u is a renormalized solution, in the sense of Definition 4.1, corresponding to f +µ.

Proof. We split the proof in four steps:
Step 1. Basic estimates.

Both sequences (µn) and (fn) are bounded in L1(Q). Therefore the solutions
un satisfy the estimates recalled in Proposition 4.6 and up to a subsequence (4.17)
holds. Moreover, Theorem 1.2 applies and gives the estimate

(4.19) capp{|un| > k} ≤ Cmax
{
k−

1
p , k

− 1
p′
}

∀k ≥ 1, ∀n ≥ 1.

Finally, for δ > 0 consider the function hδ(s) = 1
δ (Tk+δ(s) − Tk(s)), which is a

piecewise linear odd function vanishing for |s| ≤ k and constant for |s| > k+ δ. Let
ξε(t) = 1 − 1

ε Tε(t − T + 2ε)+, where ε > 0; this function belongs to W 1,∞(0, T )
and has compact support in [0, T ). By using hδ(un)ξε as test function in (4.18) and
letting ε→ 0, we have

1
δ

∫
{k<|un|<k+δ}

a(t, x,∇un)∇un dxdt

≤
∫

Q

hδ(un)µn dxdt+
∫

Q

fnhδ(un) dxdt+
∫

{|u0n|>k}

|u0n| dx,
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which implies, in particular,

(4.20)
1
δ

∫
{k<|un|<k+δ}

a(t, x,∇un)∇un dxdt

≤
∫

{|un|>k}

|µn| dxdt+
∫

{|un|>k}

|fn| dxdt+
∫

{|u0n|>k}

|u0n| dx.

Step 2. Equation satisfied by truncations.
For δ > 0 small, consider the functions Sk,δ and Tk,δ given by (2.14) and (2.15),

respectively. Recall that Tk,δ converges pointwise to Tk as δ → 0.
Given ϕ ∈ C∞c (Q), multiply the equation solved by un by Sk,δ(un)ϕ. We then have

Tk,δ(un)t − div (Sk,δ(un)a(t, x,∇un))

= fn + µn + (Sk,δ(un)− 1)(fn + µn)

+
1
δ
a(t, x,∇un)∇unsign(un)χ{k<|un|<k+δ} in D′(Q).

Let

Λk
n,δ := (Sk,δ(un)− 1)(fn + µn) +

1
δ
a(t, x,∇un)∇unsign(un)χ{k<|un|<k+δ}

With this notation we have

(4.21) (Tk(un))t − div (Sk,δ(un)a(t, x,∇un)) = fn + µn + Λk
n,δ in D′(Q).

Thanks to estimate (4.20), and since |Sk,δ| ≤ 1, the functions Λk
n,δ are bounded in

L1(Q) uniformly with respect to δ and n. Indeed, to be more precise, (4.20) and
the definition of Sk,δ imply the estimate

‖Λk
n,δ‖L1(Q) ≤

∫
{|un|>k}

|fn + µn| dxdt+
1
δ

∫
{k<|un|<k+δ}

a(t, x,∇un)∇un dxdt

≤ 2
∫

{|un|>k}

|µn| dxdt+ 2
∫

{|un|>k}

|fn| dxdt+
∫

{|u0n|>k}

|u0n| dx .

(4.22)

Step 3. Limit as n goes to infinity.
Applying Proposition 4.6 to the sequence (un), there exists a function u ∈ L1(Q)

such that Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) for all k > 0 and, up to a subsequence,

un → u, ∇un → ∇u a.e. in Q.

Let now (δn) be a sequence of positive numbers converging to 0, as n→∞. Using
the definition of Sk,δ(t) (see (2.14)), the fact that ∇u = 0 a.e. in {|u| = k} and
a(t, x, 0) = 0 (a consequence of (2.19)), we deduce that

Sk,δn(un)a(t, x,∇un) → a(t, x,∇Tk(u)) a.e. in Q.

Since Sk,δn
(un)a(t, x,∇un) is bounded in Lp′(Q), it also follows that

Sk,δn(un)a(t, x,∇un) ⇀ a(t, x,∇Tk(u)) weakly in Lp′(Q).

By properties of convolution, clearly we have µn
∗
⇀ µ in the weak∗ topology of

measures. Finally, since the sequence (Λk
n,δn

)n is bounded in L1(Ω), there exists a
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bounded measure λk such that, up to a subsequence, (Λk
n,δn

)n converges to λk in
the weak∗ topology of C(Q)′. We deduce from (4.21) that u satisfies

−
∫

Q

Tk(u)ϕt dxdt+
∫

Q

a(t, x,∇Tk(u))∇ϕdxdt

=
∫

Q

ϕf dxdt+
∫

Q

ϕdµ+
∫

Q

ϕdλk +
∫

Ω

Tk(u0)ϕ(0, x) dx,

for every ϕ ∈ C∞c ([0, T )× Ω).
Step 4. Estimate on λk.

By weak∗ lower semicontinuity of the norm, we have

‖λk‖M(Q) ≤ lim inf
n→∞

‖Λk
n,δn

‖M(Q).

Since, by Proposition 3.2, the sequence (µn) is equidiffuse, thanks to the uniform
estimate (4.19) we deduce that

lim
k→∞

sup
n

∫
{|un|>k}

|µn| dxdt = 0.

By the equi-integrability of (u0n) and (fn), the last two terms in (4.22) satisfy a
similar property. Then, by (4.22) we have

‖λk‖M(Q) ≤ lim inf
n→∞

‖Λk
n,δn

‖M(Q) ≤ εk,

where εk is some quantity which tends to zero as k → ∞. Letting k → ∞ we
conclude that λk satisfies (4.2), hence u is a renormalized solution. �

We immediately deduce by the previous results the following

Theorem 4.10. Let µ be a diffuse measure, and u0 ∈ L1(Ω). Assume that (2.19)-
(2.21) hold true. Then there exists a unique renormalized solution of (4.1) in the
sense of Definition 4.1.

Let us point out that the same arguments used in the construction of a renormal-
ized solution could also be employed for a stability result of renormalized solutions
corresponding to data µ which are weakly converging and equidiffuse. However, to
this purpose one would need the capacitary estimate of Theorem 1.2 to hold for
renormalized solutions as well. A major problem here is that solutions with measure
data may not possess a cap-quasicontinuous representative, hence capp({|u| > k})
is not well defined for all renormalized solutions u. To overcome this obstacle, the
following weak form of Theorem 1.2 can be proved.

Proposition 4.8. Let u be a renormalized solution of (4.1). Then, for every m ≥ 1
there exist positive functions zm, wm ∈W such that:

(i) −wm ≤ Tm(u) ≤ zm a.e. in Q.

(ii) ‖zm‖W + ‖wm‖W ≤ Cmax
{
m

1
p ,m

1
p′
}

where C = C(‖µ‖M(Q), ‖u0‖L1(Ω), p, α, β, ‖b‖Lp′ (Q)). In particular,

capp({zm > m}) + capp({wm > m}) ≤ Cmax
{

1

m
1
p

,
1

m
1
p′

}
.
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Proof. The proof is done following that of Theorem 1.2. Let us only precise a few
technical modifications. First of all, we start by considering the case where µ ≥ 0
and u0 ≥ 0, which implies that u ≥ 0 by Theorem 4.8. The estimate in Step 1 of
Theorem 1.2 follows from Proposition 4.5. Next we construct the function zm in the
same way as in Step 2 of Theorem 1.2 (replacing −∆p(·) with −div(a(t, x,∇(·)))):
here we assume that Tm(u(T )) is well defined (there is however no loss of generality,
otherwise one can use some sequence tn ↑ T such that Tm(u)(tn) is well defined,
recall that u ∈ L∞(0;T ;L1(Ω)) and such a sequence of Lebesgue points certainly
exists). Using assumptions (2.19) and (2.20), one obtains the estimate on zm:

‖zm‖W ≤ Cmax{m
1
p ,m

1
p′ } where C = C(‖µ‖, ‖u0‖, p, α, β, ‖b‖Lp′ (Q)).

Finally, to conclude that zm ≥ Tm(u), we show that

(4.23) Tm(u)t − div(a(t, x,∇Tm(u))) ≥ 0.

To this purpose, we use (4.7) with ψ = −Sm,δ(r+), where Sm,δ is defined in (2.14).
Since µ ≥ 0, we have, for every nonnegative ξ ∈ C∞c ([0, T )× Ω),∫

Q

ξψ(Tk(u))h dµ+ ‖ξ‖∞‖ψ‖∞‖λk‖ ≤ ‖ξ‖∞‖λk‖ → 0.

Then we let h→ 0, k →∞ and we obtain

−
∫

Q

ξt

∫ u

0

Sm,δ(r+) dr dxdt−
∫

Ω

ξ(0, x)
∫ u0

0

Sm,δ(r+) drdx

+
∫

Q

a(t, x,∇u)∇(Sm,δ(u+)ξ) dxdt ≥ 0.

Recalling that u ≥ 0, dropping the term with S′m,δ which is negative, and letting
δ → 0 we deduce (4.23). Therefore we complete Step 3 of Theorem 1.2 and the
conclusion in case that µ ≥ 0 and u0 ≥ 0. Since −µ− ≤ µ ≤ µ+ and −u−0 ≤ u0 ≤
u+

0 , the general case can be obtained comparing u with the solutions corresponding
to µ+, u+

0 and −µ−, −u−0 , which is possible thanks to the comparison principle for
renormalized solutions (Theorem 4.8). �

Let us notice that, in the previous proof, we do not need anymore the regularizing
procedure of Step 5 of Theorem 1.2 since we can compare directly renormalized
solutions which are defined even if data do not belong to Lp′(0, T ;W−1,p′(Ω)).

We deduce now an energy estimate for the renormalized solutions which extends
the classical one known in case of L1 data.

Proposition 4.9. Let u be a renormalized solution of (4.1). Then, for every m ≥ 1
there exists a cap-quasi open set Em ⊂ Q such that

(4.24) capp(Em) ≤ Cmax
{

1

m
1
p

,
1

m
1
p′

}
where C = C(‖µ‖M(Q), ‖u0‖L1(Ω), p, α, β, ‖b‖Lp′ (Q)), and, for every δ ∈ (0, 1],

(4.25)
1
δ

∫
{m<|u|<m+δ}

a(t, x,∇u)∇u dxdt ≤
∫

{|u0|>m}

|u0| dx+ |µ| (Em) .
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In particular, we have

(4.26) lim
m→∞

∫
{m<|u|<m+1}

a(t, x,∇u)∇u dxdt = 0.

Moreover, we have the estimate

(4.27) ‖λm‖M(Q) ≤
∫

{|u0|>m}

|u0| dx+ 2 |µ|(Em)

where λm is the measure associated to the renormalized equation of u.

Proof. Let ψm,δ(s) be a C2(R) function which is nondecreasing, odd and such
that ψm,δ(s) = 0 if |s| ≤ m and ψm,δ(s) = 1 if s ≥ m + δ. We use (4.7) with
ξ ∈ C∞c ([0, T )) and ψ = ψm,δ. Assuming k > m+ 1, we obtain

−
∫

Q

ξt

∫ Tk(u)

0

ψm,δ(r) dr dxdt+
∫

{m<|u|<m+δ}

a(t, x,∇u)∇uψ′m,δ(u)ξ dxdt

≤
∫

Q

ξ
(
ψm,δ(Tk(u))

)
h
dµ+ ‖ξ‖∞‖λk‖M(Q) + ‖ξ‖∞

∫
{|u0|>m}

|u0| dx+ o(1)h

where o(1)h tends to zero as h → 0. Taking ξε ∈ C∞c ([0, T )) such that (ξε)t ≤ 0
and ξε ↗ 1 pointwise in (0, T ) we get

(4.28)
∫

{m<|u|<m+δ}

a(t, x,∇u)∇uψ′m,δ(u) dxdt

≤
∫

Q

|ψm,δ(Tk(u))h| d|µ|+ ‖λk‖M(Q) +
∫

{|u0|>m}

|u0| dx+ o(1)h.

Since k > m+1, we have ψm,δ(Tk(u)) = ψm,δ(Tm+1(u)), hence using Proposition 4.8
we have

(4.29) ψm,δ(Tk(u))+ ≤ ψm,δ(zm+1) and ψm,δ(Tk(u))− ≤ ψm,δ(wm+1),

and since the inequalities are preserved taking the average and the cap-quasi con-
tinuous representatives we deduce from (4.28):∫
{m<|u|<m+δ}

a(t, x,∇u)∇uψ′m,δ(u) dxdt

≤
∫

Q

[(ψm,δ(zm+1))h + (ψm,δ(wm+1))h] d|µ|+ ‖λk‖M(Q)

+
∫

{|u0|>m}

|u0| dx+ o(1)h.

Applying Lemma 4.1, for any z ∈ W we have ψm,δ(z) ∈ S ∩ L∞(Q); hence, it
follows from Lemma 4.5 that, up to subsequences, (ψm,δ(z))h → ψm,δ(z) cap-
quasieverywhere. We deduce, by dominated convergence, that (ψm,δ(zm+1))h and
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(ψm,δ(wm+1))h both converge in L1(d|µ|). Then, passing to the limit as h→ 0 and
then k →∞ we obtain∫
{m<|u|<m+δ}

a(t, x,∇u)∇uψ′m,δ(u) dxdt

≤
∫

Q

[(ψm,δ(zm+1)) + (ψm,δ(wm+1))] d|µ|+
∫

{|u0|>m}

|u0| dx.

Setting Em = {(t, x) : zm+1 > m} ∪ {(t, x) : wm+1 > m}, we have, by definition of
ψm,δ, that ∫

Q

[(ψm,δ(zm+1)) + (ψm,δ(wm+1))] d|µ| ≤ |µ| (Em) ,

hence we get

(4.30)
∫

{m<|u|<m+δ}

a(t, x,∇u)∇uψ′m,δ(u) dxdt ≤ |µ| (Em) +
∫

{|u0|>m}

|u0| dx,

for every nondecreasing, odd function ψ ∈ C2(R) such that ψm,δ = 0 if |s| ≤ m and
ψm,δ = 1 if s ≥ m+ δ. By approximations with C2 functions, the same inequality
will be satisfied by the piecewise linear function ψm,δ = 1

δTδ(s− Tm(s)), hence we
get (4.25). Since

capp(Em) ≤ ‖zm+1‖W

m
+
‖wm+1‖W

m
,

the estimate (4.24) follows from Proposition 4.8. Then, since µ is diffuse, (4.25)
implies (4.26).

Finally, we want to estimate ‖λm‖M(Q). To this aim, we use Lemma 4.6 and
in particular (4.7) with ψ = ψm,δ(−s−) and (4.8) with ψ = ψm,δ(s+), again with
ψm,δ ∈ C2(R) (and with the same properties as above). We subtract the two
inequalities and we find

−
∫

Q

ξt

∫ Tk(u)

Tk(u0)

(ψm,δ(−r−)− ψm,δ(r+))(r) dr

+
∫

Q

a(t, x,∇Tk(u))∇[ξ(ψm,δ(−Tk(u)−)− ψm,δ(Tk(u)+))] dxdt

≤
∫

Q

ξψm,δ(−Tk(u)−)h dµ−
∫

Q

ξψm,δ(Tk(u)+)−h dµ+ 2‖ξ‖∞‖λk‖M(Q) + o(1)h.

We add (4.3) (with ϕ = ξ) to the above inequality, and we set ζm,δ(s) = ψm,δ(−s−)−
ψm,δ(s+) + 1. Note that ζm,δ(s) = −sign(s)ψm,δ(s) + 1 and that ζm,δ → χ|s|≤m as
δ → 0. We obtain

−
∫

Q

ξt

∫ Tk(u)

Tk(u0)

ζm,δ(r)dr

+
∫

Q

a(t, x,∇Tk(u))∇[ξ(ζm,δ(Tk(u))]dxdt−
∫

Q

ξdµ−
∫

Q

ξ dλk

≤
∫

Q

ξψm,δ(−Tk(u)−)hdµ−
∫

Q

ξψm,δ(Tk(u)+)−hdµ+ 2‖ξ‖∞‖λk‖M(Q) + o(1)h.
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Using (4.29) and since ζm,δ(Tk(u)) = ζm,δ(u) for k > m+ 1 we deduce

−
∫

Q

ξt

∫ u

u0

ζm,δ(r) dr +
∫

Q

a(t, x,∇u)∇[ξ(ζm,δ(u)] dxdt−
∫

Q

ξ dµ

≤ ‖ξ‖∞
∫

Q

[(ψm,δ(zm+1))−h + (ψm,δ(wm+1))h] d|µ|+ 3‖ξ‖∞‖λk‖M(Q) + o(1)h,

The right hand side can be estimated as before, letting h→ 0, obtaining

−
∫

Q

ξt

∫ u

u0

ζm,δ(r) dr +
∫

Q

a(t, x,∇u)∇ξζm,δ(u) dxdt−
∫

Q

ξ dµ

≤ −
∫

Q

a(t, x,∇u)∇u ζ ′m,δ(u)ξ dxdt+ ‖ξ‖∞|µ|(Em) + 3‖ξ‖∞‖λk‖M(Q)

Now let k →∞ using (4.2). Since ζ ′m,δ = −sign(s)ψ′m,δ(s), thanks to (4.30) we end
up with

−
∫

Q

ξt

∫ u

u0

ζm,δ(r) dr +
∫

Q

a(t, x,∇u)∇ξζm,δ(u) dxdt−
∫

Q

ξ dµ

≤ ‖ξ‖∞
∫

{|u0|>m}

|u0| dx+ 2‖ξ‖∞|µ|(Em).

Letting δ → 0 we find in the left hand side the term Tm(u)t−div(a(t, x,∇Tm(u)))−µ
which, using (4.3), coincides with λm, hence∫

Q

ξdλm ≤ ‖ξ‖∞
∫

{|u0|>m}

|u0| dx+ 2‖ξ‖∞|µ|(Em).

The same inequality can be obtained for −λm using now (4.7) with ψ = ψm,δ(s+)
and (4.8) with ψ = ψm,δ(−s−). Finally we conclude∣∣∣∣∫

Q

ξdλm

∣∣∣∣ ≤ ‖ξ‖∞
[ ∫
{|u0|>m}

|u0| dx+ 2|µ|(Em)
]

which implies (4.27). �

Remark 4.6. Thanks to Proposition 4.9, it is possible to prove the stability of
renormalized solutions with respect to a sequence of data (µn) which are weakly
converging (in the sense of measures) and equidiffuse. In particular, the estimate
(4.27) implies that the condition (4.2) on the sequence (λk) holds uniformly (hence
it is stable) when the measures µn are equidiffuse.

Finally, we conclude this section by showing that Definition 4.1 implies that u is
a renormalized solution in the sense of [13]. Since both solutions have been proved
to be unique, in particular this proves that the formulations are actually equivalent.

Theorem 4.11. Let u be a renormalized solution according to Definition 4.1, and
let µ be split as in (1.5), namely

µ = f − div(G) + gt, f ∈ L1(Ω), G ∈ Lp′(Q), g ∈ Lp(0, T ;V ).

Then u satisfies:

(4.31) u− g ∈ L∞(0, T ;L1(Ω)), Tk(u− g) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∀k > 0,
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(4.32) lim
h→∞

∫
{h<|u−g|<h+1}

|∇u|p dxdt = 0,

(4.33) −
∫

Q

S(u− g)ϕt dxdt+
∫

Q

a(t, x,∇u)∇(S′(u− g)ϕ) dxdt

=
∫

Q

fS′(u− g)ϕdxdt+
∫

Q

G∇(S′(u− g)ϕ)) dxdt+
∫

Ω

S(u0)ϕ(0, x) dx

for every S ∈W 2,∞(R) such that S′ has compact support, for every ϕ ∈ C∞c ([0, T )×
Ω).

Proof. We split the proof in two steps.
Step 1. Set v = Tk(u)−g. Then v ∈ Lp(0, T ;V ). Moreover, using the decomposition
of µ in (4.3), and integrating by parts the term with gt, we see that v satisfies

−
∫

Q

vϕt dxdt+
∫

Q

a(t, x,∇Tk(u))∇ϕdxdt

=
∫

Q

fϕ dxdt+
∫

Q

G∇ϕdxdt+
∫

Q

ϕdλk +
∫

Ω

Tk(u0)ϕ(0, x) dx

for every ϕ ∈ C∞c ([0, T )×Ω). It is easy to see that the above equality remains true
for every ϕ ∈W 1,∞(Q). Take then

ϕ(x, t) = ξ(x, t)
1
h

∫ t+h

t

ψ(v(s, x))ds,

where ξ ∈ C∞c ([0, T ) × Ω), ξ ≥ 0, ξψ(0) = 0 on (0, T ) × ∂Ω, and ψ is a Lipschitz
nondecreasing function. Since ψ is nondecreasing we have (using [5, Lemma 2.1])

lim inf
h→0

{
−
∫

Q

(v − Tk(u0))
(
ξ
1
h

∫ t+h

t

ψ(v)ds
)

t
dxdt

}
≥ −

∫
Q

(∫ v

0

ψ(r)dr
)
ξt dxdt−

∫
Ω

(∫ Tk(u0)

0

ψ(r)dr

)
ξ(0, x) dx.

Moreover, since ψ is bounded we have∣∣∣∣∫
Q

ϕdλk

∣∣∣∣ ≤ ‖ξ‖∞‖ψ‖∞‖λk‖M(Q)

and since ψ is Lipschitz we have ψ(v) ∈ Lp(0, T ;W 1,p
0 (Ω)), hence (ψ(v))h converges

to ψ(v) strongly in Lp(0, T ;W 1,p
0 (Ω)) and weakly∗ in L∞(Q). Therefore, we deduce,

as h→ 0,

(4.34) −
∫

Q

(∫ v

0

ψ(r)dr
)
ξt dxdt+

∫
Q

a(t, x,∇Tk(u))∇(ψ(v)ξ) dxdt

≤
∫

Q

fψ(v)ξ dxdt+
∫

Q

G∇(ψ(v)ξ) dxdt

+
∫

Ω

(∫ Tk(u0)

0

ψ(r)dr
)
ξ(0, x) dx+ ‖ξ‖∞‖ψ‖∞‖λk‖M(Q),
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for every ψ Lipschitz and nondecreasing. In order to obtain the reverse inequality
one can take

ϕ(x, t) = ξ(x, t)
1
h

∫ t

t−h

ψ(v̂(s, x)) ds

where v̂(x, t) = v(x, t) when t ≥ 0 and v̂ = Uj when t < 0, being Uj ∈ C∞c (Ω) such
that Uj → Tk(u0) strongly in L1(Ω). Using this time [5, Lemma 2.3] we obtain

lim inf
h→0

{
−
∫

Q

(v − Tk(u0))
(
ξ
1
h

∫ t

t−h

ψ(v)ds
)

t
dxdt

}
≤

≤ −
∫

Q

(∫ v

0

ψ(r)dr
)
ξt dxdt−

∫
Ω

(∫ Uj

0

ψ(r)dr

)
ξ(0, x) dx

−
∫

Ω

(Tk(u0)− Uj)ψ(Uj)ξ(0, x) dx.

Since it is still true that v̂ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), when h→ 0 we can pass

to the limit in the other terms as above and we obtain now

−
∫

Q

(∫ v

0

ψ(r)dr
)
ξt dxdt+

∫
Q

a(t, x,∇Tk(u))∇(ψ(v)ξ) dxdt

≥
∫

Q

fψ(v)ξ dxdt+
∫

Q

G∇(ψ(v)ξ) dxdt+
∫

Ω

(∫ Uj

0

ψ(r)dr

)
ξ(0, x) dx

+
∫

Ω

(Tk(u0)− Uj)ψ(Uj)ξ(0, x) dx− ‖ξ‖∞‖ψ‖∞‖λk‖M(Q),

which implies, as Uj → Tk(u0), that

(4.35) −
∫

Q

(∫ v

0

ψ(r)dr
)
ξt dxdt+

∫
Q

a(t, x,∇Tk(u))∇(ψ(v)ξ) dxdt

≥
∫

Q

fψ(v)ξ dxdt+
∫

Q

G∇(ψ(v)ξ) dxdt+
∫

Ω

(∫ Tk(u0)

0

ψ(r)dr

)
ξ(0, x) dx

− ‖ξ‖∞‖ψ‖∞‖λk‖M(Q).

Let S ∈ W 2,∞(R); we use (4.34) with ψ =
∫ s

0
(S′′(t))+dt and (4.35) with ψ =∫ s

0
(S′′(t))−dt. Since S′(s) =

∫ s

0
(S′′(t)+−S′′(t)−)dt, subtracting the two inequalities

we obtain

(4.36) −
∫

Q

S(v)ξt dxdt+
∫

Q

a(t, x,∇Tk(u))∇(S′(v)ξ) dxdt

≤
∫

Q

fS′(v)ξ dxdt+
∫

Q

G∇(S′(v)ξ) dxdt

+
∫

Ω

S(Tk(u0))ξ(0, x) dx+ 2‖ξ‖∞‖S′‖∞‖λk‖M(Q),

for every S ∈W 2,∞(R) and for every nonnegative ξ.
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Step 2. Take in (4.36) S′ = θh(s), where θh = T1(s − Th(s)), and ξ = ξ(t). We
obtain, denoting Rh(s) =

∫ s

0
θh(ξ)dξ,

−
∫

Q

Rh(Tk(u)− g)ξt dxdt+
∫

{h<|u−g|<h+1}

a(t, x,∇Tk(u))∇(Tk(u)− g)ξ dxdt

≤
∫

Q

fθh(Tk(u)− g)ξ dxdt+
∫

{h<|u−g|<h+1}

G∇(Tk(u)− g))ξ dxdt

+
∫

Ω

Rh(Tk(u0))ξ(0, x) dx+ 2‖ξ‖∞‖λk‖M(Q),

which implies, using (2.19), (2.20) and Young’s inequality,

−
∫

Q

Rh(Tk(u)− g)ξt dxdt+
∫

{h<|u−g|<h+1}

|∇Tk(u)|pξ dxdt

≤
∫

Q

fθh(Tk(u)− g)ξ dxdt+ C

∫
{h<|u−g|<h+1}

(|G|p
′
+ |g|p + |b|p

′
)ξ dxdt

+
∫

Ω

Rh(Tk(u0))ξ(0, x) dx+ 2‖ξ‖∞‖λk‖M(Q).

Now let k →∞, thanks to (4.2) and Fatou’s lemma we deduce

−
∫

Q

Rh(u− g)ξt dxdt+
∫

{h<|u−g|<h+1}

|∇u|pξ dxdt

≤
∫

Q

fθh(u− g)ξ dxdt+ C

∫
{h<|u−g|<h+1}

(|G|p
′
+ |g|p + |b|p

′
)ξ dxdt

+
∫

Ω

Rh(u0)ξ(0, x) dx.

Choosing ξ = 1 − 1
εTε(t − τ)+, for τ ∈ (0, T ), and letting ε → 0, leads to the

estimate of u − g in L∞(0, T ;L1(Ω)). Similarly, the usual choice of nonincreasing
ξε ∈ C∞c ([0, T )) such that ξε → 1 allows to get∫
{h<|u−g|<h+1}

|∇u|p dxdt

≤
∫

{|u−g|>h}

|f | dxdt+ C

∫
{h<|u−g|<h+1}

(|G|p
′
+ |g|p + |b|p

′
)ξ dxdt+

∫
{|u0|>h}

|u0| dx,

which implies (4.32). Now, let S ∈ W 2,∞(R) such that S′ has compact support,
and take a nonnegative ξ ∈ C∞c ([0, T ) × Ω). Using now the regularity (4.31), we
can pass to the limit in (4.36) as k →∞, and thanks to (4.2) we obtain (4.33). �



36 F. PETITTA, A. C. PONCE, AND A. PORRETTA

5. Equations with absorption

In this section we turn to the study of equations with absorption. Let h : R 7→ R
be a continuous function such that

(5.1) h(s)s ≥ 0 for every |s| ≥ L,

for some L ≥ 0, and let us consider the evolution problem

(5.2)


ut − div(a(t, x,∇u)) + h(u) = µ in Q,
u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω,

where µ ∈M0(Q), u0 ∈ L1(Ω) and where a : Q×RN → RN satisfies (2.19)–(2.21).
As far as the notion of solution of (5.2) is concerned, we follow the definitions

introduced in the above section. Namely, a renormalized solution of (5.2) is a
function u such that h(u) ∈ L1(Q) and u satisfies Definition 4.1 replacing µ with
µ − h(u). Correspondingly, u is a distributional solution if h(u) ∈ L1(Q) and u is
a distributional solution with µ− h(u) as right hand side.

First of all, observe that a straightforward modification of Theorem 4.8 implies
the following

Theorem 5.1. Let u1, u2 be two renormalized solutions of problem (5.2) with data
(u01, µ1) and (u02, µ2) respectively. Then,

(5.3)
∫

Ω

(u1 − u2)+(τ) dx+
∫ τ

0

∫
Ω

(h(u1)− h(u2)) sign+(u1 − u2) dxdt

≤ ‖(u01 − u02)+‖L1(Ω) + ‖(µ1 − µ2)+‖M(Q)

for almost every τ ∈ (0, T ).

When h is monotone, the above L1-contraction principle plays a crucial role in
such type of problems. We are now able to prove our main result concerning (5.2).

Theorem 5.2. Let µ ∈M0(Q) and u0 ∈ L1(Ω) and let h be a continuous function
satisfying (5.1). Then, problem (5.2) admits a renormalized solution (in particular,
a distributional solution). If, in addition, h is nondecreasing, then the renormalized
solution is unique.

Proof. As in the proof of Proposition 4.7, we take µn = µ ∗ ρn, where (ρn) is a
sequence of mollifiers. We then consider the solutions un of

(5.4)


(un)t − div(a(t, x,∇un)) + h(un) = µn in Q,
un = u0n on {0} × Ω,
un = 0 on (0, T )× ∂Ω.

Since ‖µn‖M(Q) ≤ ‖µ‖M(Q), using assumption (5.1) one easily gets that (h(un)) is
bounded in L1(Q) and ‖h(un)‖L1(Q) ≤ ‖µ‖M(Q). Hence, the sequence (un) satisfies
the estimates of Proposition 4.6 and the compactness properties. In particular,
there exists u ∈ L1(Q) such that (4.17) holds up to a subsequence. Moreover,
Theorem 1.2 implies that

(5.5) lim
k→∞

sup
n

capp{|un| > k} = 0.
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Multiplying the equation in (5.4) by T1(un − Tk(un)) we obtain∫
{|un|>k+1}

|h(un)| ≤
∫

{|un|>k}

|µn|.

By Proposition 3.2, the sequence (µn) is equidiffuse, so that we get

lim
k→∞

sup
n

∫
{|un|>k+1}

|h(un)| = 0

We now prove the equi-integrability of the sequence (h(un)). Indeed, since for any
subset E ⊂ Q we have

sup
n

∫
E

|h(un)| ≤ sup
n

∫
E

|h(Tk+1(un))|+ sup
n

∫
{|un|>k+1}

|h(un)|

and since, for fixed k, the sequence (h(Tk+1(un)) is equi-integrable , we deduce that

lim
|E|→0

sup
n

∫
E

|h(un)| ≤ sup
n

∫
{|un|>k+1}

|h(un)|.

Hence letting k → ∞ we get the equi-integrability of (h(un)). Since (h(un)) con-
verges pointwise to h(u), by Vitali’s theorem,

h(un) → h(u) strongly in L1(Q).

We can apply now Proposition 4.7 to deduce that u is a renormalized solution of
(5.2). When h is nondecreasing, we obtain uniqueness of the renormalized solution
from Theorem 5.1. �

In the case where h is nondecreasing, the existence of a solution can also be
proved in a slightly different way, which consists in proving first the result for a
dense subset of measures µ, then using the L1-contraction principle (Theorem 5.1)
to obtain the result for any diffuse measure µ. We can take for instance the subset
of measures satisfying the decomposition (1.5) with g ∈ L∞(Q); this set is dense in
view of Theorem 1.1. For such measures the existence of solutions of (5.2) can be
proved in the lines of the elliptic case.

6. Extension to the nonmonotone case

The approach developed in this paper is not limited to the case that the diver-
gence form operator is monotone. Let for example a : Q × R × RN → RN be a
Carathéodory function (i.e., a(·, ·, s, ξ) is measurable on Q for every (s, ξ) in R×RN ,
and a(t, x, ·, ·) is continuous on R× RN for almost every (t, x) in Q) such that the
following holds:

(6.1) a(t, x, s, ξ) · ξ ≥ α|ξ|p,

(6.2) |a(t, x, s, ξ)| ≤ β[b(t, x) + |s|p−1 + |ξ|p−1],

(6.3) [a(t, x, s, ξ)− a(t, x, s, η)] · (ξ − η) > 0,

for almost every (t, x) in Q, for every s ∈ R and for every ξ, η in RN , with ξ 6= η,
where, as before, p > 1, α and β are two positive constants, and b is a nonnegative
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function in Lp′(Q). From (6.1) we can deduce that a(x, t, s, 0) = 0 for any s ∈ R
and a.e. (t, x) ∈ Q. Consider the problem

(6.4)


ut − div(a(t, x, u,∇u)) + h(u) = µ in Q,
u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω,

where µ is a diffuse measure, u0 ∈ L1(Ω) and h satisfies (5.1). The method devel-
oped to find existence of solutions relies on the possibility to find capacitary esti-
mates. The proof we have given of such estimates in Theorem 1.2 (and Theorem 2.2)
used the monotone character of the second order term, but we can generalize these
estimates in the following

Theorem 6.1. Assume that (6.1)–(6.3) hold. Given u0 ∈ L2(Ω) and µ ∈M(Q)∩
Lp′(0, T ;W−1,p′(Ω)), let u ∈W be a (weak) solution of

(6.5)


ut − div(a(t, x, u,∇u)) = µ in Q,

u = u0 on {0} × Ω,
u = 0 on (0, T )× ∂Ω.

Then,

capp({|u| > k}) ≤ Cmax
{

1

k
1
p

,
1

k
1
p′

}
∀k ≥ 1,

where C > 0 is a constant depending on ‖µ‖M(Q), ‖u0‖L1(Ω), ‖b‖Lp′ (Q), α, β, p
and Ω.

Proof. The strategy is the same of the proof of Theorem 1.2 so we only sketch the
main technical changes. Let us define the auxiliary function ã(t, x, ξ) ≡ a(t, x, u+, ξ).
Note that, due to (6.2),

|ã(t, x, ξ)| ≤ β[b(t, x) + (u+)p−1 + |ξ|p−1]

and since u ∈ Lp(0, T ;W 1,p
0 (Ω)) we have that ã(t, x, ξ) satisfies (2.20) (and clearly

also (2.19) and (2.21)). Since µ is diffuse then µ+ is diffuse as well; we then consider
the unique renormalized solution v of the following problem

(6.6)


vt − div(ã(t, x,∇v)) = µ+ in Q,
v = u+

0 on {0} × Ω,
v = 0 on (0, T )× ∂Ω.

It follows by Theorem 4.8 (see Remark 4.5) that u+ ≤ v. Now, as in Proposition 4.8
we can prove that

Tk(v)t − div(ã(t, x,∇Tk(v))) ≥ 0 in D′(Q).

Without loss of generality, assume that Tk(v(T )) is well defined (otherwise use a
sequence tn ↑ T such that Tk(v(tn)) is so). We define the function z ∈ W as the
solution of

−zt − div(ã(t, x,∇z)) = −2 div(ã(t, x,∇Tk(v))) in Q,
z = Tk(v) on {T} × Ω,
z = 0 on (0, T )× ∂Ω,
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and we apply a comparison argument (since −div(ã(t, x,∇z)) is monotone) to de-
duce

z ≥ Tk(v) ≥ Tk(u+) a.e. in Q.
Now, Tk(v) satisfies the usual estimates (2.6) (e.g. by Proposition 4.5) and since

|ã(t, x,∇Tk(v))|p
′
≤ C

[
b(t, x)p′ + (u+)p + |∇Tk(v)|p

]
χ{v<k}

≤ C[b(t, x)p′ + (Tk(v))p + |∇Tk(v)|p],
using Poincaré inequality we have

‖ã(t, x,∇Tk(v))‖Lp′ (Q) ≤ C[‖b‖Lp′ (Q) + ‖∇Tk(v)‖p−1
Lp(Q)] ≤ C(1 + k

p−1
p ).

Therefore z satisfies the estimate in W as in Step 2 of Theorem 1.2 and we conclude
that

capp({u > k}) ≤ Cmax
{

1

k
1
p

,
1

k
1
p′

}
∀k ≥ 1.

The estimate for {u < −k} follows in the same way using µ− and u−. �

Finally, once we have the capacitary estimates in hand, we can follow the proof
of Theorem 5.2 and, through approximation, we can find the existence of at least
one renormalized (in particular, weak) solution of (6.4).
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Università di Roma Tor Vergata

Dipartimento di Matematica

Via della ricerca scientifica 1
00133 Roma, Italy

E-mail address: porretta@mat.uniroma2.it


