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Abstract

The functional difference between a diffuse wall and a

mirror is well understood: one scatters back into all di-

rections, and the other one preserves the directionality of

reflected light. The temporal structure of the light, however,

is left intact by both: assuming simple surface reflection,

photons that arrive first are reflected first. In this paper,

we exploit this insight to recover objects outside the line of

sight from second-order diffuse reflections, effectively turn-

ing walls into mirrors. We formulate the reconstruction task

as a linear inverse problem on the transient response of a

scene, which we acquire using an affordable setup consist-

ing of a modulated light source and a time-of-flight image

sensor. By exploiting sparsity in the reconstruction domain,

we achieve resolutions in the order of a few centimeters for

object shape (depth and laterally) and albedo. Our method

is robust to ambient light and works for large room-sized

scenes. It is drastically faster and less expensive than pre-

vious approaches using femtosecond lasers and streak cam-

eras, and does not require any moving parts.

1. Introduction

Object reconstruction from real-world imagery is one of

the central problems in computer vision, and researchers

agree that the very mechanism of image formation (each

pixel measuring light flux as a multidimensional plenoptic

integral) is one of the main reasons why it is so challenging.

To overcome the limitations of standard monocular images

taken under uncontrolled illumination with respect to many

vision tasks, a wide range of novel capturing approaches

has emerged that extend the concept of digital imaging with

structured light or new sensing techniques involving masks,

filters or integral optics (light fields) [17].

Most recently, researchers have started probing the tem-

poral response of macroscopic scenes to non-stationary il-

lumination, effectively resolving light contributions by the

total length of the optical path [1, 11]. Experimental ev-

idence suggests that such unmixing of light contributions

will benefit many challenges in computer vision, including

the use of diffuse reflectors to image objects via the time

profile of reflections from ultra-short laser pulses, so-called

transient images [20, 7]. However, reconstruction of the

this data from transient images is a numerically ill-posed

problem, that is sensitive to the exact parametrization of the

problem as well as the priors and regularization terms that

are employed. In this paper, develop a new parametrization

for this inverse problem, and combine it with a novel set of

sparsity inducing priors to achieve a robust reconstruction

of geometry and albedo from transient images.

Another challenge in this work is that the instrumenta-

tion required to measure the transient images themselves

has traditionally suffered from severe practical limitations

including excessive hardware cost (hundreds of thousands

of dollars), long acquisition times (hours) and the difficulty

of keeping the sensitive system calibrated. In this work we

address this problem by building on our recent work on us-

ing widespread CMOS time-of-flight sensors for obtaining

the transient image. The inverse problems for transient im-

age reconstruction and geometry recover can be merged into

a single non-linear optimization problem that can be solved

efficiently. The result is a system that is by several orders

of magnitude more affordable and acquires data faster than

previous solutions. In summary, we make the following

contributions:

• We formulate a transient image formation model for in-

direct geometry reconstruction, and derive a framework

for its inversion, including a novel set of sparsity en-

hancing priors. This framework is largely independent

of the way the input transient image is acquired.

• Building on our earlier work [9], we propose an imag-

ing setup that is budget-friendly, robust to ambient illu-

mination, and captures the required data in only a few

minutes.

• We demonstrate the effectiveness of setup and compu-

tational scheme by reconstructing both a low-contrast

albedo and the geometry of hidden objects.

2. Related Work

Time-of-Flight (ToF) Sensors also known as Photonic

Mixer Devices are image sensors where each pixel can di-
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(a) Setup (top view) (b) Unknown scene (c) Reconstructed depth (d) Reconstructed depth

(volume as probability) (strongest peak)

Figure 1. (a) top view schematic of our measurement scenario. All distances are in meters. A diffuse wall is illuminated by a modulated

laser beam and observed by a time-of-flight camera. From diffuse reflections, we infer the geometry and albedo of objects within a

bounding volume (green) that is completely occluded to both light source and camera, but visible from most locations on the wall. In this

example, the shape of two letters cut from cardboard (b) becomes clearly visible in the reconstruction (c,d) (see text for details).

rect the charge from incoming photons to two or more stor-

age sites within the pixel [19, 18, 13, 12]. This effectively

allows the incident illumination to be modulated with a peri-

odic reference signal. ToF sensors are typically used in con-

junction with periodically modulated light sources of the

same modulation frequency and in this setting measure the

phase-dependent correlation between the illumination and

the reference signal, from which the scene depth can be in-

ferred.

Recent improvements and extensions to PMD design

and operation include heterodyned modulation of light and

PMD sensor to improve resolution [3, 4], multi-path and

scattering suppression for depth estimation [5], as well as

tomography based on time of flight information [8]. Heide

et al. [9] recently showed that ToF sensors can also be used

to reconstruct transient images. In our work we use this ap-

proach to reconstruct geometry that is not directly visible

from the camera.

Transient Imaging a.k.a. Light-in-Flight Imaging [1]

refers to a novel imaging modality in which short pulses of

light are observed “in flight” as they traverse a scene and

before the light distribution achieves a global equilibrium.

Specifically, a transient image is a rapid sequence of im-

ages representing the impulse response of a scene. Starting

with Kirani et al.’s original work [11], there have been sev-

eral proposals to use transient images to capture surface re-

flectance [14], or simply to visualize light transport in com-

plex environments to gain a better understanding of optical

phenomena [21]. Wu et al. [22] proposed to use transient

images together with models of light/object interaction to

factor the illumination into direct and indirect components.

Transient images have also been proposed as a means of

reconstructing 3D geometry that is not directly visible to ei-

ther the camera or the light sources (“Looking around the

corner”, [15, 20, 7]). In our work, we aim to perform this

kind of indirect geometry reconstruction without the signif-

icant hardware complexity usually associated with transient

imaging. Using standard ToF sensors, we build on Heide et

al.’s work [9] to devise an image formation model, objec-

tive function, and optimization procedure to directly recon-

struct geometry from indirect illumination measured with

ToF cameras.

3. Image Formation Model

We make several assumptions for the image formation

process in the scene (see Figure 1 (a)):
• The hidden scene is modeled as a diffuse height field,

which in turn is represented as a collection of differential

patches dx with orientation nx inside a volume V .

• The camera points at a section of the diffuse wall, and is

in focus.

• Light is emitted as a laser ray from position l0 and illu-

minates a single point l on the diffuse wall, outside the

field of view of the camera. Radiometrically, we treat

this point as a single, isotropic point light emitting a ra-

diance Le(l).

• From l, the light illuminates the scene, and after a sin-

gle bounce returns to the diffuse wall. Patches dw on

the wall are chosen such that there is a one-to-one cor-

respondence between patches and camera pixels.

• Occlusion in the height field is ignored.

3.1. Stationary Light Transport

With these assumptions, and starting from the diffuse

Rendering Equation [10], we can therefore model the sta-

tionary (i.e. time independent) light transport as follows.

L(l) =Le(l) (1)

L(x) =Le(l)ρ(x)G(l,x) (2)

L(w) =

∫

V

Le(l)ρ(x)G(l,x)ρ(w)G(x,w) dx (3)

with ρ(.) denoting the diffuse albedo of a patch, and the

unoccluded geometry term

G(x,y) =
cos∡(y − x,nx) · cos∡(x− y,ny)

|y − x|
2 . (4)



We re-write the radiance at a wall patch (Equation 3) as

L(w) = Le(l)ρ(w)

∫

V

g(x)v(x) dx, (5)

where the geometry term

g(x) =
cos∡(x− l,nl) · cos∡(x−w,nw)

|x− l|
2
· |x−w|

2 (6)

is independent of both the albedo and orientation of the

patch dx, while

v(x) = ρ(x) · cos∡(l− x,nx) · cos∡(w − x,nx) (7)

is a term that isolates both of these unknown quantities. We

can interpret v(x) either as a generalized albedo term or as

a continuous volume occupancy that indicates whether or

not a given voxel location is occupied by the surface to be

reconstructed. Note that in this parametrization, the image

formation process is linear in v(x).

3.2. Transient Light Transport

The transient version of Equation 5 is obtained by adding

a time coordinate t and counting only light contributions

such that t is the sum of emission time t0 and the travel

time τ for a given light path from the laser l0 to a camera

pixel c. In our image formation model, the relevant light

paths only differ in the position of the surface element dx,

i.e. t = t0 + τ(x).
Recalling that we assume a one-to-one correspondence

between wall patches w and camera pixels c, we obtain the

transient image formation model

L(c, t)=

∫ t

0

Le(l, to)ρ(w)

∫

V

δ(t0+τ(x)−t)g(x)v(x) dx dt0,

(8)

where the travel time τ(x) is given as the total path length

divided by the speed of light c:

τ(x) = (|l0 − l|+ |l− x|+ |x−w|+ |w − c|)/c (9)

We note that this transient image formation model is inde-

pendent of the way the transient image has been acquired.

It therefore applies to all known approaches for generat-

ing transient images, including femtosecond imaging [20]

as well as correlation-based measurements with PMD sen-

sors [9].

3.3. Discretization

The problem of reconstructing geometry from indirect

light amounts to recovering the diffuse height field repre-

sented as the continuous voxel densities v(x). To this end,

we discretize the volume v(x) from Equation 8 into a Eu-

clidean voxel grid, and represent it as a vector v of size

M . The transient image (radiance) is represented as a vec-

tor i ∈ R
NT , where N is the number of camera pixels/wall

patches, and T is the number of time steps. The discrete

version of Equation 8 is then given as

i = Pv (10)

with the light transport tensor P ∈ R
NT×M .

3.4. Transient Model with PMD Sensors

Unlike Velten et al. [20], in our implementation we do

not measure the transient image directly. Instead, we build

on-top of our recent work on transient imaging with low-

cost sensors [9]: using a standard time-of-flight sensor with

a modulated illumination source, we obtain a sequence of

modulated exposure measurements h using different modu-

lation frequencies and phases. The transient image can then

be recovered as a linear inverse problem:

h = Ci, (11)

where the correlation matrix C is obtained through a

straightforward calibration step. Substituting Equation 10

for i, we arrive at our full image formation model:

h = CPv (12)

4. Inverse Problem

The image formation model from Equation 12 cannot be

inverted directly, since both the light transport matrix P is

poorly conditioned, as is the correlation matrix C (see [9]).

It is therefore necessary to include additional regularization

terms and solve a non-linear optimization problem. These

steps are described in the following.

4.1. Objective Function

We formulate the inverse problem as the optimization

problem

vopt = argmin
v

1

2
‖CPv − h‖

2
2 + Γ(v), (13)

which is regularized with three terms:

Γ(v) = λ
∑

z

‖∇x,yvz‖1 + θ ‖Wv‖1 + ω
∑

x,y

indC(vx,y)

(14)
From left to right, the individual terms represent:

• A sparse spatial gradient distribution in the height field,

implemented as the ℓ1 penalized spatial gradients for all

volume depths z.

• A sparse volume v, justified by our assumption of height

field geometry. This term is implemented as a weighted

ℓ1 norm of the volume itself. The weight matrix W will

be obtained using an iteratively reweighted ℓ1 scheme

(IRL1, see Section 4.2).



• An explicit enforcement of the height field assumption,

by constraining the volume to have at most one non-

zero entry for each 2D (x, y) coordinate. We encode this

prior using a projection onto an indicator set of possible

depth values for each (x, y) coordinate:

indC(p) =

{

0 if p ∈ C
∞ else

with

C = {d ∈ R
z| card (d) = 1 ∧ 1Td = 1Tp}

(15)

We note that the second and third term of the regular-

izer both have the purpose of encouraging a single surface

reflection along the z-dimension of the reconstruction vol-

ume. The term from Equation 15 is stronger than the ℓ1
regularization, since it prefers exactly single-non-zero so-

lutions (in contrast to just sparse solutions). On the other

hand, it makes the overall optimization non-convex as C is

a non-convex set. So having both terms enables us to trade

the convexity of our objective function for the sparsity of

our model by adjusting the weights θ, ω from Equation 14.

In order to solve the optimization problem from Equa-

tion 13, we split the regularization term into a linear opera-

tor K and a function F (.): Γ(v) = F (Kv), with

K =
[

DT
x ,D

T
y ,WI

T , IT
]T

, (16)

where Dx,Dy are derivative operators for the x, y dimen-

sions for all z coordinates (stacked on-top of each other)

and I is the identity matrix. We note that the minimum of

Γ(v) is obtained by independently minimizing F for each

component of Kv.

Having reformulated our optimization problem using K,

we have now mapped our problem to one that can solved

efficiently using a variant of the alternate direction method

of multipliers method (ADMM) in Algorithm 1.

Algorithm 1 Our ADMM algorithm

1:
vk+1 :=

(

PTCTCP+ µI
)−1 (

PTCTh+ µvk−

ρ
(

KTKvk −KT jk
)

+KTλk
)

// v-step

2: jk+1 := prox(1/ρ)F

(

Kvk+1 − λk/ρ
)

// j-step

3: λk+1 := λk + ρ
(

Kvk+1 − jk+1
)

// λ-step

A detailed derivation and description of Algorithm 1 and

the proximal operator prox(1/ρ)F can be found in the ap-

pendix and supplement.

4.2. Enhancing Volume Sparsity

To further enhance the sparsity of the convex ℓ1-

regularized part of our objective, we have placed a weight

W on the individual components of the ℓ1 volume penalty

(second term in Eq. (14)).

This approach has been proposed by [2]. The idea is

that the weights W capture the support of our sparse so-

lution. This support is estimated iteratively from the last

solution, which allows for improved recovery of the sparse

non-negative components. As proposed in [2], we use the

update rule

Wj+1 := diag

(

1

|vj |+ ǫ

)

, (17)

where the division is here point-wise. The iteration variable

j from above is for an outer iteration on top of our original

iteration from Algorithm 1.

5. Implementation and Parameter Selection

Parameters. For Algorithm 1, we use the parameters

ρ = 1.1 and µ = 0.5 ∗ 1/
(

ρ‖K‖22
)

, which produced good

results for all of our tested datasets. Note that K changes

for every outer IRL1 iteration, and thus µ has to be recom-

puted for every iteration. We estimate ‖K‖22 by running the

power method for KTK with random initialization. We use

3 outer IRL1 iterations and an update weight of ǫ = 0.1.

Implementation of the v-step. For a very high resolu-

tion sensor and reconstruction volume, storing P would be

infeasible. In this scenario one can implement P as the

procedural operator performing the transient light transport

exactly as described in Section 3.2. The transient render-

ing operation parallelizes very well over each input pixel.

One can implement its transpose PT similarly as the dot

product of each transient image for a considered voxel ac-

cumulated over the whole voxel volume. Thus again only

transient rendering and some additional dot-products are re-

quired. Finally, the v-step from Algorithm 1 can be imple-

mented using conjugate gradient (CG). Instead of applying

explicit matrix multiplication inside CG, we replace each

of the products with P or PT with the operations defined

above.

We implemented this version first. However, since our

sensor only has a very low resolution of 120×160, we were

actually able to fully precompute and efficiently store P (in

< 8GB RAM) as a sparse matrix which speeds up the recon-

struction dramatically. Note that this approach would not be

possible if the sensor or reconstruction resolution were sig-

nificantly higher.

Pre-factorization for Speedup. Instead of minimizing

‖CPv − h‖22 as a data term one can also pre-factor the

optimization and first solve for a transient image C−1h and

then use this as an observation in the changed data term

‖Pv − C−1h‖22. We have used the i-step from Heide et

al. [9] to pre-factor the optimization and did not notice a no

strong difference in reconstruction quality in comparison to

using the not pre-factored version. The advantage of pre-

factoring is that the method gets sped up even more since



all matrix application of C have been handled before and C

itself can be inverted more efficiently than the full CP.

6. Results

6.1. Experimental Setup

Our instrumentation comprises a modulated light source

and a PMD detector, as first used for the purpose of transient

imaging by Heide et al. [9].

The detector is based on a filterless version of the

time-of-flight development kit CamBoard nano by PMD

Technologies, and extended with an external frequency-

controllable modulation source (a workaround in lack of

access to the FPGA configuration for the CamBoard). We

determined that for our setup an integration time of 10

milliseconds to delivers the optimal signal-to-noise ratio,

which we further improve by averaging over multiple mea-

surements (see also Section 6.3).

The light source consists of six 650 nm, 250 mW laser

diodes with collimation optics and custom driving hardware

to emit pulses of approximately 2-3 nanoseconds duration

at variable repetition rate. The primary difference to the

hardware setup by Heide et al. [9] is that in our setup, the

diodes are not diffused to act as a spot light. Instead, we

focus each laser diode with individual optics onto a single

spot l on the wall (Figures 1, 2). Their overall duty cycle

during capture is less than 1%, allowing operation with only

the lens holders doubling as heat sinks.

Our reconstruction volume has a size of

1.5 m×1.5 m×2.0 m and is distanced 1.5 m from the

flat, diffuse wall. The camera and illumination are about

2 m from the wall; please see Figure 1 (a) for the exact

spatial arrangement.

6.2. Qualitative Reconstruction Results

Geometry. Our first test is to reconstruct the geometry of

two letters cut out of cardboard that was painted with white

color, and placed at different depths (Figure 1). We show

two visualizations of the recovered depth information in the

volume. In the second image from the right we treat the

voxels as an occupancy probability and simply the expected

value of the distribution for each pixel, i.e. the sum of dis-

tances weighted by the occupancy probability.

Since the expected value is not robust to outliers, we

show in the rightmost image the depth value with the

strongest peak for each (x, y) pixel. This amounts to the

voxel with the highest probability of occupancy in our re-

construction. Note that in this image we threshold the vol-

ume such that all pixels with a very low albedo/occupancy

probability for all depths are shown as grey.

Albedo. The next experiment 3 shows the recovery of a

spatially varying albedo on a flat surface. The color-coded

depth map shows the depth of the strongest density in the

reconstructed volume for each pixel (x, y) as before. The

left of the figure shows the albedo v(x) sampled exactly at

the depth map positions (the position of the strongest peak).

Figure 3. Albedo reconstruction example: Reconstruction of scene

image with a flat surface but varying albedo (right). Left: the

color-coded depth map of strongest peak along z-coordinate visu-

alized shows an essentially flat geometry. Middle: Albedo image,

reconstruction value exactly at the depth map’s depth.

Albedo and Geometry. Figure 4 shows an example of vari-

ation in both geometry and albedo. In this case, the planar

surface in the front could not be reconstructed in the depth

map due to the low albedo limiting the reflected light.

Figure 4. Simultaneous albedo and geometry reconstruction exam-

ple: Reconstruction of scene image with varying albedo (letter on

plane in the front) and varying depth for the letter in back (right).

Albedo image, reconstruction value exactly at the depth position

from the depth map (left). Color-coded depth map of strongest

peak along z-coordinate visualized (middle).

Different Materials. In the supplemental material we show

several examples of reconstructions with non-Lambertian

surfaces. We find that Lambertian scenes result in very

sparse volume reconstructions that clearly represent a

height field structure. With increasingly non-Lambertian

surfaces the energy is spread out more and more through-

out the volume (as our model is violated).

6.3. Effects of Ambient Light and Frame Averaging

One of the advantages of Heide et al.’s method for recon-

structing transient images [9], is that it is rather insensitive

to ambient illumination. We tested whether this robustness

also applies to our approach for reconstructing geometry

(Figure 5) and albedo (Figure 6). In both cases we per-

formed our capture once with the ceiling lights in the room

switched off, and once with them switched on. We can see

that there is only a minor effect on the overall sharpness and

reconstruction quality in both cases.

As mentioned before, we average several measurements

before reconstruction. This improves SNR, since the mea-

sured indirect reflection results in very low light levels.



Figure 2. Left: 3D model of our setup (to scale). Center: Photo of our capture setup facing the diffuse wall (light source covered with black

photo board). To the left, behind an occluder, lies the reconstruction volume. Right: Close-up on the light source without cover.

Figure 7 shows different depth and albedo reconstructions,

where each measurement respectively is the average of 10

or 500 individual ToF images with a specific modulation

frequency and phase. We see that we still get a reason-

able reconstruction by averaging only 10 images. The cor-

responding capture time of 4 minutes (200 minutes for av-

eraging 500 measurements) could be significantly improved

by better synchronizing the PMD camera and light source so

that the camera can capture at video rates. Still, even with

the current setup, our capture times compare very favorably

to those reported for femtosecond laser setups [20].

6.4. Quantitative Measurements

To evaluate our reconstruction results, we compared the

distance maps with manually measured scene geometry.

Figure 8 shows a quantitative evaluation for the geometry

reconstruction example shown above.

Lateral resolution. In order to evaluate the spatial reso-

lution, we show an image of the measured scene geometry

of the flat targets. The same discretization as for the shown

depth map has been used. Having in mind that our recon-

struction volume for all results in this paper had a size of

1.5 m × 1.5 m × 2.0 m (x × y × z), we see that we can

achieve an (x, y) resolution of approximately ±5 cm. The

Figure 5. Effects of ambient illumination on albedo reconstruc-

tion: All lights in room off (top) and lights on(bottom). We see

that we still get a reasonable reconstruction with strong ambient

illumination

Figure 6. Effects of ambient illumination on albedo reconstruc-

tion: All lights in room off (top) and lights on(bottom). We see

that we still get a reasonable reconstruction with strong ambient

illumination

accuracy of the reconstruction varies with different materi-

als. Materials that have little or no overlap in the space-time

profile (e.g. mirror example in the supplement), allow for

high reconstruction precision (around ±2 cm for the mirror

example). The precision for more complex materials de-

graded to around ±15 cm tolerance. Overall the spatial res-

olution is limited by the low resolution of our sensor (which

was only 120×160 pixels).

Note that due to our robust measurement and reconstruc-

tion procedure we are able to achieve the shown results for

significantly larger scenes than previously possible in with

the femtosecond laser approach demonstrated in [20]. Vel-

ten et al. report distances of up to 25 cm from object to the

wall and a reconstruction volume of (40 cm)3 due to the low

Figure 7. Effects of frame averaging on albedo (left) and geometry

(right). The left image in each pair is based on averaging 500 ToF

images for each measurement, while the right image in each pair

uses only 10.
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Figure 8. Quantitative evaluation: Reconstruction of scene image

with letter ”L” and ”F” cut out of white painted cardboard (right).

Color-coded depth map of strongest peak along z-coordinate vi-

sualized with color bar for depth in m (left). (x, y) ground truth

geometry acquired from scene measurements (middle).

SNR for large distance bounces, whereas we demonstrate

for the first time much larger room-sized environments.

Depth resolution. For the temporal resolution achieved

in the above example of Fig. 8, we see from the given color

bar a depth distance of approximately 0.6m, where the mea-

sured distance was 0.75m. For all similarly diffuse materi-

als we reach also roughly a tolerance of ±15cm. For sim-

ple strong reflectors like the mirror we have less temporal

superposition, so for the mirror example we obtain a high

temporal resolution of below 5 cm error in our 2 m depth

range, with more complex materials producing a precision

of around ±20 cm.

As shown above the resolution of our approach depends

on the scene content. The achievable resolution should in

the future scale linearly with the availability of higher res-

olution ToF cameras, such as the upcoming Kinect 2. We

have shown that our method degrades somewhat gracefully

with using different materials, although a certain scene de-

pendence is inherent in the non-linear nature of the inverse

problem we solve.

7. Conclusions

We have presented a method for reconstructing hidden

geometry and low contrast albedo values from transient im-

ages of diffuse reflections. This approach involves hard in-

verse problems that can only be solved using additional pri-

ors such as sparsity in the geometry, and our primary con-

tribution is to identify a linearized image formation model,

regularization terms, and corresponding numerical solvers

to recover geometry and albedo under this difficult scenario.

Despite these numerical challenges, we show that our

method can be combined with our recent work on tran-

sient imaging using inexpensive time of flight cameras [9],

which itself involves a hard inverse problem. We demon-

strate that it is possible to combine these two inverse prob-

lems and solve them jointly in a single optimization method.

As a result our approach has several advantages over previ-

ous methods employing femtosecond lasers and streak cam-

eras [20]. These include a) low hardware cost, b) no mov-

ing parts and simplified calibration, c) capture times that

are reduced from hours to minutes, and d) robustness un-

der ambient illumination in large room-sized environments.

We believe that, as a result, our method shows promise for

applications of indirect geometry reconstruction outside the

lab.
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A. Solving the Optimization Problem

This section describes how to derive Algorithm 1 after

having introduced Γ(v) = F (Kv) in Eq. (16). For an ex-

panded version see the supplement.

To derive our ADMM method, we rewrite the problem

as

vopt =argmin
v

G (v) + F (j) s.t. Kv = j , (18)

and can then form the augmented Lagrangian

Lρ (v, j, λ) =G (v) + F (j)+

λT (Kv − j) +
ρ

2
‖Kv − j‖

2
2

, (19)

where λ is a dual variable associated with the consensus

constraint. ADMM now minimizes Lρ (v, j, λ) w.r.t. one

variable at a time while fixing the remaining variables. The

dual variable is then the scaled sum of the consensus con-

straint error. For more details see, for example [16]. The

minimization is then done iteratively, by alternatingly up-

dating v, j, and the Lagrange multiplier λ. The key steps of

this algorithm are as follows:

vk+1 =argmin
v

Lρ

(

v, jk, λk
)

=argmin
v

1

2
‖CPv − h‖

2
2 + (λk)T

(

Kv − jk
)

+

ρ

2

∥

∥Kv − jk
∥

∥

2

2

≈argmin
v

1

2
‖CPv − h‖

2
2 + (λk)T

(

Kv − jk
)

+

ρ
(

KTKvk −KT jk
)T

v +
µ

2

∥

∥v − vk
∥

∥

2

2

=
(

PTCTCP+ µI
)−1 (

PTCTh+ µvk−

ρ
(

KTKvk −KT jk
)

+KTλk
)

(20)

Note that in the third line we have made an approxi-

mation that linearizes the quadratic term from the second

line in the proximity of the previous solution vk. This lin-

earization approach is known under several different names,

including Linearized ADMM or inexact Uzawa method

(e.g. [23, 6]). The additional parameter µ satisfies the re-

lationship 0 < µ ≤ 1/
(

ρ‖K‖22
)

.



jk+1 =argmin
j

Lρ

(

vk+1, j, λk
)

=argmin
j

F (j) +
ρ

2

∥

∥

∥

∥

(

Kvk+1 −
λk

ρ

)

− j

∥

∥

∥

∥

2

2

(21)

Both F (.) and the least square term can be minimized

independently for each component in j. Using the slack

variable j, the minimization involving the difficult function

F has now been turned into a sequence of much simpler

problems in just a few variables.

To derive the specific solutions to these problems, we

note that the last line in Equation 21 can be interpreted as a

proximal operator [16]:

jk+1 = prox(1/ρ)F

(

Kvk+1 −
λk

ρ

)

. (22)

Proximal operators are well-known in optimization and

have been derived for many terms. For our problem, we

require the proximal operators for the ℓ1 norm and for the

indicator set. These are given as

proxγ|·|(a) =(a− γ)+ − (−a− γ)+

proxγ indC(·)(a) =ΠC(a)
(23)

The first term is the well-known point-wise shrinkage

and the second is the projection on the set C.

The final step of the ADMM algorithm is to update the

Lagrange multiplier by adding the (scaled) error:

λk+1 := λk + ρ
(

Kvk+1 − jk+1
)

(24)
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