
research papers

20 doi:10.1107/S2053273314026515 Acta Cryst. (2015). A71, 20–25

Acta Crystallographica Section A

Foundations and

Advances

ISSN 2053-2733

Received 3 October 2014

Accepted 2 December 2014

Diffuse multiple scattering

A. G. A. Nisbet,a* G. Beutier,b,c F. Fabrizi,a B. Mosera and S. P. Collinsa

aDiamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, UK, bCNRS, SIMAP,

F-38000 Grenoble, France, and cUniv. Grenoble Alpes, SIMAP, F-38000 Grenoble, France.

Correspondence e-mail: gareth.nisbet@diamond.ac.uk

A new form of diffraction lines has been identified, similar to Rutherford,

Kikuchi and Kossel lines. This paper highlights some of the properties of these

lines and shows how they can be used to eliminate the need for sample/source

matching in Lonsdale’s triple convergent line method in lattice-parameter

determination.

1. Introduction

We present a new technique for structural analysis in single

crystals, extending the capabilities of existing multiple-

scattering methods. Lines similar to Rutherford, Kikuchi and

Kossel lines arising from incoherent X-ray multiple-scattering

processes have been observed for numerous materials. We will

present data from Cu and Au samples.

In multiple-wave diffraction, the interaction between

diffracted waves can lead to an increase or decrease in the

measured intensity. When the intensity is decreased due to the

energy being diverted to other reflections, the intensity

reduction is called aufhellung and was first reported by

Wagner (1920) and then by Berg (1926). On the other hand,

when a secondary reflection acts as the source for a tertiary

reflection emerging in the direction of the primary reflection,

the intensity can be modified by constructive or destructive

interference. This is known as umweganregung (umweg for

short) and was first reported by Renninger (1937). If the

incident beam is collimated, the multiple diffraction emerges

as diffraction spots. If, however, the source is an external

divergent source close to the sample, the observed diffraction

produces lines. This effect was first demonstrated as far back

as 1914 by Rutherford & Andrade (1914), closely followed by

Seemann (1916) and later by Fujiwara (Fujiwara, 1928; Fuji-

wara & Onoyama, 1937, 1939) and Lonsdale (1947). These

lines were first referred to as pseudo-Kossel lines by Imura

(1954), which was somewhat erroneous considering they pre-

dated Kossel’s technique. The term, however, has persisted

(Tixier & Waché, 1970; Okada & Iwasaki, 1980; Lang, 1995;

Chang, 2004; Cowley, 1975). The same effect can be achieved

using an internal source, as demonstrated by Kossel (1935).

Kossel reported a method in which he and his colleagues used

a single crystal as an anti-cathode in an X-ray tube to excite

characteristic divergent X-rays within the crystal. (Kossel,

1935; Chang, 2004; Novikov et al., 1998; Cowley, 1975; Lons-

dale, 1947). Borrmann used a similar method but placed the

crystal outside the tube, using the higher-energy X-rays from

the tube to excite the lower-energy fluorescence in the crystal

(Borrmann, 1935, 1936). Kikuchi observed similar lines with

an electron beam, which he attributed to the divergence of the

cathode rays, reporting the similarity with the work of

Rutherford and Andrade using �-rays (Kikuchi, 1928).

We aim to extend the story of diffraction lines by proposing

a fourth process which has become apparent a century on from

Rutherford’s experiment only because of the immense flux of

third-generation synchrotron sources and the considerable

dynamic range of modern area detectors. While sharing

characteristics of Kikuchi, Kossel and pseudo-Kossel lines, the

source of the lines is different. The incident beam is not

divergent and neither is it tuned to the characteristic energy of

the elements within the crystal. Instead, the divergent source is

provided by the diffuse scatter arising from a disruption in the

long-range order of the crystal such as structural defects or

crystal-surface truncation. As the lines are distinct from

Kossel lines, and in certain circumstances can be seen at the

same time, we have introduced, for the sake of clarity, a new

term, namely diffuse multiple scattering (DMS). DMS lines

exhibit several exploitable differences from the above

processes which will be explored in the current paper. In

particular, we will extend the capabilities of Lonsdale’s

method in the context of tunable synchrotron radiation.

Finally, we will provide a convenient algorithm for calculating

the geometry of the DMS features.

2. Geometrical model

2.1. Multiple scattering

In multiple scattering, the geometry at which multiple

scattering occurs is determined by several parameters, namely,

the energy of the incident beam, which fixes the size of the

Ewald sphere, the direction of the primary scattering vector,

the reciprocal-space origin, which is set by the primary Bragg

angle, and an azimuthal reference with respect to which the

azimuthal angles are defined (see Fig. 1a). At its most basic,

multiple scattering occurs when two or more reciprocal-lattice

vectors simultaneously intersect the Ewald sphere. This will

result in a secondary reflection emitted in a direction away

from the primary scattered beam vector (k1). If the secondary
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and tertiary scattering vectors sum to the primary scattering

vector (h0k0l0 ¼ h1k1l1 þ h2k2l2), the beam will be redirected

by the tertiary reflection in the direction of k1 and effect an

intensity change at the detector. A convenient method for

measuring this is the Renninger scan (Renninger, 1937), in

which the sample is rotated about a primary scattering vector.

Finding the azimuthal angles at which the reciprocal-lattice

vectors intersect the Ewald sphere can trivially be reduced to a

problem of intersecting circles determined by the reciprocal-

lattice vectors (L) and their corresponding Ewald slices. This is

done by converting hkl’s to reciprocal-lattice vectors using the

B matrix (Busing & Levy, 1967) and defining circles with their

origins positioned along the primary reciprocal-lattice vector

(G) and their axes parallel to G. The radius of the circles is

given by the norm of the projection of L on the plane

perpendicular to G. The radius of the Ewald slice is given by

RES ¼ k0 cos½sin
�1ðr=k0 � sin �Þ�, where r is the component of

the reciprocal-lattice vectors projected onto G and � is the

Bragg angle of the primary reflection.

2.2. Diffuse multiple scattering

DMS is almost identical to normal multiple scattering in

terms of its geometry. If we extend the Ewald construction so

we are no longer considering the integer case but have an

extended source within the crystal arising from the diffuse

scatter of a nearby Bragg peak or crystal truncation rod

(CTR), we have the scheme depicted in Fig. 1(b). This is

analogous to having a range of incident angles providing a

continuous set of reciprocal-space origins. Calculating the

azimuthal angles at which the crystal reciprocal-lattice vectors

intercept the Ewald sphere for each of these origins results in

lines across the sphere’s surface. Figs. 1(c) and 1(d) show v0
and vn intersecting the sphere at different elevations and

azimuths  0 and  n, respectively.
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Figure 2
Comparison of calculated Kossel conics (white) with calculated DMS
lines (red) for the Si 002 primary reflection at 6 keV, showing the
geometrical equivalence of both methods.

Figure 1
Part (a) shows the Ewald construction for the simple multiple-scattering case with scattering vectorsG and L simultaneously intersecting the sphere [the
reciprocal-lattice vectors are in red and the beam vectors are in green for (a) to (d)]. Part (b) shows the Ewald construction extended for diffuse multiple
scattering. The reciprocal-space origin changes with the incident angle (we are now assuming multiple incident beams). Consequently, the positions at
which the reciprocal-lattice vectors intersect the sphere are changed, producing lines. Parts (c) and (d) provide a simplified view of (b) at two different
projections. v0 and vn refer to the resulting vectors connecting the new origins to the surface of the sphere for a range of incident-beam vectors 0 to n.



Ignoring polarization, this is geometrically equivalent to

defining an internal spherical wave which then produces

conics where the Bragg condition is met. This equivalence is

demonstrated in Fig. 2, which shows the calculated Kossel

conics and DMS lines calculated according to the method

described above for the same energy.

2.3. Polarization

Figs. 3(a) and 3(c) show experimental data collected for a

Au(111) crystal measured at the I16 beamline (Collins et al.,

2009) at Diamond Light Source. The sample was orientated so

as to excite the theoretical 1.5 1.5 1.5 Bragg reflection at an

energy of 8 keV. Note that the images (a) and (c) consist of

several discrete images taken for different azimuths, which is

why the diffuse spots are separated according to the resolution

of the stitching or azimuthal step size. The lines, however, flow

continuously from image to image for the reasons explained in

x2.2. Normally, when the geometry is chosen for a Bragg

reflection the beam is incident on the reflecting planes at an

angle � and an azimuth  , and this would result in a diffraction

spot on the detector. If we assume the beam enters the sample

at multiple angles, it becomes convenient to convert the pixels

on the area detector (Pilatus 100k in this case) to an array of

�= angles. This enables the appropriate stitching for the

DMS lines and means that the simulated lines can be conve-

niently superimposed on the images.

In contrast to Kossel lines, which are isotropic and unpo-

larized (Gog et al., 1996), DMS lines exhibit a clear polariza-

tion dependence. The two sets of images were taken with �

and � polarization. The 222 DMS line is clearly visible in the �

geometry and absent in the � geometry; conversely, the 222

and 222 DMS lines are absent in the � geometry and present in

the � geometry. Additionally, the 240 is much weaker in the �

geometry. The polarization can be calculated according to

EDMS2
¼

1 0

0 cosð2�OBÞ

� �
cosð’Þ sinð’Þ

� sinð’Þ cosð’Þ

� �
E�0
E�0

� �
ð1Þ

and
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Figure 3
Diffuse multiple scattering in Au(111) at hkl = 1.5 1.5 1.5 with an azimuthal reference of [100]. Parts (a) and (c) show stitched images converted to �;  ;
parts (b) and (d) show the corresponding simulations normalized to the polarization factor.



EDMS3
¼

1 0

0 cosð2�hkl3Þ

� �
cosð ~’’Þ sinð ~’’Þ

� sinð ~’’Þ cosð ~’’Þ

� �
EDMS2

; ð2Þ

where

’ ¼ � cos�1½
d

ðdk0OBk0OB � dk1OBk1OBðdk0OBk0OB � dk1OBk1OBÞ � ð
ddk0OBk0OB � dk2OBk2OB

dk0OBk0OB � dk2OBk2OBÞ� ð3Þ

and

~’’ ¼ � cos�1½
d

ðdk0OBk0OB � dk2OBk2OBðdk0OBk0OB � dk2OBk2OBÞ � ð
ddk2OBk2OB � dk3OBk3OB

dk2OBk2OB � dk3OBk3OBÞ�; ð4Þ

and E�0 and E�0 are the elements of the electric field vector

perpendicular and parallel, respectively, to the scattering

plane of the primary reflection, �OB is the off-Bragg angle,

corresponding to the beam vectors, k1OB0 to k1OBN, the range

of which can be defined by the acceptance angle of the

detector.

2.4. Line width

As well as showing the polarization dependence of DMS,

Fig. 3 also exhibits a range of line widths. These can be

explained in terms of the sweep of the reciprocal-lattice

vectors through the wall of the Ewald sphere. For example, if

we assume that the Ewald sphere has a wall thickness due to

an energy bandwidth, or that for each reciprocal-lattice vector

there is an angular spread of vectors due to the crystal’s

mosaicity, or alternatively, there is a spread of vector lengths

due to strain in the crystal, then the result will be an intensity

distribution as the vectors sweep through the wall of the

sphere.

2.5. Crystal truncation rod multiple scattering

So far we have looked at multiple scattering where the

primary reflection is diffuse and is filtered by secondary and

tertiary reflections resulting in relatively clean lines. A further

component that can make a contribution to the observed

signal is the CTR. We measured the DMS lines on two Cu

crystals with differing surface cuts, (111) and (311), see Fig. 4.

The top set of images shows the DMS lines for the Cu(111) for

a non-integer hkl set ranging from 2.13 2.13 2.13 to 2.23 2.23
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Figure 4
Truncation-rod propagation along the 420 DMS line in Cu(311) over a range of non-integer hkl positions at a  value of 46� defined with respect to an
azimuthal reference of [100]. The images were recorded at an energy of 7.82 keV. The red line is to emphasize the shift in the position of the DMS lines
on the detector and the yellow line is to show how the CTR is fixed in the vertical direction but moves in the horizontal direction.



2.23. The bottom set shows the same measurement for the

Cu(311) crystal. The only significant difference between the

two crystals is the direction of the surface cut and, therefore,

the direction of the truncation rod.

Presenting the data for both crystals as a function of

azimuth about the 2.05 2.05 2.05 primary reflection reveals the

complex interaction between the DMS and the CTR. The

CTR and nearby 222 are reinforcing each other and in turn

reinforcing the DMS lines (Fig. 5). While further development

is required to model this contribution, the direction of the

surface cut has a dramatic effect on multiple scattering and

DMS, and should be considered when studying samples in

which azimuthal measurements are of interest.

3. Applications

Strain measurements. The divergent-beam method was used by

Lonsdale to study diamond, which cannot produce Kossel

lines because of the low energy of the C K�1 emission line

(0.277 keV). Instead, she used the emission lines of Cu,

utilizing a highly divergent X-ray tube source. Lonsdale noted

the occurrence of geometrically inevitable and so-called

‘accidental’ triple intersections, where the former gives rise to

the vanishing determinant

h1 k1 l1
h2 k2 l2
h3 k3 l3

������

������
¼ 0; ð5Þ

meaning that the reflections are coplanar and the triple

intersection occurs at all energies. The accidental intersec-

tions, however, occur at precisely known energies and can

therefore be used for precise lattice-parameter determination.

An example of both cases is shown in Fig. 6. This method

eliminates the geometrical errors in the experimental setup

because convergence will occur, regardless of the detector

distance or angle.

The precision is limited by the energy bandwidth of the

source X-rays, but Lonsdale reported a precision of

�5:0� 10�5 Å in her measurement of diamond lattice para-
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Figure 5
Images showing the influence of surface cut on the DMS signal at 7.82 keV. The top image shows the DMS displayed as a function of  about the 2.05
2.05 2.05 primary reflection for the Cu(111) crystal. The bottom image shows the same for the Cu(311) crystal.

Figure 6
Simulations showing inevitable (green) and accidental (red) triple
intersections. An energy of 7.7825 keV was calculated to produce a
non-coplanar triple intersection for Cu. A calculation with a shift in
energy of 5 eV is also presented to show the persistence of the inevitable
intersections and the splitting in the accidental intersections. The grey
scale corresponds to the polarization factor.



meters. Until the advent of synchrotron sources, Lonsdale’s

intersection method was limited to a few characteristic ener-

gies set by the available X-ray tubes. Her method has since

been updated by Glazer and his colleagues using synchrotron

radiation (Glazer et al., 2004). Again, however, a target

material must be used to provide a source of divergent

fluorescence, limiting the scope of the technique to specific

source/sample pairings. Furthermore, attaching a foil or

secondary material might not always be feasible with certain

samples. The method we propose can truly take advantage of

the variable energy of synchrotron sources to deliberately

choose triple intersections with non-vanishing determinants.

Incidentally, coplanar triple intersections can be useful for

precise monitoring of structural phase transitions. An obvious

advantage over Kikuchi lines, which are tunable, is that

measurements can be made in atmosphere and in the presence

of electric or magnetic fields.

4. Conclusion

We have demonstrated, for the first time, a new form of

diffraction lines. We have highlighted some of the properties

of these lines and shown the potential for DMS lines as a

strain-measurement technique that truly exploits the tunable

capabilities of synchrotron radiation. Furthermore, because

we are using X-rays, the measurements can be made in the

presence of electric or magnetic fields, thus extending the

scope of in situ manipulation-type measurements. Finally,

because no coating or external divergent source is required,

domain mapping could also be achieved using DMS with

microfocusing.

APPENDIX A

DMS code

The code used to calculate the DMS lines along with a

description of the mathematical framework is available under

the Apache licence and its DOI is 10.5281/zenodo.12866.

We would like to thank Professor Gerd Materlik for many

useful discussions pertaining to Kikuchi and Kossel lines, and

Professor Ian Robinson for his insight on the subject of crystal

truncation rods. This work was undertaken on the I16 beam-

line at Diamond Light Source.
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