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Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport
and anisotropic scattering

P.-A. Lemieux, M. U. Vera, and D. J. Durian
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

~Received 14 October 1997!

Diffuse transmission and diffusing-wave spectroscopy~DWS! can be used to probe the structure and dy-
namics of opaque materials such as colloids, foams, and sand. A crucial step is to model photon transport as a
diffusion process. This approach is acceptable for optically thick samples, far into the limit of strong multiple
scattering; however, it becomes increasingly inaccurate for thinner samples for several reasons. Here, we
correct for two of these defects. By modeling photon propagation by a telegrapher equation with suitable
boundary conditions, we can account for the ballistic transport of photons at finite speed between successive
scattering events. By introducing a discontinuity in the photon concentration at the source point, and then
averaging over a range of penetration depths, we can account for the fact that photons usually scatter aniso-
tropically into the forward direction, rather than being completely randomized at each event. The accuracy of
our approach is tested by comparison both with random walk computer simulations and with experiments on
specially designed suspensions of polystyrene spheres. We find that our predictions extend the utility of diffuse
transmission to slabs of all thicknesses and of DWS to slabs down to about two transport mean free paths.
@S1063-651X~98!11604-5#

PACS number~s!: 82.70.2y, 05.40.1j, 42.62.Fi

I. INTRODUCTION

One of the hallmark features of soft-condensed matter is
the presence of structure at length scales that are intermedi-
ate between the molecular and the macroscopic. Diverse ex-
amples include the arrangement of colloidal particles into
liquid, glassy, or crystalline structures in paint, ink, and dairy
products; the packing of gas or liquid bubbles inside foams
and emulsions; the arrangement of grains in a pile of sand; or
the configuration of cells in a tissue@1#. These mesoscopic
structures are interesting both in terms of the microscopic
physics underlying their formation, and in terms of the mac-
roscopic properties they impart to the material. Since the
individual components typically have different refractive in-
dices, they can strongly scatter visible light and hence cause
bulk samples to have an opaque, white appearance. Physi-
cally, photons travel ballistically between successive scatter-
ing events whose cumulative effect is to produce a random
walk. This can preclude characterization by traditional
means such as video microscopy or angle-resolved static and
quasielastic light scattering. Fortunately, experimental tech-
niques that exploit multiple light scattering have been devel-
oped for probing the structure and dynamics of such materi-
als @2#. In diffuse-transmission spectroscopy~DTS!, the
transmission probabilityT for incident light to be transmitted
through an opaque slab is measured as a function of wave-
length and analyzed in terms of the transport mean free path,
l * , or step size in the random walk, of the photons@3#.
Structural details are then deduced from the value and wave-
length dependence ofl * . In diffusing-wave spectroscopy
~DWS!, fluctuations in the intensity of a portion of the mul-
tiply scattered light are measured and expressed in terms of a
normalized electric field autocorrelation function,g1(t)
5^E(0)E* (t)&/^uEu2&, as a function of the delay timet
@4–6#. Results are then analyzed in terms of^Dr 2(t)&, the

mean-squared change in position of the scattering sites due
to thermal motion, flow, or time evolution.

For analysis of both DTS and DWS data, most widely
used theories approximate the propagation of multiply scat-
tered photons as a diffusion process. This yields convenient
analytic expressions that are reasonably accurate if the
sample thickness is much greater thanl * , where the number
of scattering events is large. Unfortunately, however, experi-
ments cannot be performed on arbitrarily thick samples due
to finite absorption and coherence lengths, and also due to
considerations of the signal-to-noise ratio. Consequently,
sample thickness is most often chosen in the range 5
,L/ l * ,20, where the diffusion approximations are on the
verge of being unacceptably inaccurate. For smaller thick-
nesses, the failure of diffusion theory predictions has been
observed experimentally@7,8#. Furthermore, the effects of
scattering anisotropy, where photons are not completely ran-
domized at each scattering event~see Fig. 1!, and ballistic
propagation, where photons travel at a finite speed between
events, can be important for thin samples. Because of the
difficulty in accounting for such phenomena in theories of

FIG. 1. Transverse coordinates of random walks across a three-
dimensional slab of thickness 101* , for isotropic and anisotropic
scattering. In both cases, the walks start inward at the left and exit
at the right.
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photon transport, multiple light scattering techniques have
not yet achieved the same degree of quantitative accuracy as
the traditional, single-scattering, techniques@9,10#.

Several methods have been proposed to improve upon the
diffusion approximations for DWS. MacKintosh and John
@11# described an integral formalism for dealing with corre-
lations between scattering sites located closer than one trans-
port mean free path, where the propagation of light is not
diffusive and where wave effects are important. Their ap-
proach is also capable of dealing with the polarization effects
observed in backscattering experiments@12#. In analogy with
radiative transfer, a correlation transfer formalism has been
proposed by Ackerson, Dougherty, and co-workers@13,14#
for extending the theory of DWS to thinner slabs. Both of
these approaches, however, require either numerical solution
or systematic expansion with the assumption that the diffu-
sion approximation is nearly correct. An alternative approach
by Middleton and Fisher@15# employs random-walk simula-
tions, and hence avoids transport approximations altogether.
Simulation results that demonstrate the limitations of diffu-
sion approximations have been reported for both backscatter-
ing @15# and transmission@10# geometries. This approach is
computationally intensive and does not yield closed-form
predictions that can readily be used for data analysis.

Recently we have developed an exactly soluble theory of
DTS and DWS that does not rely on diffusion approxima-
tions but instead models photon transport in terms of two
counter-propagating streams@16#. This approach follows es-
tablished procedures from the astrophysics literature for ap-
proximating transport in three dimensions from exact results
for transport in a truly one-dimensional space. It provides a
straightforward means of incorporating boundary reflectivity,
scattering anisotropy, and ballistic propagation. The resulting
predictions are more accurate, and have a greater range of
validity, than those from diffusion theory. Unfortunately,
however, the two-stream theory applies only to sample and
illumination geometries that have a one-dimensional symme-
try, has the wrong photon diffusion coefficient, and cannot
account for the effects of angle-dependent wall reflectivity
@16#. To address these problems, we have proposed an alter-
native means of generalizing upon the exact one-dimensional
theory @17#. This yields a telegrapher equation for the total
photon concentration, complete with specifications for the
boundary conditions and the emerging flux. This theory re-
duces to standard diffusion theory for long times and dis-
tances, and in cases of weak absorption, where ballistic
propagation is unimportant, and significantly improves upon
it otherwise. Since the fundamental quantity is the total num-
ber of photons per volume, rather than per unit direction or
per stream, it cannot account explicitly for scattering anisot-
ropy.

In this paper, we report on how to incorporate scattering
anisotropy into telegrapher and diffusion theories of photon
transport. Physical arguments, and exact results from one-
dimensional transport, are used to demonstrate that a discon-
tinuity in the total photon concentration at the source point is
opened up in proportion to the degree of scattering anisot-
ropy. Averaging such results over a continuous range of
source points, to mimic an incident laser beam, leads to im-
proved predictions for DTS and DWS. We begin in Secs. II
and III, respectively, by reviewing the diffusion and telegra-

pher theories of photon transport. In Sec. IV, where new
material starts, we argue that anisotropy is accounted for by
a discontinuity at the source, and we develop diffusing-light
spectroscopy predictions for slablike geometries. In Secs. V
and VI, respectively, we test these predictions by random-
walk computer simulations and by experiment on dilute sus-
pensions of colloidal particles.

II. DIFFUSION APPROACH TO TRANSPORT

The diffusion theory predictions for photon transport
through a slab of thicknessL are summarized here, both for
later comparison and to introduce notation. Throughout, the
illumination and detection optics are taken such that there is
no discrimination on the basis of the net lateral motion of
photons within the sample, thus ensuring an effectively one-
dimensional symmetry. Ignoring absorption, three transport
parameters enter into the theory: the photon transport mean
free pathl * , defined such that the photon diffusion constant
is cl* /3, the penetration depthzpl * , defined as the distance
into the slab at which diffusing photons are assumed to be
created, and the extrapolation lengthzel * , defined as the
distance outside the slab at which the diffuse photon concen-
tration is assumed to extrapolate to zero. These definitions
for the penetration depth and extrapolation length ratios are
depicted graphically in the top plot of Fig. 2. The value of

FIG. 2. Photon concentration vs distance into the sample for
slabs of thicknessL̃510 for photons that begin their random walks
at zp51, where all lengths are measured in units ofl * , the photon
transport mean free path. The top plot shows graphically the defi-
nitions of the penetration depth and extrapolation length ratios. In
the bottom three plots, solid curves represent histogram data from
random-walk simulations for different values of the average cosine
of the scattering angleg, and boundary reflectivityR, as labeled.
The dashed curves represent the predictions of Eq.~4.1!, which has
a discontinuity atzp and vanishes atz52ze and z5L1ze . The
size of the discontinuity is fixed by the value of the transmission
probability, and seen here to be given byD0Dw>g.
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the transport mean free path is given by

l * 5
l s

^12cosu&
5

l s

12g
, ~2.1!

where l s is the scattering length, equal to the average dis-
tance between scattering events and also by which the inten-
sity in a ballistic beam is exponentially attenuated, andg
5^cosu& is the average cosine of the scattering angle
@18,19#. The values of the penetration depth and extrapola-
tion length ratios,zp and ze , respectively specify the treat-
ment of the source and boundary conditions, and are both of
order one. In reality, diffusing photons are introduced into
the sample over a continuous range of depths as photons
scatter out of an incident beam; however, the penetration
depth is usually set to its average value assuming the scat-
tering to be isotropic:zp51. The extrapolation length ratio,
on the other hand, is much better specified. It is set by the
angle-dependent reflectivityRw(m) of the sample wall ac-
cording to

ze5
2

3 S 11R2

12R1
D with Rn5E

0

1

~n11!mnRw~m!dm,

~2.2!

where the angle cos21 m is measured with respect to the
interior normal@20,21#. Numerical results for many cases of
experimental interest are given in Ref.@21# and confirmed by
their connection to the angular dependence with which dif-
fusely transmitted photons emerge from a slab.

For diffuse transmission spectroscopy, the average trans-
mitted intensity is measured and analyzed in terms of the
photon transport mean free path. Since the value ofl * is
determined by the nature and spatial arrangement of scatter-
ing sites, this gives a measure of the structure of the material.
Given the above ingredients, the transmission probability for
diffuse photons created atzpl * is predicted by diffusion
theory to be

Tzp
5

zp1ze

L̃12ze

, ~2.3!

whereL̃5L/ l * is the dimensionless optical thickness of the
slab. This can be shown either by solution of the diffusion
equation for a steady, time-independent source or by use of
Green’s function techniques. This result withzp51 is widely
used to analyze experimental data. Random-walk simulations
show that it describes the total diffuse transmission probabil-
ity to within a few percent, for arbitrary scattering anisotropy
and boundary reflectivity, as long as the sample thickness
exceeds about 5l * andze is taken according to Eq.~2.2! @9#.

In diffusing-wave spectroscopy, fluctuations in the de-
tected intensity are measured and then analyzed in terms of
the time dependence of the dimensionless mean-squared dis-
placement of the scattering sites,x[k2^Dr 2(t)& wherek is
the wave vector of light inside the material. The normalized
electric field autocorrelation function that describes these
fluctuations is given by a weighted average of the single-path
correlation function, exp(2xY/3), according to the probabil-
ity density P(Y) for the total dimensionless square wave
vector transfer of the photon path to be

Y[(
i 51

n

qi
2/2k25(

i 51

n

~12cosu i !, ~2.4!

whereqi is the change in wave vector for scattering at sitei
by angleu i , for any total numbern of scattering events in
the path@4,15#. This assumes that scattering events and par-
ticle motions are uncorrelated, and thatl * is larger than the
wavelength of light. The benchmark for predicting the de-
tected correlation function is thus given by

g1Y~x!5E
0

`

P~Y!e2xY/3dY. ~2.5!

Unfortunately, since the number of scattering events in a
given path is discrete, this expression can only be evaluated
by computer via random-walk simulations@15,10#. To make
analytic progress, the so-called continuum approximation
must be invoked to relate total square wave vector transfer to
path length. If the numbern of scattering events in a path is
large, thenY may be approximated accurately by averaging
over the scattering form factor:

Y>n^12cosu&5
nls
l *

5
s

l *
[S, ~2.6!

wheres5Sl* is the total length of the light path. The ap-
proximate expression used to compute the normalized elec-
tric field autocorrelation function is thus

g1S~x!5E
0

`

P~S!e2xS/3dS, ~2.7!

whereP(S) is the probability density for a detected photon
to have a total path length ofSl* inside the sample. Since the
speed of light is constant, this expression is a Laplace trans-
form with respect to time of the detected pulse resulting from
an instantaneous source, and can thus be evaluated using
Green’s function techniques@5,2#. For the slab geometry
with one-dimensional incident-collection optics, the correla-
tion function in transmission is found to be

g1T,xp
~x!5

sinh@zpAx#1zeAx cosh@zpAx#

Tzp
$~11ze

2x!sinh@ L̃Ax#12zeAx cosh@ L̃Ax#%
.

~2.8!

This result withzp51 is widely used to analyze experimen-
tal data. It reasonably reproduces simulation results of the
benchmarkg1Y(x) of Eq. ~2.5!, for arbitrary scattering an-
isotropy and boundary reflectivity, as long as the sample is
sufficiently thick and the valueze is taken according to Eq.
~2.2! @10#.

For the same geometry, but for backscattered light, the
correlation function is obtained simply by replacingzp by
L̃2zp in Eq. ~2.8!. In the semi-infinite limit,L̃→`, and for
smallx, this prediction is close to the experimental@12# and
simulation@15,16# result of

g1B~x!5exp~2gAx!, ~2.9!
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whereg is a number close to 2 that depends on boundary
reflectivity and scattering anisotropy. This result is widely
used to analyze experimental data.

The central predictions of diffusion theory, Eqs.~2.3! and
~2.8! with zp51 for DTS and DWS, respectively, rely upon
several approximations that are valid only for thick slabs.
Besides ignoring any direction dependence in the photon
concentration field, they do not account for ballistic propa-
gation or scattering anisotropy, and hence become increas-
ingly inaccurate, and eventually fail altogether, for slabs of
decreasing thickness. This is unfortunate because most data
are obtained for rather thin slabs, 5,L/ l * ,20, where the
effects of absorption and laser coherence can be neglected,
and where better correlation function statistics can be ob-
tained due to higher count rates and slower decay times.

III. TELEGRAPHER APPROACH TO TRANSPORT

This section reviews a recently reported theory of photon
transport that we have developed to account for the ballistic
nature of photon propagation between successive scattering
events @17#. Solutions relevant to diffusing light spec-
troscopies are developed in the following section, explicitly
including the influence of scattering anisotropy.

A. Telegrapher equation

A complete description of photon transport, neglecting
polarization and interference effects, requires that the num-
ber density of photons be tracked as a function of time, po-
sition, and direction. It is straightforward to develop such a
theory of radiative transfer simply by considering all the pos-
sible ways for this density to change by the ballistic flow of
photons, by the scatter of photons in and out from different
directions, and by absorption@22,18,19#. However, the re-
sulting Boltzmann equation is difficult to solve, even numeri-
cally, and this difficulty ultimately originates in the fact that
there is a continuum of directions in three-dimensional
space. Diffusion theory, by contrast, is much simpler since it
neglects the direction dependence and thus deals only with
the total photon density and how it changes by scattering and
absorption. As a comparably simple alternative to the full
transport theory, we have recently proposed a telegrapher
equation for the photon density that improves upon diffusion
theory by incorporating ballistic propagation effects for iso-
tropic and anisotropic scattering alike. The physical motiva-
tion comes from the exact model of transport in a truly one-
dimensional space, which can be written down and solved
without approximation@23,16#. The following telegrapher
equation for the total photon densityw(r ,t) in three dimen-
sions was proposed by assuming only that it be identical in
form to the exact telegrapher equation for one-dimensional
transport, but with numerical coefficients guaranteeing the
correct ballistic and diffusive limits for three dimensions:

¹2w5
]2w

c2]t2 1S 2

l a
1

3

l * D ]w

c]t
1

1

l a
S 1

l a
1

3

l * Dw, ~3.1!

where c is the speed of light in the medium,l * 5 l s /(1
2g) is the photon transport mean free path,l s is the scatter-
ing length,g is the average cosine of the scattering angle,
and l a is the absorption length. Note that the wave equation

with the correct speedc is recovered at short times and that,
ignoring absorption, the standard diffusion equation with the
correct diffusion coefficientD5cl* /3 is recovered at long
times. Furthermore, the treatment of absorption is self-
consistent sincew(r ,t)5exp(2z/la) is a solution in the case
of negligible scattering,l * @ l a , and since w(r ,t)5exp
(2ct/la) is a solution in general. The accuracy of Eq.~3.1! in
describing transport in three dimensions was verified by
comparison of its Green’s function with random-walk simu-
lation results for the spreading of an instantaneous pulse in
an infinite three-dimensional medium with varying degrees
of scattering anisotropy and absorption@17#. It should be
emphasized that Eq.~3.1! describes photon concentration
away from a source, independent of the degree of scattering
anisotropy; as will be shown in Sec. IV, anisotropy plays an
important role only in thetreatmentof the source.

Since the values ofc andl * set the scales for ballistic and
diffusive behavior, it is convenient to work in a dimension-
less system of units where all lengths are measured in units
of l * and all times are measured in units ofl * /c. The result-
ing dimensionless telegrapher equation is thus

¹2w5
]2w

]t2 1S 2ma1
1

D0
D ]w

]t
1maS ma1

1

D0
Dw,

~3.2!

wherema5 l * / l a is the dimensionless absorption coefficient
andD051/3 is the dimensionless diffusion coefficient.

B. Boundary conditions and observable flux

To complement the telegrapher equation for predicting
photon transport within and out of a finite medium, it is
necessary to specify boundary conditions forw(r ,t) and a
prescription for deducing the observable flux of exiting pho-
tons. We obtained these@17# again by considering the results
of the exact description of the one-dimensional problem. In
the same dimensionless system of units as for Eq.~3.2!, the
result for the boundary conditions is

05F11
ze

11D0ma
n̂•“1

D0

11D0ma

]

]t Gw~r ,t !U
boundary

,

~3.3!

where n̂ points normal to the boundary away from the me-
dium and whereze is given by the boundary reflectivity ac-
cording to Eq.~2.2!. This is similar to the usual extrapolation
length boundary conditions of diffusion theory, except for
thema and]/]t terms that arise from absorption and ballistic
transport, respectively. Note, also, that for time-independent
problems the extrapolation length decreases with increasing
absorption. The result for the exiting flux at some point on
the boundary is found similarly as

J~r ,t !5
D0

ze
w~r ,t !U

boundary

, ~3.4!

which would be identical to Fick’s law if the absorption and
ballistic terms in the boundary conditions were dropped.

The complete telegrapher theory of three-dimensional
photon transport, except for the specification of the source,
consists of Eqs.~3.2!–~3.4!. It is of comparable simplicity to
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diffusion theory, but is much more accurate at short times
and distances and in cases of strong absorption. This was
verified by comparison of analytic solutions for a plane
source with the results of random-walk simulations for slabs
of varying optical thickness and absorption@17#. The teleg-
rapher theory is also superior to the 2-stream theory of Ref.
@16# because the latter applies only to geometries that have a
one-dimensional symmetry, has the wrong diffusion coeffi-
cient, and cannot incorporate the effects of angle-dependent
wall reflectivity.

IV. PREDICTIONS

We now begin presenting new material. In this section,
solutions to the telegrapher theory are found for the geom-
etry of greatest experimental interest for diffusing light spec-
troscopies: a three-dimensional slab with illumination and
detection optics arranged such that there is no discrimination
against photons according to their lateral motion within the
sample. Absorption is not explicitly considered, but can be
incorporated easily based on the results presented.

A. Steady plane source

The solution for the concentration profile when a steady
source of strengthw0 is located at the planezpl * in from the
edge of a nonabsorbing slab of thicknessL5L̃ l * is given by

w~z!5
w0

D0
H ~z1ze!~12Tzp

!, z,zp

~ L̃2z1ze!Tzp
, z.zp,

~4.1!

where the transverse coordinatez is measured in units ofl * ,
andTzp

is the transmission probability. This obviously satis-
fies the time-independent telegrapher equation with no ab-
sorption,¹2w50. It also satisfies the boundary conditions,
Eq. ~3.3!, by vanishing at distancezel * outside the sample.
Furthermore, it correctly gives the diffusely backscattered
and transmitted fluxes according to Eq.~3.4! as

~D0 /ze!w~0!5~12Tzp
!w0 ,

~D0 /ze!w~L !5Tzp
w0 . ~4.2!

Curiously, however, the value of the transmission probability
has not yet been specified even though all the ingredients of
the theory have been used. To determine the value ofTzp

requires physical arguments outside of the standard telegra-
pher model, just as was required to specify the value ofze .
To begin, first note that the size of the discontinuity per unit
incident flux at the source point, Dw[@w(zp

1)
2w(zp

2)#/w0 , has also not been specified, and that fixing
the value of eitherTzp

or Dw determines the value of the

other. Evaluating the discontinuity atzp according to the
profile of Eq. ~4.1! and then solving for the transmission
probability gives the key result:

Tzp
5

~zp1D0Dw!1ze

L̃12ze

. ~4.3!

Accordingly, the usual diffusion theory prediction for the
transmission probability, Eq.~2.3!, is recovered by forcing
the profile to be continuous atzp , while an increase inDw
leads to an increase in transmission probability. A nonzero
value of the discontinuity can be understood physically as
arising from anisotropic scattering. First, if the scattering is
anisotropic, then photons first scattered away from an inci-
dent beam atzp will be preferentially directed deeper into the
sample; therefore, the concentration forz.zp should be
greater than forz,zp in proportion to the extent of the an-
isotropy. Second, the transmission probability should in-
crease as photons begin scattering from deeper within the
sample, again in proportion to the extent of the anisotropy.
This intuitive connection between the concentration discon-
tinuity at the source point and the extent of scattering anisot-
ropy can also be seen mathematically from the exact 2-
stream theory of transport in a truly one-dimensional
medium. There, Eq.~13! of Ref. @16# shows that the trans-
mission probability has the form of Eq.~4.3! but with D0Dw
replaced by 2pf21, wherepf is the probability for scattering
forward without changing streams. For one dimension, the
D0Dw term appearing in Eq.~4.3! is thus given by the aver-
age cosine of the scattering angle,g5(11)(pf)1(21)(1
2pf)52pf21. As shown next, the relationD0Dw5g also
turns out to be obeyed for thick samples in higher dimen-
sions.

In general, the size of the discontinuity can be deduced in
terms of the scattering anisotropy by requiring sensible be-
havior of the transmission probability in the diffusive and
single-scattering limits. For very thick slabs, the total diffuse
transmission probability should depend only on the transport
mean free path, independent of scattering anisotropy. Aver-
aging Tzp

over an exponential distribution of penetration
depths according to the scattering length gives the total dif-
fuse transmission probability as

lim
L→`

Td5E
0

`

Tzp
e2zpl* / l sdzpl * / l s5

~ l s / l * 1D0Dw!1ze

L̃12ze

,

~4.4!

assuming that the discontinuity is independent of penetration
depth. This averaging procedure will be discussed more fully
in Sec. IV C. Since the scattering and transport lengths are
related byl s / l * 5(12g), the diffuse transmission is inde-
pendent of anisotropy only if the discontinuity is given by

D0Dw5g for L@ l * . ~4.5!

As the scattering anisotropy increases, the average penetra-
tion depth decreases and the discontinuity increases in such a
way that their sum, (l s / l * 1D0Dw)51, remains a constant
equal to one. Therefore, the total diffuse transmission prob-
ability for thick slabs is simplyTd5(11ze)/(L̃12ze) inde-
pendent of anisotropy. This solves the old puzzle as to why
the ad hoc procedure of settingzp51 in Eq. ~2.3! yields
good results for any degree of scattering anisotropy.

In the opposite limit of very thin slabs, where photons
scatter not more than once, the diffuse transmission probabil-
ity can be calculated directly and used to deduce the discon-
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tinuity. Summing all the probabilities for a singly scattered
photon to reflect any number of times, and then be transmit-
ted, gives

Tzp
5E

0

1S F~m!1F~2m!R~m!

11R~m!
D dm ~4.6!

after averaging over forward scattering angles;F(m) is the
scattering form factor andR(m) is the boundary reflectivity.
To agree with theL̃→0 limit of Eq. ~4.3!, the discontinuity
must be taken as

D0Dw52zeE
0

1S F~m!1F~2m!R~m!

11R~m! Ddm2ze

[g8 for L! l * . ~4.7!

If the scattering is isotropic,F(m)5F(2m), this reduces to
zero. If the boundary reflectivity is independent of angle, this
reduces tog85 2

3 (2pf21) where pf is the probability of
scattering into the forward direction with a deflection angle
of less than 90°. In general, however, it must be evaluated
numerically.

In summary, the discontinuity in diffuse photon concen-
tration at the source plane for a three-dimensional slab is
fixed by requiring that sensible limits be obtained for very
thick and very thin samples. In both the diffusive and single
scattering limits, the discontinuity is zero for isotropic scat-
tering and increases as the scattering becomes more aniso-

tropic according to Eqs.~4.5! and~4.7!. In Sec. V A we will
demonstrate explicitly by simulation that a discontinuity in
the concentration profile exists and is consistent with these
expectations.

B. Instantaneous plane source

For many problems of interest, including DWS, it is nec-
essary to consider the time-dependent response to an instan-
taneous pulse. Boundary conditions are most easily imple-
mented using Laplace transform methods. In the telegraphers
model, the Laplace transform with respect to time of a pulse
of strengthw0 introduced at depthzpl * into a slab is pre-
dicted to have the general form

w̄~z,v!5
w0

2 SAa

v
6Dw D e2Aauz2zpu1c1eAaz1c2e2Aaz,

~4.8!

where v is the transform variable conjugate to time,a
5v(v11/D0), z is the transverse coordinate, and the plus
and minus signs are forz greater and less thanzp , respec-
tively. As before, lengths are measured in units ofl * and
times in unitsl * /c. It is straightforward to verify that this
satisfies the telegrapher equation, Eq.~3.2!, and that the dis-
continuity per unit source is of sizeDw. The first term rep-
resents the source, while the amplitudesc1 and c2 of the
subsidiary terms are chosen in order to satisfy the boundary
conditions, Eq.~3.3!. Using the prescription of Eq.~3.4! for
the exiting flux, the Laplace transform with respect to time of
the transmitted pulse is found to be

D0

ze

w̄~L,v!5w0

@11~D01Dwze!v#sinh@zpAa#1~ze1D0Dw!Aa cosh@zpAa#

@11~ze
21D0

2!v/D0#sinh@ L̃Aa#12zeAa cosh@ L̃Aa#
. ~4.9!

The Laplace transform of the backscattered pulse can be found similarly; it can also be obtained from the transmission result
simply by replacingzp by L̃2zp andDw by 2Dw. As a check, note that the transmission probability is equal to the integral
of the transmitted pulse over all time, and is hence given byw̄(L,0)D0 /ze5w0Tzp

. The value thus obtained from thev→0
limit of Eq. ~4.9! is clearly equal to the previous result, Eq.~4.3!, found for the steady source. The backscattering probability
can be shown, similarly, to be 12Tzp

. This provides an important, nontrivial, check on the internal consistency of the
telegrapher equation, boundary conditions, and treatment of the discontinuity at the source. As an aside, note that the influence
of absorption on both the pulse shape and transmission probability is found by takingv→v1ma .

Besides giving transmission probabilities with and without absorption, the Laplace transform results are useful for analysis
of other experimental data as well. For instance, they can be inverted for the time dependence of emerging pulses@17#. And,
according to Eq.~2.7! for the theory of DWS, they can be evaluated atv5D0x, and hencea5x(11D0

2x), then normalized,
to approximate the electric field autocorrelation function. For transmission, the result is

g1T,zp
~x!5

@11~D0
21gze!x#sinh@zpAa#1~ze1g!Aa cosh@zpAa#

Tzp
$@11~ze

21D0
2!x#sinh@ L̃Aa#12zeAa cosh@ L̃Aa#%

. ~4.10!

For backscattering, the result can be generated from this as before. Since the failure of the continuum approximation prevents
application to very thin samples, we have set the discontinuity to the thick-sample limit ofD0Dw5g. Note that Eq.~4.10!
bears similarity to the diffusion theory prediction, Eq.~2.8!, which indeed is recovered by setting bothD0

2 andg to zero. The
differences due to theD0

2 terms indicate the influence of ballistic propagation, while the differences due to theg terms indicate
the influence of scattering anisotropy.
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C. Collimated beam

The expressions found above for the transmission probability and DWS correlation functions are not quite ready for use in
data analysis. First, they must be averaged over a distribution of penetration depths according to the scattering length and wall
reflectivity. Considering all multiple reflections of the collimated incident beam from the sample boundaries, the totaldiffuse
transmission probability is found as

Td5
1

12F2 E0

L̃
@Tzp

1F~12Tzp
!#e2zp /~12g!dzp /~12g!

5
@~12g1D0Dw!~12F !1ze~11F !#~12e2 L̃ /~12g!!2L̃~12Rb!e2 L̃ /~12g!

@ L̃12ze#~12F2!
, ~4.11!

whereF[Rbe2L/ l s5Rbe2L̃/(12g) is the probability for an incident to cross the sample without scattering and then reflect. The
Tzp

andF(12Tzp
) terms in the integral represent the contribution from photons that reflect an even and odd number of times,

respectively, before being scattered out of the incident beam atzp ~see Fig. 3!. The result, Eq.~4.11!, is the central new
prediction intended for analysis of diffuse transmission data. For thick samples, it reduces to the usual diffusion prediction, Eq.
~2.3! with zp set to one. For thinner samples, its behavior and accuracy will be considered in Secs. V and VI; there, we will
also recommend an empirical interpolation scheme between the two limits of Eqs.~4.5! and ~4.7! for the magnitude of the
discontinuity.

Similar averages must be performed for DWS. In backscattering, taking theL→` limit and then averaging over an
exponential distribution ofzp according to the scattering length gives

g1B~x!5E
0

`

g1B,zp
~x!e2zp /~12g!dzp /~12g!

5
11~D0

22gze!x1~ze2g!Aa

@11~12g!Aa#@11~D0
21ze

2!x12zeAa#
, ~4.12!

where, recall,x5k2^Dr 2(t)&, a5x(11D0
2x), D051/3, andg is the average cosine of the scattering angle. For DWS in

transmission, the result for a plane source must be averaged overzp as well as summed over multiple reflections of the
unscattered beam:

g1T~x!5

E
0

L̃
@Tzp

g1T,zp
~x!1F~12Tzp

!g1B,zp
~x!#e2zp /~12g!dzp

Td~12F2!~12g!
. ~4.13!

Note that diffusely transmitted photons that remain in the incident beam for an odd number of reflections all contribute
according tog1B,zp

(x), since they are traveling away from the transmission boundary when first scattered~see Fig. 3!. This
integral is straightforward to evaluate, but the answer is rather cumbersome. To obtain a reasonably convenient expression, we
setF50 and thus restrict our attention to thicknesses well outside the single-scattering regime. This is not an unnecessarily
severe restriction since, by contrast with the diffuse transmission probability, the DWS prediction must fail in the thin slab
limit because of the continuum approximation. Evaluating Eq.~4.13! without the multiple reflections and with the disconti-
nuity set toD0Dw5g then gives the central prediction intended for use in analysis of actual data:

g1T~x!5
~AC1B!2$~A1BC!sinh@ L̃Aa#1~AC1B!cos@ L̃Aa#%exp@2L̃/~12g!#

Td8~12C2!$@11~ze
21D0

2!x#sinh@ L̃Aa#12zeAa cosh@ L̃Aa#%
, ~4.14!

where the coefficients are defined as

A511~D0
21gze!x,

B5~ze1g!Aa,

C5~12g!Aa,

Td85
~11ze!2~11ze1L̃ !exp@2L̃/~12g!#

L̃12ze

. ~4.15!

This result includes the effects of boundary reflectivity
through ze , scattering anisotropy throughg512( l s / l * ),
and ballistic propagation throughD0

2, all of which are impor-
tant for typical slabs of thicknessL,15l * . For thick slabs, it
reduces to the usual diffusion theory prediction, Eq.~2.8!
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with zp set to one. The effects of absorption on both the
transmission probability and the DWS signal can be obtained
by takingx→x1ma /D0 and then normalizing.

To examine the influence of anisotropic scattering and
ballistic propagation, we investigate the approach of the pre-
diction, Eq. ~4.14!, to the thick-sample limit g1(x)
5L̃Ax/sinh(L̃Ax). We thus define an expansion by
ln@g1(x)#52(G1x)11

5A(G1x)21O(x3), whereG1 is the first cu-
mulant controlling the decay rate, andA is a shape parameter
specifying the initial curvature on a semilogarithmic plot.
Straightforward manipulation gives

G15
L̃ 2

6
F116zeL̃

2126~12ze
22D0

2!L22212zeL̃
23

112zeL̃
21 G

1
g~21ze2g1D0

2!2D0
2

11ze

1O„L̃3 exp@2L̃/~12g!#…,

~4.16!

A51112F ~11ze
2!2

g~21ze2g1D0
2!1D0

2~517ze!/2

11ze
G

3L̃221O~ L̃23!.

The leading thick-slab behaviors areG1>L̃ 2/6, since trans-
mitted photons typically take this number of completely ran-
dom steps of sizel * in crossing a slab, andA>1, by defini-
tion. According to Eq.~4.16!, the first correction to the
cumulant scales asL̃21 and depends only on boundary re-
flectivity; anisotropy and ballistic effects are relatively unim-
portant even for rather thin slabs. The leading correction to
the shape, by contrast, scales asL̃22 and depends crucially
on all these quantities. In particular, the degree of upward
curvature increases for largerze and for smallerg. Physi-
cally, according to the fundamental DWS equation~2.7!, this
can be understood in terms of an increase in the width of the
photon path length distributionP(S). If the scattering is
highly anisotropic, then all photons scatter out of the ballistic
incident beam very close to the boundary and hence begin
diffusing at the same location. If the scattering is isotropic,
by contrast, then photons scatter out of the incident beam
over a broader range of distances and this leads to a broader
distribution of diffusive path lengths. The influence of bal-

listic transport can be similarly understood. The telegrapher
theory obeys causality by forcingP(S)50 for S,L̃2zp

@17#. The standard diffusion theory, recovered by takingD0
2

50, does not exclude these short paths and hence gives a
broader distribution of diffusive path lengths and more up-
ward curvature.

V. SIMULATIONS

The remainder of the paper presents various tests of the
above predictions, in this section by random-walk simulation
and in the next by experiment. Here, random walkers are
launched in from the edge of a slab and allowed to wander
until exiting from either the transmission or backscattering
sides. Following the methods of Refs.@9,10#, steps are
generated with an exponential distribution of sizes according
to the scattering length,l s , and a distribution of direc-
tions given by the Henyey-Greenstein scattering
form factor, F(m)5 1

2 (12g2)(11g222mg)23/2, where g
5*21

1 mF(m)dm is the average cosine of the scattering angle
@24#. When a walker encounters the boundary at either edge
of the slab, it either exits or is reflected specularly back into
the sample according to an angle-independent reflection
probability,R. Isotropic and anisotropic random walks gen-
erated by this procedure are compared in Fig. 1.

A. Concentration profile

The treatment of scattering anisotropy by a discontinuity
in photon concentration at the source point is the key theo-
retical idea in this paper, and the size of the discontinuity,
Eq. ~4.5! or ~4.7!, is a crucial input to DTS and DWS pre-
dictions. Therefore, we first use random-walk simulations to
study the existence and magnitude of the discontinuity in
relation to scattering anisotropy. We proceed by collecting
statistics for the diffuse transmission probability and the pro-
file of photon concentration versus distance. To mimic scat-
tering away from a normally incident beam at a distancezpl *
in from the edge of the sample, as in the predictions to be
tested, the very first step starts atzpl * and is directed away
from the 1z direction according to the form factor. Alto-
gether, then, four inputs must be specified: the value of the
slab thickness,L/ l * , the boundary reflectivityR, the scatter-
ing anisotropyg, and the penetration depth ratiozp . For
each choice, results for the transmission probabilityTzp

are
obtained by tallying the number of transmitted walkers. Re-
sults for the steady, time-averaged concentration profile are
obtained by binning up the amount of time each walker
spends at a given depth in the sample. Example data are
shown in Fig. 2 for a penetration depth ofzp51 into slabs of
thicknessL/ l * 510 for six different combinations of scatter-
ing anisotropy,gP$0, 0.5, 0.9%, and boundary reflectivity,
RP$0,1/2%. For comparison, the prediction of Eq.~4.1! is
also plotted in Fig. 2, whereTzp

is taken from the simulation

value, ze is taken from Eq.~2.2!, and w0 is the total time
spent by all walkers inside the slab; there are no free param-
eters in the comparison. In all cases, the predicted and simu-
lated profiles agree very well throughout the entire slab, ex-
cept very close to the source. In particular, the profiles are all
nearly linear on each side of the source plane and extrapolate
to zero atze52/3 and 2 outside the sample forR50 and 1/2,

FIG. 3. Diffusing photons are created by scattering away from
the incident beam. The complete source is thus constructed by in-
tegrating the plane-source results over the penetration depth,zp ,
and summing over all multiple reflections.

57 4505DIFFUSING-LIGHT SPECTROSCOPIES BEYOND THE . . .



respectively. But more importantly, it also shows how the
profiles are not necessarily continuous atzp . The size of the
discontinuity can be read straight off the plots to beD0Dw
>0, 0.5, and 0.9 for the three casesg50, 0.5, and 0.9, re-
spectively, independent of wall reflectivity. This provides
strong confirmation of the expectationD0Dw5g of Eq. ~4.5!
for thick samples.

Next, the behavior of the discontinuity at the source is
examined as a function of slab thickness. It is also important
to examine the behavior of the discontinuity as a function of
zp , since in a real experiment diffusing photons are intro-
duced over an exponential range of penetration depths as
photons are scattered out of the incident beam. Thus Fig. 4
displays statistics for the average and rms deviation of the
discontinuity as a function of slab thickness, for two differ-
ent values of wall reflectivity and several degrees of scatter-
ing anisotropy. The averages shown are defined as follows
by exponential weighting according to the scattering length,
as would occur in experiment:

^D0Dw&5

E
0

L/ l*
~D0Dwzp

!e2zpl* / l sdzpl * / l s

E
0

L/ l*
e2zpl* / l sdzpl * / l s

, ~5.1!

whereD0Dwzp
is the discontinuity atzp as deduced from the

simulation result forTzp
using Eq.~4.3!. The simulation re-

sults for the rms deviation, defined similarly ass^D0Dw&

5A^(D0Dw)2&2^D0Dw&2, show that the discontinuity is
independent ofzp to a good approximation, more so for
stronger anisotropy. So it is enough to consider the average
discontinuity as a function of slab thickness and anisotropy,
without regard tozp . The results for̂ D0Dw& versusL/ l *
displayed in the top plot of Fig. 4 also conform very well to
the expectations of Eqs.~4.5! and ~4.7! independent of wall
reflectivity. This is illustrated by close agreement of the

simulation data with the solid curves that interpolate expo-
nentially between the expected small and thick slab limits
according to

^D0Dw&5g1~g82g!exp~2L/ l * !. ~5.2!

This empirical relationship works well for all reflectivities
and anisotropies examined. As long as the slab thickness is
greater thanL52l * , the discontinuity can therefore be taken
as ^D0Dw&5g. And as long as the thickness is less thanL
50.1l * , the discontinuity can be taken as^D0Dw&5g8. It is
curious that the thin slab limit, and the crossover between the
two regimes, is set by the value ofl * rather than by the
scattering length.

In the cases of constant reflectivity simulated above, the
discontinuity in the single scattering regime is simplyg8
5 2

3 (2pf21). In many experiments, the scattering medium
is a liquid suspension held in a glass cell and measured in air
or an index-matching bath. In these cases, the discontinuity
must be calculated numerically using the angle-dependent
Fresnel reflectivity of both interior-wall and wall-exterior in-
terfaces. Results for a variety of liquid refractive indices are
shown in Fig. 5 for a glass index of 1.5 and the Henyey-
Greenstein form factor. For any set of refractive indices at
the boundary, note that the discontinuity approaches the
constant-reflectivity valueg8→ 2

3 (2pf21)5g2O(g3) for
smallg. Thus, for weak anisotropy,g,0.4, excellent results
should be obtained by treating the discontinuity as a constant
independent of thickness; this can be seen in Fig. 4.

B. Diffuse transmission

With the foundation now established, we may begin test-
ing the predictions for diffusing-light spectroscopies. The
only difference in simulation procedure is that now the loca-
tion of the first scattering event away from the incident beam
is not specified, but is rather taken at random for each walker

FIG. 4. Average size and rms deviation of the discontinuity, as
defined by the weighting overzp in Eq. ~5.1! vs slab thickness for
several degrees of anisotropy as labeled. Results are seen to be
independent of boundary reflectivity, open circles forR50 and
crosses forR51/2, and to agree well with the limiting values of
Eqs.~4.5! and ~4.7!; the solid curves represent the empirical inter-
polation of Eq.~5.2!.

FIG. 5. Required discontinuity in diffuse-photon concentration
in the single-scattering limit, Eq.~4.7!, vs scattering anisotropy for
samples held on glass cells and measured in air~top! or water
~bottom!. In both cases, the dashed curve is the constant reflectivity
limit and the solid curves are for interior indices of 1.0 through 1.6
from bottom to top. The open points represent values for the iso-
tropic and anisotropic samples described in Sec. VI.
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according to the scattering length and wall reflectivity. Re-
sults for the total diffuse transmission probability as a func-
tion of optical thickness are shown as symbols in Fig. 6 for
four different combinations of boundary reflectivity,R
P$0,1/2%, and scattering anisotropy,gP$0,0.9%; the corre-
sponding predictions from Eq.~4.11! are shown as curves. In
the single scattering regime,L! l s , the diffuse transmission
increases linearly with thickness and depends on both the
reflectivity and the anisotropy. Throughout this regime, the
simulation data and the telegrapher predictions are in perfect
agreement, as expected by the choice of discontinuity. In the
diffuse regime,L@ l * , the transmission decreases with thick-
ness in proportion toL21 and depends strongly on reflectiv-
ity, but not on anisotropy. This is seen in both the simulation
data and in the predictions of Eq.~4.11!, which are indistin-
guishable to within about61% for L/ l * >2. The deviation
of simulation from prediction is greatest in between the two
limiting regimes, but, as seen in Fig. 6, is never more than a
few percent. Thus, by properly including boundary reflectiv-
ity through an extrapolation length and scattering anisotropy
through a discontinuity at a source that is exponentially dis-
tributed according to the scattering length, the transmission
probability can be predicted from one simple theory with
great accuracy in both the single- and multiple-scattering
limits as well as in the difficult region in between.

C. Diffusing-wave spectroscopy

The accuracy of the DWS correlation function predic-
tions, Eq.~4.12! for backscattering and Eq.~4.14! for trans-
mission, can be also be gauged by comparison with random-
walk simulations. As walkers wander through the slab, both
their total square wave-vector transfer and their total path
length are measured, and the results are used respectively to
compute the correlation function according to the bench-
mark,g1Y(x) of Eq. ~2.5!, and the continuum approximation,
g1S(x) of Eq. ~2.7!.

1. Backscattering

Simulation results of the DWS correlation function in the
backscattering geometry are shown in Fig. 7 for four differ-
ent combinations of boundary reflectivity,RP$0,1/2%, and
scattering anisotropy,gP$0,0.9%, along with the telegrapher
prediction of Eq.~4.12!. As observed previously@15,10#, the

benchmarkg1Y(x) and the approximationg1S(x) agree very
well for smallx ~early times!, where the signal is dominated
by photons with long paths, but disagree for largex ~late
times!, where the signal is dominated by photons that have
short paths. This is because the continuum approximation is
valid only for long paths consisting of many scattering
events. For smallx, whereg1Y(x) andg1S(x) are in agree-
ment, the telegrapher prediction is also quite accurate.
Namely, the initial decay is nearly exponential inAx and
depends on reflectivity but not on anisotropy, while for
slightly larger x the decay rate increases slightly with in-
creasingg. This can be seen both in Fig. 7 and in the small-
x expansion of the backscattering prediction, Eq.~4.12!:

g1~x!512~11ze!Ax1~12g1ze1ze
2!x1O~x3/2!.

~5.3!

For even largerx, beyond aboutx51 where g1Y(x) has
decayed to about 0.2, the continuum approximation fails al-
together since, as seen in Fig. 7, there is no longer any quan-
titative similarity ofg1S(x) to g1Y(x). In this regime, neither
diffusion theory nor telegrapher theory approximations of
g1S(x) can hope to capture the true behavior ofg1Y(x); and
indeed, the telegrapher predictions shown in Fig. 7 break
down, especially for strong anisotropy. In short, there are as
yet no truly satisfactorypredictions for the backscattering
correlation function based on Eq.~2.7! for g1S(x), since the
continuum approximation breaks down for short paths and
since short paths dominate the signal forg1(x),0.2. The
best means of analyzing data may still be the empirical form

FIG. 6. Total diffuse transmission vs slab thickness for four
combinations of boundary reflectivity and scattering anisotropy, as
labeled. Symbols represent results of random-walk simulations and
curves represent the prediction of Eq.~4.11! using the average dis-
continuity given by Eq.~5.2!.

FIG. 7. Normalized electric field correlation function forback-
scatteringfrom a semi-infinite slab for four combinations of bound-
ary reflectivity and scattering anisotropy, as labeled. The top plot
shows simulation results for the benchmark,g1Y(x) of Eq. ~2.5!,
based on momentum transfer; the middle plot shows simulation
results forg1S(x) of Eq. ~2.7!, based on path length; and the bottom
plot shows the telegrapher predictions of Eq.~4.12!. The empirical
resultg1(x)5exp@2(11ze)Ax#, based on the smallx expansion in
Eq. ~5.3!, is shown in all plots by symbols, open squares forR
50 and plusses forR51/2, independent of scattering anisotropy.
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g1(x)5exp(2gAx) whereg is an unknown, adjustable pa-
rameter close to 11ze . This form is shown by symbols in
Fig. 7 for the two casesg55/3 and 3, corresponding through
the first term in Eq.~5.3! to ze52/3 and 2, respectively. This,
of course, fails to capture the anisotropy dependence of the
decay; it also does not provide good agreement withg1Y(x)
beyond aboutx51. Since the second term in the expansion
in Eq. ~5.3! seems reliable, it may be possible to concoct an
even better empirical form using this as a guide.

2. Transmission

In the transmission geometry, there is a well-defined typi-
cal photon path consisting of roughly (L/ l * )2 completely
random steps of average sizel * . This implies that the decay
of the correlation function is nearly exponential in (L/ l * )2x.
It also implies that failure of the continuum approximation is
a concern only for thin slabs, and can never be as severe as in
backscattering. As found previously@10# the difference be-
tween the average dimensionless path length^S& and the
average dimensionless momentum transfer^Y&, whose val-
ues determine the initial decay rates ofg1S(x) and g1Y(x),
respectively, vanishes for thick slabs and is never greater
than about 7% even for slabs as thin asL52l * . Therefore,
the prediction of Eq.~4.14! is tested in Fig. 8 by comparison
with g1Y(x), only, as a function of (L/ l * )2x. Simulation
results and telegrapher predictions for the transmission cor-
relation function are displayed for three different slab thick-

nesses,L/ l * 55, 10, and 20, with four different combina-
tions of boundary reflectivity,RP$0,1/2%, and scattering
anisotropy,gP$0,0.9%. For small (L/ l * )2x, the initial decay
is nearly exponential in (L/ l * )2x with a rate that depends
significantly on reflectivity, but not much on anisotropy,
such that the sensitivity to a change in reflectivity increases
for thinner slabs. This can be seen both by careful inspection
of the figure and of the small-x cumulant expansion of the
transmission prediction in Eq.~4.16!. For larger (L/ l * )2x,
the correlation functions all exhibit upward curvature by an
amount that depends on thickness, reflectivity, and anisot-
ropy, such that the sensitivity to a change in anisotropy in-
creases for thinner slabs. For very thick slabs,L@ l * , the
behavior reduces to the limiting form g1(x)
5L̃Ax/sinh(L̃Ax) independent of reflectivity and anisotropy.
For slabs of intermediate thickness, 20,L/ l * ,100, the be-
havior depends noticeably on reflectivity but not on anisot-
ropy. For thinner slabs,L/ l * ,15, where most experiments
are performed, the behavior depends significantly on both
reflectivity and anisotropy. As evident in Fig. 8, the telegra-
pher prediction of Eq.~4.14! captures this entire range of
behavior and is quantitatively accurate to a remarkably high
degree. By contrast, the diffusion theory prediction of Eq.
~2.8!, also shown in Fig. 8, fails to distinguish the crucial
differences due to scattering anisotropy, and thus becomes
only qualitatively correct for thinner slabs. Curiously, as no-
ticed earlier in Ref.@8#, it works best for strong anisotropy,
the very case for which its transport approximations are most
inaccurate.

The differences between the simulated and predicted cor-
relation functions observed in Fig. 8 are difficult to fully
quantify. Two reasonable means are shown in Fig. 9 that
may be useful to experimentalists for knowing and minimiz-
ing the systematic error introduced by analysis of data with

FIG. 8. Normalized electric field correlation function fortrans-
missionthrough slabs of various optical thicknesses and boundary
reflectivities, as labeled. Simulation results for the benchmark,
g1Y(x) of Eq. ~2.5!, based on momentum transfer, are shown as
symbols. The telegrapher prediction of Eq.~4.14! is shown by solid
and dashed curves. The diffusion theory prediction of Eq.~2.8!,
which does not distinguish between different levels of scattering
anisotropy, is shown by dotted curves.

FIG. 9. Quantitative differences between the telegrapher predic-
tion of g1(x) in transmission, Eq.~4.14!, and the benchmark trans-
mission correlation function,g1Y(x) of Eq. ~2.5!, vs slab thickness.
The top plots show the fractional cumulant difference, and the bot-
tom plots show the average absolute shape deviation, Eq.~5.4!.
Boundary reflectivity and scattering anisotropy are labeled. The left
two plots are for the full telegrapher prediction, while the right plots
with D0

250 show that better agreement can be obtained by neglect-
ing ballistic propagation effects.
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the telegrapher prediction. The top plot shows the fractional
cumulant difference,DG1 /G1[(G12G1Y)/G1Y , between
the initial decay rates of Eq.~4.14! and the benchmark,
g1Y(x), for the usual four combinations of boundary reflec-
tivity and scattering anisotropy. The differences all decrease
with increasing thickness, as expected, and even in the worst
cases are less than 10% for thicknesses greater thanL
54l * . In the case of moderate reflectivity and anisotropy, as
in a typical experiment, the difference is less than a few
percent even in slabs as thin asL52l * . While the cumulant
difference serves to quantify the accuracy of the decay rate,
the following absolute difference serves to quantify the ac-
curacy of theshape:

^uDg1u&[E ug1~xG1Y /G1!2g1Y~x!ud ln x/ ln 10.

~5.4!

Since the predicted and benchmark correlations functions
both decay nearly exponentially from one to zero, their dif-
ference is greatest over about one decade inx; therefore, Eq.
~5.4! is an indicator of the average difference@10#. Further-
more, since the decay rates have been matched, this quantity
solely reflects differences in shape. Simulation results for Eq.
~5.4! are shown in the bottom plot of Fig. 9. As expected, all
decrease with thickness, and even in the worst cases are be-
low 0.1 for thickness greater thanL53l * . Since the error in
the prediction becomes comparable to the benchmark when
the correlation function decays below^uDg1u&, a simple rule
for avoiding undue systematic error would be to restrict
analysis to the portion of the decay satisfyingg1(t)
.^uDg1u&. Since it is routine to measureg1(t) down to
0.03, the results in Fig. 9 show that even in the worst case no
data need be discarded if the thickness is greater than about
L57l * . For moderate reflectivity and anisotropy, as in a
typical experiment, no data need be discarded if the thick-
ness is greater than aboutL54l * , and more than a full de-
cade of decay is available even for slabs as thin asL
52l * .

VI. EXPERIMENTS

While the above random-walk simulations are useful for
cleanly isolating and testing the influence of scattering an-
isotropy, they fail to account for potentially important phe-
nomena that occur in real experiments. This includes the
field properties of light, i.e., polarization and interference, as
well as angle-dependent behavior in the boundary reflectivity
and scattering form factor that are not accounted for by the
average quantitiesze andg, respectively. Therefore, we have
performed a series of diffuse transmission and DWS experi-
ments on colloidal suspensions of polystyrene spheres~poly-
balls!. The heart of our approach is to design two suspen-
sions such that, except for scattering anisotropy, their optical
and dynamical properties are as much alike as possible.

A. Sample design

Polystyrene spheres were chosen because the details of
their light scattering behavior and their thermal motion are
both well known, and can thus be suitably tailored. For the
low concentrations employed here, the former are given by

Mie theory in terms of the dielectric constants of the mate-
rials and the ratio of the wavelength of light to sphere size
@25,26#. We use stock polystyrene spheres with diameters of
93 and 653 nm, each with less than 10% polydispersity
~Duke Scientific, Palo Alto CA!, and coherent light from an
Ar1 laser with a wavelength ofl5514.5 nm in air. Since the
93-nm spheres are much smaller than the wavelength of
light, they scatter photons with approximately equal prob-
ability into the forward and backward directions according to
a simple Rayleigh form factor. Even though the scattering is
polarization dependent, especially near 90°, we will refer to
these as our ‘‘isotropic’’ samples. By contrast, since the 653
nm spheres are larger than the wavelength of light, they scat-
ter photons preferentially into the forward direction accord-
ing to a complicated Mie scattering form factor, we call these
our ‘‘anisotropic’’ samples. In both cases, the important
length scales are the scattering and transport mean free paths,
given, respectively, by

l s5
1

rns
and l * 5

l s

12g
, ~6.1!

whererN is the number density of spheres,s is the scattering
cross section, and, as usual,g is the average cosine of the
scattering angle that parametrizes the degree of scattering
anisotropy.

The thermal Brownian motion of the spheres in suspen-
sion is approximately diffusive, so the dynamical variable
appearing in DWS predictions is

x5k2^Dr 2~t!&>6t/t0 with t051/Dk2, ~6.2!

wherek is the wave vector of light in the medium,^Dr 2(t)&
is the average mean-squared displacement of the spheres in
time t, D is the sphere self-diffusion coefficient, andt0 is
the characteristic time scale required for the spheres to dif-
fuse across one wavelength. Because of hydrodynamic inter-
actions that depend on the volume fractionf occupied by
spheres, the diffusion coefficient is smaller than the Stokes-
Einstein value according toD5D0(121.83f) @27–29#.
And because of the hydrodynamic self-interaction, there is a
long-time tail in the decay of the velocity autocorrelation
function. The detailed functional form ofx(t) is found @30#
to be given by Hinch’s prediction@31,8# with the above dif-
fusion coefficient and with a self-interaction time oftn5(1
22.5f)a2r/h wherea is the sphere radius,r is the liquid
density, andh is the liquid viscosity. The limit of truly dif-
fusion motion described byt0 in Eq. ~6.2! is attained only
for t@tn .

With these well-established ingredients, we may now en-
gineer our samples. First, stock solutions of the 653 nm
spheres are diluted with sufficient water that the transport
mean free path is predicted to have a convenient value of
l * 50.52 mm. As recorded in Table I, this produces samples
with a large anisotropy parameter ofg50.90 and a charac-
teristic diffusion time oft055.7 ms. Next, stock solutions of
the 93 nm spheres are mixed with carefully chosen volumes
of water and glycerol so that the resulting suspensions are
predicted to have the same values of bothl * and t0 . This
produces samples with a small anisotropy parameter ofg
50.11, but with optical and dynamical properties that are
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otherwise very similar to the anisotropic samples. While the
two samples have the samel * , note that their scattering
lengthsl s5(12g) l * differ by a factor of ten.

After mixing, the suspensions are sealed into two sets of
sample cells. The first set consists 10 borosilicate cells
~Corning 7740,n51.474! with rectangular cross section and
with nominal thicknesses ranging from 1 to 10 mm. These
were made by extrusion and the actual thickness was taken
as the average found along the cell width. The second set
consists of 5 cylindrical spectrophotometer-type cells~NSG
Precision Cells, Farmingdale, NY! with accurately con-
structed thicknesses of 0.1, 0.2, 0.5, 1, and 2 mm. In all
cases, the width of the cells is sufficiently great that essen-
tially no photons escape from the sides.

Because of uncertainties in the concentrations and in the
liquid and sphere properties, the values ofl * andt0 may not
be precisely matched for our actual isotropic and anisotropic
samples. Reasonable estimates for the errors are given in
Table I, and were obtained as follows. First, the polyball
diameters are reported by the manufacturer, and their refrac-
tive indices are taken from the literature@32#. The mass and
volume fractions are obtained by weighing. As a check, the
liquid refractive indices are measured with an Abbe refrac-
tometer and compared to Ref.@33#; liquid viscosities and
densities are taken from the same source. These uncertainties
combine to give the expected errors forg, l * , and t0 re-
ported in Table I. In addition, two other aspects of the iso-
tropic and anisotropic samples are not identical. First, the
hydrodynamic self-interaction times quoted in Table I are
different. This is unavoidable since the 93 nm spheres are
smaller and since their solution has a higher viscosity; there-
fore, theirtn is much smaller and their motion is more nearly
diffusive over the time scales of our experiments. Second,
the extrapolation length ratios that describe the diffuse pho-
ton boundary conditions are different. This is unavoidable
since the two suspensions have different refractive indices,

and hence different angle-dependent photon reflectivities at
the suspension-wall interface. Values forze are quoted in
Table I for cases that the glass sample cells are held in air
and in a water bath, where reflections at the wall-exterior
interface are reduced. In spite of uncertainties inl * andt0 ,
and of differences intn andze , the largest and most impor-
tant difference between the 93 nm and 653 nm suspensions is
their degree of scattering anisotropy. In analyzing data, our
approach will be to treat onlyl * as an adjustable parameter,
assuming that all other parameters in Table I are exact.

B. Ballistic transmission

Before examining the influence of scattering anisotropy
on diffusing light spectroscopies, we further characterize the
optical properties of the suspensions by measurements of the
ballistic transmission probability. For this, we gently focus
the collimated laser beam through samples contained in the
precision spectrophotometer cells. A pinhole is placed at the
focus so that scattered light is blocked and only the unscat-
tered, ballistic component may reach the detector. The bal-
listic transmission probability is then obtained by normaliz-
ing to the signal from a cell containing pure water. The
results displayed on semilogarithmic axes in Fig. 10~a! ex-
hibit a clear exponential dependence on thickness,Tb
5exp(2L/ls); this form neglects the contribution of ballistic
photons, which reflect an even number of times before being
transmitted since they are down by more than the square of
boundary reflectivity at normal incidence, which is insignifi-
cant here. The fits shown in Fig. 10~a! give scattering lengths
for the isotropic and anisotropic samples that differ by a

TABLE I. Sample characteristics at a temperature of 21 °C for
light at an incident wavelength of 514.5 nm in air. The polyball and
glycerol fractions are chosen so that the values ofl * andt0 are the
same for both the isotropic and anisotropic samples. The manufac-
turer’s reported error in the polyball diameter is61 nm; the re-
ported polydispersities are much larger, as quoted below.

Designed Isotropic Anisotropic

Polyball diameter~nm! 9368 653612
Polyball volume fraction~%! 1.86660.002 0.413460.0004
Polyball refractive index 1.6060.01 1.6060.01
Glycerol mass fraction~%! 53.060.1
Liquid refractive index 1.40760.003 1.33460.001
Liquid viscosity ~g/cm-s! 0.075260.0005 0.009960.0003
Liquid density~g/cm3! 1.13560.003 0.99860.003

Calculated

g 0.1160.02 0.89860.004
l * ~mm! 0.5260.17 0.5260.05
t0 ~ms! 5.760.5 5.760.3
tn ~ns! 0.3160.06 10768
ze for glass cell in air bath 2.0360.05 1.7660.02
ze for glass cell in water bath 0.8160.01 0.7160.01

FIG. 10. Ballistic~top! and diffuse~bottom! transmission prob-
ability as a function of cell thickness. Triangles and circles respec-
tively denote data for 93 nm spheres, which scatter light almost
isotropically with g50.11, and for 653 nm spheres, which scatter
light very anisotropically withg50.90. Open symbols are for rela-
tive measurements with an integrating sphere, and solid symbols for
absolute; for all, the sample cells are held in air. The lines through
the data in the upper plot represent fits to an exponential for the
scattering length,l S , while the curves through the data in the lower
plot represent the prediction, Eq.~4.11!. The small symbols are for
random walk simulations with appropriate form factor and angle-
dependent boundary reflectivity.
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factor of nearly ten, as expected by design. Using the calcu-
lated value ofg, the transport mean free path may then be
estimated asl * 5 l s /(12g); the results quoted in Table II
are approximately equal and are close to the design values.

C. Diffuse transmission

We now consider the total diffusion transmission prob-
ability that a photon scattered out of the incident beam will
exit, after any number of scattering events, from the opposite
face of the sample. This can be measured absolutely, without
reference to a control sample. Following our previous work
@21#, the illumination and collection optics are arranged so
that the detection probability is independent of where on the
sample face the transmitted or backscattered photons happen
to emerge, as assumed in our predictions for the slab geom-
etry. The measured light intensity is then recorded at finely
spaced angles around the entire sample; the total transmitted
and backscattered intensities,I T and I B , may thus be found
by integrating the resulting angular distributions. The final
result for the diffuse transmission probability,Td5I T /(I T
1I B), is displayed as solid symbols for both isotropic and
anisotropic samples in Fig. 10~b!. For thick samples, it de-
creases with increasing thickness in accord with the predic-
tion Td'(11ze)/(L/ l * 12ze). Inverting this expression for
l * using data from the five thickest samples,L>6 mm, and
averaging, gives an alternative characterization of the trans-
port mean free path. The resulting values ofl * shown in
Table II are slightly smaller than those obtained from ballis-
tic transmission, but are consistent with expectations.

To examine the thin samples contained in spectrophotom-
eter cells, where anisotropy effects dominate the behavior of
the diffuse transmission probability, we must employ a rela-
tive measuring scheme because the cell design prevents si-
multaneous observation of both transmitted and backscat-
tered distributions. This is accomplished using a large
diameter integrating sphere~Labsphere, North Sutton, NH!.
Samples are mounted at the input port, and the illuminating
beam is gently focused so that unscattered light exits the
sphere through a pinhole on the opposite side. The measured
intensity at a photocell mounted on a third port is thus pro-
portional to the diffuse transmission probability. The normal-
ization constant is found by comparing results forL51 and
2 mm cells with the absolute diffuse transmission probabili-
ties obtained for rectangular cells of the same thickness.

The experimental results forTd are shown as open sym-
bols in Fig. 10~b!. For thick slabs, the isotropic and aniso-

tropic samples exhibit nearly identical behavior,Td'(1
1ze)/(L/ l * 12ze), since their values ofl * and ofze are so
similar. For thin slabs,L,2 mm, by contrast, they have very
different diffuse transmission probabilities, reaching a maxi-
mum nearL52l s and decreasing for thinner slabs. This is
similar to what was seen previously in the simulation test of
Fig. 6, and is due to the great difference in their degrees of
scattering anisotropy. In particular, thin anisotropic samples
have a significantly largerTd both because their scattering
length is ten times smaller, so that more photons scatter out
of the incident beam, and because scattered photons are pref-
erentially directed into the forward direction. For thin isotro-
pic samples, by contrast, fewer photons scatter away from
the incident beam, and those that do are as likely to be back-
scattered as transmitted. This behavior is captured very well
by the prediction of Eq.~4.11!, based on the treatment of
scattering anisotropy by a discontinuity in diffuse photon
concentration at the penetration point. These predictions are
shown as curves in Fig. 10~b!, using thick-sample inversion
results for l * and numerically calculated values forg, g8,
Rb , andze using the sample design parameters in Table I.
None of these parameters is adjusted to fit the data. Simula-
tion results using the appropriate Henyey-Greenstein form
factor and angle-dependent boundary reflectivity are also in-
cluded. For anisotropic samples, the prediction, simulation,
and experiment are nearly indistinguishable as the slab thick-
ness is varied widely from the single-scattering regime into
the diffusive regime. For isotropic samples, similar agree-
ment is found except that the experimental data are too low
for the two thinnest slabs. This discrepancy is highly repro-
ducible; given the close agreement between theory and simu-
lation, we speculate that there remains an unknown source of
systematic experimental error.

D. Diffusing-wave spectroscopy

We now turn to the main experiments for which our
samples were designed: diffusing-wave spectroscopy study
of intensity fluctuations caused by motion of the scattering
sites. As for the diffuse transmission experiments, we will
first analyze data from thick samples using traditional diffu-
sion theory and then proceed to thin samples to observe the
influence of scattering anisotropy. These measurements are
performed using standard methods for samples contained in
the extruded rectangular glass cells. Samples are illuminated
with coherent light from the Ar1 ion laser at near-normal
incidence with no focusing. The diffusely transmitted or
backscattered light is detected without imaging by a photo-
multiplier tube placed behind a 50mm diameter pinhole ap-
proximately 1 m from the sample. These scales were chosen
so that the speckle and pinhole sizes are comparable; relative
motion of the scattering sites then produces large fluctuations
in the detected intensity. Our experimental geometry is
equivalent to the traditional case of illuminating with a plane
wave and imaging light, which emerges from a point@5#, but
it is much simpler and wastes far fewer photons@34#. Since
neither geometry discriminates against photons according to
lateral motion within the sample, they are both equivalent to
the one-dimensional ‘‘plane-wave-in–everything-out’’ ge-
ometry assumed in our analysis. The PMT signal is amplified
and discriminated so that each detected photon produces a

TABLE II. Experimental values forl * , given in units of mm;
the quoted error bars arise from uncertainties in fitting and normal-
ization procedures.

Method Bath Isotropic Anisotropic

Designed 0.52 0.52
Ballistic transmission Air 0.6660.02 0.5860.02
Diffuse transmission Air 0.5960.02 0.5260.01
telegrapher DWS Water 0.6760.01 0.6060.01

Air 0.6860.01 0.6260.01
Standard DWS Water 0.6860.01 0.6060.01

Air 0.6960.01 0.6260.01
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square, TTL, pulse which can be fed directly to digital cor-
relator board~ALV-5000, Langen/Hessen Germany! for real-
time computation of the intensity autocorrelation function
^I (0)I (t)&. The result is related to the normalized electric
field autocorrelation function,g1(t), by the Siegert relation
@35,36#

^I ~0!I ~t!&

^I &2 5B1bug1~t!u2, ~6.3!

where B is the baseline, which equals one if there are no
drifts in the incident laser intensity, andb is the intercept,
which is less than one but increases with decreasing pinhole
size and laser coherence.

It is common practice to test theories of DWS by nonlin-
ear least-square fits to data in which bothl * as well as the
baseline and intercept are simultaneously adjusted@5,8,34#.
This leads to outstanding fits but with results that vary with
fitting interval @34#, suggesting that errors in the predicted
rate or shape of the correlation function are being masked by
compensating errors in choice of fitting parameters. Here, we
adopt a conservative approach in which the intercept and
baseline are chosen once and for all without bias by predic-
tions. In particular, the interceptb is estimated by fitting the
early-time data to a second degree polynomial. The baseline
B is estimated by averaging slightly less than one decade of
data after the correlation disappears into the noise. The nor-
malized field correlation function, and the corresponding sta-
tistical errors arising from uncertainties in baseline and inter-
cept, are then found using the Siegert relation Eq.~6.3!. To
improve the signal-to-noise ratio, and to keep the baseline as
close to one as possible, a line filter and polarizer oriented
90° out of phase with respect to the incident beam are placed
in front of the pinhole.

As a final experimental note, our DWS measurements
were performed for samples either submerged in a
temperature-controlled water bath,T52160.2 °C, or held
in air at room temperature,T52161 °C. Besides stabilizing
the particle dynamics, the water bath serves to reduce bound-
ary reflections so thatze for the isotropic and anisotropic
samples becomes smaller and more nearly equal. This will
be important since, according to Eq.~4.16!, both the rate of
decay and the curvature of the correlation function depend
on the value ofze .

After subtracting the baseline and dividing by the inter-
cept, essentially raw correlation data are displayed in Fig.
11~a! for both transmission and backscattering geometries.
As expected, by design, the results for isotropic and aniso-
tropic samples exhibit nearly the same shapes and nearly the
same time scales for decay. Also as expected, due to the
DWS equation~2.7! and differences in path length distribu-
tions, only one decade in delay time is required for the pri-
mary decay of transmission data, while more than two de-
cades are required for backscattering. Over these time scales,
the particle motion is nearly diffusive, more so for the small
spheres. This is seen in Fig. 11~b! by comparing the full
Hinch prediction described above forx5k2^Dr 2(t)& with its
diffusive limit, 6t/t0 , using the calculated values fort0 and
tn in Table I.

All further analysis of the correlation data will be done in
terms of behavior as a function ofx, rather than oft, using

the Hinch prescription shown in Fig. 11~b!. In other words,
we assume that the designed polyball diameters and liquid
viscosities, and hence the calculated values fort0 and tn ,
are all correct. This assumption can be tested two ways, first
by fitting the correlation function in backscattering from the
L510 mm samples, in air, to the approximate empirical
form g1(x)}exp(2gAx1x0); the x0 term accounts for
rounding at smallx due to loss of very long paths from either
the finite size of the sample, absorption, or imperfect laser
coherence. Since we havex>6t/t0 , any error in our as-
sumption fort0 would appear as an error in the fitted value
of g. Reasonable fits are found withg51.4060.02 for the
isotropic samples, g51.8060.05 for the anisotropic
samples, andx050.015 for both. These values forg are
smaller than the expectationg511ze of Eq. ~5.3!, but are in
good agreement with published experimental results on
aqueous suspensions@12#. They are also in accord with the
simulations results in Fig. 7, where anisotropic scattering
leads to a faster decay.

We can further test the basic assumptions in our analysis
by examining the early-time behavior in the transmission
correlation functions,2 ln@g1(x)#5G1x1O(x2). Experimental
values of the first cumulant,G1 , with respect tox, are thus
deduced from asymptotic fits of ln@g1(x)# to a second degree
polynomial with an intercept of zero. These are displayed in
Fig. 12~a! asAG1

21L2/6, because according to Eq.~5.2! this
combination converges tol * in the limit of very thick slabs.
Making this extrapolation with the predicted form ofG1 ver-
susL gives thel * values quoted in Table II. The results are
independent of whether the diffusion or telegraphers predic-
tions are used, since these theories agree for very thick
samples. More significantly, the results are the same for data
obtained for samples held in air and water baths, are consis-
tent with the designed values, and happen to be in very close
accord with the ballistic transmission measurements. Since
we have x>6t/t0 and G1>L̃2/6, giving 2 ln@g1(x)#

FIG. 11. DWS correlation function data vs delay time~upper
plot! for isotropic and anisotropic samples. Note that the two trans-
mission and the two backscattering correlation functions respec-
tively decay with roughly the same shapes and time scales, as de-
signed. The lower plot illustrates how the particle dynamics,x
5k2^Dr 2(t)&, exhibit a size-dependent long-time tail in the cross-
over to purely diffusive motion, 6t/t0 , at long times.
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>(tL2)/(t0l*
2), any error in our assumption fort0 would

appear as an error in the extrapolated values ofl * . Together
with the backscattering and static transmission tests, this
gives confidence in our analysis procedures and sample char-
acterization.

Now that the samples are fully characterized, we may
begin testing the telegrapher theory of DWS for thin
samples. First consider again the cumulant data in Fig. 12~a!.
Both the telegrapher and diffusion predictions provide a
good description forL>5 mm, or L/ l * >8. For thinner
samples, the data and the two predictions progressively di-
verge. Note that our telegrapher theory more successfully
captures the monotonic trend, and that the agreement is es-
pecially good for the anisotropic sample. This same compari-
son can be seen equivalently in the other two plots of Fig.
12, where we also include data for samples held in air. In the
middle plot, we show an effectivel * obtained by inverting
the cumulant data using the telegrapher prediction. This dis-
play is most similar in spirit to previous experimental tests of
DWS, e.g., Ref.@8# where an effectivel * was obtained by
fitting Eq. ~2.8! to the entire decay. Here, we see that inver-
sion results converge to a constant value ofl * for thick
samples. For thin samples, the results develop a systematicL

dependence as the theory becomes less accurate. ThisL de-
pendence is noticeably greater for the isotropic samples,
whether or not submerged in a water bath. Lastly, the bottom
plot in Fig. 12 shows the fractional deviation of the predicted
cumulant from the measured one. Since the telegrapher pre-
dictions are evaluated using the average values ofl * ex-
tracted from the upper and middle plots, the deviations in
Fig. 12~c! all vanish, to within a systematic error of about
60.03, for very thick samples. For thin slabs, the isotropic
samples develop a significant deviation as the theory be-
comes less accurate. Note that this display is most similar in
spirit to the simulation test of Fig. 9. Furthermore, in fact, it
is nearly identical in quantitative detail, except for the iso-
tropic sample measured in air. This suggests that polarization
and interference effects are negligible, and that the con-
tinuum approximation is therefore the dominant source of
error in the telegrapher theory of DWS.

The final test of the telegrapher prediction concerns the
shape, rather than the initial decay rate, of the correlation
function. In Fig. 13, we displayg1(x) data versusG1x for
isotropic and anisotropic samples submerged in a water bath,
along with predictions from telegrapher and diffusion theory.
This is done on semilogarithmic axes for three different
thicknesses. For smallx, the data and predictions all match
by construction, ln@g1(x)#>2G1x. For largerx, the correla-
tion functions all deviate from a simple exponential with
some degree of upward curvature that is the actual quantity

FIG. 12. First cumulantG1 and corresponding inversion results
for l * as a function of cell thickness; symbols denote data for dif-
ferent sphere size and bath conditions, as labeled by extrapolation
length ratio. The value ofG1 is deduced from fits to2 ln@g1(x)#
5G1x1O(x2) for small x, while the value ofl * displayed in the
middle plot is deduced fromG1 using the telegrapher prediction of
Eq. ~4.14!; error bars represent uncertainties from the cumulant fits.
The dotted lines represent the average values ofl * for L.4 mm,
while the solid and dashed curves give the corresponding predic-
tions forAG1

21L2/6 based on the telegrapher and diffusion models;
note thatAG1

21L2/6 converges tol * for very thick samples (L
@ l * ). The bottom plot shows the fractional deviation of the pre-
dicted and measured cumulants.

FIG. 13. DWS correlation function in transmission vsG1x for
three slab thicknesses; error bars arise from uncertainty in the base-
line. Plotted in this manner, the data~symbols! and predictions
~curves! all exhibit the same small-x behavior, ln@g1(x)#52G1x
1O(x2). For largerx, the upward curvature is greater for isotropic
than for anisotropic samples. This distinction vanishes with increas-
ing slab thickness in accord with the telegrapher model. Note that
the curvature is slightly affected by the extrapolation length ratio,
but opposite to the observed trends.
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being tested in these plots. First observe that with increasing
thickness, the data and predictions all converge to a shape
with the same degree of curvature, as expected. We empha-
size that the near-perfect agreement in Fig. 13 between the-
oretical and experimental shapes for thick samples, and also
between telegrapher theory and experiment for thin samples,
is not by fit: we have only matched the initial decay rates.

For thinner samples, the correlation function shapes in
Fig. 13 depend increasingly both on the value of the bound-
ary reflectivity, or equivalently on the extrapolation length
ratio, ze , and on the degree of scattering anisotropy,g. Note
that the boundary reflectivities of the isotropic and aniso-
tropic samples are close, but not equal; however, this cannot
account for the observation that the isotropic samples have
greater upward curvature. This is because the isotropic
sample has the larger value ofze , but according to both
diffusion and telegrapher predictions with everything else
being equal, this should lead to less curvature. The difference
in degrees of scattering anisotropy is the real reason that the
correlation functions for isotropic and anisotropic samples
exhibit different curvatures; the difference in boundary re-
flectivity merely reduces this effect. We therefore believe
that the shape differences apparent in Fig. 13 are the first
experimental demonstration of the influence of scattering an-
isotropy. The observed trend is, of course, not accounted for,
or correctly predicted by, standard diffusion theory. It is,
however, captured quantitatively to a high degree by our
telegrapher theory. As seen in Fig. 13, the predicted curva-
ture is systematically not quite as great as measured. A simi-
lar deviation was also seen in the simulation results of Fig. 8,
and is thus attributed to the continuum approximation.

VII. CONCLUSIONS

It is now straightforward to estimate the influence of bal-
listic transport and of anisotropic scattering within an ana-
lytically tractable transport theory. As argued earlier@17#, the
former is accomplished for scattered photons by a telegra-
pher equation with suitable prescriptions for boundary con-
ditions and the emerging flux. As argued here, it is accom-
plished for unscattered photons within the incident beam by
integrating over source planes and summing over reflections.
Also as argued here, the influence of scattering anisotropy is
estimated by introducing a discontinuity in photon concen-
tration at the source plane in proportion to the degree of
scattering anisotropy. We have demonstrated the validity of
this approach by random walk simulations, and the accuracy

of the resulting DTS and DWS predictions by both simula-
tion and experiment.

The bottom line for DTS is that we can now predict the
diffuse transmission probability through a slab to an accu-
racy of better than a few percent. This is true for any degree
of scattering anisotropy, i.e., for any angle-dependent scat-
tering form factor, and for any angle-dependent boundary
reflectivity. Furthermore, it is true for any slab thickness,
from single scattering, through intermediate, and into the dif-
fusive regimes. To our knowledge, this is unprecedented in
an exactly solvable theory. Here we have considered only the
case of normal incidence with no absorption, but these varia-
tions are straightforward to include within our approach;
other geometries can also be handled. This should be useful
for analyzing transmission data in terms of the three funda-
mental optical length scales,l * , l s , andl a , set by the struc-
ture of the medium.

The bottom line for DWS is that we can now predict the
influence of scattering anisotropy on the shape of the corre-
lation function. This extends the utility of DWS to thinner
samples and to deeper decays ofg1(x), and should thus be
useful for more accurately analyzing data in terms of the
time-dependent dynamicŝDr 2(t)& of the scattering sites.
While our photon transport theory may be accurate, for very
thin slabs the continuum approximationY>S of Eq. ~2.6!
fails altogether because of the presence of snakelike photon
paths crossing the slab withS>L but with Y>0 @10#. There-
fore, by contrast with DTS, our predictions for DWS cannot
be applied for thicknesses belowL>2l * . The primary
symptom is a greater upward curvature in the shape ofg1(x)
than predicted, becauseP(Y) is broader thanP(S). To arti-
ficially introduce more small paths into the theoretical path
length distribution, we propose simply to setD0

250 in Eq.
~4.14!. This means purposely neglecting causality and the
influence of ballistic propagation in order to compensate for
error in the continuum approximation. The DWS predictions
are then simpler and, as seen in Fig. 9, even more accurate.
Until the continuum approximation can be improved upon,
we therefore recommend Eq.~4.14! with D0

250 as the best
analytic means of analyzing DWS data.
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