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Diffusing-wave spectroscopy in a shear flow
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We present a new technique for measuring velocity gradients for laminar shear flow, using dynamic light scattering
in the strongly multiple-scattering regime. We derive temporal autocorrelation functions for multiply scattered
light, taking into account particle displacements arising from deterministic shear flow and random Brownian
motion. The laminar shear flow and Brownian motion are characterized by the relaxation rates TS = kol*/
and TB-1 = Dk 0

2 , respectively, where P is the mean shear rate of the scatterers, ko = 2rn/X is the wave number in the
scattering medium, * is the transport mean free path of the photons, and D is the diffusion coefficient of the
scatterers. We obtain excellent agreement between theory and experiment over a wide range of shear rates, 0.5
sec < P < 200 sec-1. In addition, the autocorrelation function for forward scattering is independent of the
scattering properties of the medium and depends only on the mean shear rate and sample thickness when rs is much
less than T

B. Thus the mean shear rate can be simply determined by a single measurement.

INTRODUCTION

The measurement of the flow of fluids is critical to a wide
range of studies of both technological importance and fun-
damental interest. While a variety of experimental tech-
niques have been employed, various forms of dynamic light
scattering (DLS) have become increasingly widely used.
Light scattering is both accurate and relatively simple and
provides a nonintrusive measure of the fluid flow. The only
requirement for the application of light-scattering tech-
niques is that the fluid contain a low concentration of small
particles that serve as markers by flowing with the fluid and
scattering the laser light. Uniform flow must be measured
by a beating or heterodyne technique, which entails the use
of a second laser beam to provide a constant reference fre-
quency. By contrast, homodyne techniques, which employ
only a single beam, are sensitive only to the relative veloci-
ties of the scattering particles. Thus these techniques are
useful for measuring velocity gradients or shear' or for
studying turbulence.2

A major limitation of these dynamic light-scattering tech-
niques is the requirement that the scattering particles be
maintained at a low concentration. This is necessary both
to allow the laser beam to propagate through the liquid and
to ensure that only single scattering occurs. This severely
limits the application of these techniques and precludes
their use for studying many potentially interesting and im-
portant systems, such as dense colloidal suspensions3' 4 and
blood flow in tissues.5 In this paper we introduce a new
technique that overcomes some of these limitations. It is
ideally suited to the study of the flow of turbid fluids in
which the light is strongly scattered. We limit ourselves to

homodyne scattering and therefore consider only the mea-
surement of relative velocities.

The key to the new technique is the description of the
propagation of light in a strongly scattering medium in
terms of a random walk. Thus the transport of light is
assumed to be diffusive.6 The photon-diffusion approxima-
tion has recently been exploited to develop an expression for
the temporal fluctuations of the intensity of the scattered
light and has been applied to study the Brownian motion in
optically thick suspensions.7 This technique is called dif-
fusing wave spectroscopy 8 (DWS) and allows the more tradi-
tional techniques of DLS to be extended to strongly multi-
ple-scattering media.

In this paper we extend the DWS theory to include the
case when the scatterers are subjected to a laminar shear
flow in addition to their own Brownian motion. We find
that there are two competing dynamical processes in this
problem, each having its own characteristic time depen-
dence. For a stochastic process the square of Brownian
particle displacement (Ar2(r)) is proportional to time, T,

and for a deterministic motion (r 2 (r)) is proportional to r2.
Associated with these processes are two characteristic times,
the Brownian diffusion time, B, and the shear relaxation
time, Ts. The autocorrelation functions that we derive cor-
rectly reflect the interplay between these two time scales.
Using an optically thick suspension of uniformly sized poly-
styrene spheres, we find that the measured autocorrelation
functions for both forward and backward scattering are in
good agreement with our theory over a wide range of shear
rates. Thus it is possible to extend DLS to the strong-
multiple-scattering regime where the system dynamics has
more than one time scale.
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THEORY

As in all DLS experiments, the motion of particles is probed

by monitoring the time dependence of the fluctuations of the

scattered light. Thus we must determine the temporal au-

tocorrelation function G1(T) = (E(O)E(T) ), where E(T) is the

electric field of the scattered light that is collected by the

detector. To calculate G(-), we consider the light, which is

multiply scattered by a random distribution of particles, to

execute a random walk through the sample. In the limit

that the scattering mean free path, 1, is much larger than the

wavelength of light but much smaller than the linear dimen-

sion of a sample cell, the intensity of light leaving the sample

will be the incoherent sum of the electric field of light scat-

tered through all possible paths.9 Thus, for a given light

path consisting of a sequence of n scattering events at posi-

tions r 1 ,..., rn and with corresponding successive wave-

vector transfers qi = ki- ki1, the (scalar) electric field at

time T will be E(n)(,) IE(n)(O)Iexp[-i LU, qi - ri(T)]. The

dynamical information about the scatterers that is probed

by G,(T) is contained in the phase difference b(n)(T) between

E(n)(O) and E(n)(r) and can be written as 4i(n)(.r) = 1 bi(T)

= ,n= qi - Ari(T), where Ari(T) is the change in position of
the ith scatterer during the time interval T. If the Brownian

motion of particles is not affected by the laminar shear

flow,10 then ib(n)(r) = Ln=j qi * [AriB(T) + AriS(T)], where

Ar-B(T) and AriS(T) are the displacements of particle i from

particle diffusion and convective shear, respectively. Since

we are interested only in relative motions between particles

for the shear motion, we can decompose qi to give Ln=j qi -

AriS(T) = Lin=j ki - [Ari+,(r) - Ars(r)I. Then the total

phase shift is simply1l

n

,j)( (T) % lqi ArB(T) + ki * [Ari+jS(T) - Aris(r)]1. (1)
i=l1

The simplest case to treat is that of planar Couette flow.

Therefore we take a velocity profile given by v. = Izex as

shown in Fig. 1, where r = aOv/Oz is the rate of shear and ex is

a unit vector in the x direction. Then the contribution to

the time-dependent phase due to shear for the ith scattering

event is ki * [Ari+IS() - ArS(T)] = koki * [r(Aik1 - ez)exT] =

Vr,= ZOr 

X/

z I

A rf, ()

YA T= is,5 (0) - Z,5(0I
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Fig. 1. Geometry for the calculation of the phase shift due to shear

for the ith scattering event: The flow is in the x direction, and the

velocity gradient, r, is in the z direction. The distance between

successive events is Ai = Iri+i(0) - ri(0)1, and the change in position
of ith scatterer in the time interval T owing to convective shear is

Aris(r).

r-rko~i(ki AX) (k, _ ), where ko = 2rn/X is the wave number in

the scattering medium, Ai = Iri+,(0) - ri(O)i is the distance

between scattering events, ki is a unit vector in the direction

of the scattered light, and e, is a unit vector in the z direction.

This formula can be rewritten in terms of polar and azimuth-

al angles 0i and Xi:

ki [Ari+,S(T) - AriS(T)] = rTkoAi cos Qi sin 0i cos i, (2)

where Oi and Xi are defined in Fig. 1.
The heterodyne autocorrelation function Gj(n)(r) for a

given multiple-scattering path of order n can then be written

as

n\

G, (n)(,) =(E(n)(O)E*(n)(,)) = (IE(n)(0)2)KI exp-iDi(,r)I-

(3)

Therefore the average contribution of all paths of order n is

given by

G1(n)(T) = IOP(n)K17 exp[-i1(T)]j (4)

where P(n) is the fraction of total scattering intensity 1o in

the nth-order paths. Assuming that fields belonging to dif-

ferent paths add incoherently, G1 (T) is obtained by summing

over all possible n:

(5)

For small particles that scatter light isotropically, the

successive i(T) are uncorrelated, and the average of the

product in Eq. (5) becomes (exp[-iti(T)])n, where ( ... )

denotes both the configurational average of Ari(T) and the

average over all possible scattering vectors qi and ki (and

hence ,i and Oi as defined in Fig. 1). This gives

(6)
G1(T) Io Y P(n) (exp iti(T)] )n

n=1

Since Ar1B(T) and AriS(T) represent two independent mo-

tions, the configurational average over each of them can be

performed separately. For Brownian motion, the deriva-

tion can be found in Refs. 7 and 8. For the convective shear

part, we make a moment expansion. Since the leading non-

vanishing term in such an expansion is the second moment,

we have approximately ( ... ) = expj-2[T/TB + (TITs)').

Here TBj1 = Dk0
2 and rs1 = rlko/1~i, where D is a diffusion

constant of the scatterers and 1 = (A) is the scattering mean

free path for light. The factor of A3_0 in Ts is obtained by

averaging sin2 20 cos2
0 over the unit sphere. For inhomo-

geneous velocity gradients, r2 must be averaged over the

volume of fluid probed by the scattered light that is collected

by the detector. Thus r is replaced by r = JPFF5 in the

expression for Ts. The mean free path, 1, sets the length

scale over which P is measured. In the continuum limit we

approximate the sum over n in relation (6) by an integral

over the scattered-light path length s = nl:

G,(T) = Io f P(s)expl-2[T/TB + (r/_S)
2 ]s/1jds,

-E b
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where P(s) is now the fraction of the total scattered intensity
that traverses a path of length s through the sample to the
point where the light is detected.

We note that the numerical factor of a applies to pure
elongational flow, as well as to simple Couette flow, so long
as the flow is two dimensional. This is because linear shear
flow can always be decomposed into an elongational flow and
a rotational flow.1 2 Since rotational flow is equivalent to a
solid rotation, the relative positions between particles are
fixed, and there is no contribution to the decay of the auto-
correlation function, except for the initial and final scatter-
ing events at the entrance and exit points of the light. Since
the total number of scattering events is assumed to be large,
the contributions of these two scattering events are small
and can be neglected. Thus, in the multiple-scattering re-
gime, elongational and simple shear flow have the same
effect on the autocorrelation function.

For larger particles, which scatter light anisotropically,
the results are exactly the same, provided that 1 is every-
where replaced by *, the transport mean free path. Here 
and 1* are related through the particle form factor F(q) (Ref.
13):

1*/1= J F(q)dq/J F(q)(1 - cos 0)dq.

Thus, in general,

G,(T) I J P(s)exp-2[T/TB + (T/TS)2
]s/l*Ids, (7)

where s'- = rk 0 1*/30. Reference 8 reports that a similar
result was obtained for the case of diffusing without shear
(Ts -> ), and G,(T) was given for several geometries of
interest in scattering experiments.

It is important to note that for laminar shear flow G,(T)
consists of two independent time scales, TB and Ts, corre-
sponding to Brownian motion and convective shear flow,
respectively. In the absence of shear, G,(T) has an exponen-
tial decay of exp(-2T/TB) per scattering event, which is char-
acteristic of stochastic motion. For a system in which
Brownian diffusion can be neglected, Gr(T) has a Gaussian
decay of exp[-2(T/Ts) 2] per scattering event, which is char-
acteristic of convective motion. In general, the decay of
G(T) is dominated by Brownian motion for T < (TS/TB)TS
and by shear flow for T > (S/TB)rS-

The key to the solution of Eq. (7) is the determination of
P(s) for a given experimental geometry. To this end, we
assume that the transport of light through the sample is
diffusive so that the density of diffusing photons, U, is de-
scribed by the diffusion equation, aUldt = D1v2 U, where D1

= cl*/3 is the diffusion coefficient of light. We take as the
source of diffusing intensity a point a distance yl* inside the
sample, where y 2, and set U = 0 at the boundaries.8 As
described in Ref. 8, P(s), and hence G(T), can be determined
from the solution to the photon-diffusion equation for the
experimental geometry of interest. However, our task is
made simpler by noting that the form of Eq. (7) is identical
to the results obtained in Ref. 8 for the case of diffusion
without shear, provided that we make the simple substitu-
tion T/TB - [T/TB + (/TS)

2
]. Thus we can simply adapt the

results of Ref. 8 to the case of laminar shear flow.
For forward scattering with a point source on axis with the

detector we obtain

Gi(r) = L z sinh(yl*z/L) dz,

y1*(3) J6[TITB + (T/Ts)11 sinh(z)

(8)

where t(3) 4.202 is the third Riemann zeta function and L
is the thickness of the sample cell (here L = a). Thus for
forward scattering the characteristic time for G,(T) to decay
is (1*/L) 2

TB if TB << Ts and (1*/L)TS if TB >> Ts.

For backscattering with an extended plane-wave source
we obtain

r A = 1 sinh( -6[T/TB + (TS)
2 ]1 2 (1 - l*/L))

w1 I -J

sinh( L 
16[r/TB + (TS) ] 1/)

(9)

In the limit of L/l* >> 1, Gj(T) decays exponentially as T17B
if TB << TS or as TITS if TB >> TS.

These autocorrelation functions obtained for the case of
multiple scattering decay much more quickly than autocor-
relation functions obtained in the single-scattering limit.
Thus the distance that a typical scatterer moves in a decay
time is also shorter. We can estimate this distance by noting
that the autocorrelation function decays significantly when
particle motion causes the photon path length to change by
-X. In this case the mean-square total phase shift due to
particle motion is unity, [(n)]2 nko2((Ar) 2) 1, where n
is the number of scattering events. Thus we estimate the
typical rms displacement Arrms X X/(2irjn). Since n >> 1,
Arrms is much smaller than the wavelength of light. In the
single-scattering limit, Arrm -

In our experiments, we measure the intensity-intensity
autocorrelation function (I(T)I(0))/(I(0)) 2

= 1 + f(A)g 2 (T),

where f(A) is a constant determined largely by the collection
optics and g2(T), the homodyne signal, is related to Gj(T) by

the Siegert relation' 4

g2 (T) = G2 (T)/G 2 (0) = IGj(T)/G,(0)j2
. (10)

EXPERIMENTS

To test these ideas, we performed experiments in a rectangu-
lar flow cell with the sample dimensions shown in Fig. 2.
Because of the large aspect ratio of the sample cell, b/a = 12,
the dominant velocity gradient was in the z direction. We
confirmed this by performing a DLS experiment in the sin-
gle-scattering regime, where we found that measured auto-
correlation functions did not change as the sample cell was
translated along the y axis except when the laser beam was
within approximately 0.1 cm of the top or the bottom of the
sample cell. For a given flow rate, J, it can be shown' 5 that
the velocity profile in the z direction is a parabolic, so that
the shear rate is a linear function of z, F(z) = 8Vmaxz/a 2 (-a/
2 < z < a/2), where VmaX = 3J/2ab is the velocity in the
center of the sample cell. In order to make a comparison
with the theoretical calculations we have used a spatially
averaged rms shear rate I r = = 3J/a2 b for our experi-
ment.

A suspension of uniform-diameter polystyrene spheres' 6

(PSS's) (0.415 + 0.005 ,m) at a volume fraction of 2% was

Wu etal.
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Fig. 2. Sample geometry: The cell was made of quartz, which has
the following dimensions: a = 0.1 cm, b = 1.2 cm, and c = 50 cm. A
suspension of 0.415-Am-diam PSS's at a volume fraction of 2% was
pumped through the cell with a 50-cm3 syringe. The resulting
velocity profiles with Vma,, at the front are shown. The incident
laser beam, directed along the z axis and polarized at 45 deg with
respect to the x axis, passed through the center of the cell, where the
only velocity gradient was in z direction.

pumped through the cell at a constant rate, using a 50-cm 3

syringe and a Sage pump (Model 355). A maximum pump-
ing rate of Jma. = 0.75 cm 3/sec could easily be achieved with
this apparatus. At this pumping rate a maximum velocity of
11 cm/sec was obtained in the middle of the cell, which
corresponds to a Reynolds number Re = Vmv a/v 100.
For Poiseuille flow this Reynolds number was well below the
turbulent threshold,' 7 so that our experiment was strictly in
the laminar-flow regime.

The dynamic light-scattering experiment was carried out
in both forward-scattering and backscattering geometries.
In the forward-scattering geometry, light from a polarized
He-Ne laser ( = 633 nm) was focused to a spot of n30 Am
on one side of the cell and collected on axis with the incident
beam on the other side by an optical imaging system. We
measured the intensity autocorrelation function with and
without a linear polarizer in the front of the photomultiplier
tube used to detect the light. At 2% PSS concentration, no
polarization dependence was found in the measured auto-
correlation functions. This implies that the photons emerg-
ing from the cell were strongly multiply scattered. We esti-
mate that a typical photon has scattered .(L/l*)

2 102

times. We emphasize that no unscattered light was detect-
ed. In the backscattering geometry, the sample was illumi-
nated by a uniform beam, 1 cm in diameter, from an argon-
ion laser ( = 488 nm); light was collected from a 50-Am-
diameter spot near the center of the illuminated area on the
same side of the cell by using collection optics similar to that
used in forward scattering. We placed a crossed polarizer in
the front of the photomultiplier tube to minimize reflection
from the sample cell and single scattering. In both geome-
tries, the strong multiple scattering ensured that the linear
dimensions of the illuminated volume was in excess of 1 mm,
which is much greater than the rms displacement, Arrms, of

the scattering particles in one correlation time. Thus, dur-
ing a measurement, the scattering particles always remained
within the illuminated volume.

In the quiescent state (no flow), we measured the autocor-
relation function for both forward and backward scattering.

The results are shown in Fig. 3, where circles indicate back-
scattering and squares indicate forward scattering. To fit
the data, we calculated the value for TB = 3.18 msec from the

Stokes-Einstein relation and checked it by DLS in the sin-
gle-scattering regime. Thus the only fitting parameters
were y and 1*. As is shown in Fig. 3, the experimental data
for forward scattering and backscattering fit the theory well.
From the fits, we obtained values of y = 2.2 and = 105 tm
for forward scattering and y = 2.2 and l* = 83 m for
backscattering. The value of y found in this experiment
was -5% larger than reported in Ref. 8 owing to the different
sizes of PSS's used. The difference in l measured by for-
ward scattering and backscattering in this experiment is due
to the fact that we used different wavelengths of light for
these two geometries.1819 Calculations using Mie theory
yield values of * = 111 gm for X = 633 nm and 1* = 98 Am for
X = 488 nm, which are within 15% of the measured values of
1*. It is interesting to note that in the multiple-scattering
regime the autocorrelation function for forward scattering
decays away much faster than for backscattering, even
though the decay time TB for the Brownian motion of the
particles is the same for both experiments. This difference
is a clear demonstration of the effects of geometry: in for-
ward scattering, only long paths can contribute to the auto-
correlation function, and these decay rapidly; by contrast, in
backscattering, short paths can also contribute to the auto-
correlation function, and these decay much more slowly.

The same experiments were repeated with the suspension
subjected to a steady shear flow. Typical results for forward
scattering and backscattering, with P = 41 sec'1, are shown
in Fig. 4. The solid curves through the data are fits to Eqs.
(8) and (9) with TB, -y, and l* set equal to the values previous-
ly obtained from measurements in the quiescent state20;
thus Ts is the only fitting parameter. For both geometries,
the data are well described by the theory. In fact, over the
entire range of accessible shear rates the measured autocor-
relation functions were well fitted by Eqs. (8) and (9) with TS

the only fitting parameter.
To test the validity of the relation Ts-

1
= kol*/30, we

simultaneously measured TS using DWS and P by a direct
measurement of the flow rate J. In Fig. 5 we plot 1/1rSkol*

10°
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10-4 L
0.0 0.2 0.4

I

0.6

(msec)

0.8 1.0

Fig. 3. Log[G2 (T)] versus r without flow. The circles (upper curve)
and squares (lower curve) are experimental data for backscattering
and forward scattering, respectively. The curves were fitted to the
data using Eqs. (8) and (9) with Eq. (10) and letting Ts - -. With y
= 2.2, we found IB = 83 um and = 105 Am for backscattering and
forward scattering, respectively.
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Fig. 4. Log[G 2(r)] versus r at a pumping rate of 0.165 cm3/sec.
The circles (upper curve) and squares (lower curve) are experimen-
tal data for backscattering and forward scattering, respectively.
The curves were fitted to the data using Eqs. (9) and (10) with Eq.
(10). The values of y and * were taken from quiescent measure-
ments, so that the only fitting parameter is Ts.
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Fig. 5. lrSkol* versus average shear rate P. The meanings of the
symbols are the same as in Figs. 2 and 3. For the entire range of
experimentally accessible pumping rates, 0.5 sec

1
< ' < 200 sec-

1
,

our measurements agree with the theory, which is plotted as a
straight line. The inset is an expanded view for low P.

for both forward and backward scattering versus the shear
rate P. Both geometries give the same results and agree
very well with the theoretically calculated slope of 1/130, to
within 10%. This excellent consistency confirms that the
functional forms of the autocorrelation functions are correct
in spite of the drastically different time scales for the decay
of the autocorrelation function in forward scattering and
backscattering.

These measurements also suggest that both light-scatter-
ing geometries probe essentially the entire range of velocity
gradients in the sample cell. For the transmission geome-
try, this will always be the case since all the light reaching the
detector will have sampled the entire cross section of the cell.
For the backscattering geometry, P(s) decays slowly for large
s ('-s

3/2
). Thus we expect that a significant fraction of the

light emerging from cell will have penetrated many l* into

the sample. Since the distance to the center of the cell in
our samples is approximately 51*, the entire range of velocity
gradients in our cells is probed in backscattering as well as in
forward scattering. However, in cells that are much thicker
we expect that velocity gradients deep inside the sample will
not be probed since there are relatively few photons that
penetrate many *.

For forward scattering, the autocorrelation function takes
on a particularly simple form when shear dominates the
decay. In the limit that rs << TB(1*/L),

G1(T) J(3) L sinh(z) dz

so that G1(r) is a function only of (L/l*) (rs). Since the
combination rsl* = 370/Pko is independent of l*, Gj(r)
should be independent of 1* and depend only on the sample
thickness L and shear rate P. To test this feature, we mea-
sured G2(r) at various PSS concentrations while keeping the
pumping rate J = 0.15 cm 3/sec fixed. In Fig. 6 we show data
for four different concentrations of PSS's: 2%, '1%, 0.5%,
and -0.25%, corresponding to * = 105, 215, 420, and 780 ,4m,
respectively. During the measurement special care was tak-
en to minimize the contribution from single scattering, par-
ticularly at the lower PSS concentrations, by placing a
crossed polarizer in the front of the photomultiplier tube.
From Fig. 6 we see that all the data collapse onto a single
curve, suggesting that G2(r) is indeed independent of *.
We also measured G2(T) for a microemulsion, which was
opaque and milky.21 22 Once again, we used a pumping rate
of J = 0.15 cm 3/sec, and we again found that G2(T) was the
same as in the PSS case even though the morphology of the
microemulsion, and hence its scattering properties, is quite
different from that of the PSS suspension. Thus we con-
clude that the use of DWS to measure shear rate does not
depend on the details of the scattering properties of the fluid
but only requires that the transport of the light be diffusive.

100

10-1

0s 1

1 20-

0 5 10 15 20 25

-r (sec)

Fig. 6. Log[G2 ()] versus r for measurement at the same pumping
rate as in Fig. 5 but with different PSS concentrations. The mea-

surements were made in the forward-scattering geometry with a
pumping rate of 0.15 cm

3
/sec. The PSS's at volume fractions of 2%

(squares), 1% (triangles), 0.5% (circles), and 0.25% (crosses) were
used. Fits to Eq. (9) gave 1* = 105,215,420, and 780 ,m, respective-

ly for the same concentrations given above. As is indicated, G2 (r)

was independent of 1*, in agreement with the theory.
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CONCLUSIONS

We have developed a simple theory for obtaining the func-
tional form of the autocorrelation functions in the multiple-
scattering regime for Brownian particles exposed to a lami-
nar shear flow. The key to the theory is the description of
the transport of light as a diffusive process. In our experi-
ments the dynamical time scales associated with the motion
of the scatterers were varied by more than 2 orders of magni-
tude, from the longest free diffusion time, B 3 msec, to
the shortest shear time, rs 20 Asec. The experimental
results for both forward scattering and backscattering are
well fitted by the theory over the entire dynamical range.
For forward scattering we found that autocorrelation func-
tion is independent of particle shape, size, concentration,
and polydispersity. Thus, to measure the mean shear rate
one only needs to know the sample thickness and wavelength
used. This unique feature of forward scattering should be
useful in many practical applications.

These results illustrate the potential power of DWS for
studying flow in systems in which multiple scattering is
unavoidable. Thus DWS extends the applicability of DLS
to many previously inaccessible systems, including dense
colloidal suspensions, microemulsions, and porous media.
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