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Abstract

The splitting or commitment probabilities of states in the region of configuration space that 

separates reactants and products play an important role in the theory of chemical reactions. 

Assuming that the splitting probability changes more slowly than any other coordinate, we project 

multidimensional diffusive dynamics onto it. The resulting one-dimensional diffusion equation is 

not exact because the assumed separation of time scales does not hold in general. Nevertheless, 

this equation has the remarkable property that it always predicts the exact value of the number of 

transitions between reactants and products per unit time at equilibrium and hence the exact 

reaction rate. In the special case of two deep basins separated by a harmonic saddle, this equation 

is equivalent to the one that describes diffusion along a coordinate perpendicular to the transition 

state, defined as the surface starting from which reactants and products are reached with equal 

probability.

 1. INTRODUCTION

In 1989, Bryngelson and Wolynes1 proposed that the dynamics of protein folding can be 

described as diffusion along a collective reaction coordinate in the presence of the 

corresponding potential of mean force. Socci et al.2 then showed, without using any 

adjustable parameters, that the rate of folding of a lattice model of a protein can be 

quantitatively reproduced by the diffusion model. Specifically, they found that the rate 

obtained from diffusion in the potential of mean force along a coordinate defined as the 
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fraction of native contacts, using a diffusion constant extracted from the relaxation time of 

the unfolded state, agreed with the simulated rate over a wide range of temperatures. More 

recently, Best and Hummer3 showed that the folding rate of the off-lattice coarse-grained 

structure-based models can also be accurately described using the one-dimensional diffusion 

model. Finally, this model has provided a remarkably useful framework for the analysis and 

interpretation of experimental data.4,5

In general, multidimensional dynamics can be reduced to the dynamics of a single 

coordinate only when the dynamics along all other coordinates is sufficiently fast to 

establish local equilibrium. Motivated in part by successes mentioned above, some time ago 

we asked6 if a one-dimensional reaction coordinate can exist under less restrictive conditions 

(i.e., in the absence of time-scale separation). For multidimensional diffusive dynamics, we 

showed that, when the reactants and products are separated by a single high harmonic 

saddle, the direction perpendicular to the stochastic separatrix is always a good reaction 

coordinate. Specifically, the rate obtained by using Kramers’theory7 for one-dimensional 

diffusion in the potential of mean force along this coordinate was shown to be the same as 

that given by multidimensional Langer theory.8

The stochastic separatrix is the surface with the splitting or commitment probability equal to 

one-half. The splitting probability of a state is the probability that, starting from this state, 

the system reaches the product region of the configuration state before the reactant region. In 

the context of protein folding, it was introduced by Du et al.9 under the name pfold: the 

probability of folding before unfolding. For a variety of reasons, the splitting/commitment 

probability has been considered as the optimal reaction coordinate (see refs 10–13, and 

references therein). In this paper, we shall prove that, if multidimensional diffusive dynamics 

is projected onto this coordinate, assuming that all other coordinates are in local equilibrium, 

the resulting diffusion equation always leads to the exact reactive flux at equilibrium, even 

when it does not correctly describe the dynamics. This is similar to the statement recently 

made by Krivov14 that “the equilibrium flux between two boundary states can be computed 

exactly as diffusion on a free energy profile associated with the” splitting probability 

coordinate. Vanden-Eijnden has pointed out to us that the present work is related to 

milestoning using isocommitor surfaces where the exact mean first-passage times and 

transition rates can be obtained.15 In the special case of a high harmonic saddle, we will 

show that diffusion along the splitting probability coordinate is equivalent to diffusion along 

the direction perpendicular to the stochastic separatrix. In this sense, the present paper 

generalizes our previous work6 which showed that this direction provides a one-dimensional 

reaction coordinate that leads to the exact reaction rate when the products and reactants are 

separated by a high multidimensional harmonic saddle.

 2. UNIDIRECTIONAL REACTIVE FLUX

In this section we obtain some results of transition path theory12,13 by adapting the point of 

view adopted by Kramers in his seminal work.7 Consider a system whose dynamics is 

described as diffusion in an N-dimensional potential of mean force U(x). The probability 

density p(x,t) of finding the system at point x at time t satisfies the Smoluchowski equation
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(2.1)

where β = (kBT)−1 and D(x) is the position-dependent matrix of diffusion coefficients. Let A 
and B be domains in configuration space separated by an intermediate region I, so that any 

trajectory from A to B (and vice versa) must cross the I-region. We are interested in the flux 

or the number of transitions per unit time between A and B when the system is at 

equilibrium. This is the same as the flux between B and A, and therefore we shall denote 

both fluxes by J. In the special case that A and B are deep basins and I is the barrier region, J 
is of particular interest because it describes the transitions between the two wells. In this 

case J is equal to the product of the rate constant from A to B (B to A) and the normalized 

equilibrium population of A (B).

Following Kramers, we establish a steady state in the I-region by maintaining the 

distribution on the surface separating A and I (denoted by ∂A) at equilibrium while forcing 

the distribution to vanish on the surface separating I and B (denoted by ∂B). Then J is equal 

to the flux through any dividing surface in the I-region. The resulting steady-state 

distribution has a simple physical interpretation: it is the probability density obtained from 

only those fragments of the equilibrium trajectory that enter the I-region from the A-domain. 

This probability density pss(x) satisfies

(2.2)

for x ∈ I, with boundary conditions pss(x ∈ ∂A) = peq(x) and pss(x ∈ ∂B) = 0, where peq(x) is 

the equilibrium distribution, peq(x) = exp (−βU (x))/Z, Z = ∫ exp(−βU(x))dx, with the 

integral being over the regions A, I, and B. The flux J is given by the surface integral

(2.3)

where Σ is an arbitrary dividing surface in the I-region and n̂(x) is the unit vector normal to 

this surface at point x directed toward the B-domain.

The steady-state distribution, pss(x), and hence the flux, J, can be expressed in terms of the 

splitting/commitment probability of the states in the I-region. To see this, let us write pss(x) 

as

(2.4)
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where, at the moment, ϕ(x) is an arbitrary function, and substitute it into eq 2.2. In this way 

we find that ϕ(x) satisfies

(2.5)

for x ∈ I, with boundary conditions ϕ(x ∈ ∂A) = 0 and ϕ(x ∈ ∂B) = 1. Since eq 2.5 is 

Onsager’s equation16 for the splitting probability, it follows from the boundary conditions 

that ϕ(x) is the probability of reaching the B-domain before the A-domain starting from x, 

and hence it is the splitting probability.

If the dividing surface Σ is chosen to be an isocommittor surface ϕ(x) = ϕ, 0 < ϕ < 1, then 

the integral in eq 2.3 can be rewritten as

(2.6)

where we have used the fact that pss(x) is given by eq 2.4 and that peq(x) = exp(−βU(x))/Z. 

Since there are neither sinks nor sources in the I-region, the flux J is a constant independent 

of ϕ. To show this formally consider the following sequence of identities

(2.7)

where in succession we used the identity ∇δ(ϕ(x) − ϕ) = −∂δ(ϕ(x) − ϕ)/∂ϕ∇ϕ(x), 

integration by parts, and the Onsager equation for ϕ (x), eq 2.5. Since J is a constant, we can 

integrate both sides of eq 2.6 over ϕ from zero to unity. In this way we find

(2.8)

This result was first obtained by E and Vanden-Eijnden.12 Expressions for the flux J in eq 

2.6 will play a key role in the next section.

 3. DIFFUSION EQUATION ALONG THE SPLITTING PROBABILITY 

COORDINATE

Let p(ϕ,t) be the probability density of finding the system at time t on the isocommittor 

surface ϕ(x) = ϕ in the I-region, 0 < ϕ < 1. It can be expressed in terms of the probability 

density p(x,t) as
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(3.1)

Multiplying both sides of eq 2.1 by δ(ϕ(x) − ϕ), integrating the resulting equation over all x 
in the I-region, integrating by parts twice, and taking advantage of the identity ∇δ(ϕ(x) − ϕ) 

= −∂δ(ϕ(x) − ϕ)/∂ϕ∇ϕ(x) and the Onsager equation, eq 2.5, we find that

(3.2)

In general, this equation cannot be closed, because the dynamics along ϕ is non-Markovian, 

and hence no simple diffusion equation for p(ϕ,t) exists.

However, this equation can be closed, if we assume that ϕ is a slow variable, in the sense 

that local equilibrium is rapidly established on surfaces with fixed ϕ, p(x,t)|ϕ(x)=ϕ ∝ 

e−βU(x)p(ϕ,t). In this case, the time evolution of the probability density of every state with 

the same ϕ is the same, and we can write p(x,t) as

(3.3)

x ∈ I, where the denominator ensures that eq 3.1 holds. A similar approximation has been 

used by Peters et al.17 as the basis of their dynamical self-consistency test for identifying the 

optimal reaction coordinate. Substituting p(x, t) in eq 3.3 into eq 3.2 we obtain

(3.4)

Remarkably, the integral in the square brackets is the exact flux J given in eq 2.6. As J is 

independent of ϕ, it can be pulled outside the derivatives. Since the equilibrium distribution 

of ϕ is

(3.5)

Equation 3.4 can be written as
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(3.6)

This is a key result of this paper. A remarkable feature of eq 3.6 is that it contains the exact 

flux J. However, in general, it does not provide an exact description of the projected 

dynamics since the local equilibrium ansatz in eq 3.3 is an approximation. Nevertheless, if 

one calculates the number of unidirectional transitions between the boundaries of the I-
region per unit time at equilibrium from this approximate one-dimensional evolution 

equation, it will be exact, irrespective of the complexity of the underlying multidimensional 

free energy surface.

To see this, we note that eq 3.6 can be rewritten in the standard form of the one-dimensional 

Smoluchowski equation (i.e., eq 2.1 in one dimension), if one defines a position-dependent 

diffusion coefficient D(ϕ) as

(3.7)

Then eq 2.8 for the flux, specialized to one-dimensional diffusion along the ϕ-coordinate, 

takes the form , where we have used eq 

3.7. It should not be surprising that the projection of the multidimensional diffusive 

dynamics onto the ϕ-coordinate yields a one-dimensional diffusion equation that leads to the 

correct flux J, because to do the projection, one must know ϕ(x) and hence, from eq 2.8, J. 

Using eq 3.7, we find that the one-dimensional version of the Onsager equation, eq 2.5, has 

the form Jd2ϕ/dϕ2 = 0, which yields the exact splitting probability. Finally, we mention that 

using the transformation18 z ∝∫ dϕ/D(ϕ)1/2 = ∫ (peq(ϕ)/J)1/2dϕ, one can convert eq 3.6 into a 

Smoluchowski equation with a constant diffusion coefficient.

When states of the system are discrete and the dynamics is described by a master equation, 

the analogue of the above results is derived in the Appendix.

To make contact with our previous work,6 we shall show that, when the intermediate region 

is a harmonic saddle and the matrix of diffusion coefficients is position-independent, D(x) = 

D, eq 3.6 is equivalent to the diffusion equation along a coordinate q which is perpendicular 

to the stochastic separatrix. To do this we need to use some results from our previous paper. 

Placing the origin at the saddle point, we can write βU(x) = x·Kx/2, x ∈ I, where K is the 

matrix of the force constants at the saddle point measured in units of kBT, det K < 0. Let e 
be a unit vector perpendicular to the stochastic separatrix which is the hyperplane formed by 

all points with ϕ(x) = 0.5. In the special case of a harmonic saddle, the splitting probability 

is

Berezhkovskii and Szabo Page 6

J Phys Chem B. Author manuscript; available in PMC 2016 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3.8)

where κ = |e·K−1e|−1. All points x for which e·x is the same, form isocommittor surfaces 

which are parallel hyperplanes perpendicular to e.

The flux J can be obtained by multiplying the Langer rate constant by the equilibrium 

population of the well. This leads to

(3.9)

The equilibrium distribution along the q-coordinate, which is perpendicular to the stochastic 

separatrix, is

(3.10)

Using eqs 3.8–3.10 and the relationship p(ϕ,t)dϕ = p(q,t)dq, we can transform eq 3.6 into

(3.11)

which is the Smoluchowski equation along the q-coordinate. In this special case, because 

vector e points along the unstable diffusive mode of the saddle point dynamics, eq 3.11 is 

actually exact within the framework of the multidimensional model.

To obtain a one-dimensional description of the entire system, one must treat the dynamics 

not only in the I-region, but also in the A and B domains. The simplest way of doing this is 

to impose the appropriate boundary conditions on eq 3.6, which describes the dynamics only 

in the intermediate region. Specifically, we will consider the end-points of the I-region, ϕ = 0 

and 1, as reversible binding sites representing the A and B domains. Let PA(t) = ∫ Ap(x,t)dx 
(PB(t) = ∫ Bp(x,t)dx) be the probability of finding the system at time t in the A (B) domain. 

Because of probability conservation, we have

(3.12)
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Since the flux must be continuous at the A–I boundary

(3.13)

An analogous relationship holds at the I–B boundary. If we describe the exit from the 

binding site corresponding to the A-domain to the I-region by the rate constant kA (  is 

the mean lifetime of state A) and the entrance to this site by the so-called radiation boundary 

condition with the intrinsic rate κA, then the flux across the A–I boundary is

(3.14)

Because of detailed balance, , where  is the normalized equilibrium 

population of the A-domain. Thus we can write this flux as

(3.15)

The analogous equation holds at the I–B boundary (ϕ = 1).

Equation 3.6 supplemented by the above boundary conditions at the end-points completely 

determine the dynamics of the entire system given J, peq(ϕ), , and kA,B. It can be shown 

that, if one calculates the average number of transitions between the A and B domains per 

unit time, in the framework of this model, it will be correct (i.e., equal to J) irrespective of 

the values of kA,B. However, appearance of the trajectories predicted by this simple model 

will be sensitive to the values of these parameters, because they determine the residence or 

dwell times of the system in the A and B states. A sensible choice for kA,B is to equate them 

to the reciprocal of the mean first-passage times from the A- and B-domains to the I-region, 

averaged over the equilibrium distribution of the starting positions. Clearly, the accuracy of 

this simple model depends on the nature of the underlying multidimensional free energy 

surface. It will be only a crude approximation for the dynamics when the free energy surface 

U(x) is essentially flat, even though it correctly predicts the flux. However, it works quite 

well when the A and B domains are deep basins.

 4. CONCLUDING REMARKS

If one assumes that the splitting/commitment probability is the slowest coordinate and 

projects the multidimensional Smoluchowski equation onto it, the resulting one-dimensional 

diffusion equation always leads to the exact result for the flux (number of transitions per unit 
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time) between two domains at equilibrium. This is true even when the splitting probability 

does not change sufficiently slowly for all other coordinates to be effectively equilibrated, so 

that the projected dynamics is non-Markovian and hence cannot be described by a one-

dimensional Smoluchowski equation. An analogous result holds when the configuration 

space is discrete and the dynamics is described by a master equation (see Appendix). In this 

case one can reduce the dimensionality of the rate matrix by grouping states with the same 

splitting probabilities, assuming that the occupancies of these states have the same 

dependence on time. It can be shown that the value of the equilibrium reactive flux, as given 

by the expression derived independently by Metzner et. al.19 and Berezhkovskii et al.,20 

remains unchanged under such transformation.

For the formalism developed above to be useful in practice, one must be able to find a good 

approximation for the splitting/commitment probability of states in the region separating 

reactants from products. This is an active area of research (see refs 13–15, 21, 22, and 

references therein), which is beyond the scope of this paper. Suffice it to say that variational 

principles play an important role in this regard. Finally, we like to take this opportunity to 

point out that the variational principle we proposed6 for a double-well system with a single 

harmonic saddle point is a special case of the variational principle of E and Vanden-

Eijnden,11–13 which in turn is an extension of Dirichlet’s principle for Laplace’s equation. 

When the reactants and products are separated by a single harmonic saddle, we showed that, 

by minimizing the flux given in eq 3.9 with respect to the direction of the unit vector e, one 

recovers the corresponding multidimensional Langer result. E and Vanden-Eijnden showed 

that the flux is the minimum of the functional ∫ I∇f(x)·Dpeq(x)∇f(x) dx with respect to 

functions f(x), that satisfy the same boundary conditions as the splitting probability. In the 

case of a harmonic saddle where peq(x) = exp(−x·Kx/2)/Z, if one chooses a trial function of 

the form  with κ = |e·K−1e|−1, then the above 

functional turns out to be identical to the flux in eq 3.9. Thus, in this case, minimization of 

the functional with respect to the direction of vector e is equivalent to minimization of the 

flux obtained from the potential of mean force along the direction e, using the one-

dimensional Kramers theory.6
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 APPENDIX: DISCRETE STATE SPACE

We now briefly derive the analogue of some of the above results when the states are discrete 

(labeled by i = 1, 2, etc.) and the dynamics is described by a set of rate or master equations

(A.1)

where pi(t) is the probability of finding the system in state i at time t, Kij is the rate constant 

for the j → i transition, and Kii = −Σj≠iKij. This is the discrete analogue of the 

multidimensional Smoluchowski equation, eq 2.1. The equilibrium populations  are 

solutions of  and are normalized to unity.
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As in the continuous case, we divide the states in the three groups. Let us label states in the 

intermediate region by m and n. We denote the splitting or commitment probability of an 

intermediate state m by ϕm. Consider a dividing surface that separates the intermediate states 

in such a way that all ϕ’s on one side of the surface are greater than those on the other side. 

Let us adopt the convention that states in one group are labeled by “m” and those in the 

other group by “n” such that ϕn ≥ ϕm for all m and n. Metzner et al.19 and Berezhkovskii et 

al.20 have independently and in different ways shown that unidirectional reactive flux J 
through the intermediate region at equilibrium can be expressed in terms of the splitting 

probabilities as

(A.2)

where the above labeling convention is understood.

Let us now try to reduce the dimensionality of the problem by grouping together states with 

the same splitting probability. We shall label each group by capital indices M and N so that 

ϕM = ϕm for all m ∈ M. In this notation, the sum over all m is equal to the sum over groups 

M and all m ∈ M, Σm = ΣMΣm∈M.

If we sum eq A.1 over all m ∈ M and define PM(t) = Σm∈Mpm(t), we find that

(A.3)

To close this equation, we invoke the local equilibrium approximation and assume that for 

all n ∈ N

(A.4)

This means that all states with the same ϕ are assumed to have the same time dependence. 

This is true only in the limit that interconversion of states with the same ϕ is much faster 

than that among states with different ϕ’s. Substituting eq A.4 into eq A.3, we note that eq A.

3 can be written in the form of a master equation,

(A.5)
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if we define the rate constants for transitions among groups with the same splitting 

probability by

(A.6)

Although the reduced rate equation, eq A.5, in general gives only an approximate 

description of the system dynamics, it does give the exact flux J. That is the unidirectional 

reactive flux calculated at equilibrium using the reduced rate matrix,

(A.7)

is actually exact (i.e., it is identical to the flux in eq A.2). To show this, substitute eq A.6 into 

eq A.7, use the fact that ϕM = ϕm for all m ∈ M, and recall that Σm = ΣMΣm∈M.
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