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Abstract

Auction is the common paradigm for resource al-
location which is a fundamental problem in human
society. Existing research indicates that the two pri-
mary objectives, the seller’s revenue and the alloca-
tion efficiency, are generally conflicting in auction
design. For the first time, we expand the domain
of the classic auction to a social graph and formal-
ly identify a new class of auction mechanisms on
graphs. All mechanisms in this class are incentive-
compatible and also promote all buyers to diffuse
the auction information to others, whereby both the
seller’s revenue and the allocation efficiency are
significantly improved comparing with the Vickrey
auction. It is found that the recently proposed in-
formation diffusion mechanism is an extreme case
with the lowest revenue in this new class. Our work
could potentially inspire a new perspective for the
efficient and optimal auction design and could be
applied into the prevalent online social and eco-
nomic networks.

1 Introduction

Auction has been a common paradigm for allocating re-
sources [Krishna, 2009], its applications vary from assigning
the sponsored links to advertisers [Edelman et al., 2007] to
allocating the wireless spectrum worldwide [Cramton, 2013].
Auctions ask and answer this question: who should get the
goods and at what prices? Typically, there are two goals in
auction design. One is to design auctions that maximize so-
cial welfare, i.e., allocating the goods in a way that maximizes
the total utilities of all participants. Another line focuses on
the seller’s revenue. Traditionally, there are two ways to im-
prove the revenue: use the classic optimal auction [Myerson,
1981] or gather more people to join the auction. The for-
mer method requires prior knowledge of buyers’ valuations
to compute a reserve price. The buyer set needs to be fixed
in advance, and the mechanism will be invalid if a seller can
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hardly have a panorama (value distribution) of all the under-
lying bidders. As a comparison, the latter method seems to
be more effective and adaptive comparing with optimal auc-
tions. A classic result in [Bulow and Klemperer, 1996] shows
that when the buyers’ valuations draw i.i.d from a regular dis-
tribution, then the expected revenue of a second price auction
with one additional bidder is no less than that given by the
optimal auction. However, except using costly advertising,
where these additional buyers could come from?

The natural way is to ask the current bidders to help to
diffuse the sale information to the outsiders. However, the
selfish bidders have no incentives to do so. From the point of
view of the whole economic network, this information block-
ing not only decreases the seller’s revenue, but also reduces
the allocation efficiency of goods. Here are two examples. On
online selling websites like eBay, the final price of an item de-
pends on the population of interested buyers. Normally, the
buyers have no incentives to invite other competitors and the
information are limited to people who see this sale. One activ-
ity on online social networks that is frequently seen is people
sharing clicking links (such as a new product) to their friends.
This is actually an informal way to use information diffusion
to recruit more people to a sale. Essentially, the above preva-
lent problems are about how to design a good market for the
sale of products or services where the participants are encour-
aged to invite more people to the mechanism.

The problem can be seen as auctions constrained with (neg-
ative) externalities [Bhattacharya et al., 2011; Haghpanah et
al., 2013; Belloni et al., 2017]. However, for our problem,
the underlying social connections of all participants gives the
externality constrains in a very complicate way, where pre-
vious common techniques on externalities can hardly help.
The most related works are from [Li et al., 2017; 2018;
Zhao et al., 2018]. [Li et al., 2017] initiates this problem
and proposes one mechanism which incentivizes buyers to d-
iffuse seller’s sale information to their neighbors. [Zhao et
al., 2018] extends this to a multi-unit setting where the sell-
er has multiple homogeneous items for sale and each buyer
wants at most one of them. [Li et al., 2018] further investi-
gates this problem in constrained economic networks where
both the allocation efficiency and revenue can be obtained.

We study the problem of auction on graphs from a more
general point of view. In the first part of this paper, we pro-
pose a class of mechanisms named critical diffusion mech-
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anism (CDM) on unweighted graphs. We shows that the
method proposed in [Li et al., 2017] is a special case of this
class and is the one with the lowest revenue. In the second
part, we further study this problem on weighted graphs which
has never been tackled in the literature. We propose the very
first solution called weighted diffusion mechanism (WDM). In
both CDM and WDM, each buyer’s optimal choice is to re-
port her valuation truthfully and diffuse the sale information
to all her neighbors. Our theoretical results can be applied
to the research and application fields such as crowdsourcing,
sharing economics and viral marketing. By using our mecha-
nisms, the buyers on eBay are happy to do the invitations, the
diffusion of an innovation will be maximized as well.

2 Preliminaries

Consider a seller selling an item in a digraph G = (V,E)
where V is the node set with |V | = n and E is the edge set.
Besides the seller s, each node i ∈ V owns a private type
ti = (vi, ri), where vi is her valuation on the item and ri is
the set of her neighboring nodes. Node i can only communi-
cate with j through existing link (i, j) ∈ E, and a node could
participate in the auction only if someone of her neighbors
has joined in the auction and further informs her of the sale.
Initially, only the seller’s neighbors are informed of the sale.
Let w(i, j) be the weight on edge (i, j), for instance in a dis-
tribution network w(i, j) can be represented as the freight of
transporting the item from i to j. We assume graph G con-
tains no negative cycles and w(i, j) is known once i and j
join in the auction. In Figure 1, node s owns one item for sale
and only node A and B are informed of the sale at first. Node
C cannot join in the auction if B does not inform her of the
sale. The values in each circle are nodes’ private valuations
and the red numbers represent for the resided weights.

We model the selling problem as an auction. Formal-
ly, denote ti = (vi, ri) by node i’s private type and t =
(t1, · · · , tn) by the type profile of all nodes. Let t−i =
{t1, t2, · · · , ti−1, ti+1, · · · , tn} be the type profile of all oth-
er nodes except i, i.e., t = (ti, t−i). Let Ti = R≥0 × P(V )
be the type space of i where P(V ) is the power set of V and
T = ×Ti∈V \{s} be the type profile space of all nodes. As

usual, let t′i = (v′i, r
′
i) ∈ Ti be the reported type of node

i where r′i ⊆ ri means that i diffuses the sale information
to nodes in r′i. The set r′i is limited to P(ri) as node i is
not aware of other nodes who are not her neighbors. Denote
t′ = (t′1, · · · , t

′
n) by the reported type profile of all nodes

where t′i = nil when i has never been informed of the sale or
i has no interest in the auction.

Definition 1. Given a reported type profile t′ and a node i
with t′i 6= nil, define a trading path from seller s to i as an
ordered sequence of nodes (a1, a2, · · · , al, al+1 = i) such
that a1 ∈ rs and for 1 < j ≤ l + 1, aj ∈ r′aj−1

.

Among all trading paths from the seller to node
i, denote L∗

i (t
′) by the shortest one, i.e., L∗

i (t
′) =

argminL∈Li(t′)

∑
(i,j)∈L w(i, j) where Li(t

′) is the set of all

possible trading paths of node i. Since G contains no negative
cycles, then L∗

i (t
′) is a simple path from s to i.

Definition 2. A diffusion auctionM = (π, x) defined on G
consists of two components: an allocation rule π : T → L
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Figure 1: An example of weighted graphs where C∗
G(t) =

{B,F,G} and L∗
F (t) = {B,E, F}.

which determines a single trading path π(t), where L is the
set of all possible trading paths in G and π(t) is a selected
path whose terminal node will be allocated with the item; and
a payment rule x = {xi}i∈V \{s} which is the amount that
each node pays, where xi : T → R is the payment rule for i.

Given an allocation π(t), the social welfare in diffusion
auctions is defined as v(π(t)) −

∑
(i,j)∈π(t) w(i, j) where

v(π(t)) is winner’s true valuation. Here the total weights∑
(i,j)∈π′(t) w(i, j) is perceived as the externalities incurred

when passing an item from the seller to the winner. An alloca-
tion π∗ is efficient if it maximizes the social welfare for every
t ∈ T , i.e., π∗ ∈ argmaxπ′∈Πv(π

′(t))−
∑

(i,j)∈π′(t) w(i, j)

where Π is the feasible allocation set. Denote W ∗(t) by the
social welfare under efficient allocation π∗.

In our model, each node has quasilinear utility function,
meaning that given i’s type ti and an allocation π(t′), i’s u-
tility is defined as: ui(ti, t

′, (π, x)) = vizi(t
′)−xi(t

′) where
zi(t

′) is an indicator variable which is 1 if i wins the item and
0 otherwise. A diffusion mechanism is individually rational
if for each node, her utility is non-negative when she reports
her valuation truthfully regardless of her diffusion strategies,
i.e., ui(ti, ((vi, r

′
i), t

′
−i), (π, x)) ≥ 0. And it is incentive-

compatible (IC) if reporting true types is a dominant strategy
for every node in the auction, that is ui(ti, (ti, t

′
−i), (π, x)) ≥

ui(ti, (t
′
i, t

′′
−i), (π, x)) for all i ∈ V \ {s}. Note that on the

right side of the inequality, we use t′′−i to replace t′−i be-
cause the set of nil type nodes may change when i’s report
becomes t′i. Given a reported type profile t′ and a mechanism
M = (π, x), the seller’s revenue generated byM is defined
by RevM(t′) =

∑
i∈V \{s} xi(t

′)−
∑

(i,j)∈π(t′) w(i, j).

The VCG mechanism [Vickrey, 1961; Clarke, 1971;
Groves, 1973] is a generic truthful mechanism for achieving
an efficient allocation. However, it has many serious practi-
cal problems [Rothkopf, 2007]. Under our framework, it can
lead to a high deficit for the seller [Li et al., 2017]. Instead,
we use the outcomes of the Vickrey auction [Vickrey, 1961],
a special case of the VCG mechanism, as the benchmark and
design good diffusion auctions that outperform them. In the
Vickrey auction, the item is allocated to the highest bidder
who is charged with the second highest bid. Since every node
in the auction has no incentives to share the sale information,
then the allocation efficiency and the seller’s revenue equal
the highest and second highest bid in {ti}i∈rs respectively.
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3 Auction Mechanism on Unweighted Graph

This section investigates diffusion mechanisms in unweighted
graphs where each edge’s weight is zero. In an unweighted
graph, for any determined node i ∈ V \ {s}, there would be
multiple simple paths from s to i. Moreover, there are several
cut nodes which are shared by all these paths. These nodes
are called critical diffusion nodes of i since without any of
them, node i cannot receive the sale information and cannot
join in the auction.

Definition 3. Given a reported type profile t′ and a node i
with non-nil reported type, define Ci(t

′) = {
⋂
L}L∈Li(t′) as

the set of i’s critical diffusion nodes where Li(t
′) is the set of

all feasible trading paths from the seller s to node i.

Notice that for any pair j, k ∈ Ci(t
′), we have that either

j ∈ Ck(t
′) or k ∈ Cj(t

′). Therefore there is an unique fully
ordered set C∗

i (t
′) = {s1, s2, · · · , sk, sk+1, · · · , i} for all n-

odes in Ci(t
′) such that sj is a critical diffusion node of sj+1.

This unique sequence is named as the critical diffusion se-
quence of i. In addition, for any j ∈ C∗

i (t
′), it is clear that

C∗
j (t

′) = {s1, s2, · · · , j}. For example, there are four simple
paths from the seller to node G in Figure 1, any of which has
to pass node B and F , and therefore node G’s critical diffu-
sion nodes are {B,F,G}. Then, we have C∗

G = {B,F,G}
and C∗

F = {B,F}. Let di be the set of nodes whose critical
diffusion nodes include i, e.g., dF = {F,G,H}. Clearly, if
i is removed from the graph, the nodes in di cannot join in
the sale. Denote t′x by the partially reported types from set x
and t′−x = t′ \ t′x as the reported type profile when set x is
removed from the graph, where x could be a set of edges,
vertices or a mixture. For an edge (i, j), t′−{(i,j)} mean-

s that node j is removed from i’s diffusion strategy r′i with
respect to t′. For example, we have t−{F} = {ti}i∈V \dF

and

t−{(B,D),(B,E)} = {ti}i∈{A,B,C}.

Definition 4. Given a reported type profile t′, assume that
the highest bidder is m and her critical diffusion sequence
is C∗

m(t′) = {1, 2, · · · , k, k + 1, · · · ,m}. Define αm = ∅
and for an arbitrary i ∈ C∗

m(t′) \ m, predefine an edge set
αi = {(j, l) ∈ E}j∈di

which has the following properties:

1. Information blocking: node i + 1 /∈ t′−αi
, meaning that

the nodes in di+1 cannot join in the auction if αi is re-
moved from the graph.

2. Node independence: for any two reported type profiles

t
′1 and t

′2 which only differ in t′di+1
, α1

i = α2
i . This

property ensures that αi is independent of the strategies
of nodes in di+1.

3. Diffusion monotonicity: if r′i ⊆ r′′i , then t′−α′

i
⊆ t′−α′′

i
.

That is, the set of non-nil type in t′−αi
is monotonically

increasing with r′i.

The first property requires the set should be a cut. The
second property says when the mechanism designer chooses
αi, her choice should not be affected by what happened in
di+1. The third property further requires the choice of αi

should not ruin the monotonicity of information diffusion.
Based on αi, we now give a class of new mechanisms

named critical diffusion mechanisms (CDM) in Alg. 1. In

Algorithm 1: Critical Diffusion Mechanism (CDM)

1 initialize π(t′) = ∅ and {xi(t
′) = 0}i∈V \{s};

2 locate the highest bidder m, break tie arbitrarily;
3 compute C∗

m(t′) and denote it by {1, 2, · · · ,m};
4 for i← 1 to m do
5 compute αi;
6 if vi = W ∗(t′−αi

) then
7 set π(t′) to be any trading path of i and

xi(t
′) = W ∗(t′−i);

8 break;

9 else
10 set xi(t

′) = W ∗(t′−i)−W ∗(t′−αi
);

CDM, only nodes in C∗
m(t′) are considered as the candidates

of the winner. In the allocation policy, nodes ordered higher
in C∗

m(t′) are given priorities to win. The algorithm com-
putes whether a node has the ability to win one after another
and stops once the first qualified node is identified. In the fol-
lowing theorems, we prove that such a ”sequential” allocation
rule combined with the payments defined in Alg. 1 provides a
class of auction mechanisms with remarkable performances.

Theorem 1. The critical diffusion mechanism proposed in
Alg. 1 is individually rational and incentive-compatible.

Proof. Assume node g is the winner in Alg. 1. For any node
i /∈ C∗

m(t′), her utility is zero. The only way for i to change
her utility is to increase her bid and becomes the highest bid-
der. In this case, she will be the winner according to Alg. 1
and will pay the previous highest bid v′m which is greater than
her true value vi. For any node i ∈ C∗

g (t
′) \ {g}, her utility is

W ∗(t′−αi
)−W ∗(t′−i). The latter term is independent of node

i, and according to diffusion monotonicity, the former term is
maximized by choosing a diffusion strategy r′i = ri. In ad-
dition, becoming the winner is also a bad choice for i since
vi−W

∗(t′−i) < W ∗(t′−αi
)−W ∗(t′−i). Regarding to the win-

ner g, her utility is vg −W ∗(t′−g) = W ∗(t′−αg
)−W ∗(t′−g).

Because of diffusion monotonicity, it is no good for g to give
up the chance of winning through lowering her bid. Accord-
ing to the first and second properties of αi, the winner is still
node g no matter what strategies nodes in C∗

m(t′) \ C∗
g (t

′)
choose. That is xi((t

′
i, t

′
−i)) = 0 for any i ∈ C∗

m(t′) \C∗
g (t

′)
and any i’s strategy t′i. In a word, we conclude that reporting
truthfully is a dominant strategy for every node.

Next, we show that a CDM dominates the Vickrey auction,
meaning that both the allocation efficiency and the seller’s
revenue are no less than that given in the Vickrey auction.

Theorem 2. The critical diffusion mechanism dominates the
Vickrey auction.

Proof. Since only nodes in C∗
g (t) could have non-zero pay-

ments, then Rev(t) =
∑

i∈C∗

g (t)
xi(t) = W ∗(t−1) +

∑
i∈Cg(t)\{1,g}

(W ∗(t−i+1)−W ∗(t−αi
)) ≥ W ∗(t−1). The

inequity holds because of the first property of αi which means
W ∗(t−j) ≥W ∗(t−αi

) for any j ∈ di+1.
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Because there exists at most one node’s type that belongs
to {ti}i∈rs∩{t1}, then W ∗(t−1) is at least the second highest
bid in {ti}i∈rs . In addition, due to the fact that {ti}i∈rs ⊆
t−αg

and vg = W ∗(t−αg
), we conclude that any critical dif-

fusion mechanism dominates the Vickrey auction.

Essentially, different choices of αi offer different tradeoffs
between the allocation efficiency and the revenue. The in-
formation diffusion mechanism (IDM) proposed in [Li et al.,
2017] is equivalent to a specific instantiation of the above CD-
M in which αi is set to be the edge set {(j, i + 1) ∈ E} for
any i ∈ C∗

m(t) \ {m}. According to different preferences of
the mechanism designer, one can conveniently generate many
such mechanisms. For example, here is a another specific in-
stantiation of CDM: let βm = ∅ and for any i ∈ C∗

m(t)\{m},
βi is the minimum subset of {(i, j)}j∈ri , by cutting which the
sale information cannot reach node i+ 1.

In Theorem 1, we proved that given any type profile t, the
lower bound of the seller’s revenue in any CDM is W ∗(t−1).
This is exactly what the seller obtains in the IDM. Therefore,
we directly get the following corollary.

Corollary 1. In all critical diffusion mechanisms defined in
Alg. 1, the information diffusion mechanism proposed in [Li
et al., 2017] is the one with the lowest revenue.

To give an intuitive description of CDM, we give a run-
ning example with respect to βi in Figure 1. Firstly, G is the
highest bidder and C∗

G is {B,F,G} by Def. 3. Then, let
i = B, if she does not inform of the sale to D nor E, then
i + 1 = F cannot join in the auction. Note that in Figure 1,
βB = {(B,D), (B,E)} is one, and the minimum one such
edge cut set. B loses the item since C is the highest bidder
after removing βB from the graph. If B is removed from the
graph, the highest bidder becomes A. According to the last
line in Alg. 1, B’s payment is vA−vC = 1−4 = −3, i.e., the
seller pays 3 to B. In a similar way, βF = {(F,G), (F,H)}.
Since F is the highest bidder after deleting βF , then F wins
the item and the algorithm stops here. Since E is the high-
est if F is removed, then according to lines 6-8 in Alg. 1, F
pays vE = 6. Others pay zero. Finally the seller’s revenue
is −3 + 6 = 3 which is greater than 1−the revenue in the
Vickrey auction.

4 Auction Mechanism on Weighted Graph

This section studies auction mechanisms on general weighted
graphs. There are two key differences make the problem chal-
lenging. On the one hand, L∗

m(t) (or π∗(t)) could be any sim-
ple path from the seller s to m on an unweighted graph while
C∗

m(t) is a set of some cut nodes which may or may not be ad-
jacent. For a node i in L∗

m(t) but not in C∗
m(t) (for instance,

E in Figure 1), no matter what her strategy t′i is, she cannot
be in C∗

m((t′i, t−i)) since m ∈ t−i. However, on a weight-
ed graph, since the valuations (bids) are mingled with edge
weights, such nodes could affect the efficient allocation by s-
trategic diffusion. One the other hand, under the unweighted
settings, only nodes in C∗

m(t) are considered as the candidates
of the winner. Nonetheless, nodes in L∗

m(t) \ C∗
m(t) cannot

be omitted on weighted graphs. For example, in Figure 1, if
the weight of edge (D,F ) is 5, then if E does not diffuse to

Algorithm 2: The allocation policy of WDM

1 initialize π(t′) = ∅;
2 compute π∗(t′), break tie arbitrarily;
3 denote π∗(t′) by L∗

m(t′) = {1∗, 2∗, · · · , q∗ = m};
4 for i← 1∗ to q∗ do
5 compute γi;
6 if i is allocated the item in π∗(t′−γi

) then

7 set π(t′) = L∗
i (t

′);
8 break;

F , then she becomes the winner (also a critical diffusion n-
ode) in the auction. In this section, we propose the very first
mechanism that satisfies all the desired properties on general
weighted graphs.

Definition 5. For any node i and its neighbor j, if j has
neighbor k ∈ rj(k 6= i), then j is an intermediary of i.

For instance, in Figure 1, B’s intermediaries include n-
odes A, D and E. Denote Ii by the set of i’s intermedi-
aries. Given a reported type profile t′, let m be the winner
in π∗(t′) where π∗(t′) = L∗

m(t′) = {1∗, 2∗, · · · , q∗ = m}.
Since the graph contains no negative cycles, then accord-
ing to the optimal substructure property of the shortest path
[Bondy et al., 1976], for any i∗ ∈ L∗

m(t′) we have L∗
i∗(t

′) =
{1∗, 2∗, · · · , i∗}.

Definition 6. Given a reported type profile t′ and π∗(t′), de-
fine γm = ∅ and for any i∗ ∈ L∗

m(t′) \ {m}, let γi∗ be the
edge set {(i∗, j)|j ∈ Ii∗ ∪ {(i+ 1)∗}}.

Intuitively, γi∗ is an “edge cut set” following i∗ since once
γi∗ is removed from the graph, nodes in L∗

m(t′) \ L∗
i∗(t

′)
can only be reached via other nodes but not i∗. In Figure
1, π∗(t′) = {B,E, F} and γB = {(B, i)|i ∈ {A,D,E}}.
When the edge set γB is removed from Figure 1, all simple
paths to node E or F , if any, do not pass B.

Now we propose the weighted diffusion mechanism (WD-
M) for general weighted graphs. The allocation policy is giv-
en in Alg. 2. In the WDM, we allocate the item to a node i
along L∗

m(t′). Node i should be the first node which satisfies
v′i −

∑
l∈L∗

i
(t′

−γi
)\{i} w(l, l + 1) = W ∗(t′−γi

). That is, after

removing γi, she is allocated with the item in the efficient al-
location with respect to the remaining graph. Note that with
such an allocation rule, the nodes who are not in C∗

m(t′) could
also win the auction. We give a running example in Figure 1.
Firstly, identify the efficient allocation path B → E → F .
Since it is node C instead of B who wins in π∗(t−γB

), we
move to check node E, but E also loses the auction. Thus
finally, node F wins the item.

Before precisely characterizing the payment policy of the
WDM, we need another important concept below.

Definition 7. For node i ∈ L∗
g(t

′)\{g} where g is the winner,

we call her a secondary node if i wins the item in π∗({t′−γi
\

t′g} ∪ (v′g = nil, r′g)) where g’s reported type is replaced by

(nil, r′g) in t′−γi
.

If node i is a secondary node, then i will be the winner
in π∗(t′−γi

) when g does not bid (v′g = nil). Furthermore,
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Algorithm 3: The payment policy of WDM

1 initialize {xi(t
′) = 0}i∈V \{s} and B∗

g (t
′) = 0;

2 let L∗
g(t

′) be the allocation achieved in Alg. 2;

3 denote w̃(i, j) =
∑

L∗

j
(t′

−γi
)\{j} w(l, l + 1);

4 for i ∈ L∗
g(t

′) \ {g} do

5 compute γi;
6 set xi(t

′) = W ∗(t′−i)−W ∗(t′−γi
);

7 if i is a secondary node then
8 update

B∗
g (t

′) = max{B∗
g (t

′), v′i − w̃(i, i) + w̃(i, g)};

9 update B∗
g (t

′) = max{B∗
g (t

′),W ∗(t′−g) + w̃(g, g)};
10 set xg(t

′) = B∗
g (t

′);

if winner g 6= m beats node i in the efficient allocation
π∗(t′−γi

), so will node m and this violates the definition of
secondary nodes. Therefore, the secondary nodes could exist
only when the winner is m. Since we search for the winner
from head to tail along L∗

m(t′), it is important that these sec-
ondary nodes are winner’s critical opponents. The full char-
acterization of the payment policy is given in Alg. 3.

The value B∗
g (t

′) computed in Alg. 3 can be explained
as the “critical value” of the winner in our diffusion model.
There are two criteria that the “critical value” should satisfy
if g wants to win the item. Firstly, since g wins the item
in π∗(t′−γg

), for any i ∈ −γg(i 6= g), the inequality v′g −

w̃(g, g) > v′i − w̃(g, i) must hold, where w̃(i, j) denotes the
total weights of the shortest trading path to j with respect to
t′−γi

. To ensure that g wins, her bid v′g is at least

max
i∈−γg(i 6=g)

{v′i − w̃(g, i) + w̃(g, g)}.

Note that w̃(g, i) and w̃(g, g) are independent of r′g and
the node set with non-nil types in −γg is minimized when
r′g = ∅, therefore maxi∈−γg(i 6=g){v

′
i − w̃(g, i) + w̃(g, g)} is

minimized when g diffuses the sale information to no one,
in which case maxi∈−γg(i 6=g){v

′
i − w̃(g, i)} = W ∗(t′−g).

That is, node g could win the item by reporting (v
′1
g =

W ∗(t′−g) + w̃(g, g), r′g = ∅). On the other hand, due to

the fact that all nodes in L∗
g(t

′) \ {g} have priorities to win
the item, winner g has to beat all of them one after another.
Specifically, given a node i ∈ L∗

g(t
′) \ {g} and a reported

type profile t′−γi
, if node i is not a secondary node, then it

suffices for g to beat i by bidding v
′1
g . If node i is a secondary

node, then according to Alg. 2, line 6, the winner must beat
node i in the efficient allocation π∗(t′−γi

). That is to say,

we must have v′g − w̃(i, g) > v′i − w̃(i, i) which leads to

v′g > v′i − w̃(i, i) + w̃(i, g). Denote the set of all secondary

nodes by SN∗, above argument means that v′g is at least

max
i∈SN∗

{v′i − w̃(i, i) + w̃(i, g)}.

It is not hard to see that the cardinality of SN∗ is minimized
when g spreads the sale information to all her neighbors, and
therefore node g could beat all secondary nodes by reporting a

type with bid v
′2
g = maxi∈SN∗{v′i− w̃(i, i)+ w̃(i, g)} and d-

iffusion r′g = rg . Therefore, according to the above analysis,

winner g can win the item by bidding at least max{v
′1
g , v

′2
g }.

In Figure 1, regarding whether node E wins the item in
the efficient allocation after cutting γE = {(E,B), (E,F )},
since node E would win the item in π∗(t′−γE

) if the winner F
does not bid, therefore, node E is a secondary node (actually
the only one). According to Alg. 3, winner F will pay a price
of at least vE − w̃(E,E) + w̃(E,F ) = vE − w(B,E) +
(w(B,D) + w(D,F )) = 6− 0 + 3 = 9. Since W ∗(t−F ) +
w̃(F, F ) = 6, then the winner pays 9 to the seller. One could
further check that node B and E pay −2 and 0 respectively.
The seller’s revenue is −2 + 0 + 9 − 0 = 7 which is greater
than 1, the revenue obtained in the Vickrey auction.

The identification of secondary nodes and the characteriza-
tion of B∗

g (t
′) are the key techniques in proving the property

of incentive compatibility. Combining with the following two
lemmas, we prove that WDM is IR and IC.

Lemma 1. If there exist secondary nodes in Alg. 2, then the
winner cannot increase her utilities by misreporting.

Proof. First of all, the winner must be m if there exist sec-
ondary nodes according to Def. 7. For any secondary node
j, she is still a secondary node for any m’s diffusion strategy
r′m ⊂ rm as long as m remains to be the winner. Therefore
m’s payment is minimized by diffusing the sale information
to all her neighbors. Since there exist secondary nodes, then
for any secondary node j, the winner m is the only node that
beats j in π∗(t−γj

). This leads to the fact that when m is try-
ing to become a node along the winning path by lowering her
bid, the first secondary node in type profile t will become the
winner in advance according to Alg. 2, line 6, whereby m’s
utility becomes zero. Therefore, no matter what strategies m
commits, she cannot increase her utility.

Lemma 2. Given any type profile t and any node i ∈ L∗
m(t)\

L∗
g(t), i cannot increase her utility by misreporting.

Proof. Firstly, when i spreads the sale information to only a
part of her neighbors, there are two possible results: she is
still an node in L∗

m(t) in which case g still wins according to
Def. 5 and Alg. 2; or she is out of L∗

m(t) which makes her
out of L∗

g(t) either. Therefore, her utility remains unchanged
by misreporting ri. Secondly, note that unless node i beats
g in π∗(t−γg

), otherwise g must be the winner and i’s utility
remains zero according to Alg. 3. Since W ∗(t−γg

) is greater
than vj − w̃(g, j) for any j ∈ L∗

m(t) \ L∗
g(t), she can beat

g only by increasing her bid such that she wins in Alg. 2.
Due to the fact that node g is the winner in π∗(t−γg

), node
g would be a secondary node if i becomes the winner. In
this case, node i has to pay at least vg − w̃(g, g) + w̃(g, i) =
W ∗(t−γg

) + w̃(g, i). Therefore, the utility of i by being a
winner is at most vi−(W

∗(t−γg
)+w̃(g, i)) = (vi−w̃(g, i))−

W ∗(t−γg
) < 0.

Theorem 3. The weighted diffusion mechanism is individu-
ally rational and incentive-compatible.

Proof. Firstly, we show that the weighted diffusion mecha-
nism is individually rational. For any node i /∈ L∗

g(t
′), her
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payment is zero. For any node i ∈ L∗
g(t

′) \ {g}, her utility

is W ∗(t′−γi
) −W ∗(t′−i) ≥ 0 since t′−i ⊂ t′−γi

. As for the

winner g, her payment is B∗
g (t

′) which is no more than vg .
Next we show WDM is IC through following cases.
Case 1: For i /∈ L∗

m(t), since {tj}j∈L∗

m(t) ⊆ t−i, the only
chance for i to have a non-zero utility is to bid high enough
such that she becomes the winner in π∗(t′). And in this case
she has to pay a price of at least W ∗(t) + w̃(i, i) which is
higher than her true value vi because W ∗(t) > vi − w̃(i, i).

Case 2: For i ∈ L∗
g(t) \ {g}, her utility is W ∗(t−γi

) −
W ∗(t−i). Since W ∗(t−γi

) ≥ vi− w̃(i, i), she cannot do bet-
ter by winning, otherwise she pays at least W ∗(t−i)+w̃(i, i).
The latter term W ∗(t−i) is independent of i’s strategy and
the former term W ∗(t−γi

) is independent of vi (otherwise
she becomes the winner according to Alg. 2, line 6). Due to

Def. 5, for any r′i ⊂ ri I
∗
i ⊆ I∗

′

i ∪ ri \ r
′
i. This property

induces that γi ⊆ γ′
i ∪ ri \ r

′
i. That is, after removing γi and

γ′
i from the graph separately, the set of non-nil type nodes

follows that −γ′
i ⊆ −γi. Therefore the set of non-nil types in

t−γi
is the largest when i spreads the sale information to all

her neighbors, this maximizes her utility.
Case 3: For winner g, her utility is vg −B∗

g (t). If there are

no secondary nodes, then she pays exactly W ∗(t−g)+w̃(g, g)
and her utility is vg − w̃(g, g) − W ∗(t−g) = W ∗(t−γg

) −
W ∗(t−g). When she misreports to be in Case 2, her utili-
ty becomes W ∗(t−γ′

g
) −W ∗(t−g). Since the set of non-nil

types in −γg is maximized when g diffuses the sale to al-
l her neighbors, misreporting is a bad choice for her since
W ∗(t−γg

) ≥ W ∗(t−γ′

g
). On the other hand, the more non-

nil nodes exist in the graph, the harder the secondary nodes
could exist. Therefore, if g diffuses the sale only to a part of
her neighbors, then secondary nodes would be created which
in turn will increase her payment according to Alg. 3, lines
4-8. Hence, truthfully reporting is the best strategy for the
winner. In addition, if there exist secondary nodes, then mis-
reporting will harm g’s profit according to Lemma 1.

Case 4: For any node i in L∗
m(t) \ L∗

g(t), according to
Lemma 2, misreporting would decrease her utility.

For proving that WDM dominants the Vickrey auction, we
firstly pick out the nodes with zero payments.

Lemma 3. For i ∈ L∗
g(t)\{g}, if the intersection of π∗(t−γi

)
and L∗

m(t) \ L∗
i (t) is not empty, then i’s payment is zero.

Proof. According to Def. 6, if we remove γi from the graph,
then all nodes in L∗

m(t)\L∗
i (t) can only be reached by other n-

odes but not i. Therefore, if π∗(t−γi
) and L∗

m(t)\L∗
i (t) have

some common elements, according to the optimal substruc-
ture property of shortest path, node m must be the winner in
π∗(t−γi

) and node i /∈ π∗(t−γi
). Consequently, we have that

W ∗(t−γi
) must equal W ∗(t−i) and therefore xi(t) = 0.

For convenience, denote L#
g (t) by the nodes in L∗

g(t
′) who

satisfy π∗(t−γi
)∩L∗

m(t)\L∗
i (t) = ∅, then according to Lem-

ma 3 only L#
g (t) can have non-zero payments.

Theorem 4. The weighted diffusion mechanism dominates
the Vickrey auction.

Proof. According to the payment policy of WDM and Lem-
ma 3, the seller’s revenue can be denoted as

Rev(t) =
∑

j∈V \{s}

xj(t)−
∑

l∈L∗

g(t)\{g}

w(l, l + 1)

=
∑

j∈L
#
g (t)

xj(t)− w̃(g, g)

=
∑

j∈L
#
g (t)\{g}

(W ∗(t−j)−W
∗(t−γj

))

+B
∗
g (t)− w̃(g, g)

≥
∑

j∈L
#
g (t)\{g}

(W ∗(t−j)−W
∗(t−γj

)) +W
∗(t−g)

= W
∗(t−1#) +

∑

j∈L
#
g (t)\{1#}

(W ∗(t−j)−W
∗(t−γj−1

))

≥ W
∗(t−1#).

The first inequation holds because B∗
g (t) is at least

W ∗(t−g)+ w̃(g, g) according to Alg. 3, line 9. Since for any

j ∈ L#
g (t), we have that π∗(t−γj

)∩L∗
m(t)\L∗

i (t) = ∅. Then

we have W ∗(t−j) ≥ W ∗(t−γj−1
) for any j ∈ L#

g (t) \ {1
#}

which induces the second inequity.
Because {ti}i∈rs ⊆ t−1#∪{t1#}, we have that W ∗(t−1#)

is at least the second highest bid in rs. In addition, since
vg − w̃(g, g) ≥ W ∗(t−γ1∗

) and {ti}i∈rs ⊆ t−γ1∗
, then the

allocation efficiency of the weighted diffusion mechanism is
no less than that given in the Vickrey auction.

It is worth noting that when the weights are zero, WDM
degenerates to a CDM.

5 Conclusions

In this paper, we formulate the model of information diffusion
and auction on both unweigted and weighted graphs and pro-
vide generic solutions which not only guarantee IC and IR but
also can incentivize information sharing. The key techniques
for realizing these mechanisms are graph cut analysis and the
integration of bidder’s private valuation and social links. Due
to the introduction of information sharing incentive, all the
instance mechanisms under our solution framework improve
both the seller’s revenue and the allocation efficiency com-
paring with the Vickrey auction. In practice, these mecha-
nisms can be applied in a recursive way: any new comer will
be treated as a bidder if she submits a two-dimensional type.
This recursion is terminated if there is no new submission.
Then the seller calculates the trading path, and determines
the allocation and payments. One immediate future work is:
although this work realizes seller’s revenue optimization, the
problem of its maximization is still unclear. Moreover, what
is the underlying impact of αi on the seller’s revenue and the
allocation efficiency, and how to design fast algorithms deter-
mining the membership of these sets are also important.
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