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Wohts are secreted, lipidated glycoproteins that are essential for cell-cell communication in
development and tissue homeostasis throughout metazoans [1-3]. The “W” in Wnt comes
from the wingless (wg) gene, which is required for proper formation of most tissues and
appendages in Drosophila [4,5]. Immunostainings showed gradients of Wg protein emanating
from Wg-producing cells in embryos and larval imaginal discs [6-9]. In the mid-1990s, elegant
genetic studies in the wing imaginal discs supported the hypothesis that Wg protein could act
as a diffusible morphogen by specifying different cell fates along a concentration gradient
[10,11]. Although this evidence seemed compelling, caveats included perdurance from earlier
Wg expression throughout the presumptive wing and the potential spread of the signal
through the division of Wg-producing cells [4,12]. Still, Wg has commonly been considered a
paradigm for a secreted protein that can act as a diffusible morphogen across a developing tis-
sue [13-15].

The importance of Wg diffusion was tested by Alexandre and colleagues in 2014, when they
replaced the endogenous Wg gene with a cDNA encoding a fusion of the neurotactin trans-
membrane domain and Wg (NRT-Wg; Fig 1). Tethering Wg to the plasma membrane of Wg-
producing cells resulted in a dramatic restriction of the Wg protein gradient in late-stage wing
imaginal discs [16]. NRT-Wg homozygotes, i.e., flies in which NRT-Wg is their only source of
Wg, survive to adulthood with relatively mild phenotypes, such as slightly smaller wings [16].
This is surprising, as wg is essential for viability and patterning at embryonic and larval stages
[4]. The authors suggested that perdurance of Wg target gene expression from earlier stages
could provide the information necessary for proper patterning [16]. A recent preprint reports
that NRT-Wg is more stable than Wg, in part because of increased expression of its receptor,
frizzled 2 (Fz2) [17], which can stabilize Wg [8,17]. These nuances do not detract from the
seminal conclusion of Alexandre and colleagues, i.e., that tethering of Wg to its producing
cells has almost no effect on the patterning of the fly.

Although NRT-Wg flies make it to adulthood, they are sterile and developmentally delayed
[16]. In addition, as shown by a new report in this issue, NRT-Wg flies have severe defects in
cell fate specification, proliferation, and morphology of the adult intestine [18]. Wg is normally
expressed at high levels at the midgut-hindgut boundary (MHB) of the intestine, where it acti-
vates Wg target genes at a distance from the MHB [18]. The area of Wg target gene expression
is severely reduced in NRT-Wg intestines. The structure of the MHB is drastically altered, as
are the longitudinal and circular muscles surrounding the intestine [18]. Epithelial patterning
and proliferation are also disrupted. These defects could be phenocopied by a reduction of Wg
signaling, and NRT-Wg phenotypes were not rescued by overexpression of a NRT-Wg trans-
gene. NRT-Wg flies had decreased longevity compared with controls, which was more severe
when fed a sucrose-only diet [18]. Taken together, the data support a model in which Wg
spreading is essential for proper development and function of the intestine. NRT-Wg flies also
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Fig 1. Several constructs used to study Wnt diffusion. Endogenous Wg, Egl-20, and murine Wnt3 are depicted on
the left, with their N-terminal signal sequences. NRT-Wg, Egl-20-YPet, and HA-tagged Wnt3 are shown on the right.
NRT is a type II TM protein, so the C-terminal portion containing Wg will be extracellular. aa, amino acid; Egl-20,
egg-laying defective-20; HA, hemagglutinin; NRT, neurotactin TM domain; TM, transmembrane; Wg, wingless; YPet,
a yellow fluorescent protein derived from green fluorescent protein [29].

https://doi.org/10.1371/journal.pgen.1008154.9001

have developmental defects in the embryonic ureter/Malphigian tubules [19] and neuronal
specification in the visual system [20]. These results indicate that in some contexts, Wg may
indeed act as a diffusible morphogen.

Debate over the morphogen properties of Wg and other Wnts has been fueled by a lack
of visual evidence that Wnt proteins can spread from their sites of synthesis. Tagging Wnts
with fluorescent proteins has historically been challenging, as the modification typically
lowers their biological activity [1]. However, this hurdle was recently overcome for Egl-20
[21], a nematode Wnt important for specific neuroblast specification/migration and axonal
guidance. CRISPR/Cas9-based tagging of Egl-20 with mNeonGreen or mYpet at its C termi-
nus (Fig 1) resulted in a functional protein with none of the phenotypes normally associated
with egl-20 mutants [21]. Live imaging in these worms demonstrated that Egl-20 forms a
gradient along the anteroposterior axis, with the strongest fluorescent signal colocalizing
with source cells. Fluorescence recovery after photobleaching (FRAP) experiments revealed
that the Wnt fluorescent signal is dynamic and can quickly recover, on a scale of <5 min-
utes, indicating that Wnt spreads rapidly. Additionally, sequestering extracellular, fluores-
cently labeled Wnt ligands using a nanobody resulted in cell migration defects that are
consistent with egl-20 loss of function, demonstrating a long-range function for Egl-20 [21].
This study provides direct evidence that some Wnt proteins have long-range signaling
capabilities.

In contrast to Caenorhabditis elegans Egl-20, it appears that Wnt signaling in the crypts of
the mammalian small intestine occurs over a short range [22]. In this tissue, Wnt signaling is
required for the maintenance of intestine stem cells (ISCs) and proliferation of transit-amplify-
ing cells [2,23]. Adjacent to the ISCs, Paneth cells provide one source of Wnt ligands [2]. Wnt3
is expressed in Paneth cells, and when the endogenous gene was hemagglutinin (HA) tagged
(Fig 1), its expression pattern suggested that it signals in a juxtracrine manner [22]. Frizzled
receptors may act as tethers for extracellular Wnt3, and the protein appears to spread from the
Paneth cells via mitosis of ISCs [22]. In addition, the mesenchyme surrounding the cryptsis a
source of Wnt ligands. Two recent papers identify FoxL1 and PDGFa-positive subepithelial
telocytes as an essential source of Wnt signals [24,25]. Transcriptional profiling revealed that
telocytes near different crypt zones produce different levels of Wnt. This suggests a model in
which a Wnt gradient arises from different levels of transcription in Wnt-producing mesen-
chyme rather than long-range transport of Wnts from a single source [24].
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Perhaps it is not surprising that the range of Wnt signaling varies dramatically in different

contexts. Though not discussed in this article, there is also evidence that Wnts, including Wg,
can move away from sites of synthesis via membrane extensions, e.g., cytonemes [26,27], as
well as exosomes, microvesicles, and lipoproteins [28]. Whether NRT-Wg protein utilizes
these mechanisms remains to be explored. Moving forward, using genome editing to fluores-
cently tag or membrane tether more Wnts will expand our knowledge of the systems and dif-
ferentiate between contexts that require long- and short-range Wnt signals.
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