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Diffusion and Localization in Chaotic Billiards
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We study analytically and numerically the classical diffusive process which takes place in a chaotic
billiard. This allows one to estimate the conditions under which the statistical properties of eigenvalues
and eigenfunctions can be described by random matrix theory. In particular, the phenomenon of
quantum dynamical localization should be observable in real experiments. [S0031-9007(96)01802-9]
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One of the main modifications that quantum mechan
introduces in our classical picture of deterministic cha
is “quantum dynamical localization” which results, e.
in the suppression of chaotic diffusivelike process wh
may take place in systems under external periodic pe
bations. This phenomenon, first pointed out in the mo
of quantum kicked rotator [1], is now firmly establishe
and observed in several laboratory experiments [2].

For conservative Hamiltonian systems the question
localization is much less investigated. The situation h
is much more intriguing: on one hand, in a conservat
system, one may argue that there is always localiza
due to the finite number of unperturbed basis sta
effectively coupled by the perturbation; on the oth
hand, a large amount of numerical evidence indicates
quantization of classically chaotic systems leads to res
which appear in agreement with the predictions of rand
matrix theory (RMT) [3].

Recently the problem of localization in conservati
systems has been explicitly investigated. In particu
on the base of Wigner band random matrix mod
conditions for localization were explicitly given togeth
with the relation between localization and level spac
distribution [4].

Billiards are very important models in the study
conservative dynamical systems since they provide c
mathematical examples of classical chaos, and their q
tum properties have been extensively studied theo
cally and experimentally. Moreover, they are becom
increasingly relevant for the study of optical proces
in microcavities which may lead to possible applicatio
such as the design of novel microlasers or other opt
devices [5].

In this paper we focus our attention on a two dime
sional chaotic billiard, the Bunimovich stadium, and stu
the classical diffusive process which takes place in an
lar momentum. This will allow us to predict the cond
tions for quantum localization and therefore the conditio
4 0031-9007y96y77(23)y4744(4)$10.00
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under which the standard random matrix theory is
applicable.

We consider the motion of a particle having massm,
velocity $y, and elastically bouncing inside the stadiu
shown in Fig. 1. We denote withR the radius of the
semicircle and with2a the length of the straight segment
The total energy isE  m $y2y2.

The statistical properties of the billiard are controll
by the dimensionless parametere  ayR and, for any
e . 0, the motion is ergodic, mixing, and exponential
unstable with Lyapunov exponentL which, for smalle,
is given by [6]L , e1y2.

For the analysis of classical dynamics, a typical cho
of canonical variables isss, ytd where s measures the
position along the boundary of the collision point a
yt is the tangent velocity. These variables, however,
quite difficult to treat from the quantum point of view
For this purpose it is convenient instead to considel,
the angular momentum calculated with respect to
center of the stadium, and the angleu which describes,
together withrsud, the position of the particle in the usu
polar coordinates. It is important to stress that, with t
choice of variables, the invariant measuredm  ds dyt

FIG. 1. The Bunimovich stadium with radiusR and straight
segments2a; the variablesfrsud, ug indicate the position of the
point along the boundary.
© 1996 The American Physical Society
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is preserved only to ordere, that is, dm  ds dyt 
du dl 1 Osed.

At a given energyE, the angular momentum mu
satisfy the relationjlj , lmax  sR 1 ad

p
2Em. It is

therefore convenient to introduce the rescaled quan
L  lylmax. Then the classical motion takes place on
cylinder0 # u , 2p , 21 , L , 1.

It is expected that fore ø 1 a diffusive process
will take place in angular momentum with a diffusio
coefficient D  Dsed. In order to obtain an estimat
for Dsed we now derive an explicit expression for th
boundary map in the variablessL, ud. The changeDL
after a collision with the boundary can be easily obtain
to order e, by neglecting collisions with straight line
and by taking into account that in the collision only t
normal velocityyn  $y ? $n changes the sign. Here$n .
$er 1 e sgnscosud$eu , $er , and $eu being the usual pola
coordinates unit vectors. One then gets

DL  L 2 L  22e sinu sgnscosud sgnsLd
p

1 2 L2 .
(1)

On the other side the change inu, to zero order, is
given by

Du  u 2 u  p 2 2 arcsins L d . (2)

According to a standard procedure [7] we introduc
generating functionGs L, ud in such a way that the ma
defined by

L 
≠G
≠u

; u 
≠G
≠L

(3)

coincides withDL at first order ine and withDu at zeroth
order. The generating function is given by

Gs L, ud  su 1 pdL 2 2
Z L

dL arcsinL

1 egs L dj cosuj , (4)

wheregs L d  2 sgns L d s1 2 L
2d1y2. The generated (im

plicit) area-preserving map is

L  L 2 2e sinu sgnscosud sgns L d s1 2 L
2d1y2 ,

u  u 1 p 2 2 arcsins L d 1 eg0s L dj cosuj .
(5)

By taking the local approximation in the angul
momentum, the map (5) writes

L  L 2 2e sinu sgnscosud sgns L d
q

1 2 L2
0 ,

u  u 1 p 2 2 arcsins L d ,
(6)

which remains area preserving and can be easily iter
(hereL0 is the initial angular momentum).

The agreement of map (6) with the true dynam
can be numerically checked, and it is shown in Fig

where we plotLp  s L 2 Ldys2e

q
1 2 L2

0 d againstu.
Points represent billiard dynamics while the full line
the functionfsud  2sinu sgnscosud.

Notice that the functionfsud is periodic of periodp

and has a discontinuity atu  py2. This gives to the
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FIG. 2. Comparison between the billiard dynamics and
map (6), Here we plot the variableLp versusu (see text).
Points are obtained from numerically integrating the mo
of one particle in the billiard for 100 iterations, starting fro
L0  0 and a random position along the boundary, wh
the full line is the functionfsud (see text). Heree  0.01.
The points not belonging to the curve are due to collisi
with one of the straight lines; this occurrence is outside
approximation of the map (6).

map (6) a structure very close to the sawtooth map w
is known [8] to be chaotic and diffusive with a diffusio
rate D which, for small values of the kick strengthe, is
given byD , e5y2. This behavior, according also to o
numerical computations, appears to be generic for m
which have such type of discontinuity.

We may proceed now to a numerical investigat
of the diffusive process. To this end we conside
distribution of particles with given initialL0 and random
phasesu in the intervals0, 2pd and integrate the classic
equations of motion inside the billiard. In Figs. 3(a) a
3(b) we present the behavior ofDL2  kL2l 2 kL0l2 as a
function of the number of collisionsn and the distribution
function fnsLd at fixed n as a function ofsL 2 L0d. As
it is seen,DL2 grows diffusively and the distributio
function is in good agreement with a Gaussian [9].
particular, the dependenceD  Dsed of the diffusion
coefficient can be easily computed, and the resultD 
D0e5y2 (see Fig. 4) is in agreement with predictions
map (6) withD0  1.5.

The analysis of the classical diffusive process allo
one to make some predictions concerning the quan
motion and, in particular, to estimate the conditio
under which the quantum localization phenomenon
take place [10]. First of all, in order that any quant
diffusive process may start it is necessary to be ab
the perturbative regime. In particular, the level num
must be sufficiently high so that the de Broglie wa
numberk of the corresponding wave function must sati
4745
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FIG. 3. Diffusion in angular momentum for the billiard wit
e  0.01. Here an ensemble of 104 particles was chose
with initial L0  0 and random position along the bounda
(a) DL2 as a function of the number of collisionsn; the dashed
line is the best fit and givesD  DL2yn  1.5 3 1025.
(b) Distribution function aftern  500 collisions averaged
over the last 50 collisions. The full line is the best fittin
Gaussian with average20.016 and variance 0.1.

the relationk . 1ya. This impliesE . Ep  h̄2y2ma2

which is the energy necessary to confine a quan
particle inside a box of lengtha. Using the well known
Weyl formula for the total number of states with ener
less thanE [3]

kNsEdl ø
mA

2p h̄2 E ø
1
8

m

µ
R
h̄

∂2

E , (7)

whereA is the area of a quarter of billiard, and keepi
only the leading term, we obtain that in order to be in
nonperturbative regime we have to consider level numb

N ¿ Np .
1

16e2 . (8)

We callNp perturbative border.
According to the well known arguments [11], abo

the perturbative border (8) quantum diffusion in angu
momentum takes place with a diffusion coefficient clo
to the classical one. This diffusion proceeds up to a t
tB , Deffyh̄2 after which diffusion will be suppresse
by quantum interference. This time is related to
uncertainty principle. Namely, for times less thantB
4746
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FIG. 4. Diffusion coefficient D  DL2yn for the stadium
(full circles) as a function ofe. Open circles indicate the
diffusion rate obtained from the map (6). The line is obtain
by the usual best fitting procedure to the true dynamics (
circles) and givesD  D0e2.5 with D0  1.5.

the discrete spectrum is not resolved and the quan
motion mimics the classical diffusive motion [11,12
Here Deff  D0e5y22mER2 is the classical diffusion
coefficient in real (not scaled) angular momentum.

The nature of the quantum steady state will depe
crucially on the ergodicity parameter [12]

l2 
tB

tE
. (9)

wheretE  l2
maxyDeff . 2mER2yDeff is the ergodic re-

laxation time.
For l ø 1 the quantum steady state is localized wh

for l ¿ 1 we have quantum ergodicity. The critica
value l  1 leads tolmaxh̄  Deff, that is,E  Eerg 
e25D22

0 h̄2y2mR2. We then have

N  Nerg .
1

16D2
0e5

. (10)

It follows that only forN . Nerg there is quantum er
godicity, and therefore one expects statistical propertie
eigenvalues and eigenfunctions to be described by R
Instead for N , Nerg, even if N ¿ Np , namely, very
deep in quasiclassical regions, statistical properties
depend on parameterl  D0

p
8Ne5 and not separately

on e or N . For example, the nearest neighbor levels sp
ing distributionPssd will approache2s whenl ø 1.

We have tested this prediction by numerically comp
ing the level spacing distribution for different values
e and N . One example is shown in Fig. 5 for whic
N ¿ Np but sincel ø 1 the distributionPssd is close to
e2s as expected. Similar behavior is expected for ot
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FIG. 5. Level spacings distribution computed on 2000 lev
in the interval51 000 , N , 53 000 for e  0.01 (a) ande 
0.1. (b). In the first case (a)Np . 600 andNerg . 2.8 3 108

and thereforeNp ø N ø Nerg. The valuel . 0.01 of the
ergodicity parameter accounts for the fact that the numeric
computedPssd is close toe2s (full curve). In the case (b)
one hasNerg . 2.8 3 103 ø N and therefore, as expected, t
distributionsPssd is close to Wigner-Dyson (dashed curve)

quantities such as the two points correlation function,
probability distribution of eigenfunctions, etc. The n
merical computations are based on the improved p
wave decomposition method [13]. The accuracy of eig
values is better than 1% of the mean level spacing.
also compared with results with the semiclassical form
in order to check that there are no missing levels.

Notice that the effect predicted here is entirely due
quantum dynamical localization and bears no relation w
the existence of bouncing-ball orbits. The same beha
will be present in chaotic billiards in which no family o
periodic orbits exists.

The effects of quantum localization discussed h
should be observable in microwave or sound wave exp
ment. Finally, we would like to mention that the diffusiv
process in angular momentum and the corresponding
pression caused by quantum mechanics may be of int
for a new class of optical resonators which have rece
been proposed [5].
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