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The dynamics of weakly bending polymers is analyzed on the basis of a Gaussian semiflexible chain
model and the fluorescence correlation spectroscopy �FCS� correlation function is determined.
Particular attention is paid to the influence of the rotational motion on the decay of the FCS
correlation function. An analytical expression for the correlation function is derived, from which the
averaged segmental mean square displacement can be determined independent of any specific model
for the polymer dynamcis. The theoretical analysis exhibits a strong dependence of the correlation
function on the rotational motion for semiflexible polymers with typical lengths and persistence
lengths of actin filaments or fd viruses. Hence, FCS allows for a measurement of the rotational
motion of such semiflexible polymers. The theoretical results agree well with experimental
measurements on actin filaments and confirm the importance of large relaxation times. © 2007
American Institute of Physics. �DOI: 10.1063/1.2753160�

I. INTRODUCTION

Living organisms comprise a broad spectrum of flexible,
semiflexible, and rodlike polymers such as DNA, actin fila-
ments, and microtubules.1 The particular conformational de-
grees of freedom are essential for their biological function
and the knowledge of the dynamics is important for predict-
ing and understanding their macroscopic behavior.2,3 A
physical property which often distinguishes biological mac-
romolecules from the majority of synthetic polymers is the
presence of bending restrictions on length scales much larger
than their thickness. This leads to correlations among seg-
ments along a polymer which are characterized by the per-
sistence length �lp�. A number of experimental4–8 and theo-
retical studies9,10 show that semiflexibility modifies not only
the behavior of molecules with persistence lengths smaller or
on the order of the contour length, but also that of seemingly
flexible polymers, i.e., polymers with contour lengths much
larger than the persistence length. Hence, it is essential to
take polymer stiffness adequately into account in theoretical
descriptions.

From the experimental point of view, fluorescence cor-
relation spectroscopy �FCS� is very well suited for studying
the dynamics of biological macromolecules.11–16 By fluores-
cent labeling of individual segments13,16 or continuous label-
ing of the whole molecule,12,14 the diffusional motion of seg-
ments as well as that of the overall molecule can be studied
at nanomolar concentration under �quasi�equilibrium condi-
tions in solution and cellular systems. For objects signifi-
cantly smaller than the FCS detection volume, only the over-
all �center-of-mass� diffusion is measured. For objects larger
than the laser focus, however, the intramolecular dynamics

can be measured in addition.12–16 In Ref. 16, we determined
center-of-mass diffusion coefficients and the longest relax-
ation times for double-stranded �ds� DNA molecules and
demonstrated that the DNA dynamics can be described by
the theory of semiflexible polymers.3,17 The persistence
length of F-actin filaments �lp�17 �m� is larger than the
lateral extension of the FCS detection volume. This provides
the opportunity to study the polymer dynamics on length
scales below the persistence length. In Ref. 14, we demon-
strated that the FCS correlation function can be described by
a semiflexible polymer model and in Ref. 15 the segmental
mean square displacement has been extracted from the FCS
correlation function by a model independent approach. These
results confirm various theoretical predictions for the time
dependence of the intramolecular dynamics. For ds DNA, we
have shown that hydrodynamic interactions control the
dynamics14,16 in agreement with predictions of Zimm18,19

and a semiflexible polymer model.3,17,20 �Note, this finding
contradicts FCS results presented in Ref. 13.� In the case of
F-actin filaments, the theoretically predicted power law
dependence17,21–28 �t3/4 of the mean square displacement
has been confirmed.14,15 With the progress in experimental
techniques, in particular, in the field of FCS, there is a para-
mount interest to extract the full dynamic information from
the measured signal and not only power laws. Naturally, this
provides a more detailed insight into the physical properties
of biological macromolecules. To extract the corresponding
dynamical quantities, e.g., the segmental mean square dis-
placement, an adequate theoretical description is required of
both, the molecular dynamics as well as the FCS correlation
function,14,15 where a polymer model independent approach
is desirable.15

Theoretically, a semiflexible polymer is typically mod-
eled as a differentiable space curves with the bending energya�Electronic mail: r.winkler@fz-juelich.de
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VB =
�kBT

2
�

−L/2

L/2 � �2r�s�
�s2 	2

ds , �1�

where L is the length of the polymer, r�s� the position in
space of the point at s �−L /2�s�L /2� along the chain con-
tour, � the bending elastic constant which is related to the
persistence length, T the temperature, and kB the Boltzmann
constant. An important feature of a linear polymer is its
�nearly29� fixed contour length. In mathematical terms, the
constraint u�s�2=1, with u�s�=�r�s� /�s, has to be taken into
account in the theoretical treatment. This model of a semi-
flexible polymer is referred to as Kratky-Porod wormlike
chain.30 The adequate consideration of the constraint is a
major challenge. Two strategies are utilized to arrive at a
tractable model: �i� The constraint u�s�2=1 is relaxed and
replaced by the condition 
u�s�2�=1, i.e., only the average of
the square of the tangent vector has to be equal to unity. This
leads to what may be called Gaussian model of a semiflex-
ible polymer.10,31–40 There are a number of results confirming
the usefulness of such an approach for structural10,41,42 as
well as dynamical properties.9,14,16,17,20 �ii� To determine the
structural properties of the Kratky-Porod wormlike chain,
various approximation schemes have been applied43–47 and a
number of equilibrium properties have been obtained
successfully.5,7,44,48 The evaluation of the polymer dynamics
requires other strategies. Usually the dynamical properties of
the Kratky-Porod wormlike chain are evaluated in the limit
of a weakly bending rod only, i.e., in the limit
L / lp�1.22,25,26,49 Here, only the undulations transverse to the
major axis of the rodlike polymer are taken into account
assuming that the orientation and center-of-mass position are
virtually fixed. As a major drawback, the rotational motion of
the polymer is not captured in the treatment. This has no
consequences on the dynamical properties as long as time
scales are considered which are much smaller than the rota-
tional relaxation time. However, the FCS correlation function
is typically not only determined by the intramolecular mo-
tion �without rotation� but rather by the rotational motion and
the center-of-mass diffusion.14 To what extent these indi-
vidual parts contribute to the correlation function depends on
various parameters such as polymer length in comparison to
the size of the detection volume and the persistence length.
Hence, for a quantitative analysis of the FCS correlation
function all relaxation processes have to be taken into ac-
count.

In this article, the dynamics of semiflexible macromol-
ecules and the FCS correlation function will be discussed for
L / lp�1. Particular attention will be paid to contributions of
the rotational and center-of-mass dynamics. As will be
shown, neglect of the rotational diffusion will change the
FCS correlation function significantly for a certain range of
polymer lengths. Moreover, an analytical approximation for
the FCS correlation is presented, which agrees well with the
full numerical determined function in the limit L / lp�1. This
expression relates the polymer mean square displacement to
the FCS correlation in a model independent way and reduces
to that presented in Ref. 15 in the limit L→�. The theoret-
ical results will be compared with recent measurements of
the FCS correlation function of actin filaments.15

The Gaussian semiflexible polymer model40 is used in
the limit of a weakly bending rod. For a comprehensive de-
scription of the theoretical basis, the relevant equilibrium and
dynamical properties of the model are described with spe-
cific account of the fact that only the bending modes trans-
verse to the rod axis contribute the intramolecular relaxation.
Our previous studies14,16 exploited the preaveraging approxi-
mation for the hydrodynamic interactions which is appropri-
ate for flexible polymers. The anisotropy of rodlike polymers
allows for another approximation of the Oseen tensor leading
to quantitative differences for the diffusion coefficient and
relaxation times. Compared to the first studies of the weakly
bending rod dynamics,49 the Gaussian semiflexible model
takes the rod rotational motion consistently into account.3 As
will be shown, this leads to simpler and more adequate mode
amplitude correlation functions than those following from
the original approach.49–51

The article is organized as follows. In the next section
the model is described and its equation of motion is solved.
In Sec. III, the center-of-mass as well as the intramolecular
mean square displacement is discussed and relations to pre-
vious results are established. The theoretical expressions for
the FCS correlation function are derived in Sec. IV. Results
for the mean square displacement and the FCS correlation
function are presented in Sec. V. In particular, the theoretical
results are compared with experimental measurements on ac-
tin filament. Finally, Sec. VI summarizes the findings.

II. DYNAMICS OF SEMIFLEXIBLE POLYMERS

The equilibrium properties of Gaussian semiflexible
polymers have been described in a number of
articles.10,20,39,40 Therefore, I will here summarize the aspects
relevant for the analysis of the dynamics of weakly bending
polymer only.

In brief, the semiflexible linear polymer is modeled as a
continuous, differential space curve r�s�. The chain connec-
tivity is captured by the constraint 
��r�s� /�s�2�=1 and bend-
ing restrictions lead to the potential VB of Eq. �1�. Evaluation

of the partition function yields in d̂ dimensions,

Z =� exp�− ��
−L/2

L/2 � �r�s�
�s

	2

ds −
�

2
�

−L/2

L/2 � �2r�s�
�s2 	2

ds

− �0�� �r�− L/2�
�s

	2

+ � �r�L/2�
�s

	2	Dd̂x . �2�

The Lagrangian multipliers �, �0, and � are given by

� =
d̂p

2
, �0 =

d̂

4
, � =

d̂

4p
, p =

1

2lp
, �3�

�for d̂=3, see Ref. 14�, and p is an abbreviation related to the
persistence length lp. The terms with the first derivative in r
capture the chain flexibility, i.e., they account for the chain
entropy. The chain ends behave differently from the rest of
the polymer, which is captured in the terms with �0. The
Gaussian model typically provides the same first and second
moments as the Kratky-Porod wormlike chain model.40 Ex-
amples are the following:
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�i� the mean square end-to-end distance and the radius of
gyration. In particular, the mean square distance
among two points s and s� is

��s − s�� = 
�r�s� − r�s���2�

=
�s − s��

p
−

1

2p2 �1 − exp�− 2p�s − s���� , �4�

which gives ��s�=s2 in the limit L / lp�1;
�ii� the correlation function of tangent vectors,


u�s�u�s��� = exp�− 2p�s − s���; �5�

�iii� average contour length,49


L� = �
−L/2

L/2


u�s�u�s��ds = L; �6�

�iv� projection of the end-to-end vector onto the tangent at
the chain end,


r�L�u�L�� =
1

2p
�1 − exp�− 2pL�� . �7�

Higher order moments do not necessarily agree with those of
the Kratky-Porod wormlike chain.

The equation of motion of the Gaussian semiflexible
polymer, including hydrodynamic interactions in terms of the
Ossen tensor,19,52 is given by the Langevin equation,14,17

�

�t
r�s,t� = �

−L/2

L/2

H�r�s�,r�s����2�kBT
�2

�s�2r�s�,t�

− �kBT
�4

�s�4r�s�,t� + ��s�,t�ds�, �8�

with the boundary conditions

�2�
�

�s
r�s,t� − �

�3

�s3r�s,t�
±L/2

= 0, �9�

�2�0
�

�s
r�s,t� ± �

�2

�s2r�s,t�
±L/2

= 0. �10�

Note, the boundary conditions are independent of the dimen-

sion d̂. The stochastic force ��s , t� is assumed to be station-
ary, Markovian, and Gaussian with zero mean.19,53 The hy-
drodynamic tensor is defined as H�r�s� ,r�s���=Q�r�s�
−r�s���+I	�s−s�� /3
�, where Q�r�s�−r�s��� is the Oseen
tensor.

In order to transform the nonlinear equation �8� into a
linear equation, the following presumption can be applied:
The hydrodynamic tensor is replaced by its spacial isotropic
averaged expression according to Zimm,18,19 or the hydrody-
namic tensor of a rodlike object is utilized. To elucidate the
quantitative differences among the two assumptions, both
possibilities will be described.

�i� Preaveraging approximation. Using the Gaussian
joint probability distribution,14 the position dependent
hydrodynamic tensor turns into an isotropic tensor
which depends on the contour coordinates only, i.e.,
H�s ,s��=I�	�s−s�� /3
�+Q�s−s���, where the term

with the delta function accounts for the local friction,
� is the solvent viscosity, and

Q�s� =
���s� − d�

3
�
� 3

2
��s�
exp�−

3d2

2��s�	 . �11�

Here, the Heaviside step function � is introduced to
exclude self-interactions and d is the thickness of the
molecule.14,24

�ii� Rodlike polymer. For an infinitely thin rod, the differ-
ence between two points along the contour is r�s�
−r�s��= �s−s��u, with the unit vector u pointing in the
direction of the long rod axis. By partitioning the
Oseen tensor in components parallel and perpendicu-
lar to the rod axis, Q�r�s�−r�s���=Q�u+Q�v, where
v is a unit vector perpendicular to u, we arrive at

Q��s� = Q��s�/2 =
���s� − d�

8
��s�
. �12�

To solve the equation of motion with either Eq. �11� or
�12�, an eigenfunction expansion in terms of the eigenfunc-
tions of the eigenvalue equation

�kBT
d4

ds4n�s� − 2�kBT
d2

ds2n�s� = �nn�s� �13�

is used. The eigenfunctions are given by

0 =�1

L
,

n�s� =�cn

L
��n�

sinh �n�s

cosh �n�L/2
+ �n

sin �ns

cos �nL/2
	, ∀ n odd,

n�s� =�cn

L
��n�

cosh �n�s

sinh �n�L/2
− �n

cos �ns

sin �nL/2
	, ∀ n even.

�14�

The cn’s follow from the normalization condition. The wave
numbers �n and �n�, where �n�

2−�n
2=4p2, are determined by

the boundary conditions �9� and �10� and are related to the
eigenvalues via �n=kBT���n

4+2��n
2�. 0 describes the transla-

tional motion of the whole molecule.
In the limit pL�1, the eigenfunctions and eigenvalues

�n�1� agree with those of the weakly bending rod model49

for d̂=2. However, it is important to keep in mind that the
first mode of the above model is finite for 0� pL�1 and
hence is different from the pure rotational mode of the
Aragón and Pecora model49 �cf. Fig. 1 of Ref. 3�. As we have
shown in Ref. 3, the first mode corresponds to the rotational
motion of the rodlike object in the limit pL→0. Hence, the
Gaussian semiflexible polymer model not only captures the
bending modes but also the rotation of a rodlike object. This
will be important for the further discussion of the polymer
dynamics.

In the limit pL�0.1, the eigenfunctions read explicitly
as
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n�s� =�1

L
� sinh �ns

sinh �nL/2
+

sin �ns

sin �nL/2
	, n � 1,odd,

�15�

n�s� =�1

L
� cosh �ns

cos �nL/2
+

cos �ns

cos �nL/2
	, n � 1,even.

�16�

With �n= �2n−1�
 /2L �n�1�, the corresponding eigenval-
ues are

�n =
�
4�2n − 1�4kBT

16L4 , �17�

i.e., the well-known cubic dependence is obtained.3,49 In the
limit pL→0 the eigenfunction of the first mode is given by

1�s� =�12

L3 s , �18�

with the eigenvalue

�1 =
48�0kBT

L3 , �19�

which is independent of the persistence length.
The solution of Eq. �8� is then obtained by the eigen-

function expansions

r�s,t� = �
n=0

�

�n�t�n�s�, ��s,t� = �
n=0

�

�n�t�n�s� , �20�

which yields

�

�t
�n�t� = �

m=0

� �Qnm +
	nm

3
�
	�−

3
�

�m
�m�t� + �m�t�	 .

�21�

The �n’s are the relaxation times in the free draining limit
and are related to the eigenvalues �n via �n=� /�n, where �
=3
� is the friction constant per length. The Qnm’s are the
matrix elements of either the preaveraged Oseen tensor
Q�s−s�� �Eq. �11�� or Q��s−s�� �Eq. �12��—depending on
the applied approximation—in terms of the eigenfunctions
n�s�. A numerical calculation shows that the matrix Qnm is
almost diagonal over the whole range of the flexibility pa-
rameter pL.54 Hence, Qnm�	nmQnn and the stationary state
solution for �n�t� is easily obtained as

�n�t� =
�n

3
��̃n
�

−�

t

e−�t−t��/�̃n�n�t��dt�, �22�

with the relaxation times

�̃n =
�n

1 + 3
�Qnn
. �23�

The time correlation functions of appropriate polymer
properties are often required when the above results are ap-
plied to experimental measurements. Many of these correla-

tion functions can simply be obtained from the correlation
functions of the amplitudes �n. A straightforward calculation
yields


�n�t��m�0�� =
kBT


�
�n	nme−t/�̃n, n,m � 0. �24�

Evidently, the correlation function can be reformulated as

�n�t��m�0��= 
�n�0��m�0��e−t/�̃n, with 
�n�0��m�0��
=kBT�n	nm /
�. This seemingly simple interrelation has im-
portant consequences for the further analysis of the weakly
bending rod dynamics. First of all, the extension of the
weakly bending rod equations of motion49 by the term con-
taining � �cf. Eq. �8�� leads to much simpler normal mode
amplitude correlation functions than those obtained by
Aragón.49–51 In particular, the various modes form an or-
thogonal set. The reason is the more adequate treatment of
the first mode, which is artificially introduced in the weakly
bending rod model.49 Note, in the limit of a flexible polymer,
the weakly bending rod model is not applicable. Secondly,

�n�0��m�0�� is an equilibrium average and is not at all re-
lated to the polymer dynamics. There are various ways to
determine the equilibrium average.49 For the considered
Gaussian model, the eigenfunction expansion �Eq. �20�� di-
agonalizes the exponent in the partition function �Eq. �2��.
The average is then easily calculated as 
�n�0��m�0��
=3kBT	nm /�n, in agreement with Eq. �24�. Note, since this is
an equilibrium average, the Lagrangian multipliers �Eq. �3��
with d̂=3 have to be used in the expression for �n �Eq. �17��.
For pL�1, the correlation functions for modes with n�1
are then given by


�n�0�2� =
64pL4


4�2n − 1�4 . �25�

This relation will turn out to be useful in the calculation of
the mean square displacement of the polymer.

III. MEAN SQUARE DISPLACEMENT

The mean square displacement of the point s is given by


�r�s,t�2� = 
�r�s,t� − r�s,0��2�

= 
�rcm�t�2� + 6kBT�
n=1

�

�n
−1n�s�2�1 − e−t/�̃n� .

�26�

The segmental mean square displacement consist of two
parts, a contribution from the center-of-mass motion

�rcm�t�2� and a term capturing the intramolecular dynamics.
Later on, the mean square displacement averaged over the
polymer contour �
�r�t�2�=�
�r�s , t�2�ds /L� will be used,
which reads


�r�t�2� = 
�rcm�t�2� +
6kBT

L
�
n=1

�

�n
−1�1 − e−t/�̃n� . �27�
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A. Center-of-mass mean square displacement

The center-of-mass mean square displacement of a rod-
like object is related to the diffusion coefficient D via


�rcm�t�2� = 6Dt = �4D� + 2D��t , �28�

where D� and D� denote the diffusion coefficients parallel
and perpendicular to the rod axis.19,52 From the equation of
motion for rcm, the expression

D� =
kBT

3
�L
+

kBT

L2 �
−L/2

L/2 �
−L/2

L/2

Q��s − s��dsds� �29�

is obtained, when the Oseen tensor components of Eq. �12�
are used. Analogously, the coefficient D� follows when Q� is
replaced by Q�. Evaluation of the integrals yields

D� = D�/2 =
kBT

4
�L
ln�L/d� , �30�

for L /d�1. �Note, a more precise hydrodynamic calculation
for a cylinder gives corrections.19,52,55� The diffusion coeffi-
cient then reads

D =
kBT

3
�L
ln�L/d� . �31�

�The same expression is obtained, if the spacial averaged
Oseen tensor Q=I���s�−d� /6
��s� is used right from the
start.� Since D� is twice as large as D�, both components
have to be taken into account in the analysis of the large
scale dynamics of rodlike polymers. It is not possible to fo-
cus on the transverse diffusion only.15 As soon as the center-
of-mass diffusion is relevant for the overall rod motion, both
components are equally important.

Within the preaveraging approximation, the same type of
calculation yields

Dp =� 6




kBT

3
�L
ln�L/d� =� 6



D , �32�

i.e., Dp is about 40% larger than the diffusion coefficient of a
rod.

Since the approximation used to derive Eq. �12� applies
in the rod limit only and the preaveraging approximation is
suitable for flexible polymers, there is a crossover from D to
Dp for certain persistence lengths. It remains to be shown at
which lp this crossover occurs.

B. Intramolecular mean square displacement

Equilibrium properties at all stiffnesses as well as dy-
namical properties for flexible polymers14,16 are calculated in

three dimensional space, i.e, d̂=3 is used in Eq. �3�. In the
limit of a weakly bending rod, fluctuations along the rod axis
are suppressed, because of the inextensibility constraint, and
the dynamics is essentially two dimensional—transverse to
the main rod axis.49 Thus, the Lagrangian multipliers

�Eq. �3�� with d̂=2 have to be used for the calculation of the
relaxation times �̃n, and the parameter �=1/2p corresponds
to that of the Kratky-Porod model.40 The relaxation times �̃n

are then given by

�̃n =
96�pL4


3kBT�2n − 1�4

1

1 + 3
�Qnn
� , �33�

for pL�1 and n�1, and the Oseen tensor transverse to the
rod axis �Eq. �12��. For large mode numbers n and for d /L
�1, the matrix elements Qnn

� are approximately given by

Qnn
� =

1

4
�
�

d

L cos �ns

s
ds = −

C + ln��nd�
4
�

, �34�

where C=0.5772¯ is Euler’s constant, which leads to

�̃n =
8�pL4


3kBTn4 ln�L/n
d�
. �35�

These relaxation times agree with those of Refs. 25 and 26
for p=1/2lp.15

In the preaveraging approximation, the relaxation times
�̃n

p= �̃n
�3
 /32 are obtained by the same procedure. Hence,

preaveraging underestimates the relaxation times by almost a
factor of 2.

The rotational relaxation time follows from the correla-
tion function 
u�t�u�0��.19,52 In the limit pL→0, only the
first mode contributes to the relaxation,17 which yields, with
the eigenfunction �Eq. �18�� and the equilibrium correlation
function 
�1

2�,


u�t�u�0�� = e−t/�̃1. �36�

Hence, the rotational relaxation time is given by �r= �̃1 and
the rotational diffusion coefficient is Dr=1/2�̃1.19 Similar to
the calculations for n�1, the relaxation time itself reads

�̃1 =

�L3

6kBT ln�L/d�
�37�

for L /d�1 and �=1/2p. This relaxation time is, to leading
order, identical with the relaxation time of a rigid rod.19,52,55

Putting all pieces together, the following averaged seg-
mental mean square displacement �27� is obtained:


�r�t�2� = 6Dt +
L2

6
�1 − e−t/�̃1�

+
8pL3


4 �
n=2

�
1

�n − 1/2�4 �1 − e−t/�̃n� , �38�

in the limit pL�1 and L /d�1. Apart from the factor 1 /2 for
the mode numbers, the sum over modes in Eq. �38� agrees
with the mean square displacement provided in Ref. 15. The
latter total mean square displacement applies to the dynamics
transverse to the rod axis only, whereas Eqs. �26� and �38�
yield the segmental mean square displacement averaged over
all rod orientations. In particular, no extra consideration of
the mean square displacement parallel to the rod axis is nec-
essary for the provided approach. More importantly, Eqs.
�26� and �38� capture the rotational motion of the semiflex-
ible polymer.

For t / �̃2�1, a large number of modes contribute to the
mean square displacement. Converting the sum of modes
into an integral, Eq. �38� reads
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�r�t�2� = 6Dt +
L2

6
�1 − e−t/�̃1�

+ 0.27� kBTp1/3 ln�L/
d�
�

t3/4

, �39�

for �pd4 /kBT� t��pL4 /kBT. As expected, the well-known
t3/4 dependence of the intramolecular mean square displace-
ment is reproduced.17,21–26 The logarithm captures the hydro-
dynamic interactions, where ln�L /n
d�� ln�L /
d� �Eq.
�35�� has been used. By an iteration procedure, the depen-
dence of �̃n �Eq. �35�� on the mode number can be taken into
account. A first iteration step turns the t3/4 term of Eq. �39�
into 0.097 �kBTp1/3t ln�kBTt ln�L /
d� /8
�pd4� /��3/4 in ac-
cordance with the expression derived in Ref. 25.15

IV. FCS CORRELATION FUNCTION

FCS �Refs. 11 and 56–63� is a powerful experimental
technique to study the diffusional motion and intramolecular
dynamics of fluorescently labeled molecules at nanomolar
concentration.16 In FCS, the fluctuations of the fluorescent
light intensity I�t�= 
I�+	I�t� are detected via the correlation
function,

g�t� =

	I�t��	I�t� + t��


I�2 . �40�

In the absence of additional photophysical processes and
chemical reactions, the fluorescence signal fluctuates due to
the Brownian motion of the labeled particles through a
femtoliter-size volume whose shape can be approximated by
a three dimensional Gaussian,64

W�r� = W0 exp�− 2
x2 + y2

r0
2 	exp�− 2

z2

z0
2	 , �41�

with the lateral and axial extensions r0 and z0, respectively.
Adopting the approach of Ref. 65, the FCS correlation can
then be written as

g�t� =
1

c̄Veff

� ��q�S�q,t�d3q

� ��q�d3q
, �42�

where ��q�=FT�W�r��qFT�W�r��−q is the filter function in
Fourier space and S�q , t� is the dynamic structure factor. c̄ is
the mean particle concentration and Veff=
3/2r0

2z0
2 the so-

called effective volume.
For the theoretical study, it is convenient to normalize

the correlation function in such a way that it is unity at t
=0. Hence, the correlation function

G�t� =
� ��q�S�q,t�d3q

� ��q�S�q�d3q
, �43�

with S�q�=S�q ,0�, will be considered in the following.
In Sec. II, a continuum description of a rodlike polymer

is adopted. Still, a polymer with a finite number of labels can
be described. The dynamic structure factor appearing in the
FCS correlation function �Eq. �43�� has just to be evaluated
taking only the labeled parts of the polymer into account.14

Here, we limit the discussion to a fully labeled polymer,

i.e., a polymer with a continuous distribution of labels. The
dynamic structure factor is then given by14,19

S�q,t� =
1

L2�
−L/2

L/2 �
−L/2

L/2


exp�− iq�r�s,t� − r�s�,0����dsds�,

�44�

where q is the scattering vector. Since the distribution of
distance is Gaussian in the applied model �cf. Sec. II�, the
dynamic structure factor is easily calculated as14,19

S�q,t� =
1

L2�
−L/2

L/2 �
−L/2

L/2

exp�−
q2

6
��s,s�,t�	dsds�, �45�

where

��s,s�,t� = 
�r�s,t� − r�s�,0��2�

= 6Dt + ��s − s��

+ 6kBT�
n=1

�

�n
−1n�s�n�s���1 − e−t/�̃n� , �46�

and � is defined in Eq. �4�. �Note, similar to the mean square
displacements �26� and �38�, �n has to be determined with

d̂=3 and �̃n with d̂=2.� Integration over the q vector in Eq.
�43� yields then the expression14

G�t� = g0
−1�

−L/2

L/2 �
−L/2

L/2 �1 +
2��s,s�,t�

3r0
2 	−1

��1 +
2��s,s�,t�

3z0
2 	−1/2

dsds�, �47�

with

g0
−1 = 2�

0

L

�L-s��1 +
2��s�
3r0

2 	−1�1 +
2��s�
3z0

2 	−1/2

ds . �48�

For large chain lengths L�r0, the double integral is
dominated by contributions with s�s� and hence is well
approximated by a single integral.14,17,19 The expression
��s ,s� , t� is then given by ��s ,s� , t�=��s−s� , t�=��s−s��
+ 
�r�s , t�2�, with the mean square displacement Eq. �26�.
Replacing 
�r�s , t�2� by its average over the polymer contour
�Eq. �27��, the following analytical expression for the FCS
correlation function is obtained for a rodlike polymer
���s��s2�:

G�t� =
2Lfg0

−1

�h1

� 3r0
2

2�f2 − 1�
arctan��2L2�f2 − 1�

3r0
2h1h3

	
−

3r0
2fg0

−1

2�f2 − 1
ln��f2 − 1 − �h3

�f2 − 1 + �h3

�f2 − 1 + �h2

�f2 − 1 − �h2
 ,

�49�

with the abbreviations

h1 = 1 +
2
�r�t�2�

3r0
2 , �50�
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h2 = f2 +
2
�r�t�2�

3r0
2 , �51�

h3 = f2 +
2L2

3r0
2 +

2
�r�t�2�
3r0

2 , �52�

and f =z0 /r0. A similar, but more specific, expression has
been derived in Ref. 14 �Eq. �50��, because an approximation
has been used for the mean square displacement. The equa-
tion for g0

−1 �Eq. �48�� illustrates that the transformation from
a double to a single integral66 yields a term �L-s�. The loga-
rithmic term in Eq. �49� originates from the s part of that
term. In Ref. 14, this contribution has been neglected.

No particular model for the polymer dynamics has been
used to derive Eq. �49�. Hence, by comparing the correlation
function with experimental results, the averaged segmental
mean square displacement can be determine in a model in-
dependent manner.

In Ref. 15, a different strategy is followed for the calcu-
lation of the FCS correlation function. The segmental dis-
placement is split into components parallel and perpendicular
to the main rod axis. Then, the ensemble average of

e−iq�r�s,t�−r�s,0��� is calculated for a fix q. Finally, G is aver-
aged over all possible rod orientations and q’s. This approach
neglects the rotational diffusion of the rod and thus applies at
short times only. Strictly speaking, only the intramolecular
dynamics is correctly described, since all dynamical quanti-
ties on the time scale of the rotational relaxation time, which
is the longest intramolecular relaxation time, lack the contri-
bution of rotational diffusion. Nevertheless, a FCS correla-
tion function similar to Eq. �49� is derived. Both expression
formally agree in the limit L→� and by neglecting the loga-
rithmic term in Eq. �49�. Still, the mean square displace-
ments differ by the rotational motion. In the current study,
the rotational motion is taken into account and, thus, a sepa-
ration of the dynamics parallel and perpendicular to the rod
axis is not possible. Nevertheless, in both approaches the
weakly bending rod dynamics transverse to the rod axis �Eq.
�38�� is taken into account.

For rods of finite length, the arctan term is not contrib-
uting to the decay of the correlation function as long as

�r�t�2��L2+3f2r0

2 /2. Thus, the expression of Ref. 15 is
only applicable as long as the root mean square displacement
is smaller than the length of the semiflexible polymer. Natu-
rally, the correlation function of Ref. 15 is model indepen-
dent in the same spirit as expression �49�.

As is well known, the translational and rotational diffu-
sions are coupled in the dynamic structure factor of a
rod.52,67–71 Since the basis of the current analysis is a linear
Langevin equation, this coupling is lost. The question, how
severely the dynamic structure factor of the semiflexible
polymer—and hence the FCS correlation function—is af-
fected by this approximation remains to be clarified. How-
ever, I would expect that the coupling is less relevant for a
semiflexible polymer than for a rigid rod.

V. RESULTS AND DISCUSSION

The analysis of the intramolecular dynamics requires rod
lengths L�r0.14 For polymers with a radius of gyration

rg

2�1/2�r0, the overall translational motion only is measured.
Hence, polymers which satisfy the criteria lp�L�r0 will be
considered in the following.

If not otherwise stated, the full numerical solution of the
eigenvalue equation �13� is used to calculate dynamical
quantities, i.e., the eigenfunctions �Eq. �14�� and eigenvalues
with the wave numbers determined by the boundary condi-
tions �9� and �10�. Moreover, the matrix elements Qnn

� for the
relaxation times �̃n �Eq. �23�� are numerically calculated with
the same exact eigenfunctions.

A. Mean square displacement

To demonstrate the usefulness of the approximations de-
rived in Sec. III, an example for the mean square displace-
ment �Eq. �27�� is provided in Fig. 1. For the polymer the
following parameters are used: L=10 �m, lp=50 �m, and
L /d=106. This yields pL=0.1, which implies that the poly-
mer is rodlike.17 For the thickness a rather small value is
used to reduce the influence of finite size correction terms.

FIG. 1. �Color online� Mean square displacement �MSD� of a semiflexible
polymer �pL=0.1� according to Eq. �27�. The top line is the total MSD, the
bottom line the center-of-mass MSD, and the curve reaching a plateau the
intramolecular MSD. The dotted line is the intramolecular part of the ana-
lytical expression �39� �last term�. The dashed line is the MSD of the rota-
tional motion of a rod �Eq. �53��.

FIG. 2. FCS correlation functions for semiflexible polymers of various
lengths: L=0.5, 1, 2, 5, and 10 �m. The solid lines are determined including
all modes �polymer length increases from left to right�, whereas for the
dotted lines the center-of-mass motion is omitted �length increases from top
to bottom�.
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The parameters for the optical trap are r0=0.2 �m and f =5.
The temperature is T=300 K and the viscosity �
=10−3 N s/m2.

Figure 1 shows that the bending modes determine the
mean square displacement for t�102 �s. For larger times
the center-of-mass mean square displacement and the rota-
tional motion contribute to 
�r2�. The intramolecular mean
square displacement saturates for times larger than the rota-
tional relaxation time t�0.1 s. The dashed line shows that in
this time range the intramolecular mean square displacement
is well described by the rod rotational motion,19,55


�rrr
2 � =

L2

6
�1 − e−t/�rr� ,

�53�

�rr =

�L3

6kBT�ln�L/d� − 0.66�
.

The dotted line is the analytical approximation �Eq. �39��
�term with the logarithm only� for the weakly bending rod
dynamics. This expression evidently captures the time de-
pendence almost quantitatively. The slight shift to smaller
times reduces for larger persistence length and larger L /d
ratios.

B. FCS correlation function

The dependence of the FCS correlation function of semi-
flexible polymers on chain length has been discussed in de-
tail in Ref. 14. In that article, the relaxation times �̃n are

calculated with d̂=3 rather than d̂=2 �cf. Eqs. �3�� and the
preaveraging approximation is applied. However, the quali-
tative behavior of G�t� is not affected by that difference,
therefore, the focus of the present article is on the influence
of the rotational relaxation time on the FCS correlation func-
tion.

For the analysis of the FCS correlation function, the
same parameters as in the previous section �Sec. V A� are
used. Figure 2 displays FCS correlation functions for the
polymer lengths L=0.5, 1, 2, 5, and 10 �m. This length
range corresponds to pL=0.005–0.1, well in the rodlike re-
gime. Correlation functions �Eq. �47�� with the full expres-
sion for � �Eq. �46�� are presented, as well as correlation
functions comprising the intramolecular dynamics only,
i.e., the term 6Dt is omitted. An increase of the polymer
length leads to a shift of the correlation function to large
times �at least for the considered lengths�. The reason is that
the center-of-mass motion of the polymer contributes signifi-
cantly to the decay of the correlation function, which is evi-
dent from the dotted lines. Since the diffusion coefficient D
�Eq. �31�� decreases with increasing length, and the correla-
tion function decays when the polymer mean square dis-
placement is on the order of r0

2, i.e., 
�r2��r0
2 �cf. Eq. �49��,

the characteristic decay time is proportional to 1/D and
therefore increases with the polymer length. The behavior
changes as soon as the intramolecular dynamics dominates
the mean square displacement. First, the rotational diffusion
yields a significant contribution, because it increase as L2

�Eq. �39��. This applies as long as t��̃1 �Eq. �37��. Since �̃1

increase very strongly with the polymer length ��L3�, the

rotational diffusion exhibits ultimately the same length de-
pendence as the diffusion coefficient D on time scales t
��̃1. Thus, for a very long rod, the sum of the rotational and
translational diffusion coefficient will contribute to the decay
of the correlation function. Only for t��̃1, the translation
diffusion will be measured. The contribution of the bending
modes increases very slowly with L, namely, as �ln L /d�3/4

�Eq. �39��. It dominates the correlation function when the
center-of-mass mean square displacement together with the
rotational contribution is much smaller than the intramolecu-
lar mean square displacement, which requires very long rod-
like polymers, and applies for times t�r0

2 / �6D+L2Dr /3�.
Figure 3 shows FCS correlation functions with �solid

lines� and without �dotted lines� the contribution of the rota-
tional motion for the polymer lengths L=0.5, 1, 2, and
20 �m. There is a pronounced influence of the rotational
motion on the decay of the correlation function for this
length range. For L=0.5 �m, the bending modes do not con-
tribute to the decay of the correlation function; their contri-
bution is even negligible for L=1 �m. This is evident from
the correlation functions evaluated with the bending modes
only �inset�—they are almost identical to unity for L
=0.5 �m and L=1 �m. Here, the difference between the
curves with and without the first mode directly reflects the
influence of the rotational motion. With increasing polymer
length, higher modes gain more weight. For L=20 �m,
bending modes already contribute significantly to the decay
of the correlation function. As discussed above, for even
longer polymers, bending modes will solely determine the
shape of G�t�. As displayed in the figure, the rotational mo-
tion affects G�t� at short times for short polymers and shifts
to longer times with increasing polymer length. Hence, in a
certain range of polymer lengths, the rotational diffusion co-
efficient can be determined from the FCS correlation func-
tion. For the considered parameters, the length range covers
L�0.5–50 �m. Since various biological semiflexible poly-

FIG. 3. FCS correlation functions for semiflexible polymers of various
lengths: L=0.5, 1, 2, and 20 �m �from left to right�. The solid lines are
determined including all internal modes, whereas for the dotted lines the
first mode �rotational motion� is suppressed. The inset shows the same com-
parison without center-of-mass motion �length increases from top to bot-
tom�. The two shortest lengths yield G�t�=1 and are hence indistinguishable
in the inset.
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mers such as actin filaments or fd viruses are of that length
range, FCS opens the possibility to measure their rotational
dynamics.

C. Comparison with experimental results

In Ref. 15, experimental measurements of the FCS cor-
relation function and the extracted mean square displacement
of fully labeled actin filaments are presented. To determine
molecular parameters, an analytical expression for the mean
square displacement derived in Refs. 25 and 26 is used and
fitted to the mean square displacement. Since this expression
uses a simplification for the mode number dependence valid
for large modes only and does, strictly speaking, not include
the rotational motion, a comparison with results derived in
the current article will shed light on the relevance of long
relaxation times �small mode numbers� for the decay of the
FCS correlation function.

The parameters of the last sections are adopted to those
of actin filaments, i.e., the persistence length lp=17 �m and
the thickness d=7 nm are used. The parameters of the ex-
perimental setup are r0=0.21 �m and f =5.24.15

Here, the following strategy is followed to gain molecu-
lar parameters from the experimental data. The correlation
function �Eq. �47�� is adjusted to the experimental results
using two parameters, the length L of the polymer and a
factor � adjusting the time scale. The latter factor simulta-
neously adjusts the diffusion coefficient and the relaxation
times. Then, this function is compared with the analytical
expression �49� to test the validity of the applied approxima-
tions.

The experimental results, taken from Ref. 15 for the ho-
mogeneously labeled actin filaments, are presented in Fig. 4
together with the correlation function �Eq. �47�� determined
by the full solution of the eigenvalue problem. �For normal-
ization, the experimental data for G are divided by
2.75�10−7 cps2.� Good agreement is obtained for L
�20 �m �pL=0.58� and �=4/5. Only for t�102 ms is the
experimental correlation function smaller than the theoretical
G�t�.

Figure 5 displays the numerically determined FCS cor-
relation and the analytical approximation �Eq. �49�� with

�r2� determined via Eq. �27�. The approximation repro-

duces the exact expression rather well; however, there is a
shift to smaller times by approximately 10% in the visible
time window. In the limit t→�, both functions are equal.
This shift becomes smaller for stiffer polymers.

With the length L=20 �m, the mean square displace-
ment �Eq. �27�� is calculated and compared with the experi-
mental data of Ref. 15 in Fig. 6. Good agreement is obtained
up to t�0.5 s. This verifies the procedure applied in Ref. 15.
However, in order to match the theoretical and experimental
time scales, I divided the experimental scale by 1.7. The
reason is not evident to me, because the FCS correlation
function determined with the same mean square displace-
ment reproduces the full correlation function well �cf. Fig. 5�
with a scale factor of only 1.1.

The theoretical correlation function provides the follow-
ing estimates of the diffusion coefficient and rotational relax-
ation time: D�0.23 �m2/s and �̃1�87 s. The latter yields
the rotational diffusion coefficient Dr=1 /2�̃1�0.0057 s−1.
For a rod, the expression for the translational diffusion coef-
ficient: Dtr=kBT�ln�L /d�+0.32� / �3
�L� yields the �spacial
averaged� value Dtr�0.18 �m2/s, which is approximately
20% smaller than the value extracted from the measure-
ments. The rotational diffusion coefficient follows as Drr

=1 /2�rr=0.0036 s−1 �Eq. �53�� and is approximately 45%
smaller. The increase in the diffusion coefficients is expected

FIG. 4. �Color online� FCS correlation function of actin filaments. The
scattered curve is taken from the experimental results presented in Ref. 15
and the smooth line has been calculated using Eqs. �46� and �47�. The
filament length is L=20 �m, lp=17 �m, and the thickness d=7 nm.

FIG. 5. Comparison of the exact theoretical FCS correlation function of
actin filaments �solid line� with the analytical approximation �49� �dotted
line�.

FIG. 6. �Color online� Average mean square displacement �Eq. �27�� of actin
filaments. The top solid line is the theoretical result of the total mean square
displacement and the bottom line is the mean square displacement in the
center-of-mass reference frame. The symbols are experimental values taken
from Ref. 15. Note, the time scale of the experiment is devided by 1.7.
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for semiflexible polymers, since the longest relaxation time
decreases with decreasing persistence length and the diffu-
sion coefficient increases with increasing flexibility.17 Nev-
ertheless, the long time motion of the actin filaments agrees
reasonably well with the dynamics of a rod.

The analysis reveals a strong influence of the rotational
relaxation time on the decay of the correlation function. The
quantitative difference is similar to that in Fig. 3 for the
length L=20 �m. For t��̃1, the contribution of the rota-
tional motion to the mean square displacement is L2Dr /3
�0.8 �m2/s, which is rather close to the center-of-mass
contribution 6D�1.4 �m2/s and hence cannot be neglected.
These figures suggest that the bare intramolecular motion
should be visible for t�20 ms. Figure 6 confirms the esti-
mate and exhibits the dominance of the bending modes for
t�0.1 ms.

The length of the actin filaments is used as a fit param-
eter. However, this length is not well defined, since actin
filaments are living polymers, which grow or shrink in the
course of time. In Ref. 15, the length of the actin filaments
has been measured by fluorescence microscopy which gave
lengths in the range of 4–8 �m. The extracted length over-
estimates these values by a factor of 2–5. Similarly, the
length L�2.25 �m determined in Ref. 15 underestimates the
length by a similar factor. The difference between the experi-
mental FCS correlation function and the theoretical curve in
Fig. 4 for t�0.1 s could be related to changes in the filament
length; the smaller experimental value would be consistent
with a shorter polymer length. Thus, for a basic understand-
ing of the dynamics of rodlike polymers, it is desirable to
measure the dynamics of well-defined samples, which do not
change in length or any other property during the FCS ex-
periment. Only then, the validity of one or the other theoret-
ical model can unambiguously be verified.

Finally, I would like to comment on a few aspects.
The analytical expression for the correlation function de-

rived in Ref. 15 �Eq. �20�� applies in the limit L→�, as
clearly said there. As discussed in Sec. IV, Eq. �49� suggest
that this limiting behavior applies as long as 
�r�t�2��L2

+3f2r0
2 /2. The parameters of that paper imply 
�r�t�2�

�7 �m. Thus, the mean square displacements at large times
might not be accurate anymore. The situation is different for
a filament length of L=20 �m, where 
�r�t�2��400 �m.

The difference in the polymer length—L=2.25 �m in
Ref. 15 and L=20 �m in the current article—is to a less
extent related to the neglect of the rotational motion �no
strict separation of rotation and bending modes is made in
Ref. 15� than to the treatment of the mode numbers in gen-
eral. As is well known,3,49 the wave numbers of a weakly
bending rod exhibit the dependence �n= �2n−1�
 /2L
�n�1� �Eq. �17�� and not �n=n
 /L. In Ref. 15, the latter
relation is used. The difference does not matter as long as
only large mode numbers are considered, which is the case
for time scales t��̃2, i.e., time scales where the intramolecu-
lar dynamics dominates the mean square displacement.25,26

However, for not too long polymers, the decay of the FCS
correlation is determined by relaxation times with small
mode numbers, in particular, the rotational relaxation time

and the center-of-mass motion. Here, the difference matters
because of the strong dependence of the relaxation times on
�n �Eq. �17��.

Another aspect is the appropriate diffusion coefficient D.
The spacial average �Eq. �28�� is used in the current article.
As soon as the center-of-mass motion contributes to the de-
cay of the FCS correlation function, its transverse and paral-
lel components have to be taken into account, because they
differ by only a factor of 2 �Eq. �29��.

VI. CONCLUSIONS

The dynamics and the FCS correlation function have
been theoretically described for weakly bending polymers.
Particular attention has been paid to the influence of the ro-
tational motion on the decay of the correlation function.
Moreover, an analytical expression has been derived which
relates the FCS correlation function to the segmental mean
square displacement independent of any particular model for
the polymer dynamics.

The applied Gaussian semiflexible polymer model in-
cludes the bending modes as well as the rotational dynamics
in a coherent manner and thus yields consistent normal mode
amplitude correlation functions in contrast to previous
weakly bending rod models.49–51 The detailed analysis exhib-
its a strong influence of the rotational motion on the time
dependence of the FCS correlation function for a certain
range of polymer lengths. Since actin filaments or fd viruses
are within that length scale, FCS provides the opportunity to
measure their rotational diffusion coefficient. The bending
dynamics, on the other hand, is only determining the initial
decay of the correlation function and is hence difficult to
characterize quantitatively in that length range. A compari-
son of the theoretical FCS curve with experimental results on
actin filaments15 exhibits good agreement and the extracted
translational and rotational diffusion coefficients are close to
those of a rod. Since the relaxation times for small mode
numbers determine the decay of the correlation function, the
dependence of the wave numbers �n on n has to be taken into
account adequately.

As is apparent, a semiflexible polymer model is required
to determine the molecular parameters. The FCS correlation
function itself or the extracted mean square displacement,
e.g., via Eq. �49�, can be fitted by the model. Various as-
sumptions are required to derive the analytical expression
relating the correlation function to the mean square displace-
ment of a multilabeled polymer. Thus, we prefer and recom-
mend to directly fit the model to the FCS correlation func-
tion. In contrast, for a single labeled polymer, the segmental
mean square displacement is easily obtained.13,14,16

Actin filaments grow or shrink during an FCS experi-
ment and their length is not well defined. Experimental stud-
ies of well-defined weakly bending rod systems are required
to provide a standard. Only such a standard allows for an
unambiguous verification of a particular theoretical model,
which is necessary to elucidate its ability to correctly yield
the desired molecular parameters. It is hoped that the current
theoretical studies will stimulate such measurements.
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