
J
H
E
P
1
0
(
2
0
1
9
)
0
6
8

Published for SISSA by Springer

Received: July 5, 2019

Revised: September 10, 2019

Accepted: September 15, 2019

Published: October 7, 2019

Diffusion and universal relaxation of holographic

phonons

Andrea Amoretti,a,b Daniel Areán,c Blaise Goutérauxd and Daniele Mussoe
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1 Introduction

One of the most celebrated results originating from Gauge/Gravity duality [1–4] is the

computation of the shear viscosity of the N = 4 super Yang-Mills plasma at infinite N (N

is the rank of the gauge group) and ’t Hooft coupling in terms of the entropy density of

a dual black hole in anti de Sitter spacetime, η = s/4π (in natural units) [5]. This was

conjectured to place a lower bound on the ratio η/s & 1/4π for strongly-coupled phases of

matter [6]. Recalling that the entropy density is proportional to the area of the bulk black

hole, this relation is universal in the sense that the complicated dependence on the boundary

sources is encapsulated as a simple combination of data defined at the black hole horizon [7].

In a relativistic plasma, which is described at long wavelengths by relativistic hydrody-

namics (see [8] for a review of relativistic hydrodynamics), the shear viscosity controls the

diffusion of transverse momentum D⊥ = η/(ǫ + p), where ǫ and p are the energy density

and pressure.
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At nonzero density, relativistic hydrodynamics predicts the existence of another, inco-

herent diffusion constant σ0, associated to processes without any momentum drag. This

diffusivity can also be computed in terms of horizon data [9–11], as well as the thermal

diffusivity that governs energy diffusion [12].

Taken together, these results point at an interesting link between universal low energy

transport properties (diffusivities) and the dynamics close to black hole horizons.

These results have been extended to less symmetric cases describing inhomogeneous

states, such as the so-called holographic lattices that break translations explicitly with

a periodic potential [13–15]. At long distances, charge and energy diffuse in these inho-

mogeneous systems [16, 17]. The diffusivities are proportional to the dc thermoelectric

conductivities of the system via Einstein relations, which relates them to horizon data

under very general assumptions [18].

More recent developments have considered the effect of breaking translations sponta-

neously in one or more spatial directions, which can be implemented either in a homoge-

neous1 [19–22] or an inhomogeneous way [23–28]. In either case, the incoherent conductiv-

ity and associated diffusivity of the boundary theory can be expressed in terms of horizon

data for thermodynamically stable phases [21, 22, 29, 30]. For thermodynamically unstable

phases, the incoherent conductivity also features an integral over the whole spacetime of

some combination of background fields.

The effective theory [31, 32] capturing the low energy dynamics of such states with

spontaneous translation symmetry breaking contains more than the two characteristic dif-

fusivities just mentioned, due to the presence of additional gapless degrees of freedom (the

Goldstones of spontaneous translation symmetry breaking or in other words, the phonons)

and their mixing with charge and energy fluctuations. The theory of Wigner crystal (WC)

hydrodynamics is succinctly reviewed in section 2 and the diffusivities we are interested in

are presented there. Then, in section 3, we give some details of our holographic setup. A

first objective of this work is to extend previous analyses and show that all of these diffu-

sivities can be expressed in terms of the background black hole solution, by a combination

of data on the horizon and on the rest of the spacetime. This is done in section 4, and our

main new results are equations (4.18) and (4.19).

Positivity of entropy production in WC hydrodynamics places a bound on a combina-

tion of the diffusivities, see equation (2.9). The holographic diffusivities obey this bound,

as we discuss in section 5. Interestingly, this bound can be saturated at low temperatures.

This obtains when the phonons relax into the heat current and leads to simple relations

between the diffusivities. We expect this universal relaxation channel to be at play in

generic states of matter at finite temperature. We give a criterion for the saturation of this

bound as a function of the values of the scaling exponents characterizing the infra-red fixed

point of the system and the irrelevant deformations away from it. Universal relaxation of

phonons into a hydrodynamic operator has also been recently discussed in the context of

the melting of the field-induced Wigner solid in [33].

1The broken translation generator then combines with an internal symmetry such that a diagonal com-

bination is preserved.
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In section 6, we conclude with an analysis of the spectrum of the system at nonzero

wavevector by computing the longest-lived pair of transverse quasinormal modes (QNMs)

of the dual black hole. We show that they obey the expected dispersion relation from WC

hydrodynamics. At low wavevector and intermediate temperatures, there is a pair of shear

sound modes, characteristic of the long wavelength dynamics of solids. However, either

at very low or very high temperatures, these modes collide on the imaginary frequency

axis and become pseudo-diffusive, with a purely imaginary gap controlled by a ratio of

thermodynamic data and diffusivities. Both collisions occur in the hydrodynamic regime

and the dispersion relation of the modes is well-captured by the hydrodynamic dispersion

relation, see equation (6.1). These results were originally presented in [34], but have been

moved and expanded upon in the present work for clarity.

We give a number of technical digressions as well as details of our numeric scheme in

some appendices.

2 Review of Wigner crystal hydrodynamics

We first recap the main features of two-dimensional isotropic Wigner crystal hydrodynam-

ics. More details can be found in [31, 32]. As translations are broken spontaneously along

both spatial directions, the usual conserved densities (energy, charge, momentum) need to

be coupled to two Goldstone modes, ϕi, i = x, y. The free energy is supplemented by terms

capturing the effect of the Goldstones:

f =
1

2
K|q · ϕq|2 +

1

2
Gq2|ϕq|2 . (2.1)

K and G are the bulk and shear moduli, and characterize the stiffness of phase fluctua-

tions around the ordered state. It is convenient to parameterize the Goldstones by their

longitudinal and transverse contributions, λ‖ = ∇ ·ϕ and λ⊥ = ∇×ϕ. The corresponding

sources s‖,⊥ are defined by requiring that λ‖,⊥ = δf/δs‖,⊥.

To leading order in gradients and keeping only linear terms, the Goldstones obey the

following ‘Josephson’ relations

∂tλ‖ = ∇ · v + γ1∇2µ+ γ2∇2T +
ξ‖

K +G
∇2s‖ + . . . ,

∂tλ⊥ = ∇× v +
ξ⊥
G

∇2s⊥ + . . . ,

(2.2)

where v is the velocity, µ the chemical potential, and γ1,2 and ξ‖,⊥ are diffusive transport

coefficients.

These equations are supplemented by current, heat and momentum conservation equa-

tions (energy can be traded for entropy to linear order):

∂tρ+∇ · j = 0 , ∂ts+∇ · (jq/T ) = 0 , ∂πi +∇jT
ji = 0 , (2.3)
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together with the constitutive relations

j= ρv−σo∇µ−αo∇T−γ1∇s‖+. . . ,
jq/T = sv−αo∇µ−(κ̄o/T )∇T−γ2∇s‖+. . . ,
T ij = δij (p+(K+G)∇·ϕ)+2G

[

∇(iϕj)−δij∇·ϕ
]

−η
(

2∇(ivj)−δij∇·v
)

+. . .

(2.4)

The underlying conformal symmetry of the holographic setup implies that the stress-energy

tensor is traceless, which sets the bulk viscosity to zero.

The hydrodynamic retarded Green’s functions at nonzero frequency and wavevector

are derived by following the Kadanoff-Martin procedure [8, 35]:

GRAB(ω, q) =MAC

[

(iω −M)−1
]

CD
χDB (2.5)

where the vevs A,B = (δρ, δs, π‖, λ‖, π⊥, λ⊥) and the corresponding sources are (δµ, δT ,

v‖, s‖, v⊥, s⊥). M is the matrix

MAB =





















σoq
2 αoq

2 iρq γ1q
2 0 0

αoq
2 κ̄o

T q
2 isq γ2q

2 0 0

iρq isq ηq2 iq 0 0

γ1q
2 γ2q

2 iq
ξ‖

K+Gq
2 0 0

0 0 0 0 ηq2 iq

0 0 0 0 iq ξ⊥
G q

2





















. (2.6)

Relativistic symmetry of the holographic setup enforces that the momentum and en-

ergy current densities must be equal π = je, which places constraints on the transport

coefficients:

αo = −µ

T
σo , κ̄o =

µ2

T
σo , γ2 = −µ

T
γ1 . (2.7)

Observe that this also means that the heat current jq ≡ je − µj = π − µj. Finally, the

susceptibility matrix is2

χAB =



















χρρ χρs 0 0 0 0

χρs χss 0 0 0 0

0 0 χππ 0 0 0

0 0 0 1
K+G 0 0

0 0 0 0 χππ 0

0 0 0 0 0 1
G



















. (2.8)

Positivity of entropy production can be ensured by requiring all the eigenvalues of the

matrix M to be positive [32], which leads to the following constraints:

η ≥ 0 , σo ≥ 0 , γ21 ≤ σo
ξ‖

K +G
. (2.9)

2We have set to zero off-diagonal terms χρλ‖
and χsλ‖

. As pointed out in appendix A of [32], they affect

the dispersion relation of modes in the longitudinal sector, but are not important here.
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Using (2.5) and identities between the Green’s functions stemming from (2.3), we obtain

in the q → 0 limit

GRTxyTxy =G−iωη , (2.10)

GRjj =
ρ2

χππ
−iωσo , GRjπ‖ = ρ, GRjϕ‖ =−γ1−

iρ

χππω
, (2.11)

GRπ‖ϕ‖ =GRϕ‖π‖ =
i

ω
, GRϕ‖ϕ‖ =

1

χππω2
−

ξ‖

K+G

i

ω
, GRϕ⊥ϕ⊥ =

1

χππω2
− ξ⊥
G

i

ω
. (2.12)

We defined e.g.

GRϕiϕj
=
qiqj
q4

GRλ‖λ‖ +

[

δij −
qiqj
q2

]

GRλ⊥λ⊥
q2

, (2.13)

and

q2GRϕ‖ϕ‖ = GRλ‖λ‖ , q2GRϕ⊥ϕ‖ = GRλ⊥λ⊥ . (2.14)

In this q = 0 limit, for an isotropic crystal, GRλ‖λ‖ = GRλ⊥λ⊥ , since there should be no

distinction between the longitudinal and tranverse phonons. This leads to the constraint

ξ‖

K +G
=
ξ⊥
G

≡ X . (2.15)

3 Holographic model

3.1 Setup

We consider the holographic model

S =

∫

d4x
√−g

[

R− 1

2
∂φ2 − V (φ)− 1

4
Z(φ)F 2 − 1

2

2
∑

I=1

Y (φ)∂ψ2
I

]

, (3.1)

with the scalar couplings behaving near the AdS boundary, i.e. in the small φ limit, as

Vuv(φ) = −6− φ2 +O(φ3) , Zuv(φ) = 1 +O(φ) , Yuv(φ) = φ2 +O(φ3) . (3.2)

The model (3.1) enjoys a global shift symmetry ψI 7→ ψI + cI . In this work, we will

be interested in states that break translations homogeneously [36, 37],3 with

ψI = kxI , xI = {x, y} . (3.3)

This Ansatz breaks the shift symmetry as well as spacetime translations to a diagonal

U(1). As a consequence, the background metric, scalar φ and gauge field only depend on

the holographic radial coordinate,

ds2 = −D(r)dt2 +B(r)dr2 + C(r)(dx2 + dy2), φ = φ(r), A = A(r)dt . (3.4)

t, x, y are the time and space coordinates of the dual field theory. Given (3.2) and (3.3),

the dual boundary theory is deformed by two complex scalar operators ΦI ≃ φeiψI . These

deformations break translations through the spatial dependence of the phases ψI .

3See [38] for a recent field theoretic investigation of such states.
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As explained in [19, 21, 22], whether translations are broken explicitly or spontaneously

in the boundary theory depends on the asymptotic behaviour of the scalar φ near the AdS

boundary. For our choice of scalar potential, φ decays towards the boundary as

φ(r → 0) = λr + φ(v)r
2 +O(r3) . (3.5)

In the usual quantization scheme, λ is the source of the operator dual to the bulk field φ

and φ(v) is related to its vev. If λ = 0, the breaking is spontaneous. If λ 6= 0, it is explicit.

In this work we will only consider the spontaneous case.

The condensation of the order parameter itself (i.e. the phase transition between the

normal and ordered phase) is not captured by the model. This is typically mediated by

an instability towards a spatially modulated, inhomogeneous phase which minimizes the

free energy, [25, 26, 28, 39].4 Instead, the holographic model (3.1) with zero scalar source

λ = 0 directly describes the low energy dynamics of the phonons in the ordered phase, as

we shall demonstrate in the remainder of this work.5 As we show below, the fluctuations

of the bulk fields ψI are dual to the phonons. The bulk global symmetry should then be

understood as encoding the shift symmetry of the NG bosons, not as a symmetry of the

fundamental UV theory.6

Finite temperature, finite density states are modeled by charged black holes in the

bulk, which implies the existence of a regular black hole horizon at r = rh. In the rest of

this work, we use a subscript h to denote quantities evaluated at r = rh. The temperature

T and the entropy density s are given by:

s = 4πC(rh) , T =
1

4π

√

−B
′(r)D′(r)

B(r)2

∣

∣

∣

∣

∣

r=rh

, (3.6)

with the following near-horizon expansion

ds2 = −4πT (rh − r)dt2 +
dr2

4πT (rh − r)
+

s

4π
(dx2 + dy2) + . . . ,

At = Ah(rh − r) + . . . , φ = φh + . . . .

(3.7)

We will also be interested in the low temperature behaviour T ≪ µ (where µ is the

chemical potential) of these translation-breaking black holes. More precisely, we would like

to study the interplay between spontaneous translation symmetry breaking and quantum

criticality. To do so, we will assume that the scalar φ has a runaway behaviour as T → 0 and

r → +∞ (or equivalently that the horizon value of the scalar diverges at low temperature),

and that the scalar couplings behave for large φ as

V (φ→ ∞) = V0e
−δφ , Z(φ→ ∞) = Z0e

γφ , YIR = Y (φ→ ∞)eνφ . (3.8)

4This can also be realized in models breaking translations homogeneously [21, 22, 40].
5Minimizing the free energy would lead to k = 0, i.e. no breaking of translations at all, [21, 22, 29]. This

can be remedied by turning on higher-derivative terms in the action with small couplings [21, 22].
6A very similar model was considered in [41] to study holographically spin density waves.
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The near-extremal, near-horizon geometry of the black hole is then described by a Lifshitz,

hyperscaling-violating solution

ds2 = ξθ
[

−f(ξ)dt
2

ξ2z
+
L2dξ2

ξ2f(ξ)
+
d~x2

ξ2

]

, f(ξ) = 1−
(

ξ

ξh

)2+z−θ

,

A = Ao ξ
θ−2−zdt , ψI = kδIix

i , φ = κ log ξ .

(3.9)

ξ is a radial coordinate valid close to rh, simultaneously taking the small temperature

limit T ≪ µ. ξh is the location of a Killing event horizon, with the associated Hawking

temperature T ∼ ξ
−1/z
h and Hawking-Bekenstein entropy s ∼ ξθ−2

h . Combining both

formulæ the entropy density scales as s ∼ T
2−θ
z . More details of these solutions can be

found in [61] or more recently [11]. Here, we simply recall that in general the couplings

appearing in (3.8) are related to the scaling exponents characterizing the solution as

κδ = θ , κγ = 4− θ − 2∆Ao , κν = 2∆k − 2 . (3.10)

The exponents ∆Ao,k ≤ 0 are the scaling dimension of sources of irrelevant operators

breaking particle/hole symmetry or translations of the IR T = 0 critical solution.

For concreteness, in our numerical calculations we work with

V (φ) = −6 cosh(φ/
√
3) , Z(φ) = exp(−φ/

√
3) , Y (φ) = (1− expφ)2 . (3.11)

This implies that the critical solution (3.9) is characterized by θ → −∞, z → +∞, −θ/z = 1

and ∆Ao,k = 0. As a consequence, it has a vanishing entropy density s ∼ T . Our results

can easily be generalized to other scalings. The numerical results presented in this paper

are for k/µ = 0.1 and λ = 0.

3.2 Holographic renormalization

Holographic renormalization for the spontaneous case was explained in [21], to which we

refer for details. The salient features are the following. The UV expansion of the fields

ψI are modified compared to that of ordinary massless scalars due to their coupling to the

scalar φ. If φ is not sourced λ = 0, then close to the AdS boundary r → 0

ψI =
ψI,(−1)

r
+ ψI,(0) +O(r) =

1

r2
(

ψI,(−1)r + ψI,(0)r
2 +O(r3)

)

, (3.12)

where we have used that the operator dual to φ has dimension ∆ = 2 due to (3.11).

This makes clear that the operators dual to the ψI have the same scaling dimension as the

operator dual to φ and that the whole scalar sector of deformations of the UV CFT is better

understood as complex scalar operators dual to bulk complex scalar fields ΦI ≃ φeiψI for

small φ (ie close to the AdS boundary). φ and the ψI are respectively the modulus and

phase of the complex scalar, and inherit its scaling dimension. See [21] for details. Going

back to our background Ansatz (3.3), we see that indeed this corresponds to spontaneous

translation breaking, since the source term ψ(−1) is not turned on. These powers can be

generalized easily to the case ∆ 6= 2 and spatial dimension d 6= 2.

– 7 –
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Near the boundary, the metric and gauge field behave in Fefferman-Graham gauge as

D(r) =
1

r2
(

1 + d(3)r
3 +O(r4)

)

, C(r) =
1

r2

(

1−
d(3)

2
r3 +O(r4)

)

,

B(r) =
1

r2
, A(r) = µ− ρr +O(r3) ,

(3.13)

where subleading coefficients are fixed in terms of, ρ, φ(v) and d(3). This allows to read off

the one-point correlation functions of the dual field theory, after computing the on-shell

action renormalized by suitable counterterms [42]. We find [21]

〈T tt〉 = ǫ = −3d(3) , 〈T xx〉 = 〈T yy〉 = −3

2
d(3)

〈J t〉 = ρ , 〈Oφ〉 = φ(v) .
(3.14)

Another useful relation is

sT = −µρ−
9d(3)

2
− k2

∫ rh

0
dr

√
BDY , (3.15)

which results from evaluating the radially conserved bulk expression
[

ρA(r) +
C2(r)

√

B(r)D(r)

(

D(r)

C(r)

)′

− k2
∫ rh

r
dr̃

√
BDY

]′

= 0 , (3.16)

both at the horizon and at the boundary. This is the Noether charge associated to the

bulk time-like Killing vector [30, 43]. By evaluating the on-shell action for the background

solution, we also find that p = sT + µρ− ǫ.

From the analysis above, χππ was obtained exactly in k [21, 22]:

χππ = sT + µρ+ k2IY , IY =

∫ rh

0
dr

√
BDY . (3.17)

In this paper, we will only be interested in the transverse sector of fluctuations

δgxt (r, t, x) = δhxt (r)e
−iωt+iqy, δgyx(r, t, x) = δhyx(r)e−iωt+iqy, δgxr (r, t, x) = δhxr (r)e

−iωt+iqy,

δax(r, t, x) = δax(r)e
−iωt+iqy and δψx(r, t, x) = δψx(r)e

−iωt+iqy. We have used the ho-

mogeneity of our Ansatz to expand the fluctuations in plane waves. In the radial gauge

δgxr = 0, and setting q = 0 for now, their boundary expansions are

δax(r) = δa(0) + δa(1)r + . . . ,

δhxt (r) = δh1,(0) + δh1,(3)r
3 + . . . ,

δhyx(r) = δh2,(0) + δh2,(3)r
3 + . . . ,

δψx(r) =
1

r

(

δψ(−1) + δψ(0)r + . . .
)

,

(3.18)

where (δa(0), δh1,(0), δh2,(0), δψ(−1)) are sources and (δa(1), δh1,(3), δh2,(3), δψ(0)) are vevs.

Then, the renormalized action at quadratic order in the fluctuations reads:

S(2)
ren=

∫

dω

[

δa(0)δa(1)−ρδa(0)δh1,(0)−
3

2
δh1,(0)δh1,(3)

+
3

2
d(3)(δh1,(0))

2+(φ(v))
2δψ(−1)δψ(0)−

3

2
δh2,(0)δh2,(3)+

3

2
d(3)(δh2,(0))

2

]

.

(3.19)
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3.3 AC boundary correlators

The Goldstone modes can be identified by acting on the background with the Lie derivative

along ∂/∂~x. It leaves all fields invariant except the ψI ’s. This confirms that phonon

dynamics are captured by the fluctuations δψI , and by computing the retarded Green’s

functions in the limit ω 6= 0, q = 0, we will verify that they take the expressions predicted

by WC hydrodynamics (2.10), (2.11) and (2.12).

At zero density, we can solve the equations analytically in the low frequency limit

and confirm that we correctly obtain the zero density hydrodynamic correlators (2.12) in

appendix A. At nonzero density, we made this check numerically, and we describe our

numerical methods in appendix B.

The outcome of this analysis is that we identify the boundary phonon and its source

along the direction i = x, y as

ϕi =
δψi,(0)

k(φ(v))2
, δsϕ,i = k(φ(v))

2δψi,(−1) . (3.20)

Suppressing the spatial index, they appear in the on-shell action (3.19) as

S(2)
ren =

∫

dω

[

δa(0)δa(1) − ρδa(0)δh1,(0) −
3

2
δh1,(0)δh1,(3)

+
3

2
d(3)(δh1,(0))

2 + (φ(v))
2ϕδsϕ − 3

2
δh2,(0)δh2,(3) +

3

2
d(3)(δh2,(0))

2

]

.

(3.21)

Once we have determined the on-shell action for the fluctuations δax, δψx, δg
x
t , it is easy

to compute the boundary correlators encoded in those bulk fluctuations [44]. This entails

numerically solving the relevant equations of motion as we describe in appendix B.2. We

then verify that the zero frequency limit of those correlators matches the hydrodynamic

expressions (2.11) and (2.12) for the retarded Green’s functions GRAB(ω → 0, q = 0).

A,B = jx, πx, ϕx, where χππ is given by (3.17). In section 4, we also obtain expressions for

the diffusivities σo, X and γ1 (introduced in (2.6), (2.15)) which give an excellent match

to the correlators. Their expressions are given in (4.17)–(4.19).

3.4 Shear modulus and shear viscosity

We will now evaluate the shear modulus and the shear viscosity holographically using the

low frequency shear correlator (2.10). The low frequency behavior of the shear correlator

can be computed analytically in a standard way, following [9, 45, 46] (see [20, 47, 48] for

computations of the shear correlator in spontaneous holographic setups, [49–52] in explicit

setups). The equation of motion for the metric perturbation hyx = h2(r)e
−iωt:

(
√

D

B
Ch′2

)′

− k2Y (φ)
√
BDh2 + ω2

√

B

D
Ch2 = 0 . (3.22)

Setting ω = 0, there are two linearly independent solutions, one regular h
(reg)
2 at the horizon

and one singular h
(sing)
2 . The singular solution can be expressed from the regular one

h
(sing)
2 = h

(reg)
2

∫ r

0

√
B

√
DC

(

h
(reg)
2

)2 , (3.23)
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and behaves near the horizon as

h
(sing)
2 (rh) ∼ − log(rh − r)

sTh
(reg)
2 (rh)

+ finite. (3.24)

When k 6= 0, the regular solution can only be found perturbatively in k:

h
(reg)
2 (r) = 1− k2

∫ r

0
dr1

√

B

D

1

C

∫ rh

r1

√
BDY +O(k4) . (3.25)

At the horizon we should impose ingoing boundary conditions

h2(r) = h
(reg)
2 (rh)e

− iω
4πT

log(rh−r) + . . . , (3.26)

which at small frequencies reads

h2(r) = h
(reg)
2 (rh)

(

1− iω

4πT
log(rh − r)

)

+O(ω2) . (3.27)

The frequency dependence of (3.22) will only generate O(ω2) corrections which do not

contribute to the retarded Green’s function at leading order as ω → 0. So (3.27) can be

rewritten directly as

h2(r) = h
(reg)
2 (r) + iω

s

4π

(

h
(reg)
2 (rh)

)2
h
(sing)
2 (r) +O(ω2) . (3.28)

Close to the AdS boundary, h
(reg)
2 ∼ 1 + k2IY r

3/3 + O(r4) while h
(sing)
2 ∼ −r3/3 + O(r4),

so that the full solution asymptotes to

h2(r → 0) ∼ 1 +

(

k2IY − iω
s

4π

(

h
(reg)
2 (rh)

)2
)

r3

3
+O(r4, ω2) . (3.29)

From this equation, by applying standard holographic formulæ relating the vev of an

operator of dimension 3 in d = 2 to the asymptotic data of the dual field in the bulk [2–4],

we extract the low frequency limit of the shear retarded Green’s function

lim
ω→0

GRTxyTxy(ω, ~q = 0) = k2IY − iω
s

4π

(

h
(reg)
2 (rh)

)2
. (3.30)

Matching to the hydrodynamic prediction (2.10), we obtain approximate, small k ex-

pressions for the shear modulus and shear viscosity

G = k2IY +O(k4) , η =
s

4π

(

1− 2k2
∫ rh

0
dr1

√

B

D

1

C

∫ rh

r1

dr2
√
BDY +O(k4)

)

. (3.31)

They match the exact numerical results very well, see figure 1. We observe in figure 1

that G decreases sharply above T/µ & 0.1: at high T , the spontaneous component of the

system becomes very weak, but never vanishes.
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Figure 1. In both plots, the blue dashed curve is the exact numerical result from the Kubo

formulæ (2.10); the red dotted curve is the approximation (3.31). In the inset, the ratio between

the two show a small deviation as temperature decreases. The shear viscosity shows a small sublinear

deviation from s/4π as T decreases.

4 Diffusivity matrix from horizon data

In this section, we compute the diffusivities σo, γ1 and ξ in terms of a combination of

horizon and UV-sensitive data through a DC analysis, drawing on previous works [21, 22,

29, 30, 53, 54]. To that end, we turn on the following DC (linear in time) perturbation:

δax = a(r)−p1(r) t , δhtx = h1(r)−p2(r) t , δhrx = h3(r) , δψx = χ(r)−k tδv. (4.1)

The mode δv corresponds to a vev, and in fact can be set to zero by a Galilean boost [29, 30].

It is not fixed by the horizon analysis, and represents the freedom to slide the system back

and forth. Upon turning on relaxation, this mode either becomes a source [34] or is fixed

by the horizon analysis [55].

All time dependence drops out from the linearized equations, provided

p1(r) = p
(0)
1 + ĒρA , p2(r) = −ĒρD , (4.2)

where p
(0)
1 is a constant which will be fixed shortly and Ē a source of the dual field theory

to be defined more precisely below.

The following boundary expansions are compatible with the equations of motion:

a(r) = a(1)r+O(r2) , h1(r) = h
(1)
1 r+O(r2) , h3(r) = O(r) , χ(r) =

χ(0)

r
+χ(1)+O(r) ,

(4.3)

provided we set

p
(0)
1 = −Ē

(

9

2
d3 + ρµ

)

+
k

ρ
(φ(v))

2χ0 = Ē
(

sT + k2IY
)

+
δsϕ
ρ
. (4.4)

This condition follows from requesting δhrx to fall off sufficiently fast in the UV. It differs

from our previous work [21] by the term proportional to the phonon source δsϕ=k(φ(v))
2χ(0).

Next, we define two bulk currents:

J (r) =
√−gZ(φ)F rx = Z

√

D

B
a′ − ρ

h1
C
, Q(r) = −

√

D

B
h1

′ +
D′h1√
BD

−AJ , (4.5)
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whose radial evolution is governed by the equations

J ′ = 0 ,

(

Q+ δvk2
∫ r

0
dr̃

√
DBY

)′

= 0 (4.6)

and which asymptote respectively to the boundary electric and heat currents:

j = J (0) = a(1) , jq ≡ T tx − µj = Q(0) = −3h
(1)
1 − µa(1) . (4.7)

Using (4.6), we can relate the boundary currents to data on the horizon:

j = J (rh) , jq = Q(rh) + k2IY δv . (4.8)

Horizon regularity of the solution in ingoing Eddington-Finkelstein coordinates v =

t + 1/(4πT ) ln(rh − r) + O(rh − r) implies that the linear perturbation has the following

near-horizon expansion:

a =

[

−Ē sT + k2IY
4πT

+
δsϕ
4πTρ

]

log(rh − r)(1 +O(rh − r)) ,

h1 = −Ē ρIY
Yh

− δsϕ
k2Yh

− s

4π
δv +O(rh − r) ,

h3 = − h1
4πT (rh − r)

+O(1) .

(4.9)

Evaluating the currents in (4.8) at the horizon, we find

j =

[

(sT + k2IY )Zh +
4πρ2IY
sk2Yh

]

Ē +

[

4πρ

sk2Yh
+
Zh
ρ

]

δsϕ + ρδv , (4.10)

jq =
4πTρIY
Yh

Ē +
4πT

k2Yh
δsϕ +

(

sT + k2IY
)

δv . (4.11)

In order to compute σ0, γ1 and ξ we can use the relation between the hydrodynamic cor-

relators (2.11), (2.12) and the expectations values of the related current densities, namely:

JA = GAB SB , (4.12)

with JA = {j, jq, jϕ}, SA = {Ex/(iω),−∇xT/(iωT ), δsϕ} and where jϕ = ϕ̇ (which can

loosely be thought of as the contribution of the phonons to the electric current [56]). The

boundary electric field and temperature gradients are given by the boundary behaviour of

the bulk fields:

Ex = − lim
r→0

∂t (δax(r, t) + µδhtx(r, t)) ,
1

T
∇xT = lim

r→0
∂tδhtx(r, t) . (4.13)

By rotating to the basis of currents (jinc ≡ χπjqj − χjπjq, π), Ē can be understood as the

source of the incoherent current jinc, [21]. The incoherent current is the part of the electric

current which does not drag momentum, [9]. In other terms, χjincπ = 0.

Using (4.2) and (4.4), the electric field and temperature gradient can be expressed in

terms of the sources Ē and δsφ:

Ex = (χππ − µρ)Ē +
δsϕ
ρ
, ∇xT = ĒρT , (4.14)
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where χππ is given by (3.17). We can now form the following linear combination of cur-

rents and relate them to the sources we have turned on using the hydrodynamic correla-

tors (2.11), (2.12):

χπjqj − χjπjq = χ2
ππσ0Ē + χππ

(

σ0
ρ

− γ1

)

δsϕ , (4.15)

µj + jq + χππjϕ = −Ēγ1χ2
ππ + δsϕχππ

(

X − γ1
ρ

)

, (4.16)

where χπjq = χππ−µρ. This follows from jq = π−µj, as required by relativistic symmetry.

Undoing the term δv in δψx with a Galilean boost amounts to shifting the currents j, jq
by terms proportional to δv. These terms can in turn be absorbed by a redefinition of

the velocity vx, which finally gives a contribution to jϕ = −δv, recalling the Josephson

relations (2.2). Substituting (4.10) and (4.11) on the left hand side of (4.15) and (4.16),

we find that

σ0 =

(

sT + k2IY
)2

(sT + µρ+ k2IY )
2Zh +

4πk2(IY )
2ρ2

sYh (sT + µρ+ k2IY )
2 , (4.17)

γ1 = − 4πIY ρ (sT + µρ)

sYh (sT + µρ+ k2IY )
2 − µ

(

sT + k2IY
)

(sT + µρ+ k2IY )
2Zh , (4.18)

X =
4π (sT + µρ)2

k2sYh (sT + µρ+ k2IY )
2 +

µ2Zh

(sT + µρ+ k2IY )
2 , (4.19)

where we have used (3.17) for χππ. The dependence on UV-sensitive data is manifest

through factors of µ and IY .
7

As we already commented upon at the end of section 3.3, the expressions (4.17)–(4.19)

give an excellent match to the zero frequency limit of the ac correlators.

5 Saturation of entropy bound and universal relaxation

WC hydrodynamics predicts a bound coming from positivity of entropy production [32],

γ21 ≤ σoX , (5.1)

which is obeyed by our DC expressions for the diffusivities:

σ0X − γ21 =
4πsT 2Zh
k2(χππ)2Yh

≥ 0 . (5.2)

See figure 2.

Interestingly, for our specific choice of holographic model, the bound becomes saturated

at low temperatures. Indeed, for the z = +∞, θ = −∞, −θ/z = 1 family we have mostly

focussed on, Zh ∼ 1/T , Yh ∼ T 0 and s ∼ T . Saturation of (5.1) relates the diffusivities

σo, X and γ1 to one another. This is reminiscent of the relation between second-order

transport coefficients of fluid hydrodynamics uncovered in [57]. Magnetohydrodynamics is

another example where a bound originating from the positivity of entropy production [58]

is saturated in an explicit holographic realization [59].

7The common factor of χ2
ππ in the denominator can be removed by a choice of normalization.
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Figure 2. At all temperatures, the entropy bound γ2
1
≤ σoX holds. At low temperatures, the

bound is saturated.

To understand this feature, we consider the following Kubo formulæ for the diffusivities:

γ1 = − lim
ω→0

1

ω
ImGRjϕ̇(ω, q = 0) , (5.3)

X = lim
ω→0

1

ω
ImGRϕ̇ϕ̇(ω, q = 0) , (5.4)

σo = lim
ω→0

1

ω
ImGRjj(ω, q = 0) . (5.5)

The Kubo formulæ (5.3), (5.4) involve the operator ϕ̇, which suggests that a memory-matrix

type analysis should apply [33]. Relaxation of the Goldstones into the heat current provides

a particularly appealing and universal mechanism for systems at finite temperature. It

contributes to the low energy Hamiltonian via a term

∆H =
1

χπjq
π · jq . (5.6)

The full Hamiltonian will contain other contributions from non-hydrodynamic operators.

Here we assume these other terms do not dominate at low temperatures. The contribution

from (5.6) to ϕ̇ is

ϕ̇ = i[∆H, ϕ] = jq
χπjq

. (5.7)

This equation shows that the time evolution of the Goldstone operator is governed by

the heat current, as advertised. Plugging this in the Kubo formulæ above relates the

diffusivities γ1, ξ to the thermal diffusivity:

γ2 = −µ

T
γ1 =

µ2

Tχπjq
σo =

κ̄o
χπjq

, X =

(

µ

χπjq

)2

σo =
T

χ2
πjq

κ̄o , (5.8)
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Figure 3. At low temperatures, the entropy bound is saturated and the diffusivities γ1, X are

controlled by the thermal diffusivity through (5.8).

where we have also used (2.7). For the θ = −∞, z = +∞, θ/z = −1 state we have

considered in detail in this work, these expressions capture the correct low temperature

behaviour of the diffusivities (see figure 3), and lead to the saturation of the entropy

bound (5.1). At higher temperatures, other, non-universal relaxation channels will open.

For the θ = −∞, z = +∞, θ/z = −1 holographic state, these non-hydrodynamic operators

also contribute to the Hamiltonian (5.6) but give subleading corrections as T → 0.8

8See [60] for another holographic example where momentum relaxation due to explicit translation sym-

metry breaking is controlled by the heat current.
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It is interesting to assess how generic the universal relaxation mechanism we have just

described is. To do so, we consider the more general family of IR end points (3.9). It is clear

that if there is no running scalar φ and the IR is AdS2×R2, the entropy bound is saturated

since all factors in (5.2) scale like T 0 at low temperatures, except of course for the explicit

T 2 factor. When there is a running scalar, there are four classes of IR end points, charac-

terized by the presence or absence of certain dangerously irrelevant deformations. These

are discussed in some detail in [21, 22, 61] and more recently in [11], so we will be brief here.

There are two potentially dangerously irrelevant deformations, depending on whether

the bulk fields dual to the conserved current and dual to the phonons support the deep IR

solution or whether they decay faster than other fields in the bulk. These deformations can

be usefully characterized by the scaling dimension of the coupling, which we denote by ∆Ao

and ∆k, respectively. In order for the coupling to source an irrelevant/marginal deforma-

tion, ∆Ao,k ≤ 0. The four classes differ by whether both deformations are marginal, or only

one of them is, or both of them are irrelevant. In the case we have studied numerically and

for which the bound is saturated, both deformations are marginal ∆Ao = ∆k = 0. Their

expressions in terms of the action couplings have been given in (3.10)

Evaluating the right-hand side of (5.2) on the solutions (3.9) together with the expres-

sions (3.8), (3.10) for the IR couplings and recalling that s ∼ T (d−θ)/z, the entropy bound

is saturated provided
2

z
(z − 2 + ∆Ao +∆k) ≥ 0 . (5.9)

We find that this condition is met provided

z > 2 and θ < 2 and 2− z < ∆Ao,k ≤ 0 . (5.10)

In particular, this implies the bound is never saturated for IR end points with relativistic

symmetry z = 1, which only happens when both deformations are irrelevant. If only one

deformation is irrelevant, then the dimension of the coupling is bounded from below. If

both are marginal ∆Ao,k = 0, then the bound is saturated if the dynamical exponent z is

large enough, z > 2.

In the parameter space spanned by (5.10), we observe that (2 + z − θ) > −∆Ao,k.

Recalling that sT ∼ T (2+z−θ)/z at low temperature, this suggests that sT terms can be ne-

glected at low temperatures in (4.17)–(4.19) against other terms that have a non-vanishing

zero temperature limit, such as µρ or k2IY .
9 Doing so leads to

σ0 =

(

k2IY
)2

(µρ+ k2IY )
2

(

Zh +
4πρ2

sk2Yh

)

, (5.11)

γ1 = − µk2IY

(µρ+ k2IY )
2

(

Zh +
4πρ2

sk2Yh

)

, (5.12)

X =
µ2

(µρ+ k2IY )
2

(

Zh +
4πρ2

k2sYh

)

. (5.13)

9The irrelevant deformation ∆Ao,k also source deviations from zero temperature. The inequality

(2 + z − θ) > −∆Ao,k implies that those sourced by sT type terms are less important at low temperatures.
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We have verified that these expressions are consistent with our numerics at low tempera-

ture. It is straightforward to check that the expressions (5.11)–(5.13) saturate the entropy

bound (5.1).

The prefactors are all temperature independent at low T , so all the low temperature

dependence comes from the common factor in parenthesis. Since this common factor is

the same for all three quantities, the saturation of the bound comes from the cancelation

between the prefactors in the limit of low temperature, rather than from the vanishing of

each individual term in (5.1).

On the other hand, requiring (2 + z − θ) > −∆Ao,k does not imply that the entropy

bound is saturated. It would be interesting to further investigate these cases and to un-

derstand why the universal mechanism (5.6) is not at play there.

6 Transverse collective excitations at nonzero wavevector

WC hydrodynamics also predicts the existence of a pair of low energy modes in the trans-

verse channel. They appear as zeroes of the denominator of the hydrodynamic retarded

Green’s functions and their dispersion relation is:10

ωshear =
1

2



−iq2
(

ξ⊥ +
η

χππ

)

± q

√

4
G

χππ
− q2

(

η

χππ
− ξ⊥

)2


 . (6.1)

At sufficiently low wavector q, these modes are gapless and propagate transverse sound

waves:

ωshear = ±
√

G

χππ
q − i

2
q2
(

ξ⊥ +
η

χππ

)

+O(q3) . (6.2)

On the other hand, for larger values of q > 2
√
Gχππ/(η − ξ⊥χππ), the modes collide on

the imaginary axis and are no longer propagating. Instead, they obey a pseudo-diffusive

dispersion relation:

ω− = −iξ⊥q2 −
iG

η − ξ⊥χππ
+O(q−1) , ω+ = −i η

χππ
q2 +

iG

η − ξ⊥χππ
+O(q−1) . (6.3)

Observe that while the sign of the q0 damping term is positive for one of the modes,

this does not lead to an instability since q is large. This collision is captured by the

hydrodynamic dispersion relation, since the inequality on q is true if G is small enough.

We expect G to be small also close to a phase transition between a translationally ordered

and a translationally disordered phase.

We compare the exact location of the quasinormal modes determined numerically to

the hydrodynamic approximation in figure 4 as a function of q/µ, and find they agree very

well, including at very low temperatures. We typically observe deviations when q & T ,

which suggests that temperature is the cut-off of the effective description in terms of WC

hydrodynamics, whether T is large or small compared to the chemical potential µ. This

gives strong evidence that the low energy excitations of our system are well described

10This dispersion relation is strictly speaking valid to order q2 (6.2), but keeping the expression (6.1)

exact in q derived from first order in gradients WC hydrodynamics leads to a better match to the numerics.
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Figure 4. Comparison of the exact location (dots, numerics) and hydrodynamic approxima-

tion (6.1) (solid lines) of the real (blue, left axis) and imaginary (magenta, right axis) part of

the transverse hydrodynamic QNM at T/µ = 1 (top), T/µ = 0.1 (center) and T/µ = 0.0065 (bot-

tom) vs q/µ. In the top panel, the modes are purely imaginary, but would acquire a real part at

smaller q (not displayed).

by WC hydrodynamics at all temperatures, and further confirms that our holographic

model should be interpreted as describing the low energy dynamics of (pseudo)phonons

coupled to conserved currents. We emphasize that the same dispersion relation is valid at

both low and high temperature. Similar results on the low-temperature hydrodynamics of

translation-invariant black holes have been reported in past literature [62–64].
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Figure 5. Comparison of the exact location (numerics, solid blue) and hydrodynamic approxi-

mation (6.1) (dashed, red) of the real (inset) and imaginary part of the transverse hydrodynamic

QNM at q/µ = 0.02 vs T/µ. At intermediate temperatures, they follow very well the dispersion

relation of shear sound waves predicted by WC hydrodynamics. At both very high and very low

T , the modes collide and become purely imaginary and pseudo-diffusive. Keeping T/µ fixed, they

modes acquire a nonzero real part as q is lowered, see figure 4.

In figure 5, we display the QNMs location as a function of T/µ and compare it to (6.1).

Increasing temperature, the shear sound modes collide on the imaginary axis. At these

temperatures, the shear modulus of the system becomes very small (see figure 1), and this

is the underlying reason behind the high temperature pole collision (see figure 5). The

same loss of shear rigidity would occur in a real crystal right before the phase transition

to a liquid phase: the solid would no longer support gapless, transverse sound modes. The

two high temperature branches are well-approximated by (6.3), with ω+ giving the longest-

lived mode. In other words, as the spontaneous component of the system is becoming very

small, the system resembles more and more a fluid (consistently with the gap of (6.3) being

proportional to G, which is going to zero as T → +∞).

At low temperatures, the QNMs also undergo a collision, which is now driven by the

fact that ξ⊥ ∼ 1/T is becoming very large. Once again, the longest-lived mode is well-

approximated by ω+ in (6.3). The gap is inversely proportional to ξ⊥ and decreases with

T , see figure 6. The system resembles more and more a fluid since the phonons relax faster

(they have a larger diffusivity).

Similar collisions between high temperature, gapped, pseudo-diffusive modes leading

to low temperature propagating modes have been reported in previous holographic lit-

erature [65–68]. There are important differences. In our case, translations are broken

spontaneously, not explicitly. As a consequence, at the longest distances q → 0, the modes

are always gapless, sound modes. The collision we report is ‘coherent’ or in other words,
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Figure 6. At low temperatures, the gap at large wavevector is dominated by the phonon diffusivity

ξ⊥ rather than by the shear viscosity η.

can be described by a hydrodynamic effective theory (WC hydrodynamics). In contrast,

in [65, 67, 68] the breaking is always explicit and the effective theory is momentum-relaxed

fluid hydrodynamics, and breaks down below a certain temperature where momentum is

no longer approximately long-lived. In [66], translations are broken spontaneously, but

the transverse propagating modes are gapped. Gapless propagating modes are found for a

nonzero density of defects, and it would be interesting if they became gapped at shorter

distances, while remaining within the regime of validity of the hydrodynamic description.

Recently, [69] have also reported similar collisions in a holographic massive gravity

model.

7 Outlook

The main results we have obtained are as follows. Firstly, we have shown that all of

the diffusivities that characterize the low energy dynamics of a holographic state break-

ing translations spontaneously can be computed in terms of a combination of horizon and

UV-sensitive data. We have focussed on a specific model breaking translations homo-

geneously, and it would be natural to extend this computation to inhomogeneous, more

realistic setups. Moreover, in [21, 22, 29, 30], the incoherent conductivity was computed

for thermodynamically stable phases and solely depends on horizon data.11

We have also shown how the low temperature behaviour of these diffusivities and the

saturation of an entropy bound stemming from Wigner crystal hydrodynamics is explained

11This statement is strictly true for the conductivity associated to the incoherent current defined as

jinc = χπqj − χπjjq. Then, σinc = χ2
ππσo. For other choices of normalization, some overall factors of χππ

appear in the incoherent conductivity.
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by the universal relaxation of the phonons into the heat current. We have studied whether

this depends on the infra-red end point controlling the system at zero temperature. We

found that the entropy bound is not saturated in the presence of sufficiently irrelevant

deformations, or for values of the dynamical exponent 1 ≤ z ≤ 2.

Finally, we have studied the spectrum of transverse collective excitations and discov-

ered that for sufficiently low wavectors the pair of longest-lived modes are well captured by

the dispersion relation following from WC hydrodynamics, including at low temperatures

where the system is governed by the IR end point consistent with previous low temperature

holographic studies [62–64]. We observed deviations as q & T . In particular, this means

that the hydrodynamic description extends outside of the regime q ≪ T to q ≃ T where

gradients are of the same order as the thermal scale. This ‘unreasonable effectiveness’ of

hydrodynamics could perhaps be understood along the lines of the recent work [70].

We have only carried out explicit numerical calculations for the special case z = −θ =
+∞. As we have observed, the saturation of the entropy bound will not occur for phases

with z ≤ 2, in particular for z = 1 in the presence of irrelevant deformations. It was

shown in [10, 11] that in these cases new long-lived modes emerge at low temperature and

lead to a breakdown of the hydrodynamic description at earlier times than that set by

temperature. A natural future direction would be to study these cases with spontaneous

translation symmetry breaking.

If translations are explicitly broken, the phonons obtain a mass m and are damped,

with a phase relaxation rate Ω (this phase relaxation rate is of a different microscopic

origin than the phase relaxation rate sourced by the proliferation of topological defects [71]

but appears in the effective theory in exactly the same way). WC hydrodynamics in the

presence of relaxation also predicts a bound on the relaxation parameters [32]

γ21 ≤ min

(

σoX,
σoΩ

Gm2

)

. (7.1)

In [34], we showed that turning on a small source for the scalar φ in our holographic

model led to a phase whose low energy effective theory was relaxed WC hydrodynamics,

until very low temperatures. The bound (7.1) is also saturating as temperature decreases,

suggesting that the pseudo-phonons also relax universally into the heat current. It would

be interesting to understand how this depends on the infra-red end point, the relaxation

mechanism and the details of how translations are broken in the holographic model. By

now, many other models of pinned translational order are available [40, 47, 55, 69, 72–74].

In the presence of a magnetic field, the longitudinal and transverse phonons hybridize

into a magnetophonon and a magnetoplasmon [75]. For strong magnetic fields and in the

presence of disorder, the magnetophonon is weakly gapped and a hydrodynamic theory

can be formulated [33], which appears to fit well some of the data on two-dimensional

electron systems. Universal relaxation of the magnetophonon into the electric current may

dominate (compared to dislocation-mediated melting) in more disordered samples, and it

would be interesting to study this holographically (see [76] for a recent study of plasmonic

response at zero field in the holographic model studied here).
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A AC boundary correlators at zero density

First, we need to figure out how to extract the retarded Green’s functions (2.12) from the

asymptotic data. The relevant part of the renormalized on-shell action at quadratic order

in the fluctuations (3.19) (keeping only h1,(0) and δψ(−1) nonzero) is

S(2)
ren =

∫

dω

[

−3

2
δh1,(0)δh1,(3) +

3

2
d(3)(δh1,(0))

2 + (φ(v))
2δψ(−1)δψ(0)

]∣

∣

∣

∣

δa(0),δh2,(0)=0

(A.1)

so that the retarded Green’s function are

GRT txT tx(ω, q = 0) =
3δh1,(3)

δh1,(0)
, GRT txδψx

(ω, q = 0) =
3δh1,(3)

δψ(−1)
,

GRδψxT tx(ω, q = 0) = (φ(v))
2 δψ(0)

δh1,(0)
, GRδψxδψx

(ω, q = 0) = (φ(v))
2 δψ(0)

δψ(−1)
.

(A.2)

We start by explicitly identifying the source of the boundary phonon. This is done by

plugging the UV expansions (3.18) for the bulk fluctuations and solving the equations of

motion, which give the following relation

δh1,(3) =
i

ω

k(φ(v))
2δψ(−1)

3
(A.3)

from which we immediately deduce

GRT txδψx
(ω, q = 0) =

3δh1,(3)

δψ(−1)
= k(φ(v))

2 i

ω
. (A.4)

In order for this expression to match the off-diagonal Green’s function GRπϕ in (2.12), we

see that we should identify the phonon source as δs = k(φ(v))
2δψ(−1).
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To continue, we now need to solve the equations of motion away from the boundary.

It is helpful to define the variable [11]

Πx ≡ −h
x
t
′ + iωhxr
(D/C)′

, (A.5)

which obeys the decoupled equation of motion

d

dr

[
√

D

B

1

Y C

(

C2

√
BD

(

D

C

)′)2

Π′
x

]

+ ω2

√

B

D

1

Y C2

(

Cd/2+1

√
BD

(

D

C

)′
)2

Πx = 0. (A.6)

Then we can expand Πx in ω

Πx(r) =

(

sT + k2
∫ rh

r

√
BDY

)(

1− r

rh

)−iω/(4πT )(

πo +
iω

4πT
π1(r) + . . .

)

(A.7)

and solve order by order, imposing ingoing boundary conditions. At leading order, πo is

just a constant. The solution for π1 which is regular at the horizon is

π1(r) = iπo

∫ r

rh

dr1







1

r1 − rh
+ (4πT )3

Ch
Yh

√
BCY

√
D
(

sT + k2
∫ rh
r1

√
BDY

)2






. (A.8)

To go through these manipulations, it is helpful to keep in mind the relation (3.16):

C2

√
BD

(

D

C

)′

= −sT − k2
∫ rh

r

√
BDY. (A.9)

The boundary expansion of the Πx variable is

Πx=
i

ω
k(φ(v))

2δψ(−1)+
iω

2
k(φ(v))

2δψ(−1)r
2+

1

3
k(φ(v))

2
(

kδh1,(0)+iωδψ(0)

)

r3+. . . (A.10)

To establish this, it is necessary to push the boundary expansions to higher order in r

than written in (3.18). Also, we note that the combination that appears at O(r3) is gauge

invariant. So from (A.2) the retarded Green’s function for δψx is

GRδψxδψx
(ω, q = 0) =

(φ(v))
2

2ω2
lim
r→0

Π
(3)
x (r)

Πx(r)
. (A.11)

Putting together (A.7) and (A.8), we obtain after expanding at low frequency

GRδψxδψx
(ω, q = 0) =

(

k(φ(v))
2
)

[

1
(

9
2d(3)

)

ω2
+

4πsT 2

k2Yh
(

9
2d(3)

)2

i

ω

]

(A.12)

The momentum static susceptibility was computed in [21]

χππ = −9

2
d(3) = sT + k2

∫ 0

rh

√
BDY . (A.13)
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Observe that our boundary expansions imply that the integral over the whole bulk does not

diverge at the boundary. Plugging into (A.12) and comparing with the phonon retarded

Green’s function GRϕϕ in (2.12) leads to identifying the phonon as

ϕx =
δψ(0)

k(φ(v))2
(A.14)

and the ratio of the transverse crystal diffusivity to the shear modulus as

ξ⊥
G

=
4πsT 2

k2Yh

(

sT + k2
∫ rh
0

√
BDY

)2 . (A.15)

This result matches the zero density limit of (4.19).

B Numerics

In this appendix we describe how we construct the numerical solutions of the holographic

model (3.1) relevant for the analysis presented in the main text.

B.1 Black hole geometries

The action (3.1) admits black hole solutions asymptotic to AdS which realize holographi-

cally the (pseudo-)spontaneous breaking of translations. In order to find those geometries

we take the following Ansatz for the metric and matter fields

ds2 =
1

r2

(

−u(r)dt2 + 1

u(r)
dr2 + c(r)(dx2 + dy2)

)

, (B.1)

A = At(r)dt , φ = φ(r) , ψI = kxI , xI = {x, y}. (B.2)

The resulting equations of motion can be reduced to a system of four ordinary dif-

ferential equations (three are second order and one is first order). For the potentials in

eq. (3.11) it is easy to find the following UV asymptotic solution:

φ(r) = λ r + v r2 + λ

(

k2 +
7

36
λ2
)

r3 +O(r4) , (B.3a)

At(r) = µ− ρ r − λ ρ

2
√
3
r2 − ρ

36

(

5λ2 + 4
√
3 v
)

r3 +O(r4) , (B.3b)

u(r) = 1− λ2

4
r2 + u3 r

3 +O(r4) , (B.3c)

c(r) = 1− λ2

4
r2 − 1

3
λ v r3 +O(r4) , (B.3d)

where higher order coefficients are functions of λ, v, ρ, and u3. This is not the most general

asymptotic solution, but that with AdS asymptotics.

In the IR one can find the following near-horizon solution

φ(r) = φh +O(rh − r) , At(r) = Ah,1(rh − r) +O((rh − r)2) , (B.4a)

u(r) = uh,1(rh − r) +O((rh − r)3) , c(r) = ch + ch,1(rh − r) +O((rh − r)2) , (B.4b)
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where, for the potentials (3.11)

uh,1 =

ch e
−

φh√
3

[

6 + e
2φh√

3 (6− r4hAh,1)

]

− 2k2r2h
(

1− eφh
)2

2rh (2ch + ch,1 rh)
(B.5)

determines the temperature of the black hole T = −uh,1/(4π), and further higher order

coefficients in (B.4) are also determined in terms of φh, Ah,1, ch, and ch,1.

It is easy to check that the equations of motion enjoy the scale invariance (t, x, y, r) →
α (t, x, y, r), At → At/α, k → k/α which we use to set the horizon radius rh = 1 in our

numerical computations. Next we generate numerical solutions by integrating the equations

of motion from the IR (r = 1) to the UV (r = 0). However, a generic solution obtained

this way will not have the UV asymptotics (B.3). In particular c(r) = c0 + c1 r + . . . , and

one would need to shoot for c0 = 1, and c1 = 0 to get the AdS asymptotics (B.3). But one

can make use of a further invariance of the equations under (x, y) → β (x, y), k → k/β,

c → c/β2 to get c0 = 1. This in practice means that ch is fixed and we are thus left with

three IR parameters φh, Ah,1, ch,1; and one UV condition: c1 = 0. Therefore, we expect

to obtain a two-parameter family of solutions. We can choose those parameters to be the

dimensionless ratios T/µ and λ/µ.

In this work we are interested in solutions breaking translations spontaneously. These

are geometries where λ/µ vanishes but v/µ2 does not (solutions with a nontrivial φ that

behaves asymptotically as φ ∼ v r2 + . . . ). As was shown in [21], for the choice of poten-

tials (3.11) these solutions exist for any value of T/µ. In the following we will only consider

geometries with λ/µ = 0.

B.2 AC fluctuations

In order to compute the boundary correlators analyzed in section 3.3 we consider the

following consistent set of fluctuations

δgtx = h(r) e−iωt , δAx = a(r) e−iωt , δψx = ξ(r) e−iωt . (B.6)

It is easy to check that at linear order in the fluctuations, the equations of motion for a,

h, and ξ are a consistent set formed by two second order and one first order differential

equation.

For a spontaneous background geometry (where λ = 0) the asymptotic UV solution

for the fluctuations at hand takes the form

h(r) = r−2
(

h0 +O(r3)
)

, (B.7a)

a(r) = a0 + a1 r +O(r2) , (B.7b)

ξ(r) = ξ−1/r + ξ0 +O(r) , (B.7c)

where higher order coefficients are functions of h0, a0, a1, ξ−1 and ξ0. We shall also write

down here the solution for the order r3 contribution to h(r) since it will be used below in

the computation of the holographic Green functions:

h3 =
ρ

3
a0 +

ik

3ω
v2 ξ−1 . (B.8)
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We are interested in computing retarded propagators, hence we must require the so-

lutions to be ingoing towards the black hole horizon. They take the form

h(r) e
i ω
uh,1 = hh,1 (rh − r) +O((rh − r)2) , (B.9a)

a(r) e
i ω
uh,1 = ah +O(rh − r) , (B.9b)

ξ(r) e
i ω
uh,1 = ξh +O(rh − r) , (B.9c)

with

hh,1 =
ahAh,1 e

−
φh√
3 r2h −

(

eφh − 1
)2
ξh k/rh

iω/uh,1 − 1
, (B.10)

and other higher order coefficients determined as well in terms of ah, and ξh.

As it will be useful below, let us also point out that the following field configuration

h(r) = −iω c(r)
r2

, a(r) = 0 , ξ(r) = k , (B.11)

solves the equations of motion, since it results from a diffeomorphism transformation of

the trivial solution.

B.2.1 Computing the correlators

We follow [44] and compute the holographic Green function GRAB where A,B = h, a, ξ, as

GRAB = B +A . V . S−1 . (B.12)

The matrices A and B can be read from the quadratic action for the fluctuations as

S(2)
os =

∫

dω
(

AIJ v
J
s
I +BIJ s

J
s
I
)

, (B.13)

where s and v are vectors made of the leading (sources) and subleading (vevs) coefficients

of the bulk fields that in the case at hand read

s = (h0, a0, ξ−1) , v = (h3, a1, ξ0) . (B.14)

Therefore, rewriting the quadratic on-shell action (3.19) in the gauge (B.1), (B.6) one gets

A =







−3 0 0

0 1 0

0 0 v2






, B =







−u3 0 0

−ρ 0 0

0 0 0






. (B.15)

Finally, S and V are respectively the matrices of sources and vevs constructed out of three

independent solutions for the fluctuations S = (sI , sII , sIII), V = (vI , vII , vIII). They read

S =







h
(I)
0 h

(II)
0 −iω

a
(I)
0 a

(II)
0 0

ξ
(I)
−1 ξ

(II)
−1 0






, V =







h
(I)
3 h

(II)
3 0

a
(I)
1 a

(II)
1 0

ξ
(I)
0 ξ

(II)
0 k






, (B.16)

in terms of the asymptotic coefficients (B.7). Notice that in eq. (B.9) there are only two free

IR parameters (ah, ξh) which allow us to construct two independent numerical solutions

by shooting from the IR. A third independent solution is given by (B.11) and determines

the third column in both matrices above.
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B.3 Transverse fluctuations

In section 6 we studied the transverse collective excitations of the system at nonzero

wavevector. In order to compute numerically the corresponding QNMs we need to study

the set of fluctuations

δgtx=h(r)e−iωt+qy , δgxy = g(r)e−iωt+qy , δAx= a(r)e−iωt+qy , δψx= ξ(r)e−iωt+qy .

(B.17)

It is easy to check that at linear order in these fluctuations, the equations of motion are a

consistent set of one first order and three second order ordinary differential equations. In

a black hole background with λ = 0 the asymptotic solutions for h(r), a(r), and ξ(r) have

the same form as in eq. (B.7) above, while for g(r) one gets

g(r) = r−2
(

g0 +O(r2)
)

. (B.18)

Towards the black hole horizon the solution for the ingoing fluctuations also takes the

same form as in section B.2, namely eq. (B.9), with the addition of

g(r) e
i ω
uh,1 = gh +O(rh − r) . (B.19)

Now, to compute the QNMs in this sector we will follow [44] and employ the so-

called determinant method. Hence we need to obtain four independent solutions for the

fluctuations, and construct the following matrix of sources

S =













h
(I)
0 h

(II)
0 h

(III)
0 −iω

g
(I)
0 g

(II)
0 g

(III)
0 iq

a
(I)
0 a

(II)
0 a

(III)
0 0

ξ
(I)
−1 ξ

(II)
−1 ξ

(III)
−1 0













, (B.20)

where in order to generate the fourth column we have used the pure gauge solution

h(r) = −iω c(r)
r2

, g(r) = iq
c(r)

r2
, a(r) = 0 , ξ(r) = k . (B.21)

Finally, the QNMs, namely the complex frequencies where the holographic Green functions

have a pole, are given by the values of ω for which the determinant of the matrix (B.20)

vanishes [44].
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Gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].
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