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We study the 2D motion of independent point particles colliding with a periodic 
array of circular obstacles. The interaction between the particles and the 
obstacles is described by a total accommodation retlection law. Assuming that 
the array of scatterers has finite horizon, the density of particles is approximated 
by the solution of a difft, sion equation in the long-time and large-scale regime. 
The proof relies on a multiscale asymptotics and gives the order o1" approxima- 
tion. 

KEY WORDS: Periodic Lorentz gas; dispersive billiards: Ilydrodynamic 
limit; diffusion coefficient: homogenization; multiscale asymptotic expansion. 

1. I N T R O D U C T I O N  

The p rob l em of  " h y d r o d y n a m i c  l imits" lies at  the hear t  of  nonequ i l ib r ium 
stat is t ical  mechanics .  In o rde r  to briefly revisit  this not ion ,  let us recall  that  
there are essential ly three types  of  ma thema t i ca l  mode l s  descr ib ing the 
evolu t ion  o f  ~ 1023 molecules  of  a perfect m o n a t o m i c  gas: 

(a) The  equa t ions  of  classical mechanics ,  once the in terac t ion  
between the molecules  is known  and encoded  in the ~1023-body 
Hami l ton ian .  

(b) The  kinet ic  theory  of  gases, based  on the Bo l t zmann  equa t ion  
(here the in te rac t ion  between the molecules  enters  the equa t ion  th rough  the 
coll ision cross  section).  
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(c) The equations of classical hydrodynamics (such as the Euler or 
Navier-Stokes systems); in the latter models, the only remaining informa- 
tion concerning the interaction between molecules is contained in the 
so-called "transport coefficients" such as viscosity and heat conduction. 

Studying the relations between the above models from the point of 
view of a mathematician is still a mostly open problem, which has long 
been under scrutiny since the work of Hilbert, Chapman, and Enskog. 
Although the formal asymptotics relating (a) to (b) and (b) to (c) are 
known to a very large extent (see refs. 2 and 11, for example) complete 
convergence proofs are missing in all but favorable particular cases. We 
refer the interested reader to refs. 3, 4, 10, 11, 13, and 17 for such proofs. 

One can argue that one of the main difficulties in the above program 
is the fact that the partial differential equations involved are mostly non- 
linear. Another difficulty is that the models in (a) are "reversible" while 
those in (b) and (c) contain in some sense Carnot's "second principle of 
thermodynamics" and as such are "irreversible." We shall not discuss these 
notions in more detail here; we instead refer the interested reader to refs. 
15 and 16 which describe in the simplest possible terms what has given 
birth to one of the greatest controversies in mathematical physics. 

In a remarkable series of papers, Bunimovich, Sinai, and then joined 
by Chernov tt' '~> (BSC) investigated the problem of relating directly a 
description of the type (a) above to one of the type (c) on a simplified 
model known as "the periodic Lorentz gas." The Lorentz gas is a gas of 
mutually independent point particles colliding with a periodic array of con- 
vex scatterers. The scatterers are supposed fixed (or infinitely heavy) and 
the collisions are elastic; in other words, the particles are specularly 
reflected from the surface of the scatterers. Using fairly sophisticated tools 
from the ergodic theory of billiards (and in particular the construction of 
Markov "sieves"), BSC were able to show that in the long-time, large-scale 
limit, and under an assumption that they called "finite horizon" that we 
shall recall later, the dynamics of the particles was described by a diffusion 
equation. One can understand from their proof how it is possible to relate 
a model of type (a), which is "reversible," to the diffusion equation, which 
is the foremost example of an "irreversible" dynamics. 

In the present paper, we take again the same model as considered by 
BSC except that we change the interaction between the particles and the 
scatterers from specular reflection to diffuse (or fully accommodating) 
reflection. We then show that, in the same asymptotic regime as considered 
by BSC, that is, the long-time, large-scale limit, the dynamics of the par- 
ticles is also described by a diffusion equation. However, our proof is much 
simpler and uses only elementary techniques of multiscale expansions for 
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partial differential equations (PDEs). Note, however, that we achieve less 
than BSC: with the modification on the law of reflection, the model of type 
(a) (that is, the Liouville equation for the number density of particles) is 
no longer a "reversible" model. Hence, our result cannot serve the purpose 
of understanding the "appearance of irreversibility" in nonequilibrium 
statistical mechanics. However, it gives a strategy of proof which is based 
on the fact that a certain operator is Fredholm, and thus circumscribes the 
use of more sophisticated tools (as in the work of BSC) to situations where 
this Fredholm property is missing. 

After these generalities aimed at placing the problem in its natural 
context, we come to the specifics of the model that we shall study. Let us 
begin with a description of the phase space. 

The space of positions, denoted by X, is the complement in R 2 of a 
periodic array of disks of radius r at the nodes of a regular triangular lattice 

( a  a x/~.' ~ 
L ~ ' = Z ( a ' 0 ) O Z \ 2 '  2 J 

We impose that r < a/2, so that the scatterers do not overlap. The domain 
left free for the particles is then 

X =  {x ~ R2/d(x, L, a) > r} 

Let Y be the fundamental domain associated to X, that is, the image of 
(the closure of X) under the canonical projection p, of R 2 onto R2/oW. As 
a topological space, Y can be viewed as two circles linked at one common 
point. More precisely, Y is the compact manifold with boundary defined on 
Fig. 1 by gluing AA' with C'C and BB' with D'D. 

D 

D" 

A A' 

C' C 

B" 

B 

a 

Fig. I. The geometry of the fundamental domain. 
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On these two sets X and Y, n.,. (respectively i1.,.) denotes the unit 
normal vector at x e OX (resp. 0 Y) directed toward X (resp. Y). 

Particles considered here move with unit speed. Their number density 
is denoted by f - f  (t, x, v): this notation means that f ( t ,  x, v) is the density 
of particles which, at time t, occupy position x and move with velocity v. 
In other words, J'(t, x, v) dx dv is the number of particles in an infinitesimal 
volume dx dv of the phase space Xx  S t centered at (x, v). 

In X x S t, due to the mutual independence of the particles, the number 
density satisfies the free transport equation: 

c~,J'+ v .V , . f  =0 ,  t>~O, x e X ,  v e S  ~ (1.1) 

Let F+_ = { (x, v) e OX x S ~, 0 < +_ v. n.,.}. The symbol J'_+ refers to the trace 
of f on (i.e., restriction to) the set F_+. When this induces no confusion, the 
same notations are kept with 0Y instead of OX. The boundary condition 
considered here is a diffuse reflection law with total accommodation. We 
refer to ref. 11 for a discussion of the physical relevance of this condition, 
as well as of many of its variants. The diffuse reflection law is 

f + ( t , x , v ) = { I ,  I v ' . n , . l f _ ( t , x , v ' ) d v ' ,  
" '  �9 n ~ ~ 0 

(x, v ) e F +  (1.2) 

This condition means that the sines of the angles of reflection of the par- 
ticles are equidistributed after each collision. The normalizing factor 1/2 is 
chosen so that functions independent of the variable v satisfy (1.2): indeed, 

- ~_ Iv"  w l  dr ' ,  V w e S  I (1.3) 

Finally, the initial density is prescribed: 

J ' ( O , x , v ) = O ( x , v ) ,  x e X ,  v e S  ~ (1.4) 

The Scaling 

Three length scales are present in the model above: a, r, and the 
characteristic scale of variation of O, denoted by L. The mean flee path of 
particles between two collisions will tend to zero if a and r are infinitely 
small and of the same order of smallness compared to L. 

This suggests that we introduce a small parameter e such that a = &, 
r - -  Pc, where & f', and L are of the same order of magnitude. Time will also 
have to be rescaled consistently with the limiting diffusion dynamics. 
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Define f:( t, x, v ) = J;,( t/e, x, v), where f,: satisfies ( i. 1 )-( 1.2 )-( 1.4) with 
& and Pe instead of a and r. Dropping the carets, one can see that f :  is a 
solution of the rescaled system: 

eO, f :+v.V. , . f :=O,  t>~O, x e X , : , v E S  I (1.5) 

f : . ( t , x , v ) = ~ I ,  [d.n., . lf: ( t ,x ,v ' )dv ' ,  
" '  �9 I I ,  < 0 

f:(O, x, v) = q~(x) 

(x, v)e V'+ (1.6) 

(1.7) 

where 

3"~':=Z(ae'O)GZ \ 2 '  2 / 

,:= {x~R'- Idx ,  ~:) >"d  

~.V+ {(x ,v)eOX,:xS ' lO< +v.n,.} 

Observe that, in the initial condition (1.7), tb is defined on R-'x S ~ and 
is independent of v to avoid initial layers. 

The main result of this paper, stated in the next section as Theorem 1, 
gives the asymptotic behavior of f :  as e goes to 0. 

2. D I F F U S I O N  A P P R O X I M A T I O N  

With the scalings and boundary conditions above, the particles will 
undergo a large number of collisions per unit time and will forget their 
individual velocity. This will result in the limiting Brownian dynamics. The 
convergence proof presented here relies on the fact that the space X has the 
finite horizon property. This assumption, introduced by Bunimovich and 
Sinai, ~v~ means precisely that 

sup{ F x - y l / [ x ,  y] c X} < + co (2.1) 

A sufficient condition for the billiard considered above to have the finite 
horizon property is 

r >  (a x/~)/4 (2.2) 

which implies that the maximum free path of particles in X,: is of order e. 
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The main result of this paper is: 

Theorem 1. Assume that condition (2.2) holds. Let q ~ - ~ ( x )  be a 
smooth function defined on R 2 with bounded derivatives up to order 4 and 
let F o - F o ( t ,  x) be the solution of the diffusion equation 

O,Fo-d~ , .Fo=O,  t>~O,x~R 2 (2.3) 

with initial condition 

Fo(O,x)=q)(x) ,  x ~ R  2 (2.4) 

where d > 0  is given in (2.10) below. Then, for any T > 0 ,  there exists a 
positive constant C r  such that 

sup IIf,:(t, . ) - F , , ( t ,  ")llL,4.u215 C-re 
t ~  [ 0 .  " r ]  

As in ref. 5, the proof is based on an asymptotic expansion for f,: of the 
form 

f:(t, x, v )= f~~ x, y, v )+  ef(~)(t, x, y, v)+t~-f(2)(t, x, y, v )+ ... 1.,.= ,.,,: 

wheref~k~(t, x , . ,  v) is defined on Y. The key point in the proof is a variant 
of the Fredholm alternative for the advection operator v.V.,, with the 
accommodation boundary condition in the function space L~- (YxS~) ,  
stated in the following lemma. 

Lemma 2. Let S ~ L ~( Y x S t ) and consider the problem 

v .V. , .O=S,  y ~  Y, v ~ S  I (2.5) 

6 ) + ( y , v ) = � 8 9  ]v'.n.,.[O (y ,v ' )dv ' ,  y e ~ Y ,  v .n, .>O (2.6) 
l "  . /1~ < l) 

The following statements are equivalent: 

(i) S satisfies the orthogonality condition 

If S( y, v) dy dv = 0 
y •  t 

(ii) There exists a unique solution O ~ L '~ ( Y x S ~ ) of (2.5)-(2.6) such 
that 

ff O(y, v) dy dv = 0 
y x S  I 
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Once, this lemma is proven, we can introduce the diffusion matrix by 
analogy with the classical Green-Kubo formula: 

O = f f  (v|174 (2.7) 
} ' x  ,S "1 

where yj(y, v) ~ L"( Yx S ~ ), j E  { 1, 2}, is the unique solution of 

v.V,.?,i=vi, ye Y, v=(vl,vz)~S I (2.8) 

) , j ~ ( y , v ) - - ' f  ]v'.n,.l),i_(v,v')dv', yeOY, v . n , . > 0  (2.9) 

defined according to Lemma 2. In the particular case of a regular 
triangular array, the diffusion matrix reduces to a diffusion coefficient. 

Proposition 3. The diffusion matrix D is scalar positive, that is, 

d=�89 i f (vl),~(y,v)+v2?,,_(y,v))dvdy>O (2.10) D=dI, where 
)" • .S '1 

3. A C H A N G E  OF V A R I A B L E S  

We begin with a change of variables in a certain integral. Although 
this computation might seem overly technical and with little conceptual 
interest, we insist that it is a fundamental step for the results that we have 
in mind; it will indeed be used repeatedly throughout the paper. 

We first define the backward exit time. Note that this definition is 
valid for the transport of particles in both the compact set Y and its 
fundamental cover X. The backward exit time is defined as 

t,.,.=inf{t>Oly-tv~c~Y} for any ( y , v ) ~ Y x S  ~ (3.1) 

In other words, t,. ,. is the time spent inside the domain by a particle start- 
ing from point y with velocity --v before its first reflection at the boundary. 

With the notation above, the integral operator to be studied in this 
section is 

(K~bl(y) = �89 f, q~(y-t.,..,,v) lv.n.,.ldv 
",ttl •O 

where ~b e C(0 Y). We want to express K~b in the form 

(3.2) 

(K~b)(y) = _~. ~ r k(y, y')ck(y')dy' (3.3) 
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This will result from the change of variables v ~---> y -  t.,.. ,.v = y' in (3.2). This 
change of variables is by no means elementary and the particular geometry 
of the billiard system considered is reflected in the kernel k. 

The physical meaning of the integral operator K can be understood as 
follows: it is the number density of particles leaving the boundary c3Y in 
terms of its former value at the previous time of collision with 0 Y. 

Before embarking on the detailed calculation of k, we need some 
geometrical preparations. 

De f in i t i on .  Let y ~ O X ; y  belongs to one of the circles in IX, 
denoted by C,- 

1. A neighbor of C,. visible from y is a circle C' included in aX having 
the following property: there exists an open arc I' ~ C' such that, for all x ~ I', 
the open segment ]x, y[ c X. The set of neighbors of C,. visible from y is 
denoted by VN,.; it has at most three elements (see the shaded disks in Fig. 2). 

2. Let C'~ VN.,,; one denotes by V,.(C') the maximal open arc I' 
included in C' such that, for all x ~ I '  the open segment ]x, y[ =X.  One 
denotes the corresponding arc in the space of directions at y by 

y'-y } 
w, y' V,.(c') 

We make the two following important observations: 

1. If z '~ IzdC ' )  and z"~ V,.(C") for some C' and C"~VN.,., it is 
impossible that z " - z ' ~  ~ because of assumption (2.2). 

Fig. 2. Visible neighbors from point y. 
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2. One  should r emember  tha t  functions ~b e C(OY) can be identified 
with 5e-periodic functions of  C(OX). 

With these definitions and remarks ,  one arrives at the following 
expression for the integral ope ra to r  K: 

(K~b)(y)= E �89 
C '  ~ P 'Nv  ' �9 n y  < 0 

1 v,.i c ' ~ ( Y -  t,.. ,.v) ~b(y - t,, ,m) ] v. n,] dv 

Y" �89 (~(y-t.,..,,v) Iv.n,] dv (3.4) 
H"v( C'  ) C '  ~ V N v  

(In the above  expression, we denote  by 1A the indicator  function of  a 
set A.) 

Propos i t ion  4. There  exists a function k bounded  on O Yx  0 Y such 
that, for all ~ e C(O Y), 

(Kck)(y) =for k(y, y') ck(y') dy' 

One has k ( y , y ' ) > ~ 0  on 0 Y x 0 Y  and k ( y , y ' ) > 0  if y ' eV . , . (C ' )  with 
C' E VN,.. 

Let us now consider  a par t icular  visible ne ighbor  for y, and per form 
the change of  variables v ~ y '  = y - t.,. ~. v. 

Consider  a segment  of  t ra jectory between two scatterers C1 and C2 
centered at O t and 02 respectively, as indicated on Fig. 3. We have used 

Yl 

al  m 

Fig. 3. The collision parameters. 

822/86/I-2-24 
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the notations Yl for y and Y2 for y' in Fig. 3 to emphasize the symmetrical 
role played by y and y in this calculation. With these notations, C2 ~ VN,,,. 
Denote by m the intersection point of the line O, 02 with the line y,yz. The 

point yj on CI is parametrized by the angle fll = ( m ~ ' ~  Yl) and likewise Y2 

is parametrized by/52 = (m--0~,_),2). The velocity v is parametrized either by 

the angle 0c I = (ny'~,v) or the angle ot 2 = ( - ~ . _ , )  (see Fig. 3). 
For a single pair of such scatterers, we first study the change of 

variables (0q,/51) ~ (0c2,/52). Four different cases may occur as m moves on 
the fixed line Oj O_~ according to the signs ofmO~ . t --~ and ~ - m.--~2. In 
all cases the same final result is established with the same arguments. We 
shall therefore restrict our attention to the case considered in Fig. 3 (that 
is, toO', " ~ 2  < 0  and ~ "  mY-~2 <0).  

One has to write the classical relations for the triangles O~my~ and 
02my2. Define the two angles 

A A 

fi, =(O,nlyl) and 62 = (O2my2) (3.5) 

Clearly, one has fi~ = 6 z, which means that 

--~-I-(/51-{- 7~ -~ @.i ) = --~-I-(~-k-/52-I-~--0"~2) (3.6) 

or equivalently 

~, +ill = - ~ 2  + /52 + n (3.7) 

Moreover, in the triangles Ojmy, and 02my  2 the following classical 
relations hold: 

r d(01, m) 
s i n ( - 6 , )  s i n ( x + c ~ , )  

r d(m, 02) 
sin(-(Y2) sin(rc-~_,) 

(3.8) 

Thus, 

r sin ~, - r sin 0% = 1 s i n ( . ,  + 15, ) (3.9) 

with the notation l =  d(O,, m)+ d(m, 02). Therefore, the relations defining 
(~2, f12) in terms of (0~,,/51) are 
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f c% : Arcsin (sin cq - ~ sin(cq + fl, )) 

f12 = Arcsin (sin ~l - ~  sin(~l + i l l ))  + ~t +/t~ +n  

(3.10) 

and the Jacobian of the transformation (cc~, f l ~ ) ~  ( ~ ,  f12) is 

1 
J ( ~ l ,  i l l )  

C O S  ~ 2  

( ' , ) cos 0q - - c o s ( a t  +/~l) - -  cos(0~, +/3,) 
r r 

x 1 l 
C O S  (X i - -  -- COS(Of. i -~- J~ i ) "q- C O S  0(.~ - -  - COS(OC 1 -{- f l l  ) --]- C O S  O~ 2 

l" r 

(3.11) 

We isolate the crucial property that we shall use to justify the change of 
variables below: 

Lemma 5. The four entries of the matrix (cos 72) J belong to an 
interval of the form [M~, M2] with M t < M~ < 0. In particular one has 

Mi ~ cos o~l-/cos(oq +i l l  ) + COS 0C2 ~<M2 < 0  
r 

(3.12) 

Proof of  Lemma 5. Since it is obvious that the absolute values of 
these entries are all bounded above, the only thing to show is that these 
entries are bounded above by a negative constant M2. To verify this, it is 
enough to prove that the upper bound in (3.12) holds for any admissible 
(c(t, fl~ ) and l. Indeed, since both ~j and 0~ 2 belong to [ - n/2, n/2] one has 
cos a~ and cos72~>0: hence the largest entry in (cos c%)J is the one 
appearing in (3.12). 

Before doing this, we discuss more precisely what we mean by "the 
admissible (~ , f l~)  and /." Keeping the point Yt fixed, we draw the two 
lines tangent to C2 passing through y~; the directions of these lines is 
parametrized by the angle with the normal n,.,, that they define. We shall 
call these angqes oq,.~,~ and oc~ . . . .  ; one has obviously 

7~ 7t 
- -  ~- < J- I rain < ~ lmax  < ~- 

Z Z 

On the other hand, the distance I between the centers of C~ and C2 cannot 
be smaller than a. 
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In order  to prove  (3.12), we need to s tudy for any fixed fit ~ [ - re/2, re/2] 
the function defined on [~,mi,;  at  . . . .  ] ~ [ --re/2, re/2] by 

f ( = ,  ) = cos  =,  - / co s (= ,  + / ~ ,  ) + cos  0c_, 
r 

where 

( , ) a2 = Arcsin sin 0el - -  sin(~l + f i t )  
r 

It  is immedia t ly  seen that  

l &z____~2 
]"(~ ,  ) = - -  s i n  a t + -r s i n ( a  t + f l t  ) - -  s i n  ~ 2 8 a  t 

& , \  
= - s i n  a_. 1 + ~ - ~ )  

where 

&z 2 1 
= c o s  =, - -  cos(~t + b ' , )  

O(x t r 

To prove  that  f is negative, it suffices to prove  that  f is negative when 
evaluated at its critical points  as well as at =~ =et=~,,,0t, =0c, ..... . The  
critical points  are such that  e2 = 0 or  1 + 8%/0~t  = 0. 

�9 On  0t, = ~,,,~,, : This  case clearly cor responds  to % = re/2 (see Fig. 3). 
Therefore  

1 
f (  ~ ,  mi .  ) = COS a ~mi. - -  - C O S ( a t m i o  + f l t  ) /- 

A 

Notice that  O~ m)q = %.,~. + fl , ,  which is an acute angle and hence 

f(a. , . .  ) = COS 0q.,m - - / [  l - -  s i n 2 ( a , , . i .  + f l l  ) ]  ,.'2 
I" 

I 2 I t/2 
=COS a,~i .  -- ~ - -  (sin 0qmin -- 1) 2 

l ) t/2 
= c o s  0q,,~i. - ~ - 2  + 2 sin ~tmi. +COS-' =lmi~ 
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Therefore,  
condit ion 

363 

the fact that  f(oqmi.) is negative is clearly equivalent to the 

COS ~lmin < - -  2 + 2 s i n  OClmin + COS20~tmin 

or in o ther  words 

But this last inequality 
l : / > a > 2 r .  

- 2  sin ~m~. + 2 < 12/r 2 

is implied by the admissibility condit ion on 

�9 On a t such that  1 +8o~2/0o~ ~ =0 :  This relation is rewritten as 

l 
1 + c o s  ~ l - - c o s ( ~ l  + f i t ) = 0  

r 

An alternative expression for f (0q)  is then 

f(0ct) = --1 + cos 0c 2 

T h u s f ( ~ )  is negative if ~2 # 0. This case is precisely dealt with just below. 

�9 On ~ such that  0c_, = 0  (see Fig. 3): Here, 

l 
f(~K) = cos oq - -  cos(~l + ill) + 1 

r 

A 

As above, c o s ( o q + f l l )  is positive because O ~ 0 2 y t  is an acute angle. 
Moreover ,  a2 = 0 implies that  r sin a~ = l sin(0~ + fit). Thus 

f ( ~ l )  = cos ~l + 1 - - / [  1 - sin2(o~l + fl~ )] 1/2 
r 

( ),j2 = c o s  0~l + 1 _  12 ~ - -  sin-" el 

= c o s e  I + 1 - - (  12 
I/2 

7 - 1  + cos-" 

Again because of  the admissibility condit ion l >  2r, f (0q)  is negative. 

�9 On ~l = ~  . . . .  : Same p roo f  as in the the first case oq =~lm~," 
This completes the p roo f  of  Lemma 5. | 
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An immediate consequence of Lemma 5 is the following. 

C o r o l l a r y  6. Let y ~ C c O X  and C'~ VN,.. Then the map 
v ~ y - t.,. ,.v --- y' defines a C~-diffieomorphism from the arc W,.(C') to 
V,,( C'). 

Proof of Proposition 4. Consider any of the integrals appearing in 
the finite sum (3.4). One has 

f, (k(y-t,..,.v) lv.n,. ldv=~ ck(),')t y - ) ' '  n,. Ofl'- -t 
.~,-,,~',, ,.,~,-, c ,  l y -  y ' l "  " �9 00el dy' 

with the convention that (y, v) are parametrized by fl~ and e~ and that 
y ' = y - t ~ .  ,.v is parametrized by ~2 as explained above. With these 
notations, it follows precisely from (3.12) that 

11"--"- I MI l y -  y'l "ny " 

~< Y'I n.,. 

Y - -  Y' n;, ly-y'l 
& 2 - '  

c3~ I 

= Y - Y  .n Ic~ 
l Y - Y '  " I cos~ t - ( / / r ) cos (cc~+ /3 ] )+cos~2 l  

1 

M2 

This shows that the kernel k e L ' ( O Y x O Y ) .  On the other hand, the 
inequality above shows that k(y, y' ) > 0 if y' �9 V,.(c') with C' e VN,.. This 
completes the proof of Proposition 4, I 

4. PROOF OF THE FREDHOLM ALTERNATIVE 

This section is devoted to the proof of Lemma 2. First, we check that 
the orthogonality condition is necessary for the existence of a solution O to 
(2.5)-(2.6). Indeed, let O be such a solution: integrating (2.5) over Yx S t 
and using Green's formula gives 

ff,.xs, v. v ,o  +dv= ff~,,.x.~, Iv.,,,.i oly, ~1 dy dr= ff,.x~., sly, ~1 + d~ 

where we have abused the notation dy to designate the length element on 
0Y. Then, using (1.3) and the boundary condition (2.6), we have 
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f l Y •  s' S( y, v) dy dv 

f;, 
" ~' �9 t l  v < 0 

Iv'. n.,.J O(y, v') dv' -- O(y, v)) Iv. n.,,I dy dv 

=ff, 
= 0  

Uniqueness. 

,, Iv'. n.,.I �9 Iv-n,,I dv - Iv" n.,.I) O(y, v') dy dr' 

Let On e L ' * ( Y x  S t ) be a solution of 

v.V.,.O,=O, (y, v)e Y x S '  (4.1) 

O,,+(y, v ) = ~ f  Iv' .n.,.J O,, (y, v')dv', (y, v)eF+ (4.2) 
o l  

" �9 t l  I < 0 

The method of characteristics tells us that, for almost every (y, v)e Yx S ~, 
the map t~-+Oo(),+tv, v) is a constant on the interval [ - ty . , , ; ty .  _,.]. 
Hence, for almost every (y, v ) e F + ,  

= - f  Iv'.n,.I Oo+(y-t,. ,.,v')dv', Oo+(y,v)-=Oo.() ')  ~-,',,,.<o " ' 

Another way of writing Eq. (4.3) is 

On + = KOo + 

(y, v)eF+ 
(4.3) 

(4.4) 

At this point, we shall need some more information on the integral 
operator K defined in Section 3. Let (k,,),,~>/be the sequence of bounded 
functions defined on 0 Y x a Y by the inductive relation 

k~(y, y ' )=k(y ,  y'), k , , (y ,y ' )=fo , .k (y ,y")k ,_ , (y" ,y ' )dy"  (4.5) 

The function k,, is the integral kernel of the nth power K" of 
K: L~ (OY) --+ L-" (OY). One has the following result. 

I . e m m a  7. There exists n* > 0 such that k , . (y ,  y ' ) >  0 for all y and 
y' e0Y. 

Proof. We refer to the notations of Fig. 4. The middle points m i 
of the arc Ci are of particular importance. Let y ~ Ct; one can see that 
there exists C'E VN,.c VN,,,, such that V,.(C')c~ V,,,,(C')v~j~. Since 
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�9 m3 

--- C4 ~,i --- 

y~ ~ m 2 

C I ;C 2 

Fig. 4. Broken trajectory linking y and y'. 

mi ~ V,,,j(C~) for all i # j  in { 1, 2, 3, 4}, one deduces immediately the follow- 
ing geometric property: 

There exists n* > 0 such that, for all y and y' cOY,  one can construct 
a sequence (yi) 1 ~ ) ~,,. - t of points in 0 Y and a sequence of nonempty open 
arcs A i centered at Y1 such that, for all sequences of points (zj)~ <_j~,,._, 
with zj ~Aj for all I <-.<.j~n*- 1, the open segments ]y, z~[, ]zj, zj+,[  for 
1 < ~ j < ~ n * - 2  and ]z . . . .  ,, y ' [  are all included in Y. 

One might wonder why the construction above (with the open arcs as 
above) is necessary: the reason is that a given broken trajectory connecting 
y to y' might fall in sets of measure zero on which the solution of the trans- 
port equation is not defined. Hence it is important to deal with an open 
neighborhood of one such trajectory. 

With the characterization of the set of couples (y, y') such that 
k(y, y ' ) =  0 provided by Proposition 4, the construction above proves our 
claim. A rapid inspection proves that it suffices to take n*~< 8. | 

L e m m a  8. The function k defined in Proposition 4 has the following 
properties: 

f ~ ' k ( y ' y ' ) d / = f o r  k ( y , y ' ) d y = l  for a . e . y , y ' ~ c 3 Y  (4.6) 

Proof. First observe that K1 =�89 d v = l  for all ye0Y.  
To prove the second equality, let r e C(0Y) be arbitrary and consider F the 
solution of the boundary value problem for the transport equation in Y: 

v-V, ,F=0,  y ~ Y ,  v ~ S  1 (4.7) 

F(y , v )=qb(y ) ,  ( y , v ) e I ' +  (4.8) 
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Integrating both sides of the transport equation above over YxS  t, one 
finds 

ff r• V.,. " ( vF(y, v) ) dy dv 

= ffor• F(y, v) v.n.,.dy dv 

=ff,~ Olylv..,dydv-ff,. Oly-t,,v)lo .,,Idydo=O 
+ 

which can, be recast as 

f~rfb( y) dy-  ~v(KC)(y) dy =0 

Since this last relation holds for any r ~ C(0 Y), it proves Lemma 8, | 

To finish the proof of uniqueness, one proceeds as follows. First, (4.4) 
implies that 

0o.  = K"'Oo+ (4.9) 

It follows from Lemma 8 that 

f k,,./y, f k,,./y, y'l a? Y J0 Y 

Hence, multiplying (4.6) by Oo+ (seen as a function on 0 Y) and integrating 
over 0 Y gives 

for Oo. (y)2 dy-  ffo,.• y') Oo+ (y) Oo+ (y') dy dy' 

=ffo, xoyk,,.(y, y,) Oo+ (y)Z dy dy' 

-ffov• y') Oo+(y) Oo+(y') dy dy' 

= ~_ ffo.~or k,,.( y. Y')( Oo+ (y) -  Oo+ ( Y') )2 dy dy '=0 

Since, by Lemma 7, one knows that k,,. > 0 on cO Y • cO Y, the equality above 
shows that Oo+ is almost everywhere equal to a constant, say C. Then O0 
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is the unique solution of the boundary value problem for the transport 
equation in IT, (4.7)-(4.8), with q~ replaced with the constant C, that is, 
0,~ = C a.e. Since on the other hand one knows that 

IF• I Oo( y, v) dy dv=O 

one deduces that O0 = C = 0 a.e. This completes the proof of the uniqueness 
part of Lemma 2. 

Existence. Let S � 9  L-" satisfy the orthogonality relation 

ffY• S( y, v )dy  dv=O (4.10) 

Let 2 > 0  and O;. be the unique solution in L - " ( Y x S ' )  of 

2 0 ; + v . V y O ; = S ,  y e  Y, v e S  j (4.11) 

(OA+ (y, v)=_~ Iv'.n,.l(O~)_(y,v')dv', (y,v)eF+ (4.12) 
i '  th <:l) 

By the maximum principle, 

IISIIL,,, ~• 
I10~. IIL,,,-• ~ )t (4.13) 

In order to take the limit of O~. in (4.11)-(4.12) as 2 goes to 0, we first 
prove that I[O~ [IL-,r Y• is bounded as 2 goes to 0. Otherwise there would 
exist a sequence 2,, ~ 0 such that 

lim IIO~.,,llL,,r• + ~  

Let 

02 

so that q~;. satisfies 

S 
( y , v ) e  Y x S  t (4.14) 
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and 

(45~.)+ (y, v) = �89 1 Iv'.n,.l(45~)_(y,v')dv', 
l '  I t v < O  

After extraction of a subsequence if necessary, 

369 

),tOY, v.n,.>O 
(4.15) 

the Banach-Alaoglu 
theorem implies the existence of 45 e L "-( Y x S ~ ) such that 

45;.,-+45weaklyinLr(YxS~,dydv) forall  l < p < + c o  (4.16) 

Cessenat's trace theorem ~2~ and the boundedness of t,.,. [resulting from 
the finite horizon hypothesis (2.2)] show that 

(45~,,) _+ --, q5 weakly in L~'(F+, [v.n.,. [dy dr) for all 1 < p < + era 

(4.17) 

Hence, taking the limit as 2,, ~ +oe in (4.14)-(4.15) leads to 

v.V,.45=0, (y,v)e Y x S  ~ (4.14') 

45 +(y, v)= �89 ;, Iv'.n.,.145_(y,v')dv', y r  v.n.,. > 0 (4.15') 
.' . #~, < (} 

The uniqueness part of Lemma 2 shows that 45 is a constant; since one also 
has for all n, because of the orthogonality relation, 

I f  45~ '( v, v) dv dv 0 
y .< .b" l "~ . 

it follows from the weak convergence (4.16) that 

45=0 (4.18) 

On the other hand, for any 2 > 0 and (y, v)e F + ,  

(45~.,,) + (y, V)=l~,,(y)=A;.,(y)+B~.,,(y)+�89 (4.19) 

where 

I 1 f , ,  , / ( ' " "  -~, ,S(y- tv ' ,v ' )dt  ) 
Aa,,(y) = -  / Iv "n,.I i j ,  e . . . .  

20,,,.,,,<o " \ o IIO~,,,IIL, 

lB~.(y) If Iv'.n,I [exp '-X" 'v '""- l ]  
�9 2 I "  �9 11~, < 0 ' t 

x (45x,)+ ( Y -  t,..,.,v', v') dv 

dv' 

(4.20) 
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To derive (4.19)-(4.20), it suffices to use relation (4.15) and to integrate 
(4.14) backward on each particle trajectory (or characteristic line) until the 
previous point where the trajectory meets 0 Y. 

Proposition 4 implies that 

with 

C ' =  IIk[lu,,ar• meas (0Y)'"-'~:P 

Then, the following bounds on A~.,, and B~,, hold: 

C 1 ( I - e  -~''r) 

liB;.,, II L,~ i-+ ~ C'(  1 --  e - ) " r )  i[(q~.,,)II u'~0 r~ 

(4.21) 

(4.22) 

where C' is defined in (4.21), C and T being other positive constants. One 
can take, for instance, 

T=sup{t.,. ,. s.t. (y, v ) e F  } 

It follows in particular from (4.22) that A~., and B;.,, converge to 0 
uniformly on O Y as n ~ + c~. 

Next, (4.17)-(4.18) show that 

(r + ~ 0 weakly in LP(c3 Y), for all 1 < p < + oo (4.23) 

and, by using Proposition 4, (4.21), and the dominated convergence 
theorem, one gets 

K(cI)).,,) + ~ 0 in the norm topology of LP(0 Y), for all 1 < p < + oo 

(4.24) 

The relations (4.19) and (4.24) prove that the convergence in (4.23) holds 
in the norm topology. Then, using (4.21) and (4.19) again shows that 

(~a,,)+ --*0 in L~'-(OY) (4.25) 

The maximum principle for the limiting transport equation (4.14') in 
Y x S  ~ shows that ~.,,---,0 in L ~ ( Y x S  ~) as n ~  +oo. But this contradicts 
the property I I~ . , , I IL~  = 1, which follows directly from the construction 
of r 
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The discussion above shows that the existence of a subsequence 
2, ~ + ov such that 

I1(~>., II L-,.. ~ -4-o0 

is contradictory. Hence, there exists a constant C >  0 such that 

It follows again from the Banach-Alaoglu theorem that one can extract 
from this family a subsequence converging to a solution of (2.5)-(2.6) for 
the weak-* topology of L~-( Yx $1). 

This concludes the proof of Lemma 2. 1 

5. T H E  D I F F U S I O N  C O E F F I C I E N T  

In this section, we shall prove Proposition 3. 
First, let us show that D is a scalar matrix. To begin with, D is 

symmetric by construction. Moreover, observe that since the lattice ~ is 
invariant under the rotation of angle n/3, the matrix D must commute with 

One can check with a direct calculation that the only symmetric matrices 
commuting with ~? are scalar, that is, of the form dI. Necessarily, d is then 
given by (2.10). 

Next, it is also relatively easy to show that d ~> 0, or equivalently, that 
D is a nonnegative matrix. Indeed, multiplying (2.8) with j =  1 by ),~ and 
using (2.9) leads to 

f~r• s' vlyl(y, v) dy dv 

= --�89215 7t(Y'V)2v'n"dydv 

- + 
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r  

: ' JJ 7, Iv .  n.,.I (0 '  i(Y, v) 2 dv 
1"_ 

( s )  ' ' . v '  Iv  n, . I  dy dv 7~(v, ) l v ' . n , . l dv '  . 
- - - ~  "+ " " ' n L < O  " " 

. . . . . . .  " , 

) 0  (5.1) 

by the Cauchy-Schwarz inequality. Likewise, one shows that 

ff v272(y, v)dydv>_,O 
l "  x ,S '1 

and this proves that d>_-0. 
Finally, let us prove that d > 0, which is slightly more delicate. If d = 0, 

the last inequality in (5.1) would be an equality, which means that there 
exists a function g ~ L '~'~ (0 Y) such that 

(7~) ( y , v ) = g ( y ) ,  fora.e.  ( y , v ) ~ O Y x S  ~ (5.2) 

[ First, one obtains this equality on F and then extends it to 0 Y x  S ~ by 
using (2.9)]. On the other hand, if one uses the method of characteristics 
to solve (2.8), one finds that 

7~(y , v )=) ,~ (y - t . , , v )+ t . , . . , , v~ ,  for a.e. ( y , v ) ~  Y x S  j (5.3) 

and in particular, applying this last equality to (y, v) and (y, - v ) ,  one sees 
that (5.3) holds for almost every (y, v)e  F . Therefore, applying (5.2), one 
has 

g ( y ) = g ( y - t , . . , . v ) + t , . . , . v ~ ,  for a.e. (y, v ) e O Y x S  I (5.4) 

Using, the same argument as in the proof  of Lemma 7, we can 
construct a finite sequence Zo,..., z ,  e 0X such that: 

�9 The open segment ]Z/,=~/+m[cX for all O<~j<~n and z , =  
zo+(1 ,  0). 
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�9 One has the relations 

g(Zo)=g(z,,), g(zj+l)=g(z~)+(Zj+l-z~).(1, O), O<~j<~n (5.5) 

Summing all these equalities leads to the contradiction 

g(zo) = g(z,) = g(zo) + ( z , , -  Zo). ( 1, 0) = g(zo) + 1 

Hence the relation (5.2) cannot hold, which means that d > 0 .  II 

6. P R O O F  OF T H E O R E M  1 

Consider the following multiscale asymptotic expansion off,:: 

f:(t, x, v) =f~m(t,  x, y, v) + efc'~(t, x, y, v) + ezf~2~(t, x, y, v) + .. .  [,. ..... ,,: 

where Jck~(t,., v) is defined on R~x Y. Identifying the coefficients of the 
successive powers of e in (1.5) leads to the following hierarchy of equations: 

v. V.,.f Im= 0 (6.1) 

v. V, .f  Ij~ + v. V,.J 'l~ = 0 (6.2) 

v. V.,.fl21 + v. V, . f  ~ll + O,f I~ = 0 (6.3) 

for any (t, x, y, v) ~ R+ x R 2 x Yx S ~, with the boundary condition 

f~k~(t ,x ,y ,v)=5 Iv'.n.,.If~k~(t,x,y,v')dv ', ( y , v )eF+ (6.4) 
, '  �9 t r y  < 0 

Equations (6.1) and (6.4) and Lemma 2 show that 

f"Jl(t, x, y, v ) -  Fl~ x) (6.5) 

is independent of (y, v). Equations (6.2) and (6.4) and Lemma 2 show that 

f~l~(t, x, y, v ) =  - ) , (y ,  v)-V.,.F"'~(t, x) (6.6) 

where the vector ~ = (),~,)'z) is defined in (2.8)-(2.9). Moreover, (6.3)-(6.4) 
has a uniquesolut ion if and only if 

~ (v .V , . f~"+O, f '~  (6.7) 
}" x ,~'1 

If one substitutes the expressions (6.5)-(6.6) in (6.7), one finds exactly the 
diffusion equation (2.3) for F "~. In the sequel, U ~ is assumed to satisfy 
also the initial condition (2.4) (a prescription which defines a unique F~~ 
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Introduce now the remainder R,:(t, x, v) for any (t, x, v) e R+ x X,, x S ~ 
defined as 

( , )  (x )  
R , : ( t , x , v ) = f : ( t , x , v ) - F ' ~  (l) t , x , ~ , v - e - f  (') t,x,-,ve 

(6.8) 

Then 

O,R,.+ 1 .  - v - V.,.R,:= - e 0 , f  ( l ' -  e-" O,f~')- -- av �9 V.,.f 12) 
e 

(6.9) 

(x )  ( , )  
R , : ( O , x , v ) = - e f  cj~ O , x , - v  - e 2 f  c'-~ O , x , - , v  (6.10) 

R, : ( t , x , v )= �89  ' Iv ' .n , . lR, , ( t ,x ,v ' )dv '  ( x , v ) e F +  (6.11) 
" '  �9 t l ~  <2 0 

Applying the maximum principle to the diffusion equation (2.3) with initial 
data V " ~ e L ~ ( R 2 ) ,  m ~ { 0 , 1 , 2 , 3 , 4 } ,  we first show that O,f '~( t , . ) ,  
O,f~2'(t, �9 ), and v. V,.f12~(t, �9 ) are all bounded in L~'-(R2 x S I ) uniformly on 
every compact t-set. Notice that we use here the fact that yj e L~-( Y x S ~) 
for j =  1, 2. Since R,:(0, x, v) = O(e) in L~-(X~. x S ~ ), the maximum principle 
for the transport equation (6.9) with the boundary condition (6.11) gives 
the desired order of approximation. ] 

7. CONCLUSION 

We conclude this paper with some remarks on the proof  given above 
as well as indications of future work and possible open problems. 

First, it is fairly clear that the above strategy would apply to any such 
billiard system with finite horizon, independently of the dimension. We 
chose the two-dimensional case only to simplify the change of variables in 
Section 3. 

With some nontrivial modifications, the same strategy as above can be 
used when the total accommodation condition (1.2) is replaced by the 
partial accommodation condition defined as ~1~ 

f +(t, x, v)=(1 --c() f _(t, x, v-- 2(v .n.,.) n,.) 

+ a ~  f _ ( t , x , v ' ) ] v ' . n , . I d v  (7.1) 
--  ~ t "  .lt.~, <2 0 
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with 0~ e ]0, 1 [. The case 0~ = 0 corresponds to the work of Bunimovich e t  

al. and cannot be treated by the above method. This type of result will be 
discussed in a forthcoming article. ~4~ 

Once this result is established, the following question seems extremely 
natural: denote by D~ the diffusion coefficient corresponding to the bound- 
ary condition (7.1) for ~ e  ]0, 1[ and by Do the diffusion coefficient found 
by Bunimovich e t  al. 17"9~ Does one have D~ ~ D  0 as ~ - ~ 0 7  This seems 
likely, but such a result would probably require using part of the 
machinery in refs. 6 and 8 in addition to the methods and results described 
in the present paper and in ref. 14. It might be that such a result would in 
fact be slightly easier to establish than the one in refs. 7 and 9, although 
one cannot be completely sure as of now. 
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