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Abstract. We investigate the behaviour of the solutions of kinetic equations as a parameter related to both the mean free path
and a characteristic length of heterogeneities goes to 0. We obtain in the limit a diffusion equation for the macroscopic density
which combines the homogenization effects to the diffusion approximation. In particular the limit equation contains drift terms
related to the behaviour of the kernel of the collision operator.

1. Introduction

This paper is a contribution to the study of the behaviour of solutions of kinetic equations with respect
to certain small parameters. Such kind of questions naturally arises in various fields of statistical physics
like, for instance, in nuclear engineering, in radiative tranfer or in semiconductors physics. Generally
speaking, we consider a cloud of particles (which are neutrons, electrons, ions, photons, gas molecules
and so on. . .) described through a distribution functionf (t,x,v). While t ∈ R andx ∈ R

N stand
for time and space variables, respectively,v represents the degrees of freedom of the particles. Usually,
v is nothing but the translational velocity but it can also be related to internal degrees of freedom. This
variable lies in a certain measured space (V , dµ(v)) so that∫

V
f (t,x,v) dµ(v)

is the density of particles having, at timet and positionx, the parameterv in the (measurable) domain
V ⊂ V . Modelization of the evolution of the cloud of particles leads to the following kinetic equation

∂tf + a(v) · ∇xf = Q(f ).

The left-hand side describes the transport of particles whereas the right-hand side is related to various
interaction phenomena. In absence of interactions, we haveQ = 0 and the particles involve freely on the
characteristic linesx+ ta(v); Q(f ) �= 0 describes interparticles collisions and interaction with the media
in which the particles involve. The functiona :V → R

N is the kinetic velocity of the particles, which is
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assumed to be given. The classical framework is given byV = R
N or V = SN−1 anda(v) = v, but we

can also consider relativistic particlesa(v) = v/
√

1 + v2, or cases, in neutronic applications, whereV is
a reunion of spheres. Another framework of interest is the case of discrete velocities whereV is a set of
indices and dµ(v) is the associated discrete measure. It is worth pointing out that our study also covers
this case.

Some characteristic lengths have to be considered in the model. Comparison of these length scales to a
macroscopic length of referenceL (for instance the size of the domain in which the phenomenom under
consideration occurs), leads to asymptotic questions. Here, we deal with two characteristic length scales:
λ is the mean free path of the particles and� is related to inhomogeneities in the media. Variations of the
physical properties of the media translates naturally into oscillations in the coefficients of the interaction
operatorQ. We setε = λ/L, δ = �/L and we consider the evolution of the system on time scale of
order 1/ε. We are thus interested in the following penalized problem

ε∂tf + a(v) · ∇xf =
1
ε
Qδ(f )

and we address the question of the behaviour of the solutions with respect to bothε andδ. For example,
a nuclear reactor can be viewed as a very complex and highly heterogeneous assembly of different
materials in which neutrons involve with a relatively small mean free path. Therefore, determination
of asymptotic models is a relevant question in this field.

We do not enter further in the details, instead we refer to the review of Golse [20] and to the classical
treatises of Cercignani [13] and Dautray and Lions [14]. Study of the problemε→ 0 with δ fixed is now
classical: we obtain a diffusion equation satisfied by the macroscopic densityρ(t,x), limit of ρε(t,x) =∫
V fε(t,x,v) dµ(v). This fact is known as the Rosseland approximation: see Bardos et al. [7–9], Degond

et al. [15], Lions and Toscani [26]. For application specialized to the field of semiconductors physics
and the Pauli equation, we quote Poupaud [31], Golse and Poupaud [22], Mellet [28]. On the other hand,
asδ becomes small withε fixed, we keep a kinetic description involving an homogeneized interaction
operator as shown in Dumas and [16], Gérard and Golse [17], Golse [18,19]. Here, we consider the
critical case whereε andδ have the same order. This combines the effects of the diffusion approximation
to homogenization aspects. This situation is presented in the seminal papers by Wigner [36], Bensoussan
et al. [10], Larsen and Keller [24], Larsen and Williams [25]. Recently, Allaire and Bal [2,5] have studied
the related spectral problem, having in mind applications in nuclear enginneering (for which we also refer
to Malvagi et al. [27]), while the homogenization of the diffusive approximation is performed by Allaire
and Capdeboscq [3,11,12]. The approach of these works is very close to our, in particular with the use of
double scale limit arguments, following Allaire [1], Nguetseng [29].

According to the scaling introduced above, we shall investigate the behaviour of sequencefε of solu-
tions of ∂tfε +

1
ε
a(v) · ∇xfε =

1
ε2Qε(fε) in R

+
t × R

N
x × Vv,

fε|t=0 = f0,ε in R
N
x × Vv.

(1)

We particularly focus on linear situation where the interaction term reads{
Qε(f ) = Kε(f ) −Σε(x,v)f ,

Kε(f ) =
∫
V σε(x,v,w)f (w) dµ(w).
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The functionsσε andΣε are naturally nonnegative; since they depend on the media, they are varying
on the scale of the inhomogeneities which leads to oscillations in the space variable. We will describe
more precisely the assumptions on these coefficients later, with in particular the introduction of suit-
able periodicity assumptions. Furthermore, we restrict to conservative operators which means that, up to
integrability questions, one has∫

V
Qε(f ) dµ(v) = 0 (2)

for all distribution functionf . We are thus led to assume that the following relation holds

Σε(x,v) =
∫

V
σε(x,w,v) dµ(w).

Of course, further assumptions, more or less technical, will be necessary; they are precised in Section 3
below. Hence, this work is a continuation of the first attempts presented in [23,15]. Clearly, the kernel of
the interaction operator is of crucial importance in this kind of problem: it determines the first term in a
formal expansion of the solution. Hence, the hypothesis we will need are mainly concerned with Ker(Qε).
In [23] the situation was quite simple since Ker(Qε) = R does not depend onε (but nonlinearities are also
dealt with). The usual assumption concerning the cross section (see [13,31] for instance) is the so-called
detailed balance principle (also known as the microreversibility condition):

σ(v,w)M (v) = σ(w,v)M (w),

whereM (v) is the Maxwellian function. In such a case, the steady states are obviously Maxwellian
functions: the collision integralQ(M ) vanishes since the integrand vanishes. In [15], homogenization
aspects are neglected (Q does not depend onε) but the detailed balance hypothesis is removed; it is only
assumed the existence of a space dependent functionF (x,v) > 0 in the kernel of the collision operator.
This space dependence produces effects through an additional drift term in the limit equation. Here, our
aim is to point out, in some quite simple situation, the combination of these effects to homogenization,
considering cases where Ker(Qε) = Span{Fε}.

One could also improve the model by adding in the Boltzmann equation a force term1
ε∇xVε(x)·∇vfε,

with an electric potentialVε depending onε. Such a situation has been investigated by Tayeb in [35],
when the electric potential readsVε(x) = V1(x) + V2(x/ε), andV2(y) has a periodic behaviour.

This paper is organized as follows: first, we guess the result by inserting a formal double scale expan-
sion of the solution in (1). Then, in Section 3, we will precise the assumptions on the collision operator
and then, we will be able to give the statement of our main result. Section 4 is devoted to a priori esti-
mates on the sequencefε. Finally, in Section 5, we achieve the proof of the convergence result. Auxiliary
results are postponed in the appendix.

2. Formal asymptotics

We can assume as a first approximation that oscillations of the physical properties of the media enjoy
some periodicity property. Let us expand, at least formally, the oscillating kernelσε as a double scale
power series; namely we set

σε(x,v,w) =
∞∑

k=0

εkσ(k)
(
x,
x

ε
,v,w

)
,
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where, for eachk, σ(k)(x,y,v,w) is nonnegative andY -periodic with respect to the variabley. Here and
belowY stands for [0, 1]N . Therefore, we naturally introduce the sequence of operatorsL(k) associated
to these kernels and acting on functions ofy andv as follows

L(k)(Φ)(y,v) =
∫

RN
σ(k)(x,y,v,w)Φ(y,w) dµ(w) −

∫
RN

σ(k)(x,y,w,v) dµ(w)Φ(y,v).

Then, we also expand the solution as a formal series

fε(t,x,v) =
∞∑

k=0

εkF (k)
(
t,x,

x

ε
,v

)
.

Inserting this ansatz into (1) and identifying the terms arising with the same power ofε yield

ε−2 term: a(v) · ∇yF (0) − L(0)(F (0)) = 0,

ε−1 term: a(v) · ∇yF (1) − L(0)(F (1)) = L(1)(F (0)) − a(v) · ∇xF (0).

Note that theL(1) term is unusual in this kind of problem; it will induce an additional drift term in the
limit equation. Next, we have

ε0 term: a(v) · ∇yF (2) − L(0)(F (2)) = L(1)(F (1)) − a(v) · ∇xF (1) + L(2)(F (0)) − ∂tF (0).

Integrating this equation with respect to bothy and v provides the following relation betweenF (0)

andF (1)

∂t

( ∫
Y

∫
V
F (0) dy dµ(v)

)
+ divx

(∫
Y

∫
V
a(v)F (1) dy dµ(v)

)
= 0,

which will actually produce the limit drift diffusion equation. Equations forε−2 andε−1 have the general
form

a(v) · ∇yF − L(0)(F) = H

with periodic boundary condition. This is a cell problem where the relevant variables arey andv while t
andx appear as parameters (in the definition of the right-hand sideH). It can be easily seen that, if a
solutionF exists, then,H should be of nully, v-average (integrate the equation to see this fact). We
immediately remark that the right-hand side for theε−2 equation fulfills this condition as well as the
first part of theε−1 equation. LetF (0) be a normalized solution of theε−2 equation and letφ, χi, ψ be
solution of the following cell problems

a(v) · ∇yχi − L(0)(χi) = −ai(v)F (0) for i ∈ {1, . . . ,N },

a(v) · ∇yφ− L(0)(φ) = −a(v) · ∇xF (0),

a(v) · ∇yψ − L(0)(ψ) = L(1)(F (0)).
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In view of the previous remark, such equations make sense provided, at least, the compatibility condition∫
Y

∫
V
ai(v)F (0) dy dµ(v) = 0,

holds; this crucially motivates assumption (B3) below. Hence, denoting byρ(t,x) the average (with
respect tov) of F (0), which is expected to be the limit ofρε(t,x) =

∫
V fε(t,x,v) dµ(v),

F (1) = χ · ∇xρ+ φρ+ ψρ

provides a solution of theε−1 equation. Coming back to the integratedε0 equation, we are led to the
following drift diffusion equation for the macroscopic densityρ

∂tρ− divx

(
D(x)∇xρ− (c+ b)ρ

)
= 0,

D(x) = −
∫

Y

∫
V
χ⊗ a(v) dy dµ(v),

c(x) =
∫

Y

∫
V
a(v)φdy dµ(v),

b(x) =
∫

Y

∫
V
a(v)ψ dy dµ(v).

We observe two drift terms: the former is related to space dependence of the equilibrium stateF0, as
in [15], the latter is related to the fluctuation of the collision operator. Of course, this development is
purely formal. In particular, it assumes the solvability of the cell problems, which is far from being garan-
teed. We refer for instance to Bardos et al. [6] for some counter-examples. Actually, solvability relies on
the application of the Fredholm alternative; when it does not apply, we are led to different asymptotic
behaviour as investigated in [2,11]. Before we give the statement of this expected convergence, let us
now specify the assumptions on the interaction operator.

3. Interaction operator

3.1. Notation

As mentioned in the previous sections, we assume that the fluctuations of the collision kernel are
mainly periodic; precisely, we set

σε(x,v,w) = σ(0)
(
x,
x

ε
,v,w

)
+ εσ̂ε(x,v,w), (3)

where we assume thaty �→ σ(0)(x,y,v,w) isY -periodic. We recall thatY = [0, 1]N . Hence,σ(0) defines
a conservative linear operatorL(0) as follows

L(0)(Φ) =
∫

V
σ(0)(x,y,v,w)Φ(w) dµ(w) −Σ(0)(x,y,v)Φ(v) = K(0)(Φ) −Σ(0)Φ,

Σ(0)(x,y,v) =
∫

V
σ(0)(x,y,w,v) dµ(w).
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We shall denote byQ(0)
ε the associated operator evaluated withy = x/ε. Furthermore,̂Qε stands for the

conservative operator associated toσ̂ε(x,v,w),
Q̂ε(φ) =

∫
V
σ̂ε(x,v,w)φ(w) dµ(w) − Σ̂ε(x,v,w)φ(v),

Σ̂ε(x,v,w) =
∫

V
σ̂ε(x,w,v) dµ(w).

We have also mentionned in the introduction that a crucial role is played by eigenfunctionsFε of Qε.
We suppose that the collision operatorQε has a kernel with dimension one, spanned by a positive func-
tionFε(x,v). Such a property can be obtained as a consequence of the Krein–Rutman operator, see [32].
According to (3), main contribution inFε comes from eigenfunction ofL(0). Assuming that

Ker
(
L(0)) = Span

{
F (0)}, F (0) > 0,

∫
V
F (0) dµ(v) = 1

(with F (0) a priori depending onx, y, v), we naturally expand

Fε = F (0)
ε + εF̂ε,

with F (0)
ε (x,v) = F (0)(x,x/ε,v). Therefore,Qε(Fε) = 0 leads to the following relation betweenF (0)

ε

andF̂ε

−Q̂ε
(
F (0)

ε

)
=

(
Q(0)

ε + εQ̂ε
)
F̂ε. (4)

In the next subsection, we will assume thatF (0) exists (see (A2) below). The existence of̂Fε (and,
as a consequence, those ofFε) relies on the solvability of (4), that requires some connection between
the collision kernelsσ(0) and σ̂ε which will be investigated in Section 3.4. Hence, let us first detail the
assumptions on the zeroth order operator and some consequences for the cell problem in Section 3.3.

3.2. Zeroth order operator

We introduce now the hypothesis on the differential cross section:
σ(0)(x,y,v,w) is measurable, positive,Y -periodic and

there exist a positive functionΣ(x,v) and a constantΣ > 0

such thatΣ(0)(x,y,v) =
∫
V σ

(0)(x,y,w,v) dµ(w) satisfies

0< Σ(x,v) � Σ(0)(x,y,v) � Σ, dx⊗ dy ⊗ dµ(v)-a.e.,

(A1)

where “a.e.” means “almost everywhere”. Note thatL(0) satisfies the conservation property (2). The
assumption onΣ(0) are certainly not optimal, but we prefer to avoid too much technicalities and keep
as clear as possible our development. Notice also thatΣ(0) can depend on the “macroscopic” variablex.
In [2], such a situation is excluded (up toε2 perturbations; but we will introduce other restrictions. . .)
due to the use of factorization techniques, see some comments in Appendix D.
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Our second assumption concerns the existence of an equilibrium:

There exists an a.e. positive measurable functionF (0)

which depends only onx,v such that dx⊗ dy ⊗ dµ(v)-a.e.

Σ(0)(x,y,v)F (0)(x,v) =
∫

V
σ(0)(x,y,v,w)F (0)(x,w) dµ(w).

Furthermore, there exists a positive constantM such that dx-a.e.∫
V

(
1

Σ(x,v)
+Σ(x,v)

)
F (0)(x,v) dµ(v) � M ,

∫
V
F (0)(x,v) dµ(v) = 1.

(A2)

The last condition is only a normalization condition, while the existence ofF (0) is for instance fulfilled if
we can apply the Krein–Rutmann theorem, see [32]. Note that the condition

∫
V F

(0)(x,v)Σ(x,v) dµ(v)
� M is already a consequence of (A1) and the normalization condition. Main restriction comes
from the fact that, despite the dependence ofσ(0) on the variabley, we assume that the generalized
Maxwellian F (0) does not oscillate; this assumption will be crucial in the sequel. In particular, as-
sumption (A2) immediately provides a solution for theε−2 equation derived in the formal asymptotics:
ρ(t,x)F (0)(x,v) satisfies it. We will also use (A2) to obtain some compactness properties.

Before we give more technical details, let us give the following simple example of aε and space
dependent linear Boltzmann operator

σε(x,v,w) = b

(
x,
x

ε
,v,w

)
Mε(x,v),

b(x,y,v,w) = b(x,y,w,v), y �→ b(x,y,v,w) is Y -periodic,

Mε(x,v) =
(

2π
(
T (0)(x) + εT

(
x,
x

ε

)))−N/2

exp
(
− |v − εu(x,x/ε)|2

2(T (0)(x) + εT (x,x/ε))

)
,

which yields
σ(0)(x,y,v,w) = b(x,y,v,w)M (0)(x,v),

M (0)(x,v) =
(
2πT (0)(x)

)−N/2
exp

(
− v2

2T (0)(x)

)
,

Ker
(
L(0)) = Span

{
M (0)}.

Let us temporarily dropx,y-dependence (but keeping in mind that the following properties hold uni-
formly with respect to these arguments). We introduce the functional spaces

H =
{
f : V → R, dµ measurable such thatf2Σ

(0)

F (0) ∈ L1(dµ)
}

,

G =
{
f : V → R, dµ measurable such thatf2 1

Σ(0)F (0) ∈ L1(dµ)
}
.

The spacesH andG are Hilbert spaces endowed with the scalar products

(f ,g)H :=
∫

V
f (v)g(v)

Σ(0)(v)
F (0)(v)

dµ(v), (h,k)G :=
∫

V
h(v)k(v)

1
Σ(0)(v)F (0)(v)

dµ(v),
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respectively. We remark that forg ∈ G, andh ∈ H, the productgh/F (0) is integrable, as a matter of fact
we have:(

g,
h

F (0)

)
L2

=
(
g,Σ(0)h

)
G ,

with g, Σ(0)h lying in G.

Remark 1. Thanks to assumption (A2),H andG both embed inL1(dµ), with

‖h‖L1 �
√
M‖h‖H , ‖g‖L1 �

√
M‖g‖G.

Therefore it makes sense to introduce the following closed subspace

H0 :=
{
f ∈ H such that

∫
V
f (v) dµ(v) = 0

}
,

andG0 can be defined similarly. Assumption (A2) also yields thatF (0) ∈ H ∩ G. Finally, we remark
thatG ⊂ H (nevertheless, theG-norm will appear as the adapted norm in the sequel, see Proposition 1).

Finally, one also needs the following technical hypothesis:


There exists a positive constantκ such that dx⊗ dy ⊗ dµ(v) ⊗ dµ(w)-a.e.

F (0)(x,v) � κ

(
Σ(0)(x,y,w) +

1
Σ(0)(x,y,w)

)
1

Σ(0)(x,y,v)
σ(0)(x,y,v,w).

(A3)

Now, we recall from [15] the following claim:

Proposition 1 ([15]).

(i) Assume(A1) and (A2). Then, the operatorsK(0) and L(0) belong toL(H,G), ‖K(0)(f )‖G �
‖f‖H , andKer(L(0)) = Span(F (0)).

(ii) The bilinear form

B(0)(f ,g) := −
∫

V
L(0)(f )g

1
F (0) dµ = −

(
L(0)(f ),Σ(0)g

)
G

is well defined, nonnegative and continuous onH×H. We have the following dissipative entropy
inequality

B(0)(f ,f ) =
1
2

∫
V

∫
V

(
f (v)
F (0)(v)

− f (w)
F (0)(w)

)2

σ(0)(v,w)F (0)(w) dµ(v) dµ(w)

� 1
2

∥∥∥∥(
1
Σ(0)

)
L(0)(f )

∥∥∥∥2

H
� 0.
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(iii) Assume(A1), (A2) and(A3). For f ∈ H setρf :=
∫
V f (v) dµ(v). Then, the coercivity inequality

B(0)(f ,f ) � 1
2Mκ

∥∥f − ρfF
(0)∥∥2

H

holds.
(iv) For any h ∈ G there existsf ∈ H such thatL(f ) = h if and only if

∫
V h(v) dµ(v) = 0

(or h ∈ G0). The solution is unique inH0 and satisfies

‖f‖H � 2Mκ

( ∫
V
h2(v)

1
Σ(0)(v)F (0)(v)

dµ(v)
)1/2

= 2Mκ‖h‖G.

Let us also describe the assumptions which will be used in the discussion of the diffusion limit. The
equilibrium functionF (0) should have a vanishing mean velocity and in some sense the collision term
has to control the drift term. We are thus led to assume

there existsC1 > 0 such that |a(v)|
∣∣∇xF

(0)(x,v)
∣∣ � C1Σ(x,v)F (0)(x,v), a.e.; (B1)

there existsC2 > 0 such that
∫

V

∣∣a(v)
∣∣2F (0)(x,v)
Σ(x,v)

dµ(v) � C2, dx-a.e.; (B2)∫
V
a(v)F (0)(x,v) dµ(v) = 0, dx-a.e. (B3)

Remark thata(v)F (0)(x,v) is integrable with respect tov for a.a.x because of (A2) and (B2), so that (B3)
makes sense.

Remark 2. Assumption (B3) is crucial: it appears as the compatibility condition necessary to apply the
Fredholm alternative and solve the cell problems which determines the coefficients of the limit equa-
tion (see the formal ansatz and also Eq. (6) below). The conservation property (2) also means that
F (0)
∗ (x,y,v) = 1 is a solution of the adjoint cell problema(v) · ∇yF

(0)
∗ + L(0)∗F (0)

∗ = 0. Therefore,
we can rewrite (B3) as∫

V

∫
Y
a(v)F (0)F (0)

∗ dµ(v) dy = 0.

We recover the form of the solvability condition which appears in previous works as [2].

Finally, we need the following geometrical assumption on the velocities to obtain some useful com-
pactness properties.

For anyξ ∈ R
N \ {0}, µ

({
v ∈ V , such thata(v) · ξ �= 0

})
> 0. (C)

This assumption appears first in Lions and Toscani [26] and has been used successfully in Goudon and
Poupaud [23] and Degond et al. [15]. We recall that (C) is weaker than the following property:

For anyξ ∈ R
N \ {0}, µ

({
v ∈ V , such thata(v) · ξ = 0

})
= 0, (5)
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which arises with averaging lemma methods of Golse et al. [21]. Sinceµ(V ) �= 0 the assumption (5)
clearly implies (C). But (5) fails for discrete velocities models while (C) means nothing but the fact
that the subspace spanned by {a(v), v ∈ V } coincides with the whole spaceRN . Assumption (C) will
essentially be used through Lemma 2.

3.3. Consequences: Solvability of the cell problem

Assumptions introduced above can be used when interested in the cell problem

a(v) · ∇yf − L(0)f = h

which appears in the formal asymptotic. Since in these problems, the variables arey ∈ Y andv ∈ V ,
while t, x are only parameters, we only keep the dependence with respect toy, v. In view of the coer-
civeness property detailed in Proposition 1, we set

H =
{
f : R

N × V → R, such thatf is Y -periodic and
∫

Y

∫
V
f (y,v)2Σ

(0)(y,v)
F (0)(v)

dµ(v) dy <∞
}

endowed with the natural scalar product. We define in a similar way the spaceG ⊂ H (with the weight
1/(Σ(0)(y,v)F (0)(v))). As we did forH andG, we remark that the productg f/F (0) is integrable, for
f ∈ H, g ∈ G. From Proposition 1,L(0) is a bounded operator fromH to G. Then, forh ∈ G, we search
for

f ∈
{
g ∈ H | a(v) · ∇yg ∈ G

}
, verifying a(v) · ∇yf − L(0)f = h (P)

with periodic boundary condition. We recall thatF (0)(v) does not depend ony, hence it belongs to the
kernel ofa(v) · ∇y − L(0), which provides an obvious solution of (P) whenh = 0. We also notice
that, if (P) has a solutionf , then, integrating the equation with respect to both variables proves that
the average ofh should vanish. Then, we have the following statement whose (quite classical) proof is
postponed in the appendix.

Proposition 2. Assume(A)–(C). The problem(P) has a unique solution(up to a constant) iff the
right-hand sideh satisfies

∫
V

∫
Y hdy dµ(v) = 0. In particular, there exists a unique solution with null

y,v-average.

3.4. The remainder operator, double-scale limit and main result

Let us now discuss some properties of the remainder operatorQ̂ε. We are going to introduce further
assumptions, referred to by the letter (D).

• First, let us go back to the equilibrium expansionFε(x,v) = F (0)(x,v)+εF̂ε(x,v). We can rewrite (4)
as follows

(
I + ε

(
Q(0)

ε

)−1
Q̂ε

)
F̂ε = −

(
Q(0)

ε

)−1
Q̂εF

(0),
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where we define (Q(0)
ε )−1 by using Proposition 1. This equation makes sense as soon asQ̂ε is a bounded

operator fromH toG, since the null average property is garanteed by the definition ofQ̂ε. Furthermore,
we assume that

there exists a constantC3 > 0 such that
∥∥Q̂ε

∥∥
L(H,G) � C3. (D1)

This holds uniformly with respect to bothx andε. Hence, the left-hand side of (4) lies inH0 and the
operator (Q(0)

ε )−1Q̂ε belongs toL(H0). Furthermore, forε small enough, its norm is< 1/ε so that
(I + ε(Q(0)

ε )−1Q̂ε) is invertible and we can write

F̂ε =
(
I + ε

(
Q(0)

ε

)−1
Q̂ε

)−1(−(
Q(0)

ε

)−1
Q̂εF

(0)) = −
∞∑

k=0

(−1)kεk
((
Q(0)

ε

)−1
Q̂ε

)k(
Q(0)

ε

)−1
Q̂εF

(0).

One deduces that

∥∥F̂ε

∥∥
H � 2MκC3Σ

1− ε02MκC3

holds for 0< ε < ε0 � 1/(2MκC3), by using Proposition 1 and (D1).
By its definition F̂ε has nullv-average. This implies thatFε produces a flux with size of orderε,

namely∫
V
a(v)Fε(x,v) dµ(v) = εuε(x)

with

uε(x) =
∫

V
a(v)F̂ε(x,v) dµ(v).

• Next, we have seen in the formal asymptotic that the “remainder operator”Q̂ε plays a role in the limit
procedure through its action onF (0). Hence, we should precise a little bit its behaviour. We introduce the
following double scale limit:

There exists a nonnegative bounded functionσ̂(x,y,v,w)

Y -periodic with respect to the variabley such that∀φ ∈ D#

limε→0

∫
RN

∫
V
Q̂ε

(
F (0))φ(

x,
x

ε
,v

)
dµ(v) dx

=
∫

RN

∫
V
F (0)(x,v)

( ∫
V

∫
Y
σ̂(x,y,w,v)

(
φ(x,y,w) − φ(x,y,v)

)
dµ(w) dy

)
dµ(v) dx,

(D2)

where the spaceD# of admissible test functions is defined by

D# =
{
φ ∈ C∞(

(0,T ) × R
N
x × R

N
y ;L∞(V )

)
, φ is Y -periodic with respect toy,

there exists a compact setK ⊂ (0,T ) × R
N , such that supp(φ) ∈ K × R

N
y × V

}
.
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Whenσ̂ε(x,w,v) is bounded inL∞(RN
x × Vv;L1 ∩L∞(Vw)) the existence of̂σ is more or less a conse-

quence of the existence of a double-scale limit for a bounded sequence inL∞ (since for allφ ∈ D#, the
functionsF (0)(x,v)φ(x,y,v) andF (0)(x,v)φ(x,y,w) are inL1 spaces with value inC#(RN

y )), see [1,29].

We denote bŷL(F (0)) the (conservative) operator arising in the right-hand side
L̂

(
F (0))(x,y,v) =

∫
V
σ̂(x,y,v,w)F (0)(x,w) dµ(w) − Σ̂(x,y,v)F (0)(x,v),

Σ̂(x,y,v) =
∫

V
σ̂(x,y,w,v) dµ(w).

By using Proposition 2, we can considerφ, χ, ψ solution of the following auxiliary problems
a(v) · ∇yχi − L(0)(χi) = −ai(v)F (0) for i ∈ {1, . . . ,N },

a(v) · ∇yφ− L(0)(φ) = −a(v) · ∇xF
(0),

a(v) · ∇yψ − L(0)(ψ) = L̂
(
F (0)). (6)

• Finally, we need another assumption related to the use of double-scale technics as introduced
in [1,29] in order to pass to the limit in a suitable weak formulation of (1), see Eq. (12) below. This
is mainly a (technical) regularity assumption on the kernelσ(0) which garantees that a certain function is
“admissible” (see in particular the discussion in Section 5 of [1])

eitherσ(0)(x,y,v,w) belongs toL2
loc(R

N
x ;C0(Y ;L∞(Vw;L1(Vv))))

or σ(0)(x,y,v,w) belongs toL2(Y ;C0(RN
x ;L∞(Vw;L1(Vv))))

andF (0)/Σ(x,v) is inC0(RN
x ;L1(Vv)).

(D3)

The first assumption is maybe a bit simpler, however the second one is certainly more acceptable on a
physical viewpoint since it applies for instance to a composite device containing distinct materials with
different physical properties.

Then, our main result states as follows.

Theorem 1. Assume(A)–(D). Let the initial datafε,0 � 0 for (1) satisfies∫
RN

∫
V

f2
ε,0(x,v)

F (0)(x,v)
dµ(v) dx <∞,

and let fε be a corresponding solution of(1) (such a solution is assumed to exists, see Remark3).
Then, there exists a subsequence fromρε(t,x) =

∫
V fε(t,x,v) dµ(v) which converges strongly in

L2
loc((0,T ) × R

N ) to ρ(t,x), solution of the following drift diffusion equation

∂tρ− div
(
D(x)∇xρ− (c+ b)ρ

)
= 0,

D(x) = −
∫

Y

∫
V
χ⊗ v dy dµ(v),

c(x) =
∫

Y

∫
V
a(v)φdy dµ(v),

b(x) =
∫

Y

∫
V
a(v)ψ dy dµ(v).

(7)
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The limit is actually a drift diffusion since the coefficients enjoy the properties listed in the following
lemma whose proof is postponed in the appendix.

Lemma 1. Let (A)–(D) hold. Then, the symmetric part of the matrixD(x) is positive definite. Precisely,
there existC, c > 0 such that for allξ ∈ R

N

0<
(θ̃(x)ξ · ξ)2

c|ξ|2 � D(x)ξ · ξ � C|ξ|2,

where

θ̃(x) =
∫

V
a(v) ⊗ a(v)F (0)(x,v) dµ(v).

In particular, D(x) + tD(x) is uniformly coercive on compact sets ofR
N . Furthermorec(x) and b(x)

belong toL∞(RN ).

Remark 3. We shall not discuss in the sequel on the existence theory for problem (1). It may be not
obvious at all in the full generality introduced here, both on the cross sectionσ and on the set of veloci-
tiesV . Instead, we refer for instance to Petterson’s works [30] or to results in [13]. Furthermore, we shall
also prove thatρε is compact inC0([0,T ]) with value in some negative Sobolev space, so that the initial
data is also recovered in (7)

ρ|t=0 = ρ0 = lim
ε→0

∫
V
fε,0 dµ(v).

Finally, it is also clear that if we are able to obtain the uniqueness for the limit problem (7), for instance
when (the symmetric part of) the matrixD is shown to be uniformly coercive, then the convergence
stated in Theorem 1 applies to the whole sequence.

Remark 4. Here the “drift” refers to the influence of the extra-convective termsc, b in the limit equation.
In neutron transport theory this term is also used when dealing with some concentration effects due to
the violation of the condition (B3) and it is worth pointing that these situations are radically different.
We refer for this interesting aspect to the work of Larsen and Williams [25] or, for recent study on the
diffusion approximation, Capdeboscq [11,12].

4. Estimates

This section is devoted to various estimates on the solutionsfε of (1). As mentioned in Re-
mark 3, we assume the existence, forε > 0, of fε ∈ C0(R+;L1(RN × V , dµ(v) dx)) solution
of (1) with Qε(fε) ∈ L1

loc(R
+ × R

N ;L1(V , dµ(v))). Furthermore,fε � 0 when the initial dataf0,ε

is nonnegative andfε belongs to the weighted spacesL∞
loc(R

+;L2(RN × V ; 1/F (0) dµ(v) dx)) and
L2

loc(R
+;L2(RN × V ;Σ/F (0) dµ(v) dx)). There is no topology on the set of velocitiesV and, as in [15],

Eq. (1) is understood in the sense that

∂t

(∫
V
fεφdµ(v)

)
+ divx

(
1
ε

∫
V
a(v)fεφdµ(v)

)
=

∫
V

1
ε2Qε(fε)φdµ(v)
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holds inD′((0,T )×R
N ) for all φ ∈ L∞(V ). Let us now formally derive the uniform estimates necessary

for the asymptotics.
Clearly, conservation property gives a bound inL∞((0,T );L1(RN × V )). We shall establish other

uniform estimates in weighted spaces, involving the equilibrium stateF (0). Indeed, intuitively, we guess
thatfε behaves asFε for small values ofε, whileFε essentially looks likeF (0). This suggests to write

fε(t,x,v) = ρε(t,x)F (0)(x,v) + εγε, (8)

where

ρε(t,x) =
∫

V
fε dµ(v).

We note that∫
V
γε dµ(v) = 0,

and we introduce the current

jε =
1
ε

∫
V
a(v) fε dµ(v) =

∫
V
a(v)γε dµ(v).

With (8) we realize that the collision term is actually of order 1/ε since the right-hand side of (1) reads
1/ε(Q̂ε(ρεF

(0)) +Qε(γε)).
Multiplying (1) by fε/F

(0) gives

1
2

d
dt

∫
RN

∫
V

f2
ε

F (0) dµ(v) dx + Transpε + Collε = 0, (9)

where the transport term is

Transpε =
1
2ε

∫
RN

∫
V
f2

ε

a(v) · ∇xF
(0)

(F (0))2 dµ(v) dx

(after integration by part) while the collision term reads

Collε = −1
ε

∫
RN

∫
V

fε

F (0)

(
Q̂ε

(
ρεF

(0)) +Q(0)
ε (γε) + εQ̂ε(γε)

)
dµ(v) dx.

Let us estimate these terms. First, we have

Transpε =
1
2ε

∫
RN

∫
V

(
ρ2

ε

(
F (0))2 + 2εγερεF

(0) + ε2γ2
ε

)a(v) · ∇xF
(0)

(F (0))2 dµ(v) dx

=
1
2ε

∫
RN

ρ2
εdivx

( ∫
V
a(v)F (0) dµ(v)

)
dx+

∫
RN

∫
V
γερε

a(v) · ∇xF
(0)

F (0) dµ(v) dx

+
ε

2

∫
RN

∫
V
γ2

ε

a(v) · ∇xF
(0)

(F (0))2 dµ(v) dx.



T. Goudon and A. Mellet / Diffusion approximation in heterogeneous media 345

By (B3), the first term vanishes. Then, letν > 0 to be precised later. By using (B1), the second term is
dominated by

∫
RN

∫
V

(
νγ2

εΣ

F (0) + Cνρ
2
εΣ F (0)

)
dµ(v) dx.

Then, we get

Transpε �
(
ν +

ε

2

) ∫
RN

∫
V
γ2

ε

Σ

F (0) dµ(v) dx + Cν

∫
RN

∫
V
ρ2

εΣF
(0) dµ(v) dx.

However, we remark that, sinceF (0) is normalized,∫
RN

∫
V
ρ2

εΣF
(0) dµ(v) dx =

∫
RN

ρ2
ε

( ∫
V
ΣF (0) dµ(v)

)
dx � Σ

∫
RN

ρ2
ε dx

�Σ

∫
RN

∫
V

f2
ε

F (0) dµ(v) dx. (10)

It follows that

Transpε �
(
ν +

ε

2

) ∫
RN

∫
V
γ2

ε

Σ

F (0) dµ(v) dx +ΣCν

∫
RN

∫
V

f2
ε

F (0) dµ(v) dx.

On the other hand, the collision term reads

Collε = −1
ε

∫
RN

∫
V

(
ρε +

εγε

F (0)

)(
Q(0)

ε (γε) + Q̂ε(fε)
)

dµ(v) dx

= −1
ε

∫
RN

ρε

(∫
V

(
Q(0)

ε (γε) + Q̂ε(fε)
)

dµ(v)
)

dx

−
∫

RN

∫
V

γε

F (0)Q
(0)
ε (γε) dµ(v) dx −

∫
RN

∫
V

γε

F (0) Q̂ε(fε) dµ(v) dx.

By conservation property the first integral vanishes. The second one is bounded from below

−
∫

RN

∫
V

γε

F (0)Q
(0)
ε (γε) dµ(v) dx � 1

2Mκ

∫
RN

∫
V

γ2
εΣ

(0)
ε

F (0) dµ(v) dx

by using Proposition 1(iii) (we denoteΣ(0)
ε = Σ(0)(x,x/ε,v)). The last term is estimated by using (D1).

We have∣∣∣∣ ∫
RN

∫
V

γε

F (0)Q̂ε(fε) dµ(v) dx
∣∣∣∣ �

∫
RN

‖γε‖H

∥∥Q̂ε(fε)
∥∥

G dx �
∫

RN
‖γε‖HC3‖fε‖H dx

� ν

∫
RN

∫
V

γ2
εΣ

(0)
ε

F (0) dµ(v) dx + Cν

∫
RN

∫
V

f2
εΣ

(0)
ε

F (0) dµ(v) dx.
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Combining these informations to (9) and (10) yields

d
dt

∫
RN

∫
V

f2
ε

F (0) dµ(v) dx +
(

1
2Mκ

− 2ν − ε

2

) ∫
RN

∫
V

γ2
εΣ

(0)
ε

F (0) dµ(v) dx

� Cν

∫
RN

∫
V

f2
ε

F (0) dµ(v) dx,

where we used also (A1). Hence we chooseν small enough to ensure, say 1/(2Mκ) − 2ν > 1/(4Mκ);
thus for 0< ε < ε0, the quantity 1/(2Mκ)−2ν−ε/2 remains>1/(8Mκ). Then the following statement
follows by applying Gronwall’s lemma on a finite time interval (0,T ).

Proposition 3. Assume(A), (B), (D1). Let the initial datafε,0 satisfy∫
RN

∫
V

f2
ε,0(x,v)

F (0) dxdµ(v) � C0.

Then, there existsε0 > 0 such that, the associated sequence(fε)0<ε<ε0 of solutions of(1) satisfies

fε bounded inL2((0,T ) × R
N × V ,Σ/F (0) dxdµ(v) dt)

and inL∞((0,T );L2(RN × V , 1/F (0) dxdµ(v))) ∩ L∞((0,T );L1(RN × V )),

ρε(t,x) =
∫
V fε dµ(v) is bounded inL2((0,T ) × R

N ),

γε = (1/ε)(fε − ρεF
(0)) is bounded inL2((0,T ) × R

N × V ,Σ/F (0) dxdµ(v) dt),

jε = (1/ε)
∫
V a(v)fε dµ(v) is bounded inL2((0,T ) × R

N ).

Proof. Estimate onfε in L∞((0,T );L1(RN × V )) follows from mass conservation; estimates onfε on
L∞((0,T );L2(RN × V , 1/F (0) dxdµ(v))) as well as estimate on∫ T

0

∫
RN

∫
V
|γε|2

Σ(0)
ε

F (0) dµ(v) dxdt

have been obtained in the discussion above. The bound onρε is a consequence of (10) combined to the
estimate onf2

ε /F
(0). Note that, by (A1),γε is bounded inL2((0,T ) × R

N × V ,Σ/F (0) dxdµ(v) dt);
main advantage here is that the weight does not depend onε. Consequently,fε = ρεF

(0) + εγε is also
bounded inL2((0,T ) × R

N × V ,Σ/F (0) dxdµ(v) dt). For the current, we have∫ T

0

∫
RN

|jε|2 dxdt=
∫ T

0

∫
RN

∣∣∣∣ ∫
V
a(v)γε dµ(v)

∣∣∣∣2 dxdt

�
∫ T

0

∫
RN

( ∫
V
a(v)2F

(0)

Σ
dµ(v)

) ∫ T

0

∫
RN

( ∫
V

γ2
εΣ

F (0) dµ(v)
)

dxdt

� C2

∫ T

0

∫
RN

∫
V

γ2
εΣ

F (0) dµ(v) dxdt � C(T ),

which achieves the proof.�

5. Passing to the limit

Having obtained uniform estimates, we wish to pass to the limit in (1) at least for a suitable subse-
quence. The proof falls into five steps.
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Step 1: Preliminaries
First, we can assume that there existsγ ∈ L2((0,T ) × R

N × V ,Σ/F (0) dxdµ(v) dt) such that



lim
ε→0

∫ T

0

∫
RN

∫
V
γεφdµ(v) dxdt =

∫ T

0

∫
RN

∫
V
γφdµ(v) dxdt

holds for all for test functionsφ verifying∫ T

0

∫
RN

∫
V
φ2(t,x,v)

F (0)(x,v)
Σ(x,v)

dµ(v) dxdt < +∞.

(11)

A similar conclusion applies for the convergence offε to a certainf . In particular, we notice that
φ(t,x,v) = ζ(t,x)ψ(v) is an admissible test function withζ ∈ C∞

0 (R+ × R
N ) andψ(v) ∈ L∞(V ).

By (B2), we can also useφ(t,x,v) = ζ(t,x)a(v)ψ(v), with ζ, ψ as before. Moreover, we can suppose
that

ρε ⇀ ρ, jε ⇀ j in L2((0,T ) × R
N)
.

Then, it can be easily checked that the limits are connected as follows

f = ρF (0), ρ =
∫

V
f dµ(v), j =

∫
V
a(v)γ dµ(v).

Next, let us end this first step by rewritting Eq. (1) in a suitable weak formulation. In order to exploit the
periodicity properties, we use test functionsεφ(t,x,x/ε,v). We get

1
ε

∫ T

0

∫
RN

∫
V
Qε(fε)φ

(
t,x,

x

ε
,v

)
dµ(v) dxdt

=
∫ T

0

∫
RN

∫
V

(
Q̂ε

(
ρεF

(0)) +Qε(γε)
)
φ

(
t,x,

x

ε
,v

)
dµ(v) dxdt

= −ε
∫ T

0

∫
RN

∫
V
fε(t,x,v)∂tφ

(
t,x,

x

ε
,v

)
dµ(v) dxdt

− 1
ε

∫ T

0

∫
RN

∫
V
fε(t,x,v)a(v) · ∇yφ

(
t,x,

x

ε
,v

)
dµ(v) dxdt

−
∫ T

0

∫
RN

∫
V
fε(t,x,v)a(v) · ∇xφ

(
t,x,

x

ε
,v

)
dµ(v) dxdt

= −ε
∫ T

0

∫
RN

∫
V

(
fε(t,x,v)∂tφ

(
t,x,

x

ε
,v

)
+ γεa(v) · ∇xφ

(
t,x,

x

ε
,v

))
dµ(v) dxdt

−
∫ T

0

∫
RN

∫
V

(
γεa(v) · ∇yφ

(
t,x,

x

ε
,v

)
+ ρεF

(0)a(v) · ∇xφ

(
t,x,

x

ε
,v

))
dµ(v) dxdt

−1
ε

∫ T

0

∫
RN

∫
V
ρεF

(0)a(v) · ∇yφ

(
t,x,

x

ε
,v

)
dµ(v) dxdt. (12)
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Step 2: Strong convergence of the macroscopic density
Let us use (12) with the test functionφ = η(v)ζ(t,x), with ζ ∈ C∞

0 ((0,T )×R
N ), andη(v) defined by

η(v) =


a(v)
|a(v)| if a(v) �= 0,

0 otherwise.

We obtain the following relation inD′((0,T ) × R
N )

ε

[
∂t

(∫
V
η(v) fε dµ(v)

)
+ Divx

(∫
V

a(v) ⊗ a(v)
|a(v)| γε dµ(v)

)]

+ Divx

(∫
V

a(v) ⊗ a(v)
|a(v)| F (0) dµ(v) ρε

)
= ρε

∫
V
η(v) Q̂ε

(
F (0)) dµ(v) +

∫
V
η(v)Qε(γε) dµ(v). (13)

By using assumptions (A)–(D) and Proposition 3, we check that the right-hand side is bounded in
L2((0,T ) × R

N ). On the other hand, the first term in the left-hand side isε times first derivatives (with
respect to time or space) of bounded functions inL2((0,T ) × R

N ), therefore it converges strongly to 0
in H−1((0,T ) × R

N ). Finally, the last term in the left-hand side is Div(θ(x)ρε) whereθ is the matrix

θ(x) =
∫

V

a(v) ⊗ a(v)
|a(v)| F (0)(x,v) dµ(v) =

∫
V
a(v) ⊗ η(v)F (0)(x,v) dµ(v).

As a consequence of assumption (C), (B1) and (B2), we have

Lemma 2. The matrixθ(x) is positive definite, and its coefficients belong toW 1,∞(RN ). Therefore, for
eachx, θ(x) is invertible and we have

θ(x) � αKI > 0 for all x ∈ K, K ⊂ R
N compact.

Therefore, we realize that (13) implies

∇xρε ∈ Compact Set inH−1
loc

(
(0,T ) × R

N)
.

We combine this information to the mass conservation relation

∂tρε + divx jε = 0 (14)

obtained by choosingφ = ζ(t,x)1(v) in (12). Indeed, let us introduce the vector fields (inR
N+1)

Uε = (ρε, jε), Vε = (ρε, 0,. . . , 0). We have divt,x(Uε) = 0 ∈ Compact Set inH−1((0,T ) × R
N ) by (14)

and

curlt,x(Vε) =
(

0 −t∇xρε

∇xρε 0

)
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also lies in a Compact Set in (H−1((0,T )×R
N ))(N+1)×(N+1). By applying the celebrated div–curl lemma

of Tartar [33,34], we conclude thatUε · Vε = ρ2
ε ⇀ ρ2 which in turn implies thatρε converges strongly

to ρ in L2
loc((0,T ) × R

N ).

Step 3: Regularity ofρ
Furthermore, the properties of the matrixθ also lead to an improvement of the regularity for the limitρ.

Indeed, since the right-hand side in (13) is bounded inL2((0,T ) × R
N ), we can suppose it converges

weakly to someν. Thus, passing to the limitε→ 0 in (13) yields

0 + Div(θρ) = ν ∈ L2((0,T ) × R
N)
.

Therefore we write∇xρ = θ−1(Divx(θρ) − Divx(θ)ρ) which shows that

ρ ∈ L2(0,T ;H1
loc

(
R

N))
.

Our next aim will be to obtain more explicit relations betweenρ, ν andj and to rely this to the behaviour
of γε.

Step 4: Double scale limit
In order to investigate more precisely (12), we shall use the notion of double scale convergence. We

have

γε(t,x,v)
(
Σ

F (0) (x,v)
)1/2

bounded inL2((0,T ) × R
N × V

)
.

Thus, adapting the seminal arguments of Allaire [1], Nguetseng [29] (see also [23] for some slight varia-
tions), possibly at the cost of extracting a subsequence, we can say thatγε(t,x,v) double scale converges
to Γ (t,x,y,v) in the following way:

lim
ε→0

∫ T

0

∫
RN

∫
V
γε(t,x,v)φ

(
t,x,

x

ε
,v

)
dµ(v) dxdt

=
∫ T

0

∫
RN

∫
V

∫
Y
Γ (t,x,y,v)φ(t,x,y,v) dy dµ(v) dxdt,

for all test functionφ ∈ D# (using the fact that (F
(0)

Σ (x,v))1/2φ(t,x,y,v) lies inL2(B(0,R); C#(RN
y ;H))

as soon asφ ∈ D# where suppx(φ) ∈ B(0,R) andH = L2((0,T ) × V )). We recall that, if a sequence
converges strongly inL2((0,T ) × R

N × V ;Σ/F (0) dµ(v) dxdt) then its double scale limit does not
depend on the variabley and coincides with the strong limit. On the other hand, weak limit, in the sense
of (11), equals they-average of the double-scale limit.

Having disposed of these preliminaries, we remark that it remains a singular term in (12), namely

1
ε

∫ T

0

∫
RN

∫
V
ρεF

(0)a(v) · ∇yφ

(
t,x,

x

ε
,v

)
dµ(v) dxdt

=
1
ε

∫ T

0

∫
RN

ρε(t,x)
( ∫

V
a(v)F (0) · ∇yφ

(
t,x,

x

ε
,v

)
dµ(v)

)
dxdt.



350 T. Goudon and A. Mellet / Diffusion approximation in heterogeneous media

Then, interesting things can be obtained only if this term disappears. To this end, we restrict ourselves to
test functions in the set

E# =
{
φ ∈ D#, divy

(∫
V
a(v)F (0)φdµ(v)

)
=

∫
V
a(v)F (0) · ∇yφdµ(v) = 0

}
.

For such a test function, by using estimates in Proposition 3 and the strong convergence ofρε, the right-
hand side in (12) tends to

lim
ε→0

r.h.sε = −
∫ T

0

∫
RN

∫
V

∫
Y
ρ(t,x)F (0)(x,v)a(v) · ∇xφ(t,x,y,v) dµ(v) dy dxdt

−
∫ T

0

∫
RN

∫
V

∫
Y
Γa(v) · ∇yφ(t,x,y,v) dµ(v) dy dxdt. (15)

The convergence of the second term holds since assumption (B2) gives (F (0)/Σ)1/2a(v) · ∇yφ ∈
L2(RN ,C#(RN

y ;H)). On the other hand, by using (D2) and (D3), the left-hand side in (12) has the fol-
lowing limit

lim
ε→0

l.h.sε = +
∫ T

0

∫
RN

∫
V

∫
Y

(
L̂

(
ρF (0))φ(t,x,y,v) + L(0)(Γ )φ(t,x,y,v)

)
dµ(v) dy dxdt, (16)

where the operator̂L is defined by (D2).
Combining (15) and (16), we obtain thata(v) · ∇yΓ − L(0)(Γ ) + divx(ρ a(v)F (0)) − L̂(ρF (0)) lies in

the orthogonal set ofE#. Then, the following claim will be useful.

Lemma 3. Let T be in the dualD′
# of D#. Then,T belongs to the orthogonal set ofE# iff T =

a(v)F (0) · ∇yQ, whereQ ∈ D′
# does not depend onv.

Step 5: Conclusion
Therefore, there existsQ ∈ D′

# such thatF = Γ − F (0)Q satisfies the following cell problem

a(v) · ∇yF − L(0)F = −a(v) · ∇x
(
ρF (0)) + L̂

(
ρF (0)). (17)

Furthermore,Q is solution of

a(v)F (0) · ∇yQ = a(v)F (0) · ∇yΓ − a(v) · ∇x

(
ρF (0)) + L̂

(
ρF (0)) + L(0)Γ.

Following [23], multiplying byη(v) and integrating with respect tov, we get

∇yQ = θ(x)−1
[
Divy

∫
V

a(v) ⊗ a(v)
|a(v)| F (0)Γ dµ(v) +

∫
V
η(v)

(
L̂

(
ρF (0)) + L(0)Γ

)
dµ(v)

]
+ ∇xρ.

Since we can assume, without loss of generality, that
∫
V Qdµ(v) = 0, this determinesQ as a function

of L2((0,T ) × R
N
x × Y ) since the right-hand side of the previous relation involves onlyy-first order

derivatives ofL2((0,T )×R
N
x ×Y ) functions. ThusF ∈ L2((0,T )×R

N
x ; H), and (17) givesa(v)·∇yF ∈
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L2((0,T ) × R
N
x ; G). Since the right-hand side in (17) fulfills the requirements of Proposition 2, we can

considerφ, χi, ψ solution of the auxiliary problem (6). Then, we get

Γ (t,x,y,v) = F (0)(x,v)Q(t,x,y) + r(t,x)F (0) + χ · ∇xρ+ φρ+ ψρ.

This seems to be a very partial information, however it suffices to describe precisely the limit current as
follows

j(t,x) = lim
ε→0

∫
V
a(v)γε dµ(v) =

∫
V

∫
Y
a(v)Γ dy dµ(v).

Inserting this expression into (14) gives the expected drift diffusion Eq. (7) and ends the proof of Theo-
rem 1. It only remains to say that (14) combined to Proposition 3 and Ascoli’s theorem ensures thatρε

belongs to a compact set inC0([0,T ];H−1
loc (RN )). Hence, the initial dataρ0 for the limit problem (7)

corresponds to the weak limit of theρ0,ε’s. �

Appendix A. Proof of Proposition 2

The scheme of the proof follows the strategy adopted in [23]. It is worth pointing out that, in view
of (C), Proposition 2 and the proof below apply to discrete velocities models. Again, the keypoint relies
on the properties of the matrixθ.

Step 1: Uniqueness
Uniqueness follows from coercivity of the operatorL(0). Indeed, letf satisfy (P) with h = 0. Multi-

pying parf/F (0) and integrating yield

0 =
∫

V

∫
Y
a(v) · ∇y

(
f2

2

)
1
F (0) dy dµ(v) −

∫
V

∫
Y
L(0)(f )

f

F (0) dy dµ(v) = 0 + B(0)(f ,f ),

where we used the fact thatF0 does not depend ony and we denoted byB(0) the following bilinear
mapping

B(0)(f ,g) = −
∫

V

∫
Y
L(0)(f )

g

F (0) dy dµ(v).

By Proposition 1,B(0) is continuous and satisfies

B(0)(f ,f ) � κ

∫
Y

∫
V

∣∣f − ρfF
(0)∣∣2 Σ(0)

F (0) dy dµ(v).

Hence, we deduce thatf (y,v) = ρf (y)F (0)(v). In turn, the equation reads nowa(v) · ∇y(ρF (0)) =
a(v) · ∇y(ρ)F (0) = 0. SinceF (0) > 0, this means that∇yρ(y) is orthogonal toV ; therefore, by (C),ρ is
constant (with respect toy).
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Step 2: Existence
Let λ > 0. By integrating along characteristic curves, one gets a periodic solution of

λf + a(v) · ∇yf +Σ(0)(y,v)f = h.

Then, we set

Tλ : f1 �→ f ,

wheref is solution of the problem above with right-hand sideg = h+K(0)(f1). We now show thatTλ is
a contraction for the norm

‖f‖ =
∫

V

(λ+Σ)
F (0)(v)

∣∣f (v)
∣∣2 dµ(v).

For two functionf1, f ′1, denoting byδ1 = f1 − f ′1 andδ = Tλ(f1) − Tλ(f ′1), we get

∫
V
K(0)(δ1)(v)

δ(v)
F (0)(v)

dµ(v) =
∫

V

∫
V
σ(0)(v,w)δ1(w)

δ(v)
F (0)(v)

dµ(v)

�
( ∫

V

∫
V
σ(0)(v,w)

δ1(w)2

F (0)(w)
dµ(w) dµ(v)

)1/2( ∫
V

∫
V
σ(0)(v,w)F (0)(w)

δ(v)2

F (0)(v)2 dµ(w) dµ(v)
)1/2

�
( ∫

V
Σ(0)(w)

δ1(w)2

F (0)(w)
dµ(w)

)1/2( ∫
V
Σ(0)(v)

δ(v)2

F (0)(v)
dµ(v)

)1/2

� Σ

λ+Σ

( ∫
V

(
λ+Σ(0)(w)

) δ1(w)2

F (0)(w)
dµ(w)

)1/2( ∫
V

(
λ+Σ(0)(v)

) δ(v)2

F (0)(v)
dµ(v)

)1/2

, (18)

since (Σ(0)(w))/(λ +Σ(0)(w)) � Σ/(λ+Σ) for all w ∈ V . Futhermore,δ, δ1 solve

λδ + a(v) · ∇yδ +Σ(0)(y,v)δ = K(0)(δ1).

Therefore, multiplying byδ/F (0), an integration by part yields

∫
V

(
λ+Σ(0)) δ2

F (0) dµ(v) �
∫

V
K(0)(δ1)(v)

δ(v)
F (0)(v)

dµ(v),

and the results falls from (18), sinceΣ/(λ+Σ) < 1.
Finally, thanks to the Banach fixed point theorem, we deal with a sequencefλ satisfying

λfλ + a(v) · ∇yfλ + L(0)(fλ) = h,
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and we wish to pass to the limitλ → 0 in this equation. To this end, let us assume temporarily thatfλ

remains in a bounded set inH. Therefore, up to a subsequence, we have


lim
λ→0

∫
Y

∫
V
fλφdy dµ(v) =

∫
Y

∫
V
fφdy dµ(v)

for test functionsφ verifying∫
Y

∫
V
φ2(y,v)

F (0)(v)
Σ(0)(y,v)

dy dµ(v).

(19)

Let φ(y,v) = ζ(y)ψ(v), with ζ ∈ C∞
0 (Y ) andψ ∈ L∞(V ). Then,φ fulfills this condition as well as

a(v)ψ(v) · ∇yζ(y) (by using (B2)) whileφF (0) ∈ H. Thus, we can write

∫
Y

∫
V
hφ(y,v) dy dµ(v) = λ

∫
Y

∫
V
fλφ(y,v) dy dµ(v)

+
∫

Y

∫
V
a(v)ψ(v) · ∇yζ(y) fλ(y,v) + B(0)(fλ,φF (0)).

With (19), lettingλ goes to 0 shows that the limitf is a solution of (P).
It remains to show thatfλ is bounded inH. Assume that, for some subsequence,Nλ = ‖fλ‖H → ∞,

and setFλ = fλ/Nλ, ρλ =
∫
V Fλ dµ(v). We can assume thatFλ has a weak limitF in the sense of (19).

Furthermoreρλ is bounded inL2(Y ) (by using (A3)) and converges weakly to a limit denoted byρ. We
have

λFλ + a(v) · ∇yFλ + L(0)(Fλ) =
h

Nλ
= hλ → 0 in G. (20)

First, multiply byFλ/F
(0) and integrate. This proves the strong convergence ofFλ − ρλF

(0) towards 0
in H since one has

κ
∥∥Fλ − ρλF

(0)∥∥2
H

� λ

∫
V

∫
Y
F2

λ/F
(0) dy dµ(v) + B(0)(Fλ,Fλ)

�
∫

V

∫
Y

hλ Fλ

F (0) dy dµ(v) � ‖hλ‖G ‖Fλ‖H.

Therefore,Fλ = ρλF
(0) + (Fλ − ρλF

(0)) converges toF = ρF (0) + 0 in the sense of (19).
Next multiplying (20) byη(v) and integrating with respect tov give

λ

∫
V
Fλη(v) dµ(v) +

∫
V
a(v) · ∇yFλ η(v) dµ(v) −

∫
V
L(0)(Fλ)η(v) dµ(v) =

∫
V
hλη(v) dµ(v).

Then we rewrite the second integral of the left-hand side as

θ∇yρλ + Divy

(∫
V

a(v) ⊗ a(v)
|a(v)|

(
Fλ − ρλF

(0)) dµ(v)
)
.
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This leads to a relation looking like

θ∇yρλ = Iλ + divy(II λ),

whereIλ andII λ tend strongly to 0 inL2(Y ). Therefore, sinceθ(x) is invertible and does not depend ony
(see Lemma 2),∇yρλ is compact inH−1(Y ), and, in turn,ρλ is compact inL2(Y ) (since they-average
of ρλ vanishes).

This proves that the convergenceFλ → F = ρF (0) holds strongly inH and leads to a contradiction.
Indeed, repeating previous arguments, we can pass to the limit in (20). We obtain

a(v) · ∇yF − L(0)(F) = 0 = a(v)F (0) · ∇yρ

which implies thatρ is constant. On the other hand, integrating (20) we get

λ

∫
Y

∫
V
Fλ dy dµ(v) + 0 =

∫
Y

∫
V
hλ dy dµ(v) = 0 = λ

∫
Y
ρλ dy

by using the null average condition onh. It follows that∫
Y
ρdy = ρ = lim

λ→0

∫
Y
ρλ dy = 0.

HenceFλ would converge strongly to 0 while this sequence has norm 1. This ends the proof of Proposi-
tion 2. �

Appendix B. Proof of Lemma 3

In this annex we are concerned with the determination of the orthogonal setE⊥
# of

E# =
{
φ ∈ D#, divy

(∫
V
a(v)F (0)φdµ(v)

)
= 0

}
.

Clearly, if T readsvF (0) · ∇yQ whereQ does not depend on thev variable, thenT belongs toE⊥
# . Let

us prove this actually characterizesE⊥
# . LetT ∈ D′

# be a distribution such that

∀φ ∈ E#,
∫ T

0

∫
Y

∫
RN

∫
V
Tφ(t,x,y,v) dt dy dxdµ(v) = 0.

In the above formula and in the sequel the integral has to be taken as a duality between distribution and
test functions. Our characterization ofT relies on Fourier series. Forn ∈ Z

N the formula

T̂ (t,x,n,v) =
∫

Y
T (t,x,y,v) e−2iπy·n dy

defines a distribution ont, x, v and we have

lim
M→∞

∑
|n|�M

T̂ (t,x,n,v) e2iπy·n = T in D′
#.
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By taking firstφ constant with respect toy we obtainT̂ (t,x, 0,v) = 0. Second, for a fixedn �= 0 we
chooseφ = β(x,v)ζ(t,x) e−2iπy·n whereβ(x,v) is any function in the orthogonal set ofVect(n·a(v)F (0))
in L2(dµ(v)), andζ ∈ D((0,T ) × R

N ). (Note that thatv �→ n · a(v)F (0) cannot be the null function in
view of the condition (C).) For anyζ we have

∫ T

0

∫
RN

∫
V
T̂ (t,x,n,v)β(x,v)ζ(t,x) dt dxdµ(v) = 0,

which means∫
V
T̂ (t,x,n,v)β(x,v) dµ(v) = 0 ∈ D′((0,T ) × R

N)
.

It implies that

T̂ (t,x,n,v) = n · a(v)F (0)Q̂(t,x,n)

with Q̂(t,x,n) ∈ D′((0,T ) × R
N ). Multiplying by η(v) and integrating give

Q̂(t,x,n)θ(x)n =
∫

V
T̂ (t,x,n,v)η(v) dµ(v)

and thus, it follows that

Q̂(t,x,n) =
n

|n|2 · θ−1(x)
( ∫

V
T̂ (t,x,n,v)η(v) dµ(v)

)

holds for alln �= 0. Let us setQ =
∑

n �=0 Q̂(t,x,n) 1
2iπ e2iπy·n which converges inD′

#. Finally, we have

a(v)F (0) · ∇yQ =
∑
n �=0

n · a(v)F (0)Q̂(t,x,n) e2iπy·n = T − T̂ (t,x, 0,v) = T.

This achieves the proof.�

Appendix C. Proof of Lemma 1

Let ξ ∈ R
N . On the one hand, by using the definition ofχ and Proposition 1(ii), we have,

Dξ · ξ =
∫

V

∫
Y
a(v) · ξχ · ξ dµ(v) dy =

∫
V

∫
Y

(
a(v) · ∇y(χ · ξ) − L(0)(χ · ξ)

)χ · ξ
F (0) dµ(v) dy

= −
∫

V

∫
Y
L(0)(χ · ξ)χ · ξ

F (0) dµ(v) dy = B(0)(χ · ξ,χ · ξ)

�
∫

V

∫
Y

(
L(0)(χ · ξ)

)2 1
Σ(0)F (0) dµ(v) dy.
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On the other hand, Cauchy–Schwarz’s inequality yields

θ̃ξ · ξ =
∫

V

∫
Y

(
a(v) · ξ

)2
F (0) dµ(v) dy =

∫
V

∫
Y
a(v) · ξ L(0)(χ · ξ) dµ(v) dy

�
( ∫

V

∫
Y

(
L(0)(χ · ξ)

)2 1
Σ(0)F (0) dµ(v) dy

)1/2( ∫
V

∫
Y

(
a(v) · ξ

)2
Σ(0)F (0) dµ(v) dy

)1/2

.

By combining these estimates and using (B2), and (A1), we get, forξ �= 0

(θ̃ξ · ξ)2

c|ξ|2 � Dξ · ξ.

We notice that̃θ(x) is positive definite by (C) and (A2) and the coefficients belong toW 1,∞(RN ), by (B1).
Hence one deduces thatD(x)ξ · ξ � αK |ξ|2, for x ∈ K,K ⊂ R

N compact.
We now check theL∞ estimates onc(x) andb(x). Thanks to Proposition 1, and equality (6), we have

‖φ‖H � 2Mκ
∥∥a(v) · ∇xF

(0)∥∥
G = 2Mκ

∫
V

∣∣a(v)
∣∣2∣∣∇xF

(0)∣∣2 1
Σ(0)F (0) dµ(v).

Therefore, using (B1) and (A2), we get

∫
V
φ2Σ

(0)

F (0) dµ(v) � 2M2κ,

which implies

∣∣c(x)
∣∣ �

∫
Y

∫
V

∣∣a(v)
∣∣ |φ|dy dµ(v)

�
( ∫

Y

∫
V

|a(v)|2F (0)

Σ(0) dy dµ(v)
)1/2( ∫

Y

∫
V
φ2Σ

(0)

F (0) dy dµ(v)
)1/2

� 2C2M
2κ,

thanks to assumption (B2). Same estimates hold forb(x). �

Appendix D. Notes on factorization techniques

In this section, we briefly summarize how can be treated the case of a cross sectionσε(x,v,w) =
σ(x/ε,v,w) that does not depend on the macroscopic scalex by using a factorization strategy. This idea
is a well known engineering procedure; we refer for mathematical presentation and rigourous justification
of this principle to [2,5,11]. For the sake of simplicity we assume herea(v) = v. Let Θ(y,v) be the
(normalized) solution of the cell problem

v · ∇yΘ −Q(Θ) = 0,
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which has been proved to exists (at least when we can apply average lemma andV is bounded) by Bal
in [5]. Note thatΘ(y,v) now depends on the fast variabley, but does not depend onx anymore: this case
is therefore like the opposite case from the one we have studied in this paper.

Then, we consider the factorized functiongε = fε/Θε, withΘε(x,v) = Θ(x/ε,v). This new unknown
satisfies

∂tgε +
1
ε
v · ∇xgε =

1
ε2 Q̃ε(gε)

with

Q̃ε(g) =
∫

V

σ(x/ε,v,w)
Θ(x/ε,v)

(
g(x,w) − g(x,v)

)
dµ(w).

Now, the kernel of the (conservative) collision operatorQ̃ reduces to constants. Therefore, we can follow
the strategy of [2,22] to describe the limit problem, namelygε → ρ(t,x) satisfying a diffusion equation

∂tρ− divx(A∇xρ) = 0

whose coefficient are defined through a cell problem. In other words the behaviour offε is mainly given
byΘ(x/ε,v)ρ(t,x).

This factorization strategy obviously breaks down as soon as the steady stateΘ depends onx. It is
remarkable that we can treat separately the cases where the collision operator does not depend on the
macroscopic variable or the case where its kernel does not depend on the fast variable. The mixed case
whereΘ depends of both the micro- and macroscopic variables seems to be much more difficult.
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