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DIFFUSION APPROXIMATION OF EVOLUTIONARY SYSTEMS
WITH EQUILIBRIUM IN ASYMPTOTIC SPLIT PHASE SPACE

UDC 519.21

VLADIMIR S. KOROLYUK AND NIKOLAOS LIMNIOS

Abstract. In this paper we consider an additive functional of a Markov process with
locally independent increments switched by a Markov process. For this functional, we
obtain nonhomogeneous diffusion approximation results without balance condition on
the drift parameter. A more general diffusion approximation result is obtained in the
case of an asymptotic split phase space of the switching Markov process.

1. Introduction

Additive functionals of Markov processes are of great interest in theory (compensator
of certain potentials, change of time in processes, local time problems, etc.) and appli-
cations (reward function in stochastic system theory, etc.); see [22, 12, 20]. In studying
stochastic systems, such as additive functionals, two problems usually arise: the first
concerns the complexity of the phase space, and the second concerns the fact that the
local characteristics of the systems are not fixed but depend upon random factors. For
the first problem, in order to obtain analytical or numerical tractable models, we have to
reduce (simplify) the phase space. This is possible when some subsets are both connected
with each other by small transition probabilities, and asymptotically connected. For the
second problem, we describe the random changes of local characteristics by a stochastic
process, called a switching process; see [1, 2, 3, 4].

In order to simplify the study of complex and nontractable systems by the classical
analytical-numerical methods, diffusion approximation offers a real possibility to do this
in particular in problems of optimization and control. Nowadays, diffusion approximation
of birth-and-death processes is common practice in real problems. The most effective ap-
plication of diffusion approximation algorithms seems to be for stochastic systems which
describe queueing systems and networks as well as storage and transport processes widely
used in problems of communication, insurance, various networks (computers, transport,
biological, industrial, etc.) and more recently in reliability and maintenance problems
[4, 5, 10, 11, 16]. Another technique to simplify the study of complex perturbed systems
is to consider asymptotic split of phase space of perturbing process. In this paper we
will consider both techniques for asymptotic study of additive functionals. Skorokhod
[9, 23] and Kushner [19] considered weak convergence under the singular perturbation
conditions for averaging problems, without diffusion approximation part.
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We will consider here additive functionals of the following form:

(1) ξ(t) =
∫ t

0

η(ds; x(s)),

where x(t), t ≥ 0, is a switching Markov process and η(t; x), t ≥ 0, x ∈ E, is a switched
Rd-valued Markov process with locally independent increments. Such processes are also
called “weakly differentiable” [9], or “locally infinitely divisible” [8], or “piecewise deter-
ministic” [6] Markov processes.

We will consider this stochastic system in two cases. In the first case, x(t), t ≥ 0, is
supposed to be ergodic and fixed. In the second case, the phase space is supposed to be
asymptotically split, which is more general and gives a reduced phase space [12].

In our previous works [16, 17], we have discussed averaging and diffusion approxima-
tions of additive functionals of the form (1), for a reducible Markov process x(t), t ≥ 0,
on the fluctuations with the balance condition

(2)
∫

E

π(dx)a(u; x) = 0,

where π(dx) is the stationary distribution of x(t), t ≥ 0, and a(u; x) is the drift velocity
of η(t; x).

Another diffusion approximation can be obtained by considering fluctuations with
respect to the average process ξ̂(t), t ≥ 0, defined as the limit process in the following
weak convergence scheme [16, 17]:

(3) ξε(t) =
∫ t

0

η(ds; x(s/ε)) =⇒ ξ̂(t) as ε → 0

(see [17], Theorem 1).
In that case, we obtain a nonhomogeneous diffusion process ζ̂(t), t ≥ 0, in the following

normalized scheme:

(4) ε−1

[∫ t

0

η
(
ds; x(s/ε2)

)
− ξ̂(t)

]
=⇒ ζ̂(t) as ε → 0.

For such a diffusion approximation scheme, i.e., without balance condition (2), results
concerning random evolution with semi-Markov switching were obtained in [18], Chapter
7, and in [2, 3] using other techniques.

In Section 2, we give the general setting for processes and examples. In Section 3, we
give a diffusion approximation result without splitting. In Section 4, we give a diffusion
approximation result for an asymptotic split phase space of the switching Markov process.
And finally, in Section 5, we give the proofs of these results.

2. Preliminaries and examples

Let us consider a family of time-homogeneous cadlag Markov processes ηε(t; x), t ≥ 0,
x ∈ E, with locally independent increments in the series scheme, with a small series
parameter ε > 0, depending on the phase state x ∈ E. They take values in the Euclidean
space Rd, d ≥ 1, and their generators are given by

(5) Gε(x)ϕ(u) = aε(u; x)ϕ′(u) + ε−1

∫
Rd

[ϕ(u + εv) − ϕ(u) − εvϕ′(u)] Γ(u, dv; x).

The drift velocity aε(u; x) and the measure of the random jumps Γ(u, dv; x) depend on
the phase state x ∈ E. A complete characterization of the above generator is given in [6].
It is worth noticing that the drift velocity of aε(u; x) in (5) contains an initial drift and
the drift due to the jumps. Note also that ηε(·, ·) contains no diffusion part (see, e.g.,
[6, 8, 9]).
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The time-homogeneous cadlag Markov jump process x(t), t ≥ 0, taking values in a
measurable compact state space (E, E), is defined by its generator

Qϕ(x) = q(x)
∫

E

P (x, dy)[ϕ(y) − ϕ(x)].(6)

The stochastic evolutionary system with Markov switching in series scheme is repre-
sented as follows:

ξε(t) = ξε
0 +

∫ t

0

ηε(ds; x(s/ε)).(7)

The regular Markov jump process can be defined by the Markov renewal process
(xn, θn, n ≥ 0) given by the semi-Markov kernel

(8) Q(x, B, t) = P(xn+1 ∈ B, θn+1 ≤ t | xn = x) = P (x, B)
(
1 − e−q(x)t

)
.

We introduce the counting process

ν(t) := max {n : τn ≤ t} ,(9)

where the renewal moments and the auxiliary processes are

τn =
n∑

k=1

θk, n ≥ 1, τ0 = 0,

τ (t) = τν(t), θ(t) = t − τ (t).

The evolutionary system (7) can be represented in the following form:

ξε(t) := ξε
0 +

ν(t/ε)−1∑
k=0

ηε(εθk+1; xk) + ηε(εθ(t); x(t/ε)).(10)

As an illustration, we give here four typical evolutionary systems [16, 17].
1. A stochastic integral functional is determined by

(11) αε(t) :=
∫ t

0

aε(x(s/ε)) ds.

The corresponding generators (5) have the following form:

(12) Gε(x)ϕ(u) = aε(x)ϕ′(u).

2. A dynamical system with Markov switching is determined by a solution of the
evolutionary equation

(13)
d

dt
Uε(t) := aε(Uε(t); x(t/ε)).

The respective generators (5) have the following form:

(14) Gε(x)ϕ(u) = aε(u; x)ϕ′(u).

3. The storage jump process with Markov switching is determined by the generators

(15) Gε(x)ϕ(u) = ε−1

∫
Rd

[ϕ(u + εv) − ϕ(u)] Γε(u, dv; x).

4. A compound Poisson process with Markov switching is determined by the generators

(16) Gε(x)ϕ(u) = ε−1

∫
Rd

[ϕ(u + εv) − ϕ(u)] Γε(dv; x).
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74 VLADIMIR S. KOROLYUK AND NIKOLAOS LIMNIOS

3. Diffusion approximation without the balance condition

The stochastic evolutionary system with Markov switching in the diffusion approxi-
mation scheme considered here is rescaled as follows:

(17) ξε(t) = ξε
0 +

∫ t

0

ηε
(
ds; x(s/ε2)

)
.

Consider the following centered stochastic system:

(18) ζε(t) = ε−1
[
ξε(t) − ξ̂(t)

]
,

with the deterministic process ξ̂(t), t ≥ 0, defined by the evolutionary equation

(19)
d

dt
ξ̂(t) = â

(
ξ̂(t)

)
, ξ̂(0) = ξ̂0,

where â(·) is the averaged drift coefficient defined below.
We will give a diffusion approximation result concerning this system without consid-

ering the balance condition (2).

Theorem 1 (Diffusion approximation without the balance condition). Let the stochastic
evolutionary system ξε(t), t ≥ 0, be defined by relations (5) and (17). Let the following
conditions be fulfilled:

C0: The switching Markov process x(t), t ≥ 0, is uniformly ergodic with stationary
distribution π(dx) on the compact phase space E.

C1: The drift velocity has the following representation:

aε(u; x) = a(u; x) + εa1(u; x).

C2: The second moments of the jumps,∫
Rd

zz∗ Γ(u, dz; x) = C(u, x),

are bounded.
C3: The following asymptotic expansions hold:

C(v + εu, x) =
∫
Rd

zz∗ Γ(v + εu, dz; x) = C(v, x) + θε(v, u, x),

a(v + εu, x) = a(v, x) + εua′
v(v, x) + θε(v, u, x),

a1(v + εu, x) = a1(v, x) + θε(v, u, x),

where negligible terms satisfy the following condition: for any R > 0,

sup
|u|<R
x∈E

|θε(v, u, x)| → 0 as ε → 0.

C4: The initial values satisfy ξε(0) − ξ̂0 = εζε
0 , where

ζε
0 =⇒ ζ̂ and sup

ε>0
E |ζε

0 | ≤ c < +∞.

Then the weak convergence

ζε(t) =⇒ ζ̂(t) as ε → 0,

takes place.
The limit diffusion process ζ̂(t), t ≥ 0, is determined by the generator of the coupled

process ζ̂(t), ξ̂(t), t ≥ 0, which is

L̂ϕ(u, v) = a(u, v)ϕ′
u(u, v) +

1
2
B(v)ϕ′′

uu(u, v) + â(v)ϕ′
v(u, v),

where a(u, v) = â1(v) + uâ′(v).
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That means the limit diffusion process ζ̂(t), t ≥ 0, is nonhomogeneous in time and is
defined by the generator

L̂tϕ(u) =
[
â1

(
ξ̂(t)

)
+ uâ′(ξ̂(t))

]
ϕ′(u) +

1
2
B̂

(
ξ̂(t)

)
ϕ′′(u).

The covariance function B̂(v) is defined by

(20) B̂(v) = Â(v) + Ĉ(v),

where

Â(v) = 2
∫

E

π(dx)ã(v; x)R0ã(v; x),

Ĉ(v) =
∫

E

π(dx)C(v; x), C(v; x) =
1
2

∫
Rd

zz∗G(v, dz; x),

ã(v; x) := a(v; x) − â(v), â(v) :=
∫

E

π(dx)a(v; x), â1(v) :=
∫

E

π(dx)a1(v; x),

and R0 is the potential operator of Q (see [12])

QR0 = R0Q = Π − I.

Remark 3.1. The stationary regime in the averaged process (19) is realized when the
velocity has an equilibrium point ρ, i.e., â(ρ) = 0. Then the limit diffusion process ζ̂(t),
t ≥ 0, is of the Ornstein–Uhlenbeck type with the generator

L̂0ϕ(u) = b(u)ϕ′(u) +
1
2
Bϕ′′(u),

where

b(u) = b0 + ub1,

b0 = â1(ρ), b1 = â′(ρ), B = B̂(ρ).

4. Diffusion approximation with asymptotic split phase space

Let us suppose here that the phase space (E, E), of the family of Markov jump pro-
cesses xε(t), t ≥ 0, ε > 0, is split in the following way:

E =
N⋃

k=1

Ek, Ek ∩ Ek′ = ∅, k �= k′.

These processes are defined by the generators

Qεϕ(x) = q(x)
∫

E

P ε(x, dy)[ϕ(y) − ϕ(x)].

The stochastic kernel P ε(x, dy) is represented by

P ε(x, dy) = P (x, dy) + ε2P1(x, dy),

where the stochastic kernel P (x, dy) defines the embedded Markov chain xn, n ≥ 0,
uniformly ergodic in every class Ek, 1 ≤ k ≤ N , with stationary distributions ρk(dx),
1 ≤ k ≤ N . The Markov process x(t), t ≥ 0, defined by the generator

Qϕ(x) = q(x)
∫

E

P (x, dy)[ϕ(y) − ϕ(x)],

is also uniformly ergodic in each class with the stationary distributions πk(dx), 1 ≤ k ≤
N , which are represented as follows:

πk(dx)q(x) = qkρk(dx), qk =
∫

Ek

πk(dx)q(x).
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The perturbing kernel P1(x, dy) is supposed to satisfy the merging conditions [12].
Let us now introduce the following process:

(21) x̂ε(t) := m
(
xε(t/ε2)

)
,

where the merging function m is defined by

m(x) = k if x ∈ Ek,

and the limit merged Markov jump process x̂(t), t ≥ 0, is defined on the merged phase
space Ê = {1, . . . , N} by the intensity matrix

Q̂ = [qk�; 1 ≤ k, � ≤ N ],

qk� = qkpk�, k �= �, pk� =
∫

Ek

πk(dx)P1(x, E�), qkk = qkpkk.

The rescaled process that we will consider here is

(22) ξε(t) = ξε
0 +

∫ t

0

ηε
(
ds; xε(s/ε2)

)
,

and

(23) ζε(t) = ε−1
[
ξε(t) − ξ̂ε(t)

]
,

where the process ξ̂ε(t), t ≥ 0, is defined by the following evolutionary equation:

(24)
d

dt
ξ̂ε(t) = â

(
ξ̂ε(t); x̂ε(t)

)
, ξ̂ε(0) = ξ̂0,

with â(v, y) =
∫

Ey
a(v; x) πy(dx), y ∈ Ê.

Theorem 2 (Diffusion approximation in split phase space). Let the stochastic evolu-
tionary system ξε(t), t ≥ 0, be defined by relation (22) and the asymptotic split of phase
space as given above. Let conditions C1–C4 of Theorem 1, be fulfilled.

Then the weak convergence

ζε(t) =⇒ ζ̂(t) as ε → 0

takes place.
The limit conditional perturbed diffusion process ζ̂(t), t ≥ 0, is determined by the

generator of the Markov process ζ̂(t), ξ̂(t), x̂(t), t ≥ 0, which is

Lϕ(u, v, y) = L̂tϕ(u, ·, ·) + L̂(y)ϕ(·, v, y),

where L̂(y) is the generator of the Markov process ξ̂(t), x̂(t), t ≥ 0,

L̂(y)ϕ(v, y) = Q̂ϕ(·, y) + â(v, y)ϕ′
v(v, y),

and the generator of ζ̂(t), t ≥ 0, is

L̂tϕ(u) =
[
â1

(
ξ̂(t); x̂(t)

)
+ uâ′

v

(
ξ̂(t); x̂(t)

)]
ϕ′(u) +

1
2
B̂

(
ξ̂(t); x̂(t)

)
ϕ′′(u),
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where the drift and the diffusion coefficients are

B̂(v; y) = Ĉ(v; y) + Â(v; y),

Ĉ(v; y) =
∫

Ey

π(dx)C(v; x),

Â(v; y) =
∫

Ey

πy(dx)ã(v; x)R0ã(v; x),

â1(v; y) =
∫

Ey

πy(dx)a1(v; x), â′
v(v; y) =

∫
Ey

πy(dx)a′
v(v; x).

The process ξ̂(t), t ≥ 0, is defined by a solution of the following equation:

(25)
d

dt
ξ̂(t) = â

(
ξ̂(t); x̂(t)

)
, ξ̂ε(0) = ξ̂0.

Remark 4.1. In terms of stochastic differential equations, the limit process

ζ̂(t), t ≥ 0,

is defined as follows:

dζ̂(t) = Â
(
ξ̂(t); x̂(t)

)
dt + B̂

(
ξ̂(t); x̂(t)

)
dw(t),

dξ̂(t) = â
(
ξ̂(t), x̂(t)

)
dt,

where w(t), t ≥ 0, is the standard Wiener process.

5. Proof of theorems

Let us start by giving the proof of Theorem 2, which is the most general. The proof of
Theorem 1 is a special case for which we will give the additional elements. Let C2

0 (Rd)
be the space of real-valued functions defined on Rd with compact support.

Proof of Theorem 2. Consider the R × E × R × Ê-valued family of processes

(26) ζε(t), xε
(
t/ε2

)
, ξ̂ε(t), x̂ε(t), t ≥ 0, ε > 0.

We will denote by (u, x, v, y) the generic element of the state space R×E ×R× Ê, with
y := m(x).

Lemma 1. The generator of the quadruple Markov process (26), under conditions C1–C6
of Theorem 1, is

(27) Lε = ε−2Qε + ε−1Ã(v, x) + G̃ε(v, x) + L̂(y(x)),

where

Ã(v, y(x), x) = A(v, x) − Â(v, y(x)),

A(v, x)ϕ(u) = a(v; x)ϕ′(u),

Â(v, y(x))ϕ(u) = â(v, y(x))ϕ′(u),

G̃ε(v, x) = L0(v, x) + γε(v; x),

L0(v, x)ϕ(u) =
[
a1(v; x) + ua′

v(v; x)
]
ϕ′(u) +

1
2
C(v; x)ϕ′′(u).

The negligible operator γε(v; x) is such that, for all ϕ ∈ C2
0 (Rd),

‖γε(v; x)ϕ‖ → 0 as ε → 0,

and
L̂(y)ϕ(v, y) = â(v; y)ϕ′(v; ·) + Q̂1ϕ(·, y)
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is the generator of the coupled Markov process ξ̂(t), x̂(t), t ≥ 0.

Proof. We compute the part of the generator corresponding to the first two components,
i.e., ζε(t), xε

t := xε(t/ε2). We get

E
[
ϕ
(
u + ∆ζε(t), xε

t+∆t

)
− ϕ(u, x) | ζε(t) = u, xε

t = x, ξ̂ε(t) = v, x̂ε(t) = y
]

= ε−2∆tQεϕ(·, x)

+ E
[
ϕ(u + ∆ζε(t), x) − ϕ(u, x) | ζε(t) = u, xε

t = x, ξ̂ε(t) = v, x̂ε(t) = y
]

+ o(∆t)

= ε−2∆tQεϕ(·, x)

+ E
[
ϕ

(
u + ε−1

(
∆ξε(t) − ∆ξ̂ε(t)

)
, x

)
− ϕ(u, x)

∣∣∣
ξε(t) = v + εu, xε

t = x, ξ̂ε(t) = v, x̂ε(t) = y
]

+ o(∆t)

= ε−2∆tQεϕ(·, x)

+ E
[
ϕ(u + ε−1∆ξε(t), x) − ϕ(u, x) | ξε(t) = v + εu, xε

t = x, ξ̂ε(t) = v, x̂ε(t) = y
]

− ε−1 E
[
∆ξ̂ε(t) | xε

t = x, ξ̂ε(t) = v, x̂ε(t) = y
]
ϕ′

u(u, x) + o(∆t)

= ∆tε−2Qεϕ(·, x) + ∆tε−1Gε(v, x)ϕ(u, x) − ∆tε−1Â(v, y)ϕ(u, x) + o(∆t),

where

Gε(v, x)ϕ(u) = aε(v + εu; x)ϕ′(u) + ε−1

∫
Rd

[ϕ(u + εz)−ϕ(u)− εzϕ′(u)] Γ(v + εu, dz; x).

Now, the generator of the Markov process ξ̂ε(t), x̂ε(t) is obtained by a straightfor-
ward calculus, and thus we get the global generator of the above quadruple Markov
process (26). �

We will consider the test functions

ϕε(u, v; x, y) = ϕ(u, v) + εϕ1(u, v; x, y) + ε2ϕ2(u, v; x, y).

The singular perturbation problem is formulated as follows:

(28) Lεϕε = Lϕ + γεϕ.

Now, as in Lemma 3.3 in [12], we get the following result (see also [4]).

Lemma 2. The perturbed limit conditional diffusion process ζ̂(t), t ≥ 0, is determined
by the generator of the triple Markov process ζ̂(t), ξ̂(t), x̂(t), t ≥ 0,

L̂ = L̂0(v, y) + L̂(y),

where
L̂0(v, y)ϕ(u) = [â1(v; y) + uâ′

v(v; y)]ϕ′(u) +
1
2
B̂(v; y)ϕ′′(u).

Proof. From the asymptotic representation (28), we get

Qϕ(u, v) = 0,

Qϕ1 + Ã(x)ϕ = 0,

Qϕ2 + Ã(v, x)ϕ1 + L0(v, x)ϕ + L̂(y)ϕ = L.

So, Qϕ(u, v) = 0 means that ϕ ∈ NQ, the null-space of the operator Q. We have
ΠÃ(v, x)Πϕ = 0, which means that the second equation above satisfies the solvability
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condition, and we get ϕ1 = R0Ã(u, v)ϕ. The solvability condition of the third equation
gives

L̂ = ̂
Ã(v, x)R0Ã(v, x) + L̂0(v, x) + L̂(y),

from which the claimed result follows immediately. �

For the compactness of the process (26), we need to prove only the compactness of
the family ζε(t), t ≥ 0, ε > 0. For this, we need the following theorem, which is a
compilation for our conditions of Theorem 9.4, p. 145, and Corollary 8.6, p. 231, of
Ethier and Kurtz [7]. See also Theorems A and B in [17].

Theorem C. Consider the family of coupled processes

(29) ζε(t), xε
(
t/ε2

)
, t ≥ 0, ε > 0,

a Markov process ζ(t), t ≥ 0, of generator L with domain D(L), and an algebra

Ca ⊂ D(L)

that separates points. Consider also the test functions

ϕε(u, x) = ϕ(u) + εϕ1(u, x), ϕ ∈ Ca.

Suppose that the following conditions are fulfilled:
(C1) The compact containment condition for the family (29) holds.
(C2) For every T ∈ R+ we have

(30) lim
ε→0

E

[
sup

0≤t≤T

∣∣∣ϕε
(
ζε(t), ξ̂(t)

)
− ϕ

(
ζε(t)

)∣∣∣
]

= 0.

(C3) For every T ∈ R+ we have

(31) sup
ε>0

E
[
‖Lεϕε‖∞,T

]
< +∞,

where ‖ϕ‖∞,T = sup0≤t≤T |ϕ(ζ(t))|.
(C4) The convergence in probability of the initial values holds, i.e.,

ζε(0) P−→ ζ(0) as ε → 0,

with uniformly bounded expectation

sup
ε>0

E |ζε(0)| ≤ c < +∞.

Then
ζε(t) =⇒ ζ(t) as ε → 0.

Let us first prove the compactness containment condition for the processes (26).

Lemma 3. If supε>0 E |ζε(0)| ≤ c < +∞, then the family of stochastic processes ζε(t),
t ≥ 0, ε > 0, satisfies the compact containment condition

(32) lim
�→∞

sup
ε>0

Pε

(
sup

0≤t≤T
|ζε(t)| ≥ �

)
= 0.

Proof. Let us consider the test functions

ϕε
0(u, x) = ϕ0(u) + εϕ1(u, x),

where ϕ0(u) =
√

1 + u2.
From the asymptotic representation

Lεϕε
0(u, x) = Lϕ0 + γεϕ0
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and the definition of the operator A0(v, x) := −R0Ã(v, x), we get

ϕ1 = −R0G(x)ϕ0 = G0(x)ϕ0.

Hence
ϕε

0(u, x) = ϕ0(u) + εϕ1(u, x) = [1 + εA0(v, x)]ϕ0(u).

Then the proof follows as in Lemma 6 in [17]. �

The other conditions of Theorem C are as follows. The separating points algebra Ca

considered here is C2
0 (Rd × Ê). Conditions (C2) and (C3) are as follows:

(33)
E

[
sup

0≤t≤T

∣∣ϕε(ξε(t), xε(t/ε2)) − ϕ(ξε(t))
∣∣]

= εE sup
0≤t≤T

∣∣ϕ1(ξε(t), xε(t/ε2))
∣∣ → 0 as ε → 0,

and

sup
0<ε≤ε0

E
[
‖Lεϕε‖∞,T

]
≤ sup

0<ε≤ε0

E
[
‖Lϕ‖∞,T

]
+ sup

0<ε≤ε0

E
[
‖θε‖∞,T

]
< +∞.(34)

The proof of Theorem 2 is now achieved by considering Theorem C. �

Proof of Theorem 1. Consider the following R × R × E-valued family of processes:

(35) ζε(t), ξ̂(t), x
(
t/ε2

)
, t ≥ 0, ε > 0,

where ζε(t) is given by (18), and where ξ̂(t), t ≥ 0, is the averaged system defined by the
differential equation (19).

Denote by (u, v, x) the generic element of the space R × R × E. Now, by an easy
calculus we get the following result.

Lemma 4. The generator of the above Markov process (35) is

(36) Lε = ε−2Q + ε−1Ã(v; x) + L0(v; x) + Â + γε(v; x),

where

(37) L0(v; x)ϕ(u) = [ua′
v(v; x) + a1(v; x)]ϕ′(u) +

1
2
C(v; x)ϕ′′(u),

and

Ã(v; x) = A(v; x) − Â(v),

A(v; x)ϕ(u) = a(v; x)ϕ′(u),

Â(v)ϕ(u) = â(v)ϕ′(u),

Âϕ(v) = â(v)ϕ′(v),

â(v) :=
∫

E

π(dx)a(v; x).

Proof. This generator is a particular case of the generator (27), where Ê = {1}. �

As previously, we obtain the limit operator L̂(v) of the operators Lε, as ε → 0, namely

(38) L̂(v) = L̂0(v) + Â,

where

(39) L̂0(v)ϕ(u) = [uâ′(v) + â1(v)]ϕ′(u) +
1
2
B̂(v)ϕ′′(u),
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and

B̂(v) = Ĉ(v) + Â(v).(40)

Â(v) = 2
∫

π(dx)ã(v; x)R0ã(v; x).(41)

The limit process ζ̂(t), t ≥ 0, is a Markov nonhomogeneous process, with generator

(42) Ltϕ(u) = L̂0

(
ξ̂(t)

)
ϕ(u).

The compactness condition is a particular case of those of Theorem 2, hence we omit
it here. �
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