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Abstract— Fine needles facilitate diagnosis and therapy
because they enable minimally invasive surgical interven-
tions. This paper formulates the problem of steering a
very flexible needle through firm tissue as a nonholonomic
kinematics problem, and demonstrates how planning can be
accomplished using diffusion-based motion planning on the
Euclidean group,SE(3). In the present formulation, the tissue
is treated as isotropic and no obstacles are present. The bevel
tip of the needle is treated as a nonholonomic constraint that
can be viewed as a 3D extension of the standard kinematic
cart or unicycle. A deterministic model is used as the starting
point, and reachability criteria are established. A stochastic
differential equation and its corresponding Fokker-Planck
equation are derived. The Euler-Maruyama method is used
to generate the ensemble of reachable states of the needle tip.
Inverse kinematics methods developed previously for hyper-
redundant and binary manipulators that use this probability
density information are applied to generate needle tip paths
that reach the desired targets.

Index Terms— needle steering, nonholonomic path plan-
ning, probability density function, Euler-Maruyama method,
medical robotics

I. I NTRODUCTION

Needle insertion is a critical aspect of many medi-
cal diagnoses, treatments and scientific studies, including
percutaneous procedures requiring therapy delivery to, or
sample removal from, a specific location. However, errors
in needle targeting can cause unnecessary discomfort for
the patient and mitigate the effectiveness of diagnosis or
therapy. In addition, many procedures are currently not
amenable to needles because of obstacles, such as bone or
sensitive tissues, which lie between feasible entry points
and potential targets. Thus, there is a clear motivation for
needle steering in order to provide accurate and dexterous
targeting. It is interesting to note that in clinical practice,
some surgeons do make use of needle steering through
a combination of lateral, twisting, and inserting motions
under visual feedback from imaging systems such as ul-
trasound [1]. Surgeons accomplish this from experience,
making it difficult to teach and limiting the accuracy to
that of human hand/eye coordination.

In this work, we formulate the problem of steering a very
flexible needle through firm tissue as a nonholonomic kine-
matics problem. The asymmetry of a bevel tip serves as the
source of the nonholonomic constraint. Using this model,

we analyze reachability and demonstrate how planning can
be accomplished using diffusion-based motion planning on
the Euclidean group,SE(3).

Recent work in needle/tissue interaction modeling has
been used for planning and simulation of medical pro-
cedures [2], [3], [4]. The effects of needle bending have
been explored by several groups. O’Leary,et al. [5]
demonstrated experimentally that needle bending forces are
significantly affected by the presence of a bevel tip. Others
have generated needle bending using different strategies
such as incorporating a pre-bent stylus inside a straight
canula [7], or a telescoping double canula where the
internal canula is pre-bent [8]. Kataoka,et al. [9] proposed
a model for needle deflection neglecting the effect of a
bevel tip, although they acknowledge that the bevel is likely
the main source of deflection. Two previous studies [10],
[11] have analyzed needle paths for steering and obstacle
avoidance, but neither explore the effect of tip asymmetry
on steering. This paper builds on our previous experimental
work [6], in which we validated a nonholonomic model for
needle steering.

Many approaches exist for motion planning of robots
both with and without nonholonomic constraints [20],
[21]. A planning method based on maximizing probability
densities was developed by Ebert-Uphoff and Chirikjian for
manipulator inverse kinematics in [15]. Mason and Burdick
extended the approach in [15] to the context of mobile
robots operating in the plane in [19]. The density function
in this approach was generated by convolution onSE(2)
as in [16]. The generation of densities in planar problems
by solving a diffusion equation onSE(2) was introduced
in [18], [24]. These methods are extended to the three-
dimensional case of needle steering in this paper.

II. N EEDLE STEERING MODEL

A very flexible needle is treated here as a nonholonomic
robot whose end follows a path in three-dimensional space
that is prescribed by the properties of the ambient material,
the geometry of the needle’s bevel tip and the time-varying
translational and rotational insertion speeds of the needle at
the entry point. This is depicted in Fig. 1, which also shows
the space frame fixed at the insertion point and the body
frame fixed on the needle tip. As the needle is inserted
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Fig. 1. Parameters and frames defining the nonholonomic needle model.
At the insertion point, the needle tip frame aligns with the world frame.

without twisting, it will have a natural tendency to bend
due to the bevel tip. The amount of bending is described
by κ. Due to its high flexibility, the rest of the needle will
follow the path prescribed by the tip. Twisting of the needle
at the insertion point is transmitted to the needle tip due
to its high torsional stiffness. This allows the direction of
bending to be controlled. However, unlike the kinematic
cart, the trajectory that the needle follows must remain at
least differentiable due to the its own bending stiffness.
We now quantify this intuitive view of how the insertion
parameters are related to the evolution of tip locations as a
function of time or insertion length. In order to do so, the
language of Lie groups is used as described in [12], [13],
[14].

A. Review of Lie Group Notation

The Euclidean motion group (or “special Euclidean”
group), SE(3), is the semidirect product ofR3 with the
special orthogonal group,SO(3). We denote elements of
SE(3) as g = (a, A) ∈ SE(3) where A ∈ SO(3) and
a ∈ R3. The group law is written asg1 ◦ g2 = (a1 +
A1a2, A1A2), and g−1 = (−AT a, AT ). Any g ∈ SE(3)
can be written as the product of a pure translation and
pure rotation as(a, A) = (a, I)◦(0, A). Elements ofSE(3)
can be represented as4 × 4 homogeneous transformation
matrices of the form:

g =
[

A a
0T 1

]
.

Given a rigid-body motiong(t), the quantity

g−1ġ =
[
AT Ȧ AT ȧ
0T 0

]
∈ se(3) (1)

is a spatial velocity as seen in the body-fixed frame, where
se(3) is the Lie algebra associated withSE(3). We identify
so(3), the Lie algebra associated withSO(3), with R3 via
that “wedge/hat” isomorphism, namely ifω ∈ R3, then
ω̂ ∈ so(3) is the skew symmetric matrix associated with it,
andω = (ω̂)∨. We identifyse(3) with R6 via the mappings
∨ : se(3) → R6 and ̂ : R6 → se(3), given by

ξ = (g−1ġ)∨ =
[
(AT Ȧ)∨

AT ȧ

]
=

[
ω
v

]
∈ R6 (2)

and

ξ̂ =
[̂
ω
v

]
=

[
ω̂ v
0T 0

]
∈ se(3). (3)

The vectorξ contains both the angular and translational
velocity of the motiong(t) as seen in the body-fixed frame
of reference.

Let ei, i = 1, . . . , 6 denote the standard basis forR6.
Associated with the Lie algebrase(3) is a basis given by a
set of matricesEi = êi, i = 1, . . . , 6 which, when linearly
combined and exponentiated, produce elements ofSE(3).
The Lie Algebra has a Lie bracket given by the matrix
commutator[A,B] := AB − BA, and an inner product
given by (Ei, Ej) = δij . The commutator relations are
written all together as

[Ei, Ej ] =
6∑

k=1

Ck
ijEk (4)

where Ck
ij are called the structure constants of the Lie

algebra. Using this notation we can rewrite (2) as

ξ =
6∑

i=1

(g−1ġ, Ei)ei. (5)

B. A Simple Kinematic Needle Steering Model

Using this notation, our kinematic model is as follows:

ξ = [κv, 0, ω, 0, 0, v]T =

s1︷ ︸︸ ︷(
κe1 + e6

)
v +

s2︷︸︸︷(
e3

)
ω, (6)

where v, ω ∈ R are respectively the translational and
rotational insertion speeds along and about the tangent to
the needle at the point of insertion. The model assumes that
when the needle is inserted with speed,v and twist rate,ω,
they are both transmitted to the tip. The termκv reflects
the fact that the needle will bend with a certain curvature,
κ, that depends on the bevel angle and material properties
of the tissue, and that the rate of bending is proportional
to the speed of insertion. Whenω = 0, this needle model
makes a circular arc of curvature,κ, as shown in Fig. 1.
We constrainv ≥ 0, since “pulling” on the needle does not
behave in a symmetric fashion to insertion.

III. R EACHABILITY

We examine the reachability of (6) by computing the
control Lie algebra. Since the configuration space,SE(3),
is a Lie group, and the needle steering vector field (6)
is left-invariant, computing Lie brackets of the vector
fields reduces to computing the Lie brackets in the Lie
algebra,se(3). Computationally, we take successive Lie
brackets of S1 = ŝ1 and S2 = ŝ2 and verify that
the result spansse(3). Specifically, let S3 = [S1, S2],
S4 = [S1, S3], S5 = [S2, S3] and S6 = [S1, S5], and let
si = (Si)∨ ∈ R6, where∨ is defined in (2). Checking if
span{S1, S2, . . . , S6} = se(3), is equivalent to verifying
that span{s1, s2, . . . , s6} = R6. Let

M =
[
s1 s2 · · · s6

]
=


κ 0 0 0 κ 0
0 0 −κ 0 0 0
0 1 0 −κ2 0 0
0 0 0 κ 0 0
0 0 0 0 0 κ
1 0 0 0 0 0





and note that
det (M) = κ4 6= 0

and hencespan{s1, s2, . . . , s6} = R6. Thus, from every
initial condition, the system (6) can reach an open set of
final configurations.

It is worth noting that while the system is “reachable”,
it is not necessarily small-time locally controllable. This is
due to the fact that “small Lie bracket motions” are not
allowed, since we constrainv ≥ 0.

IV. GENERATING THE DENSITY OF REACHABLE END

POSITIONS

Knowing that any position and orientation in an open
set can be reached is a starting point for constructing
path planning algorithms. We now take the second step
of examining how the distribution of reachable end states
is related to the inputs at the base of the needle. Knowing
this distribution will help us in the next section to select
insertion parameters to reach a desired target.

Starting with the deterministic kinematic model in (6),
let us ask what the distribution of end positions and
orientations would look like if we could generate the needle
conformations corresponding to all possible reasonable
values of the input parameterω with the constant speed,v.
The approach we take is to view the input parameterω as
a random variable. This artificial construction enables us to
sample the space of needle trajectories. Since in practice
the needle is pushed forward and cannot perform car-like
maneuvers such as a “K-turn,” we will assume that

v(t) = 1 (7)

and

ω(t) = λw(t), (8)

wherew(t) is a unit Gaussian white noise with the property
that 〈ω(t)ω(t + τ)〉 = δ(τ), and λ is a parameter that
allows us to choose how much artificial noise to inject
for the purpose of sampling trajectories. This means that
(6) becomes the following stochastic differential equation
(SDE):

(g−1ġ)∨dt =


κ
0
0
0
0
1

 dt +


0
0
λ
0
0
0

 dW (9)

wheredW = W (t + dt) − W (t) = w(t)dt are the non-
differentiable increments of a Wiener processW (t) anddt
is taken as a finite but small value rather than the classical
infinitessimal differential.

This equation, which is of the more general form

(g−1ġ)∨dt = cdt + bdW (10)

can be solved to generate an ensemble of sample paths from
which the desired distribution information can be extracted.
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Fig. 2. An ensemble of random paths generated by the needle model in
(9), whenκ = 0.05 andλ = 0.8

In contrast, one can consider the evolution off = f(g; t),
the probability density function (pdf) describing the relative
frequency of occurrence of the needle end pose at a
particular time. Computing this pdf is useful for generating
needle trajectories, as described in Section V.

The Fokker-Planck equation corresponding to the SDE
(10) describes howf(g, t) evolves, and takes the form

∂f

∂t
=

−
6∑

i=1

ciE
R
i +

1
2

6∑
j=1

6∑
k=1

bjbkER
j ER

k

 f (11)

This equation can be obtained by the application of well-
known theory (see e.g., [26]). The ‘right’ Lie derivatives
of f with respect to the Lie algebra basis elements listed
in Section II are defined as

ER
i f =

d

dt
f(g ◦ exp(tEi))|t=0.

Efficient numerical solution methods for this kind of
equation have been derived previously using methods from
noncommutative harmonic analysis [18], [24]. In short, a
generalization of the Fourier transform that is applicable to
functons ofSE(3)-valued argument is defined as

f̂(p) = F(f(g)) =
∫

SE(3)

f(g)U(g, p)dg

whereU(g, p) is one of an infinite number of irreducible
unitary representation matrices with the propertyU(g1 ◦
g2, p) = U(g1, p)U(g2, p). The set of all such matrices
is parameterized by the nonnegative real numbersp. The
particular property that is useful in the current context is
that

F(ER
i f) = u(Ei, p)f̂(p)

where

u(Ei, p) =
d

dt
U(exp(tEi))|t=0.

This means that the Fokker-Planck equation on (11) can be
reduced to a system of linear ordinary differential equations
with constant coefficients in this generalized Fourier space
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(b) Probability density function modified by replacing a
(r, θ) pair with a Gaussian distribution at time, t=10(sec)

Fig. 3. Probability density functions

where f̂(p, t) can be solved for efficiently. The inversion
formula [14]

f(g) =
∫ ∞

0

trace (f̂(p)U(g, p))p2dp

then recovers the desired solution. The parametert has been
suppressed in the above expression, but iff̂ = f̂(p; t) then
f = f(g; t).

If g = g(a(r, θ, φ), A(α, β, γ)), wherea is parameter-
ized in spherical coordinates andA is parameterized with
Euler angles, it is sometimes convenient to use a reduced-
dimension pdf for planning. As will be seen, a marginal pdf
of the form f̃(r, θ) will be sufficient for needle steering.

As an alternative to the Fourier approach, the Euler-
Maruyama method [22] can be used to generate the density
of the system variable. In other words, the probability den-
sity function,f(g; t) can be obtained by using the Euler-
Maruyama method to generate an ensemble of sample
paths.

For a general SDE of the form

dx = c(x, t)dt + B(x, t)dW,

the discretized version is expressed as

xi+1 = xi + c(xi, ti)∆ti + B(xi, ti)∆Wi, (12)

where
xi = x(ti),

∆ti = ti+1 − ti,

∆Wi = W(ti+1)−W(ti).

The simple update procedure represented by these equa-
tions is the Euler-Maruyama method.SinceW(t) is the
Wiener process, we can conclude that∆Wi has a Gaussian
distribution with zero mean and variance∆ti, which means

∆Wi ∼
√

∆tiN(0, 1)

In order to modify (12) for use with (10), we use
the following equation, which is suitable for numerical
integration ofSE(3),

gi+1 = giexp(ξ̂), (13)

wheregi = g(ti), ξ = c(xi, ti)∆ti + B(xi, ti)∆Wi and
exp(·) is the matrix exponential.

We can generate an ensemble of random paths by
numerical integration of (10) using (13). Fig. (2) shows
the resulting random paths. The ensemble represents the
density of the variable,g, for a certain time,t. Therefore
we can obtain a time-evolving PDF of the system variable
by the Euler-Maruyama method.

We can see the probability density functions at the
final time (10 sec) in Fig. 3. From the Euler-Maruyama
method, we can easily construct the function in Fig. 3(a)
by counting the number of(r, θ) pairs in each small bin.
However, the probability density in certain bins might be
zero, even if the probability density in adjacent bins is
large, since this probability density function is obtained
from a finite number of random paths. Here we generate
the modified probability density function by using Gaussian
functions. Each(r, θ) pair is replaced with a Gaussian
distribution. By superimposing these Gaussian distribu-
tions, we finally construct the modified probability density
function (Fig. (3(b))). Alternatively, one can solve (11) to
generate smooth pdfs.

In the next section, numerical examples of this equation
are presented, and a method for solving the inverse kine-
matics problem using this information is demonstrated.

V. I NVERSEK INEMATICS USING THE DENSITY OF

REACHABLE END POSITIONS

Both the Fourier-based solution method for the needle
Fokker-Planck equation and numerical methods for enu-
merating discrete sample paths are useful for the needle
path planning problem. The Fourier method is good for
generating results for relatively large values of time (or
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(c) Paths for (±1.5,±1.5,9.7)

Fig. 4. Paths by inverse kinematics withκ = 0.05 andλ = 0.8

needle insertion length). In this way, relatively few terms
in the Fourier inversion formula can be used at low
computational cost to approximate the solution very well.
On the other hand, numerical integration of the SDE, like
brute force sampling of discrete conformations, can work
very well and be relatively efficient for small values of
time, where the needle pdf is highly concentrated.

Let L denote the length of the needle with which we
desire to reach a given target. Suppose we knowf(g; t) at
timest = kL/N for k = 1, ..., N (solved in principle using
theSE(3)-Fourier method or the Euler-Maruyama method)
and that we also know{gi}, a discrete set consisting
of K end poses for a needle segment of lengthL/N
generated by integrating the needle SDEK times. Then our
approach adapted from [15], [17], [23], evaluatesf(g−1

i ◦
ggoal;L(N − 1)/N) for each of theK values of i, and
selects the value ofi for which this probabability of hitting
is maximized. Then, with this value,i1, fixed, we seekgi

such thatf((gi1 ◦ gi)
−1◦ggoal;L(N−2)/N) is maximized.

We call this valuegi2 . At the kth step we seekgik
=

argmax
gi

f((gi1 ◦ · · · ◦ gik−1 ◦ gi)
−1 ◦ ggoal;L(N − k)/N).

This process is repeated untilk = N − 1. At the last step,
the valuegin

is chosen from{gi} in order to minimize the
distance to the target.

While in principle one would ideally usef(g; t) in this
procedure, the amount of time required to compute and
store all of these values forg in a fine grid inSE(3) and
N values oft can be significant. Since in needle steering
we often do not care about the orientation with which a
site (such as a lymph node) is approached, the orienta-
tional dependence of the pdf can sometimes be ignored.
Likewise, if position is written in spherical coordinates as
a = [r sinφ sin θ, r cos φ sin θ, r cos θ]T , and if we obtain
a ‘solution’ for which r and θ are correct but the value
of φ is not, then this ‘solution’ can be used by simply
changing the initial insertion roll of the needle. Therefore,
the marginal probability density

f̃(r, θ; t) =
∫ 2π

0

∫
SO(3)

f(A,a(r, θ, φ); t)dAdφ

can be used for the purpose of planning. This can be

efficiently generated using theSE(3)-Fourier method di-
rectly without first computingf(g, t) and integrating, or
by binning Euler-Maruyama trajectories on a 2D grid (as
in Fig. 3) rather than a 6D grid.

We can see some practical results in Fig. 4. This inverse
kinematics approach gives us paths reaching various points.
Note that using this method, we can find a path going to
a point on the z-axis (Fig. 4(b)), even though our initial
conditions are always along the z-axis and the deterministic
version of (9) would follow a circular arc. In this case, we
confirmed that the needle should follow a helix, which is
reasonable because the needle cannot follow a straight line
and must make an arc due to the effect of the bevel tip.
Fig. 4(c) shows that the needle can reach the points whose
distances from the insertion point are approximately the
same.

Fig. 5 shows the reachable points in the y-z plane for the
given values of the parametersκ and λ. Sinceλ governs
the strength of the effect of a unit Gaussian white noise
in (8) and (9), it is reasonable that the tip of the needle
can reach a wider area with largerλ value. If we take too
smallλ, the workspace will be too small and it will be hard
for the tip to hit the goal point. In other words,λ should
be large enough. If the distance between the surface of
the tissue and a goal point is not within a certain range,
then the point is not reachable. This can be overcome by
changingλ or the insertion speed of the needle,v. For the
other unreachable goal points, we can relocate the insertion
point and the initial insertion orientation.

VI. CONCLUSIONS

A simple nonholonomic kinematic model is presented to
describe how an ideal needle with bevel tip moves through
firm tissue. The reachability criteria are proven for this
model, and an inverse kinematics method based on the
propogation of needle-tip pose probabilities is presented.
These probabilities are generated as a diffusion process on
the Euclidean motion group using methods from stochastic
differential equations, Fokker-Planck theory, and harmonic
analysis on the Euclidean group. A numerical example
demonstrates the method. Future work will address the
application and refinement of both this model and the
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Fig. 5. Reachable points in the y-z Plane

solution methodology presented here to solve the planning
problem for real needles in real tissues, including the case
when obstacles are present.
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