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ABSTRACT

D I f  FUSION CONTROLLED VltlYL POLYMERIZATION

By

Soft, Sung Kuk 

U ntyersity o f New Hampshire, May 1981

I  I t  is  well known tha t the polymerization rate and the molecular
Î

wetght d is tr ib u tio n  o f v in y l polymers can change markedly during the 

course o f polymerization and tha t these changes are due to  the influence 

t o f  s e lf-d iffu s io n  upon the term ination reaction. This phenomenon is

commonly r e f  erred to  as the gel e ffe c t and in order to explain the 

polymerization behavior a fte r  the onset o f the gel e ffe c t,  the chain 

length dependence o f the term ination reaction should be considered.

A new method of handling polymerization k ine tics  w ith  the chain 

length dependence term ination reaction is  proposed, which is  la rge ly  

independent o f the form o f the chain length dependency and is  capable o f 

dealing w ith both d isproportionation and recombination modes o f termina

tio n  w ith chain trans fe r reaction to monomer.

The vinyl polymerization k ine tics  is  modelled fo r  each o f the four 

d is t in c t  phases which show d iffe re n t polymerization kinetics-physica l 

property in te ractions.

During Phase T, no in te rac tio n  i;s s ig n ific a n t and the polymerization 

k ine tins  conforms to the conventional k ine tics  and the molecular weight
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d is tr ib u tio n  to the Schulz-Flory most probable d is tr ib u tio n . During 

the Phase I I ,  the termination reaction is  contro lled by the trans la 

tiona l d iffu s ion  of the macroradicals. The polymerization k inetics 

begin to  deviate from the conventional k inetics and the termination 

reaction rate  constant shows chain length dependence and conversion 

dependence. The chain length dependence is  modelled w ith the chain 

entanglement concept and the conversion dependence with the free volume 

theory.

During the Phase I I I ,  the gel e ffe c t disappears due to the change 

o f the con tro lling  mechanism o f term ination from trans la tion  d iffus ion  

to the excess chain m ob ility  o f the chain ends coupled w ith the propaga

tion  reaction. The resu lting term ination rate constant lacks chain 

length dependency and is  named as the residual term ination.

During the Phase IV, the propagation reaction and other elementary 

reactions become d iffus ion  con tro lled , fu rthe r slowing down the 

polymerization rate. A method o f estimating the d iffus ion  contro lled 

propagation reaction is  proposed.

These models, w ith the aid o f general method o f polymerization 

k in e tics , were integrated to simulate the v inyl polymerization systems 

over the whole range o f conversion.

Methyl methacrylate, ethyl acry la te , n-propyl acry la te , v inyl 

acetate, ethyl methacrylate, and styrene polymerization data are 

analyzed w ith the integrated model which has only one adjustable para

meter and excellent agreements are observed.

X I
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Chapter 1 

INTRODUCTION 

1.1. OVERVIEW OF POLYMERIZATION KINETICS

Vinyl polymerization re fe rs to the free radical add ition  polymeriza

tion  o f monomer» wi th a v in y l functional group which forms a carbon- 

carbon chain upon polym erization. Vinyl polymerization can be performed 

in bulk, so lu tion , suspension or in  emulsion processes. Among the 

four methods o f polym erization, bulk polymerization is  the simplest as 

i t  does not contain components which do not react, as in  so lu tion 

polymerization, or a separate phase as in suspension and emulsion 

polymerizations. In th is  regard, the understanding of bulk polymeriza

tion  is  essential to  the e lucida tion o f the others.

This thesis is  devoted to  the explanation o f bulk v iny l polymeriza

tion  and w il l  serve as a s ta r t in g  point fo r  the detailed understanding 

of so lu tion , suspension and emulsion polymerization of v iny l monomers.

The elementary reactions which constitu te  the overal free  radical 

polymerization reaction are as fo llow s:

in it ia t io n :

propagation:

term ination:

I, 21

R^- + M

R,- + Rj

' 1+1

’P-j+j (recombination)

R_.- + R .-—>P̂ .+P. (d isproportionation)

chain trans fe r: R.. - + M  > P.. + R-j * (to  monomer)

R̂. • -t- S---->P.j + R-| • (to  chain trans fe r agent)

These reactions remain unchanged even though the reaction ra te  constants

1
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I

of the ind iv idual reactions may change w ith  the progress o f reaction

The description of the reaction o f low molecular weight substances 

is  usually complete w ith an expression fo r  the reaction ra te , which is  

equivalent to specifying d x /d t, the time rate o f change o f the fra c tio n 

al conversion in  the mathematical sense. Unlike reactions o f low 

molecular weight substances, the quan tita tive  description o f v iny l 

polymerization or any other polymerization is  very complicated because 

no synthetic high polymers are chemically pure substances in  the s t r ic t  

sense but are mixtures o f various components d iffe r in g  in th e ir  chain 

lengths. Thus the description o f a polymerization reaction necessi

tates the consideration o f the po lyd ispers ity  o f the chain length 

d is tr ib u tio n  in  addition to the description of the polymerization ra te , 

or dx/d t.

The po lyd ispers ity  o f lin e a r polymers is  defined by a molecular 

weight d is tr ib u tio n  function (F(M^.) w ritten  in terms o f the molecular 

weight M.. o f each components. I t  is  well known tha t specifying the 

moments o f the d is tr ib u tio n  function (F(M..) is  mathematically 

equivalent to specifying the d is tr ib u tio n  function i t s e l f  (1 ). 

T ra d itio n a lly , the ra tios  o f the moments are widely used and known as 

the various average molecular weights and are related to the d is tr ib u 

tion  function as follows (2 ).

1) The number average molecular weight

= 1 /  F(M.)/M.) = 5  N.M. / |  N.

where N.. is  the number o f species i in the sample.

2) The weight average molecular weight

(1. 1)

(1 .2 )
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3) The z-average molecular weight 

 ̂ \  = M^F(M.) /  M.F(M.) = ' N.M  ̂ /  (1.3)

4) The z+i-average molecular weight 

 ̂ ^z+i = M^"^^F(M.) /  M ‘ " V ( M . )  = (1.4)

where i= l , 2 , . . . , e t c . .

5) The v isco s ity  average molecular weight 

My = C M?F(M.)]^/^ = i  N.M '̂^  ̂ /  N.M. (1.5)

where a is  a constant determined by v iscos ity  measurements fo r  standard 

polymer samples of narrow molecular weight d is tr ib u tio n .

Considering tha t the reaction conditions w i l l  change w ith  changing 

conversion, i t  is  only possible to  pred ict the instantaneous values of

these average molecular weights th e o re tic a lly , while the experimentally;
W observed values are the cumulative values over the conversion range of
II the polymerization. The appearance o f the bar is  used to denote the

p cumulative average, and the lack o f i t  refers to  the instantaneous
I
II values henceforth. The re la tionsh ip  between the instantaneous and the
Ift cumulative averages are derived in the Appendix A. One computational
t

aspect o f th is  work w i l l  be to  develop a set o f models to obtain the

expressions fo r  dx/dt and M^s, where the f i r s t  subscript re fe rs to the
e
I  kind or the order o f the average, or i= n ,w ,z ,e tc ..

I 1.2 DESCRIPTION OF VINYL POLYMERIZATION

I Phase 1-Conventional K inetics
0
II Reading a textbook o f polymerization usually gives the fa lse

II impression tha t the understanding o f v iny l polymerization k in e tics  is
B
i  almost complete and the p red ic tion  o f the polymerization behavior is  at
Ëi hand. This impression is  substantiated with the a v a ila b il i ty  o f the
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computer when the ana ly tica l solution is  not ava ilab le , and with the 

values of the elementary reaction rate constants eas ily  found in a 

handbook or measureable by various experimental techniques.

Unfortunately th is  is  the case only when the elementary reaction 

rate constants have no chain length dependence. This lack of chain 

length dependency is  one o f the c r i t ic a l assumptions o f the convention

al polymerization k in e tics . The resu lting  molecular weight d is tr ib u 

tion  conforms to the well-known Schulz-Flory most probable d is tr ib u tio n  

where the number molecular weight d is tr ib u tio n  is  iden tica l to eq'n 

2.29 and 2.30 w ith  Z=1 and f(y )= l.  Details o f analyzing the molecular 

weight d is tr ib u tio n  w i l l  be presented in Chapter 2.

Phase II-The Gel E ffect

However, conventional kinetics often fa i ls  to describe vinyl 

polymerization behavior a fte r  a c r i t ic a l conversion level which can 

sometimes be as low as a few % conversion. This departure from 

conventional k ine tics  is  usually known as the "gel e ffe c t" .

Phase III-T h e  Plateau Region

At a s t i l l  higher conversion le v e l, approximately 50% or higher, 

most o f the "gel e ffe c t" ,  namely the autoacceleration o f the polymeri

zation rate and the ever-widening o f the molecular weight d is tr ib u tio n , 

begin to  disappear. In the author's opinion, there has not previously 

been a sa tis fa c to ry  explanation o f th is  observed phenomenon. I t  is  

p a rtly  due to  the fac t tha t most previous studies have been preoccupied 

with the accelerating phase of the gel e ffe c t. This work is  the f i r s t  

to o ffe r  an explanation o f the Phase I I I  and is  based on the concept 

of the excess chain end m ob ility .
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Phase IV-The Final Stage Polymerization

From above 85% conversion, many other factors may become important 

because the reaction medium has transformed in to  so lid  or sem i-solid 

s ta te , so that the elementary reactions which can read ily  occur in 

the liq u id  phase may begin to be severely lim ited  in the s o lid  s ta te . 

Although i t  is  beyond the scope o f th is  thesis to investigate  the 

polymerization k ine tics  in  the so lid  s ta te , considerable discussions 

including the d iffu s io n  contro lled  propagation reaction w i l l  be given.

1.3 PROBLEM STATEMENT

The discussion given so fa r  c le a rly  indicates tha t the modelling 

o f v iny l polymerization over the whole range o f conversion cannot be 

successful w ith one s im p lis t ic  theory of the gel e ffe c t or any other 

s ing le  phenomenon. I t  is  because most v in y l polymerization systems go 

through a d iffe re n t s ta te  whose physical cha rac te ris tics  change 

progressively from ordinary liq u id  and f in a l ly  to so lid  p la s tic  

m ateria l. These states roughly correspond to  the Phase I- IV  o f 

polymerization behavior. Typ ica lly  th is  conversion is  accompanied by
15

10 order of magnitude change in  the v isco s ity  o f the medium. The 

objective o f th is  thesis is  to develop a set o f theore tica l methodolo

gies and physical models which as a co lle c tion  can explain the v iny l 

polymerization behavior over the whole conversion range. However, i t

II should be emphasized tha t these theories are independent from each

other and the success or the fa ilu re  of one theory or model does not 

necessarily  d isc re d it other models proposed fo r  the other phases o f 

polymerization. As the reaction k ine tics  in  the low v isco s ity  liq u id  

phases are considered to  be adequately described by the well developed
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conventional k in e tic s , th is  work is  n a tu ra lly  concentrated on Phase 

I I - IV  o f polymerization, which form the subject matter o f Chapter 2,3, 

and 4, respective ly.

1.4 APPROACH TO THE PROBLEM

As already pointed out, typ ica l v in y l polymerization behavior goes 

through four stages o f polymerization, which are named "Phase I " ,

"Phase I I " ,  "Phase I I I " , "Phase IV". Phase I is  the phase where the 

well-known conventional k ine tics can be applied and is  not studied 

fu rth e r in th is  thes is .

Phase I I  is  characterized by the "gel e ffe c t"  and is  the re s u lt o f 

decreased term ination rate constant. The d iffu s io n  contro lled termina

tio n  reaction ra te  constant w i l l  in e v ita b ly  show chain length depen

dence which is  manifested in the broadening o f the molecular weight 

d is tr ib u tio n . Chapter 2 is  devoted to the Phase I I .  As i t  is  not 

generally recognized tha t the "gel e ffe c t"  implies the chain length 

dependence, the f i r s t  treatment o f Phase I I  w i l l  be the discussion 

about the p o s s ib ility  of the chain length dependence. The chain length 

dependent polymerization k inetics have not been previously studied in  

s u ff ic ie n t depth, so a large portion o f Chapter 2 is  devoted to the 

development o f such k ine tics with a rb itra ry  chain length dependence. 

This general approach is  followed by the development o f a model fo r  

the sp e c ific  dependence, which is  based on the free  volume theory and 

the chain entanglement concepts. These are commonly used to describe 

the m o b ility  o f macromolecular chains.

Phase I I I  is  characterized by the disappearance o f the once remp- 

ant gel e ffe c t. This is  considered to be the re s u lt c f  reaching the
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lim it  o f the tran s la tio na l d iffu s ion  contro lled term ination mechanism 

and the gradual s h i f t  toward a new mechanism o f term ination. The 

resu ltin g  term ination ra te  constant eventually reaches a plateau value. 

The word "plateau" is  used in  the sense tha t the rate o f decrease o f the 

term ination rate constant w ith the increasing conversion slows down 

considerably. The computational method o f dealing w ith such an add

it io n a l con tribu tion  in  Chapter 3.

Phase IV is  complicated by the beginning o f the s o lid - lik e  be

havior where a l l  the previous assumptions o f the liq u id  s ta te  radical 

polymerization may begin to f a i l .  In Chapter 4, some discussion of 

th is  f in a l stage polymerization is  given. Also from Chapter 2, the 

free volume theory and the chain entanglement coupling were used 

throughout to describe the m ob ility  o f a polymer chain. As l i t t l e  

in fo m a tio n  is  ava ilab le  fo r  the free volume parameters o f the poly

merization systems o f in te re s t, a data treatment method which can 

extract the necessary information from the v iscos ity  measurements o f 

polymer solutions is  developed and used to  determine the parameters.

The resu lts  of the modelling of Chapter 2-4 are tested fo r  a 

varie ty  o f ex is ting  experimental data fo r  methyl methacrylate, ethyl 

acry la te , n-propyl ac ry la te , v in y l acetate, ethyl methacrylate, and 

styrene in  Chapter 5. This gives the f in a l tes t o f the proposed set o f 

theories.

I
M

g

I
I
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Chapter 2

CHAIN LENGTH DEPENDENT TERMINATION

2.1 INTRODUCTION

The analysis o f many vinyl polymerizations is  complicated by the 

influence o f the physical properties o f the reacting system upon the 

k in e tic  parameters which control the polymerization behavior. One 

example is  the "gel e ffe c t"  which re fers to the autoacceleration o f 

the polymerization ra te  due to the decrease in  the termination rate 

constant. The authors view o f v iny l polymerization o f monomer soluble 

in i t s  own polymer consists o f four phases o f d is tin c tiv e  polymerization 

behavior. Depending on the monomer used or reaction conditions, one 

I  or more o f the four phases may be absent. They are schematically

i  shown in  Fig. 2.1 and 2.2, which d isplay time-conversion and molecular

weight-conversion data fo r  methyl methacrylate polymerization at 90°C 

(3). At low conversions, the polymerization rate is  described by 

conventional k ine tics  (4 ), the cumulative molecular weight averages do 

not change appreciably, and the molecular weight d is tr ib u tio n  confoms 

to the "Schulz-Flory most probable d is tr ib u tio n "  (5) (Phase I ) .  A fte r 

a certa in  conversion which appears to be independent of in i t ia to r  

level a t the same polymerization temperature, the well known "gel 

e ffe c t" is  observed (Phase I I ) .  At s t i l l  higher conversions, the gel 

e ffe c t appears to stop. The polymerization rate is  very fa s t,  but the

8
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cumulattve molecular weight averages (.except the number average 

molecular wetgHtl leyel o f f  or begin decreasing s.l1;ghtly (.Phase I I I ) .  

Eventually tSa deceleration Becomes profound and when the polymerization 

temperature i>  lower than the glass tra n s itio n  temperature o f the polymer 

formed, a l im it in g  conversion is  reached Beyond whioh the reaction does 

not proceed fu r th e r . ($1  (fhase IV I.

Iti t h i t  Chapter, i t  w i'll Be estaElisBed th a t deviation from "conven

tiona l k ine tios^ during Phase I?! is  fundamentally re la ted to the physical 

p roperty-k ine ttcs in te ra c tio n  o f the reaction medium which leads to 

d iffu s ion  con tro lled  term ination reaction. A u n if ie d  and comprehensive 

method o f analyzing such complicated k ine tics  w i l l  Be presented.
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2.2 BACKGROUND

Although there has been evidence that the term ination reaction is  

influenced by the v is co s ity  o f the reaction medium from zero conversion 

I (7 ), and the term ination rate constant may not remain constant even a t

I  the very low conversion range (g ), conventional k in e tics  are a c tu a lly

I  qu ite su itab le  in  th is  region. Conventional k ine tics  are fu l ly  de

scribed by the two parameters, R̂  and v, which are related to  the

f  parameters o f elementary reactions as

j Rp = kp[M] (R j/k^ jT /Z  (2.1)

I V = kp[M ]/(R .k^)^/^ ( 2. 2)

I
I Rp determines the polymerization ra te  and the k in e tic  chain length v

 ̂ determines the instantaneous molecular weight d is tr ib u tio n , which can

be integrated over the conversion range to y ie ld  the cumulative molecular

j weight development which can be observed experimentally. The in -
ft
r stantaneous molecular weight averages are determined as m ultip les o f

' the k in e tic  chain length v as shown in  Table 2 .1 , The values o f the
r

m u ltip lica tio n  constants are cha rac te ris tic  o f "the Schulz-FIory most

‘ probabl d is tr ib u tio n " (9 ).
i

Equations 2.1 and 2.2 and the molecular weight d is tr ib u tio n  o f 

Table 2.1 are va lid  beyond Phase I as long as there is  no chain;length 

dependence o f term ination rate constant k^. I f  chain length dependence 

is  imposed upon the term ination rate constant, the analysis becomes 

quite complicated, but North (4) has elegantly shown that equation 2 . I
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Table 2.1

Instantaneous Molecular Weight Averages

Molecular  Mode o f Termination------------------------
Weights Disproportionation Recombination*

V 2v

Mw 3v

3v 4v

( 3 + i ) v  ( 4 + i ) v

♦without chain trans fe r

and 2 .2 are s t i l l  v a lid  i f  is  replaced by a proper average I t

should be noted a t th is  point tha t North's analysis implies tha t 

is  dependent upon the actual size d is tr ib u tio n  o f macroradicals, and 

the k in e tic  chain length v in  equation 2.2 can only be used to calculate 

the number average instantaneous molecular weight o f Table 2. l 

Higher molecular weight averages can be determined only a fte r  a spe c ific  

form o f size d is tr ib u tio n  function o f macroradicals is  specified.

These two important points have been generally overlooked and 

co rre la tio n  between and conversion, or equ iva len tly , free volume,

• has been sought by various in ves tig a to rs (6,10-13) assuming the molecular 

weight d is tr ib u tio n  beyond Phase I s t i l l  conforms to that o f the 

Schulz-Flory most probable d is tr ib u tio n  characterizable by the m u lt ip l i

cation constants o f Tab le2 .i. I f  one considers the fa c t tha t the 

term ination reaction is  d iffus ion  contro lled , and tha t the d i f fu s iv ity  

o f macroradicals is  dependent upon chain length (14), such approaches 

are seen to be th e o re tica lly  unsound. However, i t  is  extremely d i f f i 

c u lt  to  prove chain length dependence experimentally. The d i f f ic u lt ie s
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mainly in  the fa c t th a t evaluation o f the Instantaneous molecular 

weight d is tr ib u tio n  requires numerical d if fe re n t ia t io n  o f experimental 

data and th a t i t  is  impossible to generate monodisperse macroradicals 

fo r  measurements o f term ination ra te . I t  should also be noted th a t 

the number average molecular weight can be determined from the polymer

iza tion  rate data alone by the re la tio nsh ip  between equation 2.1 and

2.2 so tha t no in form ation about chain length dependence can possib ly 

be obtained from number average molecular weight data. I t  is  no 

wonder tha t a l l  previous works (,6,10-13) which assumed no chain length 

dependence f i t  number average molecular weight data very well w ith  

adjustable constants obtained from polymerization rate data, while  

fa il in g  to  f i t  weight average and higher average molecular weight 

data.

O 'D risco ll ( I5 ) proposed a chain length dependent term ination 

rate constant which may be rew ritten  as in equation 2 .3 .

14

I

I

(2 .3 )

where u ( i - i^ )  is  the u n it step function and k^^j = I to  (16)

considered an exponential form,

k t i j  '
- A (2 .4 )

I

O 'D risco ll and I to  had considerable success fo r  Phase I I ,  w ith  adjustable 

constants k^^, i^ ,  and A ,  respective ly , but the general method o f 

trea ting  chain length dependent polymerizations was le f t  unsolved in 

th e ir  works.

Later in th is  Chapter a new form o f chain length dependence w i l l  

be proposed as.
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where

k f i j  = k^Yf [ f ( i ) + f ( j / j /2

f ( i )  = 1.0 ,

f ( i )  =

(2. 6)

1 > X ,

The advantages o f the new d is tr ib u tio n  function f ( i )  are; 1) i t  is  

derived from a theore tica l model which w i l l  be presented, and not an 

"assumed" form as equations 2.3 or 2 .4 , 2) the constant x^ is  a

physical constant o f the polymer whose tabu la tion  is  read ily  available 

(14), and is  not an adjustable constant, 3) remarkable success is  obt

ained fo r  a va rie ty  o f polymers (methyl methacrylate, ethyl acry la te , and 

styrene fo r  example) which could not previously be explained w ith a

single model. However, i t  should be emphasized that the theory o f 

chain length dependent term ination presented in  the fo llow ing section 

does not require a spe c ific  form o f f ( i ) ,  and is  equally va lid  fo r  

a rb itra ry  chain length dependence, including the conventional k in e tics .
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2.3 THEORY OF CHAIN LENGTH DEPENDENT TERMINATION

In th is  section the im plications o f the chain length dependence 

o f w i l l  be investigated w ith special emphasis upon molecular weight 

development. This descrip tion w i l l  be quite general, leaving the 

spec ifica tion  o f a functiona l form o f chain length dependence to  a 

la te r  section o f th is  Chapter.

II Termination Rate Constant

1 Consider a term ination rate constant k . . .  fo r  macroradicals o f
m  t i j  ,

I  size i  and j .  The ra te  o f term ination o f rad ica ls o f length i , de

ft signated r^ , w i l l  be described by

I  --I = 1  " t U  ^ [«-3? <2-S)

Furthermore, in terms o f mole frac tio ns  of radicals (X^) o f chain

I

g

length i ,  defined as

X. s [R - L /  I  [R*],- = CR*],./[R-] (2 .7 )
1 1 i= l 1 1

equation 2.6 can be rew ritten  as

oo
r,. = [ R . f  { . I ^  X^Xj 4. (2 .,8 )

The to ta l term ination ra te , R.̂ . is  given by

Rt = n  '  o - r g ,  J ,  k , , j X . X .  4 ^ , . x ^ )  ( 2 . 9 )

a I t  is  reasonable to assume tha t k. . . is  the a r ith  ematical average o f
#  ̂ J
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k t i j  = *  k t j j )  (2 -10)

This assumption is  c lose ly re la ted to  the generally accepted assumption 

o f the a d d it iv ity  o f the mutual d i f fu s iv i t y  (21) ,

°A.B = “a " “b

Note tha t equation 2.10 and equation 2.5 are equivalent with the 

d e fin it io n  = k^^^ f ( i ) ,  where k^^f is  a constant. With equation

2.10, equation 2.9 can be fu rth e r s im p lifie d  using the re la tionsh ip
2i= lX  = 1.0 and neglecting the small contribu tion o f the X,. term,

«t = j ,  k t i lX ,  (2 12)

I As the average term ination ra te  constant R. which is  suitable fo r
1:
I  equation 2.1 and 2.2  should p red ic t the to ta l term ination ra te ,

> Rt = Et [R - ] :  (2.13)

R̂  is  then related to the ind iv idua l constant k^^^ as 

^ t ^ *^ t ii^ i

I f  one defines a p ro b a b ility  P (i) such tha t i t  represents the 

p ro b a b ility  tha t a primary rad ica l survives to become a macroradical 

o f chain length i ,  X,j can be expressed as

X,. = P ( i) /  I  P (i) (2. 15)
 ̂ i= l

Combining equations 2.14 , 2.5 * and 2.15 ,

L  = f  I  f ( i ) P ( i ) /  I  P (i) (2. 16)
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Dealing w ith  d iscre te  summations as in equation 2.16 makes 

computations tedious, and the approximation to a continuous variable 

is  a rou tine practice . Choosing an a rb itra ry  reference chain length 

which is  large enough to  make 1/x^ = 0 , the re la t iv e  chain length y is  

defined as

y  = i/Xg (2.17)

Then the ra t io  Z = R^/k^y^^ can be determined from equation 2-1.6 as 
g

I  Z = R^/k^y^p = j~ f(y )P (y )d y /| P(y)dy (2.18)

Although i t  is  i n t e n d e d  . to leave f(y )  unspecified a t th is  

po in t, P(y) does need fu rth e r id e n tif ic a t io n . The p ro b a b ility  tha t a 

rad ica l survives term ination and chain transfe r a t any s ingle growth 

step is  given by the ra tio  o f propagation to (propagation + term ination 

+ tran s fe r) ra tes,

P(1) = kp[M]/(kp[M] + l/2 (k . .+ i;^ ) [R .]  4 4 k t r  ^CS]}

Using the pseudo-steady state conditon (R^=R^), and equations 2.5,

2.13 and 2.18,

l / p ( i )  = l+ Y f( i) /(2 x^v7 ) + y/Z/2Xc + G/Xg (2.19)

P ’ where y = x^(R ^k^yf)^''^/(kp [M ]) (2 .20)

9 = C^x^ + CgX^CSj/CM] (2 ,21)

Note th a t the k in e tic  chain length v o f equation 2.2 is  re la ted  to  y as 

V = x^/(yvT) (2 .22)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



*

I

f:
îi

19
The p ro b a b ility  tha t a polymer rad ica l survives a series o f steps 

(P ( i) )  is  the m u ltip le  o f the in d iv idu a l p ro b a b ilit ie s , p ( i ) ,  or

i
P (i) = n p ( i)  (2. 23)

i= l

I t  is  a mathematical id e n tity  tha t 

i  i
n p ( i)  = expC I  In p ( i ) ]  (2*24)

i= l i= l

and from equation 2.19

In  p ( i)  = - In  l / p ( i )  = - ln { l+ y f ( i ) / ( 2x Æ) + ( 1/x  )(yVZ/2+6)}
^ ^ (2. 25)

Since term ination and tran s fe r are rare events compared to propagation,
;
i the la s t  two terms in  equation 2.25 are very small compared to  u n ity

I  ( i .e .  p ( i)  = 1 .0). Thus the logarithm  term can be expanded in  the

I? form o f a Taylor series as

I  In  p (1) = -  ( Y f ( i ) / ( 2Xg/Z) + ( 1/Xg)(Y /%/2 + 6) }

Combining th is  expression w ith equation 2.24 and transforming to  the 

continuous variab le y ,
i*y

P(y) = exp{-(8+y/Z/2)y -  y / (2 » ^  f(y )d y } (2,26)
■•o

At th is  po int the general descrip tion  o f the term ination rate constant 

is  complete and is  embodied in equations 2.18* 2. 20 * 2.21 2.26*

Molecular Weight Development

The p ro b a b ility  o f formation o f dead polymer chains o f length i  

is  denoted as N^(i) and N ^(i) where the subscript d and r  re fe r to 

d isproportionation and recombination, respective ly .

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



20

:

I

I

N j( i)  = (C|^+Cg[S]/[M])[R.]X. + [R -] /kp [EM]
J: 
i -1

N ^(i) = (CM+Cg[S]/[M])[R ]X . + l ^ - r ^ t z k ^ j h

(2.27)

(2.28)

with k = i - j  and where the f i r s t  term represents the con tribu tion  from 

chain tra n s fe r and the r ig h t  term tha t from term ination . In terns o f 

the continuous va riab le  y , using the re la tionsh ips  developed previously, 

equations 2i27and 2.28 becomes

x^N j(y) = Eg + Y{Z+f(y)}/2vT|P(y) (2.29)

x^N^(y) = 6P(y) + y(B +yvT )/(>^
y /2

l /2 E f( t )+ f ( y - t ) ]P ( t )P (y - t ) d t  
°  (2.30)

To generate a series o f  molecular weight averages from equations 2.29 

and 2.30, i t  is  necessary to  define the i th  moments o f N(y), P (y), and 

f(y )P (y) as

 ̂0

p. = I y^P(y)dy 
-'0

F .  = p  y^ f(y )P (y )d y

(2.31)

(2.32)

(2.33)

■where m can be d or r .  E q u a t io n  2.29 a n d  2.30 can be substitu ted in to  

equation 2.31 to  give, as shown in d e ta il in  the Appendix 8 ,

I

= (6 + y» 'T /2 )  +  ( y / z Æ )  F.,

x X  = + (Y /2Æ) U+yÆ) j ^ ( ] )  F jP . j

where ( j )  =

(234)

( 2 3 5 )
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With some algeura, o f equation 2.33 can be expressed by (Appendix B)̂

Fj = (2 /Z /y )  { i P . _ ,  -  (B+ 7 * ^ / 2 ) ? , ( i > l )

(2.36)

Pq = Z/(6+Y»/%)

Equations 2.34-36 . show tha t on ly P.. need be evaluated fo r any p a rtic u la r 

d is tr ib u tio n  function f (y )  to  evaluate N ^ s  which is  necessary to evaluate 

molecular weight averages. I t  should also be noted tha t the two dimension- 

less parameters g and y  uniquely determine the polymerization rate and 

the molecular weight d is tr ib u tio n  given a spe c ific  form of f ( y ) .

Previous discussions p re d ic t tha t the number average molecular 

weight should not be dependent upon the form o f the d is tr ib u tio n  function 

f ( y )  as long as i t  gives the same average term ination rate constant, o r 

equ iva len tly , the same value o f Z. This is  indeed the case and in teg ra tion  

performed in  the Appendix c is  rew ritten  as fo llow s;

n̂ " *n/*c '  ^l/'^o = 1/(B + Y^)

= xJJ/x^ = = 1 /(6  + yÆ /2)

(2. 37) 

(2. 38)

I t  should be noted tha t equations 2.37 and 2.38 are iden tica l to  

the more fa m ilia r form via equations 2.24 - 2.26.

1/x*  = + Cs[S] / [M] + 1 /v

1/Xn = C% + Cs[S] / [M] + l / 2 v

(2 .39) 

(2. 40)

As the number average molecular weight is  the same fo r d iffe re n t d i s t r i 

bution functions i f  they y ie ld  same average term ination rate constant, 

i t  is  advantageous to define the molecular weight indices, a^ 's , as the
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ra tio  o f i th  order molecular weight average to the number average molecular 

weight M ,̂

= M,/Mn '(2.41)

For term ination by d isproportionation , the indices (a ^ 's ) are read ily

expressed in  terms o f the moments f \ ' s ,  but fo r  the case o f recombination 

w ith chain tra n s fe r to  monomer, i t  is  much simpler to  express the
J

in  terms o f & . 's .  These expressions are given in  Table 2. 2 .I t  should be 

noted tha t the indices are iden tica l to  the m u ltip lic a tio n  constants o f 

Tab le2 .1 if Z= l, as expected. Deta ils o f deriva tions are given 

in  the Appendix D. The expressions in Table 2.2 show tha t 

p in order to  evaluate molecular weight developments in  any mode o f

I term ination, on ly the indices fo r  d isproportionation are necessary,

i  The re su lts  o f the theore tica l investiga tions o f th is  section may

I  be summarized as fo llow s. Given any d is tr ib u tio n  function f (y )  which

|| characterizes the chain length dependence o f the term ination rate constant,

p there are only two dimensionless parameters, g and y , which determine

the polymerization rate and molecular weight d is tr ib u tio n . The indices 

o f polymerization rate (Z) and molecular weight d is tr ib tu io n  (& w '*z '*z+ l) 

can be p lo tted  in  the form o f master curves once the form o f f (y )  is  

specified. These curves w i l l  be shown a t the end o f the next section 

which discusses f ( y ) .
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2.4 DISTRIBUTION FUNCTION FROM ENTANGLEMENT THEORY

The resu lts  of the previous section are va lid  fo r  any form o f the 

d is tr ib u tio n  function f ( y ) .  Conceptually f (y )  can be determined from 

the actual molecular weight d is tr ib u t io n  obtained from experimental data. 

However, th is  inversion problem would require extremely accurate 

d if fe re n t ia l GPC chromatograms. Even i f  e rro rless chromatograms are 

ava ilab le , the inversion w i l l  require very cumbersome numerical ca lcu la 

tio n s . The approach taken in  th is  investiga tion  is to  propose a reason- 

i able form o f the d is tr ib u tio n  function  consistent with the present

theories o f polymer physics and compare its  predictions w ith experimental 

data.

A theore tica l expression o f the tran s la tio na l d iffu s io n  con tro lled  

term ination rate constant can be developed by v isua liz ing  the polymer 

chain as a sphere of equivalent radius R̂  ̂ w ith  d i f fu s iv i ty  in  the 

reaction medium. Several models have already been developed fo r  the 

equivalent case fo r  small molecules (21) and can be applied here.

Although the p ro po rtiona lity  constant may d i f fe r  among d iffe re n t models, 

the fo llow ing  p ro p o rtio n a lity  is  common fo r a l l  major models.

M-

;
I; k t i i  '  RhjD. (2.42)

I

I
I

The d i f fu s iv i t y  D̂. may be described in terms o f the f r ic t io n  c o e ff ic ie n t 

ç.j by the Stokes-Einstein equation (14).

= kT/ç. (2.43)
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For the case o f a d ilu te  so lu tion  corresponding to the low conversion 

range, the f r ic t io n  c o e ffic ie n t is  proportional to the hydrodynamic 

equivalent radius ( 17) ,

Ci = «hi (2.44)

is  proportional to chain length i fo r the fre e ly  dra in ing chain and 

to root-mean-square rad ius ,o f gyration fo r the impenetrable co il ( I 7 ).

In e ith e r case, the c o llis io n  radius R̂ ,j o f equation 2.42 should be

equal or proportional to the hydrodynamic radius R̂ .̂  o f equation 2.44.

k f i i  kT/cg (2,45)

I  and is  a constant at a given temperature. This is because equation 2.42

|i is  based on the v isu a liza tio n  o f trans la tiona l d iffu s ion  as th a t o f a

g sphere. I t  may easily  be id e n tif ie d  as the molecule i t s e l f  fo r  small
0
U molecules, but i t  w il l be log ica l to id e n tify  i t  as the hydrodynamic

r equivalent radius o f the polymer as i t  is  the closest v isu a liza tio n  of

the trans la ting  spherical body.
I#
p Equation 2.45 shows the term ination rate contro lled by trans la tiona l

te d iffu s ion  a t low concentration is  inversely proportional to the solvent

p  v iscos ity  I t  should be noted tha t one o f the "evidences" presented

| l  by North and Reed (g) to propose tha t the termination ra te  is  segmental
te
m  d iffus ion  contro lled at low conversion is  the inverse p ro p o rtio n a lity  of

È the term ination rate to the solvent v iscos ity . Equation 2.45 raises the

0 ' question o f whether there is  segm ental-to-translational tra n s itio n  o f the

is con tro lling  mechanism at low concentrations.
;p The d if fu s iv ity  a t moderate to high polymer concentration ranges is

generally treated by free volume theory (18). The D o o little  equation
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fo r  the s h i f t  fa c to r fo r  the monomeric f r ic t io n  c o e ffic ie n t ç-j is 

the usual s ta r t in g  po in t o f free volume co rre la tion s  (14).

In a^ = In = B ( l/v ^ - l/v ^ ) (2.46)

where *  denotes an a rb itra ry  reference po in t. F u jita 's  approach is  to  

assume 8=1 and define the fra c tio n a l free  volume v^ accordingly (13). 

Recently, Vrentas and Duda (19) proposed a re fined theory o f the d iffu s io n  

in polymer-solvent systems. F u jita 's  theory and Vrentas and Duda's are 

equivalent fo r  monomer-polymer pa irs . More de ta iled  investiga tion  on 

th is  subject w i l l  be presented in  Chapter 4. I t  w i l l

su ffice  here to note tha t both theories reduce to equation 2.48 fo r the 

d i f fu s iv i t y  o f macromolecules i f  the polymer chains are in the state of 

entanglement, a condition which is  s a tis f ie d  when equation 2.47 holds.

M* = * 0^0

D.. = (A /(iQ g))exp(-B/v^)

(2.47)

(2.48)

where is  given by Bueche (20) as

I Qg = (l+Mo/8Me){l+a(Mo/2Me)^/^ ? s"(2n-l )^/^[l-exp(-a[2n-l]^''^]}
n=l

where a = (p 3 ) (<R^>/Mo)^^^(2Me) ^^^ (2.49)

Due to the complexity o f equation 2.49, the author decided to avoid 

using i t ,  but instead to use the entanglement coupling fa c to r determined 

experim entally (14). In th is  case Qg is  given as

Qe = +2.4
i = X.

1 > X. (2.50)
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I t  may be noticed tha t the function is  id e n tica l to  the function  f ( y )

proposed in equation 2.5. I t  is  not a coincidence but a re s u lt o f the

fo llow ing  de riva tion .

I Equations 2.48 and 2.50 give an expression fo r the d i f fu s iv i t y  o f

macroradicals, but an estim ation o f the c o l l i  son radius in  equation

2.44 requires more inspection. From the previous discussion, the c o ll is io n

diameter was assumed to be proportional to the hydrodynamic equiva lent
1 / 2diameter, who's p ro p o rtio n a lity  to  chain length i  ranges from i  to  i 

depending upon the f l e x ib i l i t y  o f chain. By the word f le x ib le  i t  is  meant 

the ease o f assuming more chain configurations w ith in  the time scale o f 

tra n s la tio n a l movement. At the conversion range where free volume 

theory is  app licab le , the chain-chain in te ra c tio n  v isua lized  by entangle

ment should have increased by orders o f magnitude compared to the d i lu te  

concentration range. Based on the s h i f t  fa c to r a^, th is  means th a t the 

movement o f a whole chain (tra n s la tio n ) becomes slower and slower re la t iv e  

to the movements o f in d iv idu a l segments, which resu lts  in  new chain 

con figura tions. Thus in  the time scale o f tra n s la tio n a l d if fu s io n , the 

chain w i l l  become more f le x ib le ,  approaching the behavior o f f re e ly  

dra in ing chain. Therefore i t  was decided tha t the c o ll is io n  radius R^  ̂ is  

proportional to i .  Combing th is  idea w ith equations 2.42 and 2.48 leads 

to

“ (A/Qg)exp(-B/v.p)

or th a t

= (k*/Qg)exp(-B/v^) (2 .5 1 )

where k | is  some constant. Comparing th is  w ith  equation 2.5 (k^^^ = 

f ( i ) )  y ie ld s .

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



28

= k|exp(-B/v^) (2.52)

1 i 1  %c

f ( i )  = Q%̂ = ] ( i/X c ) "2 '4  i > x^ (2.53)

I t  is  now evident th a t the p ro p o rtio n a lity  constant k^^^ is  proportional 

to the s h i f t  fa c to r, a^, o f equation 2.46-

Because the mechanism of the tra n s it io n  from Phase I in to  the 

tra n s la tio n  d iffu s io n  con tro lled  Phase I I  is  not ce rta in , i t  was approxi

mated th a t the tra n s it io n  is  abrupt a t a c r i t ic a l  free volume v^^. I t  

is  fu r th e r assumed th a t k^^^ at v^^ is  equal to  the term ination 

rate constant o f Phase I.  Then equation 2.52 becomes

k^yf = k*^ exp (B d /V fg - l/V f) )  fo r (v^^v^^) (2.54)

The conclusion of th is  descrip tion o f the term ination rate constant is  

th a t i t  may be w ritte n  as a chain length independent fa c to r, k^y^, which 

is  re la ted to  the free  volume, and a chain length fa c to r, Q^, which 

describes the degree o f chain entanglements. U t i l iz in g  equations 2.53 

and 2.54, the term ination rate constant k^^^ is  completely specified .

The value o f k |^  is  determined by the requirement th a t is  continuous 

at Vf = Vfc-

I t  is  now possible to develop a set o f master curves which describe 

the indices o f polymerization rate (Z) and the molecular weight d i s t r i 

bution (%^>^2 ’ ^ z + l ^ c h a i n  length d is tr ib u tio n  function f ( i )  is  

cast in to  the continuous variab le  form f(y )  as
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r i  y <  1

and flsed eq'*n 2.26 to  ca lcu la te  PCyl. Detatls o f tfijeae procedures w i l l  

Be dt^cysaed it i the  next sect ton. The r é c i ta n t  master curves fo r  Z, 

i j ,  Ig , and l^^-j tn  terms o f p  and T are sftown in  Pîgs. 2 .3 -2 .6 ,

For tSe case wfiien t&e condttfon of eq'n 2 .4^  is  not met, tfie re  can 

Be no cBatn length, dependence as the entanglement coupling fa c to r  

equals 1 , y t& ld ing

f O I  = 1 Call y i  C2.57)

In tB is  case tBe polymerization Becomes "pseudo-conventional " ,  which 

means th a t the value o f the e ffe c tiv e  term inationrate constant 

changes w ith  conversion (due to  the decreasing free  volume) w h ile  the 

instantaneous molecular weight d is tr ib u tio n  becomes to  th a t o f the 

Schulz-Flory most probable d is tr ib u tio n . Such cases are often observed 

in styrene polym erization in  the middle conversion range.
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. 2.5 RESULTS AND DISCUSSION

I t  was shown in 2.3 tha t the molecular weight indices 1^'s and 
the entanglement fac to r Z are determined w ith  the two dimension-

less parameters 3 and r .  Using the chain length dependence function

f ( y )  proposed in  2.4 , i t  is  now possible to  calculate these indices

and w i l l  re s u lt in  the master charts already shown in  Figs, 2 .3 -2 .6 .

ENTANGLEMENT FACTOR Z

The entanglement fa c to r Z is  to be evaluated f i r s t  as the 

expressions fo r  other indices contain Z, so they can not be evaluated 

before Z is .  For a rb itra ry  values o f 3  and y  , Z should be found 

from the fu llow ing in tegra l equation 2.58.

Z .  ' 2 ( 2. 58)
0 P(Z, 3 , Y ,y)dy 

S ubstitu tion o f eq'n 2.26 gives the more spe c ific  form.

 ̂ f ( y )e x p [- (3+ ^ ) y -  Y j^ (y )d y ]d y
Z = — ---------------- ---------^   (2.59 )

; exp[-(,34X ^ y - ^ ^  f(y )d y ]d y
Q 2 2/Z^ U

Using the eq'n 2 . 55, f ( y )  and  ̂ f(y )d y  can be evaluated as

I
f(y ) = ( 1 y i  1 (2 .6  0 )

y> 1
and

oo

f(y)dy = y y ^  l
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2.4-y-T '4
1.4 y > l  (2.6-1)

Now eq'n 2.61 can be integrated num erically and was done by the CSMP

program CSMP.DIS (or CSMP.FOR) shown in  the Appendix E. in  th is

program, w ith  the given values o f g and y » a t r ia l  value o f Z is
substitu ted  in  eq'n 2.59, and is  integrated from 0 to  the value 
given by the TIMER statement. The value of the recalculated Z is

p rin ted  as a function o f the in tegra tion  l im i t  FINTIM.

j'F IN TIH f(y)p^ ,y)dy
Z(FINTIH) = ' . . . .---------------------------  (2.62)

i FINTIM p(2 ,8  ,T ,y)dy

The convergence o f Z(FINTIM) w ith  increasing FINTIM is  re a d ily

checked in  the p rin t-o u t. The procedure is  repeated u n t il the t r ia l

value o f Z is  equal to  the Z(FINTIM) as FINTIM approaches in f in i t y .

F ig. 2.3 shows the resu lt o f such ca lcu la tio ns , where Z value is

p lo tte d  as a function o f ^  and X  parameters. The range O ^ ^ ^ O . l

is  s u f f ic ie n t  fo r  most purposes. I t  can be observed in  F ig. 2.3 tha t

u n t il X  becomes very small ( y ^ l ) ,  the e ffe c t o f the chain trans fe r 
to  monomer, determined by is  n e g lig ib le . I t  should also be noted 
th a t i t  requires y ^ 3  to  assume Z = 1 . This means tha t the e ffe c t

o f chain entanglement coupling is  s ig n ific a n t even when the k in e tic  

chain length is  smaller than the chain length required fo r  entangle

ment, o r even when most rad ica ls terminate before they grow to a 
s u f f ic ie n t  length fo r  entanglement coupling, the small fra c tio n  which

grow very long play very s ig n ific a n t ro le  in  determining the polymeri

zation behavior o f the system.
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MOLECULAR WEIGHT INDICES

Once the Z chart is  prepared, the ca lcu la tion  o f the molecular

weight Indices are stra ightforw ard using the re la tionsh ips given in

Table 2.3. The ca lcu la tions were done by the same CSMP program CSMP.DIS 
as P.; is  rea d ily  calculated from the d e fin it io n .

FINTÎML
P. -  /  y  ̂P(y)dy ( i= l ,2,3) (2.6 )

0

Again the convergence o f the in tegra l to P .is  checked by the p r in t  -out 

as a function o f FINTIM.

Figs. 2 .4 -2 .6  shows the resu lts  o f the computations fo r  1^ (i=w, 

z , and z+1). The values can be as much as twice the value expected from 

the Schulz-Flory most probable d is tr ib u tio n .

As chain tran s fe r to  monomer is  a chain length independent reaction 
which forces the d is tr ib u tio n  c loser to the Schulz-Flory most probable 
d is tr ib u tio n , the deviation from the Schulz-Flory d is tr ib u tio n  decreases

as (3 increases. I t  can also be observed tha t the increased X  value 
produces less devia tion. For , the deviation becomes very profound.

interpolation TECHNIQUE

For computer modelling o f v iny l polymerizations, i t  is  more conven
ie n t to  have an in te rpo la tion  function fo r  the entanglement fa c to r Z

and the molecular weight indices 1^ 's . This was done by using IMSL sub

routine IQHSCU which computes the bicubic spline c o e ffic ie n ts  from a

given set o f data points. The values o f Z, id  --d  1^
w z* z+1
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calculated fo r  the ten Y  values ranging from 0 to  10 fo r  the g  values 

o f 0, 0.01, and 0.1 using the previously mentioned CSMP.OIS program were 

used to  obtain the ten in te rpo la tion  constants in  the CONST.FOR program 

shown in  the Appendix E. These 40 sp line coe ffic ien ts  were stored in  

the data f i l e  CONST.DAT. These data were read when necessary by c a llin g  

the subroutine COEFF.FOR also found in  the Appendix E.

The indices Z, i j ,  1^, 1^+  ̂ fo r  any y  value with |3=0, g=0.001, 

o r g =0.1 are computed in  a subroutine AUX.FOR. When the y  value l ie s  

w ith in  0 to  10, the indices are in terpo la ted w ith  the spline co e ffic ie n 

ts  stored in  the CONST.DAT f i le .  ForTvalues o f greater than 10, i t  

was set equal to the values fo r  the conventional k ine tics , which are; 

z -  1, = 2, = 3. and -  4.

For a rb itra ry  values o f g  and T  which may be required by the

main program or the other subroutines, the ca lcu la tion o f the indices

are performed by the subroutine CALCU.FOR, which in  turn ca lls  the sub

routine AUX.FOR. When the g  value l ie s  between 0 and 0.001 or between 

0.001 and 0 . 1 , the indices are lin e a r ly  in terpolated between the values 

calculated by AUX.FOR. When the ^  value is  greater than 10, the indices 

are approximated to equal to  the conventional k in e tics  values. When 

the g  value lie s  between 0.1 and 10, the indices a re linea rly  in te rpo la

ted between the values fo r  ^  =0.1 and g  =10.

RECOMBINATION MODE

For the same values of g  and Y ,  the mode o f termination has no

I
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e ffe c t on Z value and the molecular weight indices can be ca lcu la ted 

from the indices fo r  the d isproportionation  mode o f term ination by the 

re la tio nsh ips  given in  Table 2.3 . This computation is  done by the sub

rou tine  SBRKPL.FOR, which c a lls  the subroutine CALCU fo r  the values o f 

Z and 1^ 's  and ca lcu la tes  the corresponding 1^ 's i f  the mode o f term ina

t io n  is  recombination. The mode o f term ination is  supplied as the f i r s t  

argument o f SBRKPL.

2.6 CONCLUDING REMARKS

The tra n s la tio n a l d iffu s ion -te rra ina tion  reaction in te ra c tio n  is  
completely described once the function f ( y )  is  spe c ifie d . When the

condition  o f eq'n 2.47 is  met, fo r  any form o f f ( y )  only two dimensionless 

pa ra rœ te rs ,^and T ,  determine a l l  o f the observable features o f a po ly

m erization reaction (ra te  and iro locu lar weight d is tr ib u t io n ) .  A r e a l is t ic  

form o f f ( y )  has been proposed which is  based on the entanglement theory, 

and the master charts fo r  the ra te  and molecular d is tr ib u tio n  have been 

proposed. This o ffe rs  a complete descrip tion o f events during Phase I I ,  

o r the "gel e f fe c t " , o f  v in y l polymerizations.
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Chapter 3 

RESIDUAL TERMINATION

3.1 INTRODUCTION

In Chapter 2, i t  was proposed tha t many v in y l polymeriza

tio n s  consist o f fou r d is t in c t iv e  phases which have d iffe re n t 

physical property -  k in e tic  in te rac tio n s . Phase I can be described 

by conventional k in e tics  as the term ination reaction is  generally 

thought to be con tro lled  by segmental d iffu s io n . The resu lting  

term ination ra te  constant is  chain length independent, which enables 

the molecular weight d is tr ib u tio n  o f Phase I to  conform to the 

Schultz-F lory most probably d is tr ib u tio n . In Phase I I ,  which is  

coîranonly described by the phrase "gel e f fe c t" ,  the termination 

reaction becomes con tro lled  by tra n s la tio n a l d iffu s io n  which is  in 

heren tly  chain length dependent. Phase I I  was the subject of Chapter 2 

where a new the o re tica l model o f chain length dependent termination 

reactions was proposed and the subsequent k in e tics  and molecular weight 

d is tr ib u tio n s  were presented. These were seen to  be d iffe re n t from 

conventional k in e tics  and the Schultz-F lory most probably d is tr ib u tio n  

o f Phase I .  The ch a ra c te ris tic  o f the molecular weight development was 

the profound broadening o f the molecular weight d is tr ib u tio n , which makes 

higher order molecular weight averages increase a t a much fas te r rate 

than the lower order molecular weight averages such as M .̂ This is

39
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sftown dramattcally \ti Fig. 3.T.

In phasa TÎ I% the polymerization ra te  stops increasing and the 

hn^her molecular vÿei.'gKt averages level o f f  or Begin decreasing while the 

nnmBer average molecular weight continues to increase as shown in 

Ftg. 3.1. Tti'Sf apparent disappearance o f the ‘‘gel e ffe c t"  and the 

narrowing o f the molecular weight d is trtB u tin n  s trong ly  suggests the 

existence o f a mechanfsm By which the tran s la tiona l d iffu s ion  con tro lled  

term ination mechanism is  changed. This has not generally Been recogni- 

zae and 0 'D ris co ll 0 ^ 1  and Hamtelec [13) have proposed d iffe re n t models 

which in e ffe c t 1im it  the oolymertzatton ra te . Their models w i l1 be 

c r i t ic a l ly  reviewed in  the fo llow ing section 3.2 . This Chapter w i l l  

deal w ifh  the chain end m oB ility  con tro lled  term ination mechanism which 

the author Believes to  Be dominant in  Phase TIT and which is  believed 

to be responsible fo r  the disappearance o f the gel e ffe c t.
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4.2

3.2 REVIEW OF EXISTING THEORIES

I t  has already been mentioned that O 'Driscoll and Hamielec have 

theories which in  e ffec t l im it  the gel e ffe c t. I t  is the purpose of 

th is  section to show that the existing theories should not be considered 

to be the general mechanism con tro lling  Phase I I I .  I t  should be mentioned 

here tha t the evolution of the theory presented here owes heavily 

to O 'D risco ll's  and Hamielec's theories.

Cardenas and O 'D risco ll(15) have presented a model which describes 

the e ffec tive  termination rate constant at any conversion as a value 

which lie s  between the conventional value and a lim it in g  value fo r 

entangled polymer, This is equivalent to assuming a step function

fo r the chain length dependent termination rate constant, which is  

perhaps the simplest way of introducing chain length dependence in to  the 

polymerization k ine tics. The rate constant k^^ is  lim itin g  in the sense 

that when a ll polymer chains are long enough to be entangled, the 

e ffe c tive  rate constant is  k.̂ .̂ . In th e ir  work they have described th is  

rate constant as

"te  '  " to  “ o (3 -n

which states that the termination rate constant fo r entangled molecules 

is  inversely proportional to the entanglement density. Here, and 

were taken to be adjustable parameters. The termination rate constant 

k^^ between the entangled chain and the unentangled chain was assumed to

be
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This is  in  d ire c t contrast to the assumption used in Chapter 2, which 

in  th is  case would be;

*̂ tc Z ‘̂̂ to *̂ tê

While equation 3,3  is  d ire c tly  related to the assumption o f the 

a d d it iv ity  o f the mutual d iffus ion  constants as discussed in Chapter 2 ,the 

author, was - dot able to find  a theoretica l basis fo r equation 3.2 , used 

by Cardenas and 0*D risco ll. Moreover, equation 3.2 predicts zero 

term ination rate when the entangled radicals are completely immobilized 

(kte = 0).. Th's is  c lea rly  not acceptable, as immobilized rad ica ls can 

ce rta in ly  react w ith mobile radicals- as long as the en tire  system is  not 

completely frozen. One o f the bases o f introducing equation 3.3 was the 

consideration tha t the value o f the termination rate constant is  de

termined by the m ob ility  o f the chain. I t  is  well known tha t the chain 

m ob ility  is  determined by two factors, the entanglement and the free 

volume e ffe c t (-|4 ). Equation 3.2 assumes the termination rate  constant, 

which is  affected by the chain m ob ility , is somehow dependent only upon 

the entanglement density and not dependent upon the changing free volume. 

This assumption is  d i f f ic u l t  to accept. Even i f  one does accept equation

3.1 and equation 3.2 without question, there is  s t i l l  no reason to 

believe tha t the termination rate constant fo r  entangled chains should 

be inversely proportional to the entanglement density. I t  should be 

mentioned tha t i t  is  known that the m ob ility  of an entangled chain at a 

given conversion level is  proportional to -3.4th power o f the entangle

ment density (14 ) . This would require (according to O 'D risco ll) that 

k^g is proportional to + 3.4th power o f the chain m ob ility , which is 

d i f f ic u l t  to accept without ju s t if ic a t io n .  However, contributions made

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



44

by O 'D ris c o ll's  model should be appreciated as the f i r s t  serious attempt 

to  introduce the chain length dependence in to  the modelling o f polymeri

zation k in e tics . I t  is  in te resting  to note tha t even the re la t iv e ly  

s im p lis tic  model o f O' D r is c o ll' s does show a widening molecular weight 

d is tr ib u tio n  in  Phase I I  and a narrowing d is tr ib u tio n  during Phase I I I .

More recently Marten and Hamielec(13) presented an in te rp re ta tion  

o f trans la tio na l d iffu s io n  contro lled term ination reactions in  

terms o f the free volume theory. Their model was not chain length 

dependent but assumed tha t the average e ffe c t o f chain entanglements 

upon iĉ  could be described through the weight average molecular 

weight as

* t̂ “  (M^^"^^xp(-A/VfJ (3. 4)

The values o f m and A were treated as adjustable constants to be de

termined by f i t t in g  experimental conversion-time data. They assumed 

tha t the d is tr ib u tio n  of molecular weights conformed to  the Schulz-Flory 

most probable d is tr ib u tio n  throughout the reaction. I t  is  inconsistent 

in  the author^ • opinion that is  assumed to depend upon the molecular 

weight as in equation 3.4 while the molecular weight d is tr ib u tio n  is  

assumed to conform to the Schulz-Flory most probable d is tr ib u tio n . More 

pertinent to the present discussion is  the fa c t tha t these authors pro

posed tha t the apparent deceleration in the reaction rate at higher 

conversions was e n tire ly  due to a rapid decrease in the propagation rate 

constant which eventually overtakes the decrease in and ends the gel 

e ffe c t. This in te rp re ta tion  gives r ise  to an exponential increase in 

the concentration o f macroradicals which has no bound, w ith i t s  rate of 

increase only lim ited  by the d issocia tion rate o f the in i t ia to r .  This
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does not appear to be plausible as the macroradical concentration at high 

conversion computed in th is  fashion is  usually orders o f magnitude larger 

than those tha t have been observed experimentally (22) .

The constants in  Hamielec's model are determined by f i t t in g  the 

conversion-time data very close ly. As shown in  Chapter 2 o f 

th is  thesiS;, th is  necessarily means tha t the number average molecular 

weight data should be well described also. 'As pointed out in  chapter 2, i t  

is  only the higher molecular weight averages which have any dependence 

upon the functional form of the chain length dependence. In th is  area 

Hamielec's model generally predicts values too low w ith differences 

often in  excess o f 100% fo r weight average molecular weight. Moreover, 

his model does not show any narrowing o f the d is tr ib u tio n  evident in the 

data o f Fig. 3.1. Using th is  model there is  no way fo r  the higher 

molecular weight averages to level o f f  or decrease while allowing the 

number average molecular weight to continue to r ise .

Perhaps the most important c r it ic is m  o f Hamielec's model is  tha t 

i f  the lim ita t io n  o f the gel e ffe c t ( i .e .  the appearance o f deceleration) 

is  due to  the decrease o f caused by d iffu s io n a l re s tr ic t io n s  o f the 

monomer a t low free volumes, there should be l i t t l e  such behavior when the 

polymerization temperature is  well above the glass tra n s it io n  temperature 

o f the polymer. Patra 's data(23) fo r  ethyl and n-propyl acrylate poly

merizations a t 59 and 83®C above the respective glass points c le a rly  show 

the disappearance o f the gel e ffe c t a t about 50-60% conversion le ve l.

(These data w i l l  be discussed in de ta il in Chapter 5). Thus there 

appears to  be the neejd fo r an a lte rna te  explanation o f these phenomena.

The above considerations led the present author to  the con

clusion tha t the polymerization behavior during both Phase I I  and Phase
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I I I  should only be a resu lt o f changes in the chain length dependent 

term ination rate constant. We postulate tha t a point is  reached a t which 

the term ination rate constant stops decreasing as rap id ly  as i t  had been 

before, and then stays constant or decreases at a less rapid ra te . This 

is based upon the fa c t tha t the notion o f a value approaching zero is  

not p lausib le as i t  is  c lear th a t term ination reactions can s t i l l  take 

place even when the polymer rad ica l chain is  completely immobile. Under 

th is  condition the very end o f the chain w i l l  continue to trans la te  in  

space w ith every propagation step and w i l l  eventually lead to term ination 

(24). The deta iled  discussion o f th is  chain end m o b ility  and i ts  general 

e ffe c t upon the behavior o f the overa ll term ination rate constant w i l l  be 

described in  the fo llow ing sections.

The above comments lead to the concept that the overall term ination 

behavior is  made up o f a chain length dependent (trans la tio na l d iffu s io n ) 

portion and a propagation step dependent portion. The la t te r  is  not 

related to chain length. Considering th a t these dual mechanisms operate 

simultaneously, the overall term ination rate constant should be expressed 

as

k t( j ')  = ( k t ) t r  + " tp  13-51

The polymerization behavior during Phase I I I  can be understood as the 

period when the re la tive  s ign ificance  o f the two terms o f equation 3.5 

changes from one extreme ((k.^).^^>>k^p) to the other ( (k^).^^«k^p).
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3.3 GENERAL TREATMENT OF RESIDUAL TERMINATION RATE

The general theory fo r the chain length dependent term ination 

was presented in  Chapter 2 where i t  was shown tha t the k ine tics

and molecular weight development are completely determined by the two 

dimensionless parameters, g and y» and the dimensionless d is tr ib u tio n  

function f ( y ) .  When the chain length dependence is  governed only by 

the tra n s la tio n a l d iffu s io n  o f macroradicals, i t  is  expected tha t the 

value o f f (y )  w i l l  approach zero as chain length increases without 

bound, or

lim  f (y )  = 0 (3.F)
y -x»

This is  because the trans la tiona l d iffu s io n  con tro lled  term ination rate 

constant can be expressed by equation 3.7, which was proposed in Chap.2.

( k t ) t r  “  Rh(y)0(y) (3.7)

The condition o f equation 3.6 is  obtained when the decrease o f the 

d i f fu s iv i t y  D(y) is  fas te r than the increase o f the hydrodynamic radius 

R^(y) w ith increasing dimensionless chain length y . The p a rticu la r 

functional form derived from entanglement theory shows -3 .4 th  power 

exponent o f D{y) while R^(y) shows at most a 1st power exponent and 

s a tis f ie s  the condition fo r  equation 3.6. However, i t  has been stated 

e a r lie r  in  th is  Chapter ’ that th is  l im it in g  behavior is  an in 

s u ff ic ie n t descrip tion fo r Phase I I I  o f the reaction and tha t a residual 

term ination rate must be considered. This residual rate is  related 

to the propagation reaction and the overall term ination rate constant

should be expressed as equation 3.5. The purpose o f th is  section
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is  to  . set fo rth  a general v/ay of using equation 3.4 to fo llow  the 

events during Phase I I I  leaving the specific  description o f the residual 

rate constant, to a la te r section o f th is  Chapter.

In Chapter 2, eq'n 2.55, i t  was shown that

( " t ' t r  “  " t v f  (3- 8 )

and thus using equation 3.5,

= h ^ / f  f(-y) + >̂ tp (3. 9)

I t  is  convenient to express k^(y) in  the manner o f equation 3.8  by defining

k^(y) = k °y ff° (y ) (3 . 10)

where the superscripts re fe r to the conditions o f Phase I I I .  Noting that

k^y.p is  the chain length independent contribution to k ^ (y ), i t  can be 

described as

*^tvf  ̂ *^tvf *^tp ( 3 .  11)

which gives r ise  to a simple ra t io , W, describing the tra n s itio n  from 

to ta l chain length dependence to no chain length dependence,

^ = '^tvf'^'^tvf ^ *^tvf^^*^tvf *^tp) (3 .1 2 )

Here i t  is clear that when k^^.p>>k^p, W = 1 and there is  to ta l chain 

length dependence, but when W = 0 and there is  no chain length

dependence. Equations 3.11 and 3.12 give rise to the fo llow ing de

scrip tion  of f° (y ) ,

f° (y )  = Wf(y) + 1-W (3.13)
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U til iz in g  equation 3.4 to describe the l im it  at very high chain length,

lim  f° (y )  = 1-W (3.14)
y-xjo

Following the approach taken in Chapter 2, the average 

term ination rate constant fo r a ll polymer radicals terminating a t any 

moment in Phase I I I ,  can be described as

K  = "?vf <3-’ 5)

The polymerization behavior o f Phase I I I  should also be described by two 

dimensionless parameters g* and y" (re lated to 6 and y of Phase I I )  as 

long as they have the follow ing re la tionsh ips,

3^  =  Xg(Cf̂ +C5[S ]/[M ]) =  3  (3.16)

Y" = Xg (R ik;vf)^/2 /kp[M ] = y/W^/2 (3.17)

Likewise the p robab ility  d is tr ib u tio n  function P°(y) fo r Phase I I I  should 

be o f the same form as tha t o f Phase I I ,  or

P“ (y) = exp {.(g °+y"Æ V 2 )y - [ y V ( 2/ F ) ]  

Using equation 3.11, equation 3.18 can be rearranged as

^ f°(y )dy} (3.18) 
0

P°(y) = exp { - [g °+yVTV2  + y ^ ( l - W ) / ( 2 / I ^ ) ] y - [ y ° W / ( 2 / r ) ] f(y )dy}
0
(3.19)

Equation 3.19 shows that P°(y) is  iden tica l to a hypothetical system con

tro lle d  only by translationa l d iffu s io n , P '(y ) , provided that the parameters 

' ( '  and 3 ' of the hypothetical system sa tis fy  the fo llow ing id e n tit ie s .
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^ f(y )dy } (3,20) 
0

P '(y) = exp { - ( g '+ y ' / r / 2)y - [ y V ( 2/Y ^)] 

y '  = (3.21)

S '  = 6"+y=/T^/2+y ''(l-W )/(2/Z^) - y°WZV(2y ^ )  (3.22)

where thé entanglement fac to r Z '  fo r  the hypothetical system is  defined as

• 0 0  • -  *  • C O  *

Z' = f(y )P '(y )d y / P '(y)dy (3.23)
J 0 ■' n0

In an analogous fashion, the Z® necessary fo r the complete d e fin it io n  of 

equations 3.16 and 3.17 is

P®(y)dy
0

Z ®  =  f  f® (y)P°(y)dy/
Jo

f(y)P °(y)dy/— 1 - w + w / Y j ' j d y  (3.24)
0

Since P°(y) = P"(y) when equations s.21 and 3.22 are s a tis fie d ,

Z° = 1 - W + WZ' (3.25)

The molecular weight d is tr ib u tio n  indices, of the real and 

hypothetical systems are iden tica l due to the equivalency o f P®(y) and 

P '(y ). Thus the master charts fo r  Z, and the £..'s o f Chapter 2 can be used 

to determine the k ine tics  and molecular weight d is tr ib u tio n  o f Phase I I I  

w ith the use o f equations 3.21,3.22, and 3.25 - This requires a t r ia l  

and error solution which involves guessing a value fo r Z® a t the W o f 

in te re s t, computing Z ' ,  y '  and $ '  from equations 3.25,3.21, and 3.22 > ^nd 

then reading the value o f Z '  from the master chart provided in  Part I 

o f th is  series. The procedure is  repeated u n til the Z '  computed equation 

3.25 is equal to tha t obtained from the master chart.
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The results o f the theoretica l development o f th is  section may be 

summarized as follows. Given any residual termination rate constant 

which is  not dependent upon chain length, there are three dimensionless 

parameters, W, y °  and g®, which determine the polymerization rate and 

molecular weight d is tr ib u tio n  in Phase I I I .  The indices o f polymerization 

rate (I®) and molecular weight d is tr ib u tio n  (ZVs) can be obtained from 

the master curves of Cbap.2 given a knowledge o f f(y )  and k^^. I t  should 

be noted here that as W approaches zero, a l l  the re la tions fo r Phase I I I  

reduce to  the psuedo-conventional case w ith the Schulz-Flory most probable 

molecular weight d is tr ib u tio n , as is  expected since the term ination re

action is  then no longer chain length dependent. The only parameter 

le f t  undefined is  k^^. I t  can only be estimated with a spec ific  theory 

fo r  the residual termination rate constant and w il l  be the subject of the 

next section 3.5.
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3.4 THEORY OF EXCESS CHAIN END MOBILITY

Gardon(24) was the f i r s t  to rea lize  that term ination can take 

place even when the movements of a l l  chain segments are completely frozen. 

His la t t ic e  model presents the theore tica l lower l im it  o f the term ination 

ra te  constant. However, the actual termination rate constant should be 

la rge r by orders o f magnitude than his values due to the re la t iv e  ease 

o f movements o f chain ends. The concept of the fre e ly  dangling chain 

end, f i r s t  introduced by Flory(25) to explain rubber e la s t ic i ty ,  w i l l  

be employed extensively in  the theore tica l development th a t fo llow s.

Consider a chain whose end is  active in polym erization. One 

wants to derive an expression fo r the termination rate when the active 

rad ica l as a whole is  not capable o f trans la tiona l movement, but i t s  

chain end is  free to  move in the re la t iv e ly  re s tr ic te d  region which is  

v isua lized as the sphere of radius (a) with the node o f an entanglement 

a t the center. Considering tha t the movement o f each chain segment 

contributes to the movement o f the center o f g rav ity  re su ltin g  in trans

la t io n , the overa ll chain needs in f in i te  chain length fo r  the dangling 

movement o f a chain end to  be ne g lig ib le  fo r tra n s la tio n . However, th is  

conditon can be c lose ly  approximated when a  is  small compared to  the over

a l l  chain length. The active  center w i l l  sweep the sphere defined by a 

constantly so tha t any rad ica l which may penetrate th is  sphere w i l l  

terminate nearly in s ta n tly . The p ro b a b ility  of radical in i t ia t io n  in 

th is  sphere is  too small fo r  s ig n ific a n t contribution as the to ta l 

volume occupied by the term ination spheres formed by the dangling active
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chain ends should be only a very small frac tion  of the to ta l volume o f the 

system. However, as the radical w i l l  continue to propagate, the sphere of 

term ination w ill travel in the reaction medium resu lting  in s ig n ifica n t 

term ination rate.

U til iz in g  th is  concept o f the sphere o f termination reactions, the 

appropriate rate constant may be given by the "volume-swept-out" model as 

shown by Allen and Patrick (21),

" tp  = GDag.cfNAy/flOOOZ) (3.26)

where ira is  the c o llis io n  cross-section, Î  is the average jump length of 

the sphere o f termination per propagation step, and the mutual d if fu s iv ity  

D^g can be defined as

D^g = *2^/6 (3. 27)

where 6 is  the jump frequency of the molecule. Although equation 3.26 is 

developed fo r small molecules, i t  can be applied to the present problem 

by v isua liz ing  the movement o f the dangling chain end as a trave ling  sphere. 

For th is  case the appropriate jump frequency is  tha t o f the propagation 

reaction ( i.e .  <p = kp[M], sec."^), the jump distance 2 is  the average root- 

mean-square displacement of the center o f the sphere due to the propagation, 

and the radius of the sphere is  related to the distance from the node of 

an entanglement to the chain end. Coupling equations 3.24 and3.25 yie lds

ktp = n o h  N^^kp[M]/1000 C3-^)

The quantities that require fu rthe r description are 2  and a.

The author envisioned the center o f the tra v e llin g  sphere to be the 

node o f the entanglement and that the average number o f monomer units in
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a dangling chain, j^ ,  is equal to the entanglement spacing. The en

tanglement spacing fo r pure polymers are tabulated(14), but considering the

reaction medium is  a monomer-polymer so lution, i t  was decided to use one

h a lf o f the degree o f polymerization fo r entanglement measured from

solution v isco s ity  measurements, x^.

J c  '  =  W ( 2 » p )  ( 3 . 2 9 )

Generally is  about twice the entanglement spacing o f pure polymers

measured by other methods. This was discussed on p. 408 o f reference 14.

The author thought the data obtained from so lution v iscos ity  may better

represent the reaction condition than data from pure polymer. I f  one

assumes tha t the length between the node o f the entanglement and the

active chain end is  kept constant, one propagation step w il l  move the

active chain end by the quantity a, the average root-mean-square end-to-

end distance per square root of the number of monomer units in  the

chain. Ferry (14) (p. 362) has tabulated values o f a fo r various polymers.

Since a is  measured experimentally, i t  takes in to  account res tric ted

bond ro ta tions . The movement of the chain end by a distance a  w il l lead
1 /2to the movement o f the node by the distance (d / j^  ). This is  shown in

de ta il in the Appendix F.

From th is  discussion i t  can be seen tha t

I  = (3 .3 0 )

Now the term ination rate constant can be w ritten  as

k tp  = Tra^aN^ykpEMl/dOOOj^^/^) (3 .3 1 )

The only unknown remaining in equation 3.31 is  the radius o f
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term ination, a .  This can be estimated as fo llow s. Consider a s ing le 

radical chain end which is  placed in a system having a uniform rad ica l 

concentration p ro file  [R«] .  The o rig in  o f the coordinate system w i l l  be 

the node o f the la s t entanglement fo r  the macroradical of in te re s t and the 

dangling chain end w il l  be d is tribu te d  about tha t center. The manner in 

which the chain end is  d is trib u te d  may be estimated by a Gaussian randon 

f l ig h t  d is tr ib u tio n  function as given by Flory (25),

W(r) = exp ( -  - ^ )  (3,32)
2it<R'̂ > 2<R^>

where W(r) is  the p ro b a b ility  (per u n it volume) o f finding the chain end
2

at a position  r  from the node. <R > 'is  the mean square node-to-chain end 

displacement and may be w ritten  as

2 2<R > = j g /  (3,33)

Equation 3.32 predicts tha t the most l ik e ly  position fo r the chain end is

at the node i t s e l f .  Since we are dealing w ith a single rad ica l, i t s  loca l 

concentration, CR*]-]Qcal’ ^ust be proportional to  W(r). The p ro p o rtio n a lity  

constant may be determined by noting tha t when a l l  possible chain end 

positions are considered ( i .e .  r  between zero and in f in ity )  we s t i l l  

must have only a single radical in that space. Thus

1 (rad ica l) = ( y ^ )

-  ( !& _ ,  
■ MOOO' C W(r) 4nr^dr

Solving fo r  C,

r  ?
C = 1000/(N^^ W(r) 4TTr^dr) = lOOO/N^^

0

since the in tegra l term is  equal to un ity . Now the local concentration
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can be w ritten  as

[R 'llo ca l = C W(r) = 1000 W(r)/N^^ (3.34)

This concentration d is tribu tion  is  shown in Fig:.3. 2a with the uniform 

concentration d is tribu tion , [R*]» superimposed. The author chose to  define 

a  as the point at which these two d is tribu tions  in tersect. This is 

reasonable since the macroradicals making up [R*] do not readily d iffuse 

during th is  portion of the reaction, and when the motion of the chain 

end under consideration is  very fas t, the local radical concentration o f 

the chain end w il l  completely wipe out the uniform radical concentration by 

termination w ith in  the sphere o f radius a. This in terpre ta tion is  somewhat 

analogous to the Smoluchowski model fo r  d iffus ion  controlled reactions(21). 

This allows us to define a through W(a) at the point where [R 'lig ca l "  [R ']= 

or

[R .] = 1000W((j)/N^^ (3,35)

U til iz in g  equations 3.32 and3.33 to solve fo r a  via equation 3.35,

a = (l/p)[ln(1000p3/(N Ay[R ,]n3/Z))]l/2 (3.36)

where = 3/(2j^a^) (3.37)

The combination of equations 3 .31 3̂.35 and 3.37 complete the 

theoretica l development of the residual termination rate constant, k^^. 

However i t  must be mentioned that th is  expression of k^^ may be an over

estimate o f the real value because of the manner in which a  has been

described. Consequently i t  has been necessary to  introduce an e ffic iency 

fac to r, f^ ,  in to  equation 3.37 as follows:
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ktp = a N^ykp[M]/(1000j^'‘ /2 ) (358)

As with any e ffic ie n cy  fac to r, f^  may have values between zero and unity.

The need fo r  f^  comes about because two of the assumptions used in the 

development fo r  a  may not always be realized in the real s itu a tio n . The 

f i r s t  is  that the motion of the chain end is  fa s t enough to completely 

sweep out the volume described w ith in  a between each propagation step, and 

the second is  th a t the d iffus ion  o f external macroradicals in to  the 

term ination sphere described by a is  neg lig ib le . I f  e ith e r assumption is 

not met, the re s u lt is  an actual value o f a  smaller than th a t given by 

equation 3. 3 5 . I t  is  shown in Appendix G that the

d if f ic u lt ie s  associated with the f i r s t  assumption only influence a  towards 

the end o f Phase I I I  and during Phase IV, while those associated with the 

second assumption only influence the early part o f Phase I I I .  The manner 

in which f.^ was computed fo r comparisons to experimental data is  detailed 

in Appendix g. I t  should be noted that f^  is  not an adjustable parameter, 

but is  calculated continuously from the knowledge o f s, y> and f (y ) .  This 

is  shown in equation (g - l)  in the Appendix.

I t  is  in s tru c tive  to show in graphical form the s ig n ific a n t e ffec t 

that the residual termination rate constant has on the overall termination 

rate constant, R^. This is shown in F ig .3.3 which describes the value 

o f R̂  as a function o f conversion fo r the methyl methacrylate polymerization 

described in  F ig .3 . 1. Here i t  is  c lea rly  shown tha t the e ffe c t o f k^^ 

is  to prevent R̂  from decreasing without bound, instead forming some

what o f a plateau in the curve during Phase I I I .  When compared w ith the 

Rj. values computed without regard to the residual term ination reaction 

mechanism, i t  is  apparent that k^^ places a l im it  on the extent o f the gel
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e ffe c t- This w i l l  be c learly  seen in  molecular weight development as a 

leve ling o ff  or decrease in (and higher averages) during Phase I I I .  The 

e ffe c t o f k^p w il l  also re s tr ic t  the increase o f the free radical concen

tra t io n , [R«], to keep its  maximum value w ith in  reason.

I t  is  read ily  apparent from Fig3.3 that a t conversion levels above 

65-70% (fo r  th is  particu la r set of reaction conditions) k^p completely 

controls the value of ((k.j.)^^ being more than an order o f magnitude 

lower). From equation 3,38 i t  is  seen tha t k^p w il l  con tinua lly  decrease 

with conversion (via the monomer concentration) during Phase I I I  and 

should decrease even more rapid ly during Phase IV due to decreases in kp 

(see Part I I I  o f th is  series). The'residual chain end behavior during 

Phase IV may be s ig n ifica n tly  more complex than presented by equation 3.38, 

as chain transfer to monomer and/or polymer reactions should provide 

additional m ob ility  of the chain end. Primary radical termination and 

d iffu s ion  controlled in it ia to r  d issociation reactions may also become 

s ig n ifica n t during Phase IV. I t  is thought tha t these combined e ffec ts  

w ill probably cause R.j. to decrease even less rap id ly during Phase IV 

than shown in F ig .3.3. Although these e ffects  have not been quantified 

in th is  thes is , such consideration w i l l  ce rta in ly  re su lt in be tte r 

explanations o f experimental data in  the very high conversion range.
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3.5 RESULTS AND DISCUSSION

The entanglement fa c to r Z and the molecular weight Indices 1^'s are 

determined by the three dimensionless parameters p , Y , and W. This 

makes the graphical representation of the master charts comparable to 

those o f Chapter 2 Im practica l. However, because o f the re lationships 

presented In 3.3, the nmnerical computations can be done eas ily  v ia  the 

hypothetical system. This Is  done by the subroutine SBRKPL.FOR, which 

uses the la s t value o f Z as the f i r s t  t r ia l  value. The Z* value o f the 

hypothetical system Is calculated by eq'n 3.25, and the p'and ^'values 

by eq'n 3.22 and 3.21. Then the new value o f Z* is  calculated fo r  the 

hypothetical system by c a llin g  the subroutine CALCU.FOR, the in te rp o la t

ion subroutine. The e rro r c r ite r io n  of the t r ia l  and e rro r process is  the 

re la t iv e  e rro r | l -  Z *(o ld )/Z ‘ (new)] to be less than 0.001. Otherwise, 

the new value is  substituted fo r  the t r ia l  value and the procedure Is 

continued w ith the newly calculated and T^values. For the recombination 

mode o f term ination,the procedure outlined In 2.5 Is d ire c t ly  applicable.

I t  can be generally said tha t the Inclusion o f even a small value o f 

k^p resu lts  in  ra ther d ra s tic  reduction o f the deviation from the conven

tiona l k in e tics . This explains the sudden stopping o f the molecular 

weight increase a t the onset o f the Phase I I I ,  as demonstrated in  F ig .3.2. 

The entanglement fa c to r Z also increases very sharply as U decreases from

1. Thus the polymerization behavior o f Phase I I I  o f v iny l polymerization 

can be understood as the period where the contribution from the residual 

term ination Increases s te a d ily , and the deviation from conventional 

k in e tic s , known as the "gel e ffe c t"  diminishes s te a d ily , f in a l ly  reaching
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the conventional condition a t high conversion. I t  is  the author's 

b e lie f tha t no other reasoning which does not count fo r  the residual 

con tribu tion  can explain the polymerization behavior o f Phase I I I  in  a 

lo g ica l way. Although the presented dangling chain end model may need 

fu rth e r re fin in g  in  the fu tu re  s tud ies , the concept o f the residual 

term ination f i r s t  expressed in  th is  thesis should be retained in  the 

forseeable fu tu re .

3.6 CONCLUDING REMARKS

I t  has been postulated th a t the tra n s it io n  from the profound gel 

e ffe c t to  more conventional k in e tic s  experienced by many v in y l polymers 

in  the 50-80% conversion range can be a ttr ib u te d  to excess chain end 

m o b ility . Although the mathematical derivations may appear complex, i t  

is  based on the simple consideration th a t as tra n s la tio n a l movement o f 

macroradicals becomes increasing ly  d i f f i c u l t ,  the con tribu tion  made by 

segmental motion derived so le ly  from the propagation reaction w i l l  become 

the p reva iling  mechanism. The term ination reaction is  seen to  change 

from chain length dependent to  chain length independent during th is  

tm s it io n  period.

The te s t o f the model proposed here can only be done w ith in  a comp

le te  theory o f v iny l polymerization and the applica tion to  a v a r ie ty  o f 

experimental data w i l l  be the subject o f  Chapter 5.
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Chapter 4

FREE VOLUME PARAMETERS AND DIFFUSION CONTROLLED PROPAGATION

4 .1 ÎNTRODUCTION

Thts-Chapter w i l l  deal w ith ; 1 .) the experimental 

determination o f free volume parameters from v isco s ity  measurements,

2 .) d iffu s io n  controlled propagation reactions and th e ir  e ffe c t upon 

polymerization behavior, and 3 .) l im it in g  conversion and other 

phenomena which may characterize the la s t stage o f the polymerization. 

The values o f the free volume parameters determine the physical proper

t ie s  o f the reaction medium and therefore determine the k ine tics  and 

molecular weight development o f the reacting system during Phases I I -  

IV o f the polymerization. Using these read ily  measured physical 

constants in a k in e tic  model removes much o f the empirical nature 

associated w ith the f it te d  constants o f previous models (13,15).

Some time ago M e lv ille  and co-w orkers (26) reported tha t the 

propagation rate constants fo r  methyl methacrylate and v iny l acetate de

creased s ig n if ic a n tly  at high conversions. However, excessive scatter 

in  th e ir  data prevented any quan tita tive  descrip tion . Soh (27) measured 

kp values in  seeded emulsion polymerizations fo r  styrene and methyl 

methacrylate in  the 40-60°C range. His resu lts  suggest tha t kp remains 

constant up to a t least 50% conversion. Saito (10), Hamielec (13) and 

the present author (28) independently proposed a semi-empirical

re la tio n  fo r  kp which is  w ritten  in terms o f the frac tiona l free volume,

kp/kpo = exp [C (l/vY^ -  1 /v^ )] (4-1)

63
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where is  the free volume a t which begins to decrease, and both 

C and are adjustable constants. Hamielec and Saito used C = 1 while 

the present authors used C = 0.38 fo r both styrene and methyl methacry

la te  (28). Each group o f workers used the fo llow ing methods to  compute

' ' f ’
Vfm = 0.025 + 0.001 ( t- tg ^ )  (4 .2)

v^p = 0.025 + 4.8 X 10"4 ( t- tg p ) (4.3)

' ' f  = "fm 'fra + ''fp  ( ’ -♦ „)

The numerical co e ffic ie n ts  used in equations 4.2 and 4.3 are the 

"universal constants" from the WLF equation. I t  should be noted tha t 

experimental measurements o f v̂ pp fo r  ind iv idua l polymers y ie ld  numerical 

coe ffic ie n ts  somewhat d if fe re n t than the universal constants( 14) and i t  

may be preferable to  use values spec ific  to each polymer. Also, the 

previously mentioned models fo r  kp (13,26,28) have used equation 4.3 at 

temperatures below the glass tra n s itio n  temperature o f the pure polymer 

where i t  is  not s t r ic t ly  applicable [141. T&eimethod employed here 

overcomes these problems by introducing the free volume thermal expansion 

ra tio  used by Vrentas and Duda (19) as presented in  4.2.
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4.2 DETERMINATION OF FREE VOLUME PARAMETERS

Estimation o f free volume parameters is  necessary fo r the 

ca lcu la tion  o f shown in Chapter 2 and o f the propagation 

ra te constant proposed in th is  Chapter. Although the free volume theory 

fo r  d i f fu s iv i ty  o f polymer chains and monomer molecules is  only an 

approximation, i t  is perhaps the on ly theory rea d ily  available and 

known to agree w ith experimental data reasonably w e ll. There are two 

versions o f free  volume theory which are applicable to  monomer-polymer 

systems. The theory o f Fuji ta (29) assumes the fo llow ing forms fo r the 

d i f fu s iv i t y  o f a chain segment D̂  and o f an organic penetrant D̂.̂ ,

■j4 = ^  = A exp ( - ^ )  (4. 5 )
Cg Vf

■j^ = - ^  = A . exp ( ~ )  (4.6)
Kl Gm G Vf

where the temperature dependence is  generally neglected and the value o f 

B is  taken as un ity . The value o f By lie s  somewhere between 0.4 and 1.0 

depending on the re la tive  size o f the organic penetrant to  the polymer 

segment. Vrentas and Duda (19) defined the free volume more precisely 

and equated the ra tio  B^/B in  equations4.5 and 4.6 to  g, the re la tiv e  

size ra t io  o f the organic solvent molecule and a polymer segment. The 

constant B was equated to the more fundamental constant ïVp(0)/V^ which 

can be estimated from the WLF equation constants (19). The values o f g 

calculated using the data o f Bondi ( 30) and estimation methods o f

Sugden or B il tz  (31) are generally close to  u n ity  fo r  monomer-polymer

p a irs .  Sample calculation fo r  styrene is  given in  Appendix H.
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When considering monomer/polymer pa irs , Vrentas and Duda (19) 

showed tha t th e ir  approach was iden tica l to tha t o f Fu jita (29). They also 

recommended tha t the free volume parameters fo r  the polymer and solvent be 

obtained from v iscos ity  or d if fu s iv ity  data of these materials in th e ir  

pure states. This may be satis fac to ry  fo r  the polymer, but there is  

evidence (32) that the v iscos ity  data o f pure solvents deviate markedly 

from the free volume theory at temperatures in the range of in te res t fo r 

polymerization. Because o f th is  c o n f lic t ,  the authors decided to obtain 

the free volume parameters fo r  both polymer and monomer from v iscos ity  

data derived from concentrated monomer/polymer solutions. For th is  work, 

F u jita 's  simpler formulation was used ( i.e .  the value o f B in equation

4.6 was taken as un ity) but Vrentas and Duda's theory was used as a guide 

when the temperature was lower than the glass point o f the pure polymer 

(see below).

F u jita 's  experiments(29) show that the free volume contribution 

from the polymer in a solvent/polymer mixture is iden tica l fo r d iffe re n t 

solvents, and tha t fo r  temperatures above t^  (which is  s lig h t ly  below 

tgp) the free volume o f the polymer can be expressed as

'f p  = Vfs + (4-7)

For temperatures below t^ , only data points were given and these do not 

s t r ic t ly  conform to equation 4.8. However, Vrentas and Duda (19) pro

posed the fo llow ing re la tions fo r v^p,

'f p  '  ' f g  + "p ( t - tg p ) ' ‘ - t g p  (4-S)

' f p  = ' f g  * Xcp ( t- tgp),  t  < tgp (4,9)

where X is  a constant related to the ra tio  of thermal expansion co-
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e ff ic ie n ts  below and above t^p . The author decided to combine the 

above two approaches and to  express v^p as fo llow s,

' f p  “  ' f s  4 “ p t - ‘ s (4-10)

Vfp = Vfj + XCp ( t - t p ) ,  t  < tp (4.11)

T h e o re tica lly , t^ should be equal to  tgp. But i t  should be noted th a t 

the glass tra n s it io n , being second-order thermodynamic tra n s it io n , 

depends on the rate by which i t  is  measured. Thus the descripancy 

between t^  and tgp can be understood as a manifestation o f the 

"ch a ra c te ris tic  ra te" o f the v is c o s ity  measurements used.

F u jita  presented v is c o s ity  data fo r  concentrated solutions of 

polystyrene and polymethylmethacrylate a t temperatures above and below 

the respective tgp 's . Kishimoto reported poly (v inyl acetate) data 

using the same method (29). The slopes o f the v^p vs. t  p lo ts were 

used to  determine the in d iv id u a l a  's from the data above the t  's .p gp
F u ji ta 's  reported values o f Op were accepted so that only the x , t^

and v .  values needed to  be evaluated from the data below t  . This fs  gp
was done by f i t t in g  the data in  the lower temperature ranges w ith a 

s tra ig h t lin e  in te rsecting  the one fo r  the higher temperatures as 

determined by F u jita . This is  shown in  F ig. 4.1 where the data well 

above t^p  have not been p lo tted  and the upper section of each curve 

is  F u jita 's  f i t  w ithout m od ifica tion . The in te rsection o f the two 

line s  determines t^ and v^^ , w h ile  the slop o f the lin e  below t^ 

determines X .  These values are shown in  Table 4.1 which also shows 

the "universal values" commonly used. The X values obtained from
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F u jita 's  data and Kishimoto's data are close to  or somewhat higher 

than the theore tica l upper bound reported by Vrentas and Duda (19). 

Vrentas and Duda (19) also reported x values obtained from various 

solvent-polymer systems where the solvent molecule is  s ig n if ic a n tly  

smaller than the monomeric u n it o f the polymer (ç < l) . These values 

were smaller than the theore tica l upper bound and are also shown in 

Table 4.1. Our x value fo r  poly (v iny l acetate) is  s ig n if ic a n tly  

above the upper l im it  o f Vrentas and Duda, but th is  w i l l  have no 

consequence in our k in e tic  work since v in y l acetate polymerization is  

usually done a t temperatures above t^ where x is  not needed. The 

important po in t o f Table 4.1 is  tha t thex values are in the range o f 

0.2-0.4 and shows th a t neglecting them a t temperatures below t^  may 

lead to  s ig n ific a n t erro rs.

The free volume parameters fo r  the monomer were obtained from 

v isco s ity  measurements done in  th is  laboratory fo r  monomer/polymer 

so lu tions w ith so lid  contents in the 20-50% range. The monomers 

contained in h ib ito r  to prevent reaction during the measurements 

which were carried out in  the 30-60°c temperature range in  a Brookfield 

viscometer w ith  temperature con tro l. The so lid , contents were measured 

g ra v im e trica lly  and the v isco s itie s  were determined a t several shear 

rates to  check fo r  possible shear th inn ing , but no extrapolation was 

necessary to obtain the zero shear v isco s ity . F u jita  (29) showed tha t 

the so lu tion v isco s ity  is  re la ted to the free  volumes o f the monomer 

and polymer as

In n/(l-*m |) = E + V(Si>^ + v^p) (4.12)

where 3 = v^^-v^p (4.13)
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The temperature dependence o f was taken to  be lin e a r (a routine 

assumption analogous to equation 4 .2 ),

'fm  “ “o ‘  (4-1S)

The values o f v.^  ̂ were determined by using the values o f Table 1 and 

the constants E, and were determined by nonlinear regression o f 

the v is c o s ity  data according to  equation 4.12. A packaged computer sub

rou tine , NONREG.FOR of the U n ivers ity  System o f New Hampshire 

S ta t is t ic a l Programs, was used fo r  th is  purpose. The "universal" 

values fo r  and were used as s ta r t in g  po in ts fo r  the regression. 

The re s u lts  o f these regression analyses are shown in  Figs. 4.2-4.4 and 

Table 4 .2 . The Figures show the comparison o f equation 4.12 (computed 

w ith  the parameters o f Table 4.2) and the actual data. The styrene 

data in  F ig . 4.2 are well described by equation 4.13 those fo r methyl 

methacrylate in  F ig. 4 .3  conform reasonably w e ll,  while those fo r 

v iny l acetate (not shown) show s ig n if ic a n t ly  poorer co rre la tion . 

Additional data were obtained fo r  methyl methacrylate at 40 and 60° C 

to confirm  the concentration dependence and these comparisons are 

shown in  Figure 4.4. The parameters displayed in  Table 4.2 were used 

to generate the curves in th is  fig u re .

Recently, Fedors (33) proposed an estim ation method fo r  the glass 

tra n s it io n  temperature of simple liq u id s  which is  based upon th e ir  

melting po in ts  ( t^ )  and th e ir  b o ilin g  po in ts ( t ^ ) .  This re la tionsh ip  

may be re w ritte n  as

t  = 0 .87t„ - 0.13t. -  71.0 (4.15)g m b
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when a l l  temperatures are w ritte n  as C. The author used th is  method

to ca lcu la te  t  fo r  the monomers described in  Table 4 .2 , and also gm
calculated the fra c tio n a l free volume o f these monomers a t those 

calculated glass points using those values o f tg ^ . Both o f these 

q u an tities  are shown in  Table 4.2 contrasted w ith  the universal values.

I t  should be noted th a t the values given in  Table 4.1 and 4.2 are 

s t r ic t ly  v a lid  on ly in the temperature range o f the v is c o s ity  measure

ments. Bondi (30) showed tha t s ig n if ic a n t changes o f thermal expansion 

c o e ffic ie n ts , hence the free  volume parameters, are expected when the 

temperature range is  wide. However, the values shown in  Table 4.1 

and 4.2 may be used a t conventional polym erization temperatures as they 

are reasonably close to  the temperatures employed fo r  the v isco s ity  

experiments. Appendix I and J give the de ta iled  descrip tion  and the 

tabu la tion  o f the data points and the v is c o s ity  average molecular 

weight measurem ents o f  the  sample p o ly m e rs .
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4.3 diffusion controlled PROPAGATION REACTIONS

As was mentioned e a r lie r ,  the propagation rate constant is  

known to be affected by the re s tr ic te d  d iffus ion  o f ind iv idual monomer 

molecules at high conversions, or more correctly  a t low free volumes.

The method of describing th is  phenomenon via equation 4.1 requires the 

designation o f a c r i t ic a l  free volume a t which the decrease in  kp begins. 

In order to remove the empirical nature o f f i t t in g  th is  v^,^ to  the 

experimental data, i t  was decided to  w rite  the e ffec tive  propagation 

rate constant in terms o f the two lim it in g  cases associated w ith no 

d iffus iona l resistance, kp^, and absolute d iffus iona l control o f the 

reaction, kp^^^ In the la t te r  case, the reaction is  seen to  be 

instantaneous upon encounter. This description o f kp w il l  take the 

form,

l/kp = 1/kpo + 1/kp^f (4.16)

The value o f kp^ is  to be equal to  the lite ra tu re  value measured at low 

polymer concentration, but kp^^ needs further investigation.

The treatment o f d iffu s io n  contro lled reactions between small 

molecules was summarized by A llen and Patrick (21). The Rabinowich 

model, the "volume-swept-out" model, and the Smoluchowski model predict 

comparable results fo r the same systems, but vary in the basic assump

tions made. I t  may f i r s t  appear th a t the existing models are not 

applicable to the propagation reaction because propagation is  a re

action between a macroadical and a monomer molecule, much d iffe re n t in 

size. This is not the case as the m ob ility  of the active center o f a
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macroradical and o f a monomer molecule is  considered to  be identica l ^0 ). 

This is  ju s t i f ie d  by id e n tify in g  the segment o f a chain as a monomeric 

u n it. Considering that the active  center o f a macroradical is  located 

a t the end o f a chain, and tha t a chain end behaves as i f  i t  were a 

segment o f unentangled chain in the short-range motion which is  necessary 

in  a propagation reaction, the ju s t i f ic a t io n  is  quite straightforward. I t  

is  also expected that the structure  o f the polymer-monomer mixture can be 

visualized as a quas i-crys ta lline  la t t ic e  due to the same size o f the 

reactants (the active center as a monomeric un it and the monomer molecule). 

Therefore the basic assumptions o f the Rabinowich treatment are sa tis fie d

fo r  the propagation reaction, and is  predicted to be

kpvf "  60^2/( A ^ )  (4.17)

where the molar concentration c f pure monomer, M^, is  used by neglecting 

the volumetric contraction w ith polymerization. The error associated with 

th is  choice w i l l  be small as the conversion w il l  be quite high at the 

s ta r t  o f th is  period. The jump distance, z, is  usually taken to be the 

average intermolecular spacing in  the q u a s i-c rys ta l! ine la t t ic e  and 

approximated as

2 = (MqNAY/1000)"1/3 (4.18)

The coordination number, z, is  taken to be approximately 8 fo r  organic 

liq u id s . Combining these re la tionsh ips and the numerical value o f 

Avogadro's number in to  equation 4.17 one obtains

kpvf = 3.4 X lO^S ii t /m o l,  sec (4.19)

where the units o f cm^/sec and m o l/ I i t  should be used fo r and M^,
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respectively. Equations 4.17 and 4.20 can provide a value of kp at any 

conversion level provided that is known.

Considering the general u n a va ila b ility  o f d i f fu s iv i ty  data fo r  mono

mers in  polymer so lu tions, the author proposes the fo llow ing estimation 

method fo r  D^. This method is  based on the assumption tha t the f r ic t io n

coe ffic ien ts  and o f equations 4.6 and 4.7 are the same, and assuming

that B and o f the same equations are the same and equal to un ity . This

is  equivalent to assuming that A = Ad. Experimental data(14) support

these assumptions as shown in the Table4.3 where the segmental (molecular) 

f r ic t io n  coe ffic ien ts  of a chain un it and c f small molecules are tabulated 

fo r  comparison. Table 4 .3shows tha t even when the d iffu s in g  un it is 

chemically d iffe re n t from the chain u n it, the f r ic t io n  co e ffic ie n t o f the 

d iffu s in g  u n it (ç) is  nearly identica l to the segmental f r ic t io n  co e ffic ie n t 

Çg i f  the molecular weights o f the two units are s im ila r. For monomer- 

polymer pairs where chemical s im ila r ity  and molecular id e n tity  is  assured, 

the assumption o f the same f r ic t io n  coe ffic ien ts  is  expected to be 

excellent. Once has been obtained fo r the pure polymer at the temper

ature o f in te re s t, is  computed at the conversion level o f in te res t by 

using equation 4.7 to correct fo r  the conversion level through the free 

volume. As such,

e xp (l/V f- l/V fp ) (4.20)

Then 0^ is  computed as kT/c^ via equation4.7 .

In summary, the proposed method o f estimating the propagation rate 

constant can be outlined as follows:

1 .) the value o f kp^ is  obtained as the normal value measured a t 

low polymer concentration.
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Table 4 . 3

MOLECULAR FRICTION COEFFICIENTS OF VARIOUS DIFFUSING UNITS f l4 l

polymer tempSK d iffu s in g  u n it (mol. w t.) log Ç log (mol. wt

polyisobutylene 298 n-butane (58) 
i-butane (58) 
n-pentane (72) 
n-hexadecane (226)

-4.46 
• -4.11 

-4.42 
-4.17

-4.35 (56)

hevea rubber 303

298

n-butane (58) 
i-butane (58) 
n-pentane (72) 
n-hexadecane (226)

-6.74
-6.56
-6.74
-6.27

-6.90 (68)

po1ymethylaery1a te 323 ethyl alchol (58) -3.69 -3.15 (86)

poly (V i  ny1acetate) 313 n-propyl alchol (60) 
n-propyl ch loride (79)

-1.41
-1.49

1.75 (86)

poly-n-hexyl 
methacrylate 298 n-hexadecane (226) -4.96 -0.75 (170)

po ly-n-octy l
methacrylate 298 n-hexadecane (226) -5.58 -2.29 (198)

poly-n-dodecyl 
methacrylate 298 n-hexadecane (225) -5.75 -4.69 (254)

Polydimethyl
siloxane 298 n-hexadecane (22L) -7.59 -8.05 (74)

1,4-polybutadiene 298 n-hexadecane (226) -6.73 -6.75 (54)

styrene-butadi ene 
rubber 298 n-hexadecane (226) -5.81 -6.11 (65.5

1,2-polybutadiene 298 n-hexadecane (226) -4.36 -4.11 (54)
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2 .) the value o f at appropriate reaction temperature is

obtained from Table 1 2 - III  in Ferry(.14l or from Table 4.3(taken 

Ctaken fr<WJ Perfy Ü 4 IL  When the appropriate temperature 

cannot be found in Ferry's tab le , use is  made o f equation 4.5 

w ith B set equal to un ity . Using the values o f the parameters 

shown in Table 1, v^p is  calculated fo r  the tempt.uture at 

which Cg is  known, and both used in  equation 4.5 to give the 

value o f Çg at the desired temperature (v^p having been ca lcu la t

ed as before a t th is  temperature).

3 .)  the free volume a t any conversion is calculated from equations 

4 . 4 , 4 . 1 0  or 4.11 and e q u a t io n 4 .1 4 ,  along with the free volume 

parameters in Tables 4 .1  and 4 . 2 .

4 .)  the monomeric f r ic t io n  co e ffic ie n t is  obtained from equation 

4.20,

5 .)  is  calculated as kT/;^

6 .)  kpy^ is  computed from equation 4.19.

7 .) the e ffec tive  rate constant, kp, is  calculated from 4.15.

As a check on whether the free volume parameters obtained from 

F jita 's  v isco s ity  measurementsC29l fo r  polymer solutions w ill predict the 

correct temperature dependence o f the f r ic t io n  co e ffic ie n t of the pure 

polymers, we have plotted the values o f Çg (a t d iffe re n t temperatures) 

obtained from F e rry04 l against the frac tiona l free volume of the polymer 

as calculated from equation 4.13 or 4.11 and the free volume parameters 

lis te d  in  Table 4 .1 .As can be seen f r o m e & ' m  4 .5 , a p lo t o f log Çg vs 

1/v^p should y ie ld  a s tra igh t lin e  with a slope o f 1/2.303, or 0.434 

( fo r  B = 1.0). f tg .  4.5 is such a p lo t fo r  three d iffe re n t polymers and 

shows acceptable linear behavior w ith slopes w ith in  13% of the theoretical
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value. This lends credence to the use o f the free volume parameters 

obtained in th is  work.
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4.4 LIMITING CONVERSION

The events which characterize the very la s t stage o f the polymer

iza tion  reaction are c e rta in ly  the least understood and leas t discussed 

in the lite ra tu re . I t  has often been noted tha t polymerizations carried 

out at temperatures s ig n if ic a n tly  below the glass tra n s itio n  temperature 

o f the pure polymer do not appear to reach fu l l  conversion. Such be

havior has been reported by a number o f investigators and there have been 

several a rtic les  devoted to i t s  behavi [6,34,35}. However, there are 

other studies which report esse n tia lly  fu l l  conversion fo r  the same 

systems a t these temperatures [ 1 1 Accurate measurements o f conversion 

can be d i f f ic u l t  above 9 0 %  conversion and that may explain some o f the 

discrepancies between reported experiments, but on the whole i t  does 

appear that lim it in g  conversions are real.

Various researchers have treated th is portion o f the polymerization 

in very d iffe ren t ways. As already mentioned in 

Chapter 3, O 'Driscoll 0 5 }  used the entire experimental polymerization 

conversion p ro file  to f i t  the constants fo r his model but did not re a lly  

address the mechanism by which the conversion is  lim ited . Hamielec [13} 

paid pa rticu la r a tten tion  to  th is  section o f the reaction by trea ting  

propagation as a d iffu s io n  contro lled process and co rre la ting  i t  with 

free volume. His treatment required the use o f an adjustable constant, 

the free volume a t which the propagation rate constant begins to  decrease. 

This rate constant was allowed to decrease exponentially w ith  free 

volume, and by the appropriate choice of the adjustable constant, any 

lim it in g  conversion could be shown. $oh and SundBerg [28} previously
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used the same approach as Hamielec to tre a t the emulsion polymerization 

data o f styrene and methylmethacrylate and had reasonable success in  

co rre la tin g  the lim it in g  conversion.

T5e resu lts  o f tft$s tftests haye. lead t&e author to believe 

tha t th is  portion o f the polymerization is  s ig n ific a n tly  more complex 

than the above treatments described. The author has s trived  to remove the 

necessity o f employing adjustable constants. The treatment proposed fo r  

kp, as shown in  equations 4,20 and 4.21 in  the previous section, is  free 

o f adjustable parameters as i t  uses the free  volume o f pure polymer as 

the reference free volume. However, as shown in Chapter,5, 

the values o f kp computed by th is  procedure display s ig n ific a n t reduction 

in leve ls  only above 90% conversion, even fo r  styrene and methylmeth

acry la te  polymerized a t 50°C. Even when lim it in g  conversions are 

predicted, the levels are sometimes higher than those shown experi

m entally. I t  is  f e l t  that the treatment o f kp given here is  more correct 

than those described e a r lie r ,  and th is  leads to conclude th a t other 

phenomena must be s ig n if ic a n tly  con tribu ting  to  decreased reaction rate 

during th is  period, jge overall treatment o f termination behavior 

already takes chain transfe r reaction to monomer into account in  

deriv ing the chain length p ro b a b ility  d is tr ib u tio n  function , but the 

e ffe c t o f the monomeric radical formed by the chain trans fe r to  monomer 

reentering the chain length growth sequence was not considered w ith  the 

assumption tha t i t  is  much smaller than the rate of monomeric radical 

generation by the in i t ia to r  decomposition and the subsequent reaction 

w ith the monomer. To explain the polymerization behavior during the 

Phase IV in a quan tita tive  way, one must consider the

e ffe c t o f re s tr ic te d  d iffu s ion  upon the in i t ia to r  d issociation ra te .
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and chain trans fe r reactions to monomer and possibly polymer. The 

d iffu s io n  con tro lled  in it ia to r  decomposition would lead to decreased 

production o f free radicals (due to local recombination o f in i t ia to r  

radical fragments) and such a model has been proposed by Saito QQ-), but 

i t  does not appear to have received much a tten tion . Chain trans fe r to  

monomer and the subsequent formation of a new unentangled active chain 

would provide additional m ob ility  o f the active chain end and retard the 

rate o f decrease o f the overall termination rate constant. Chain 

transfer to polymer would have the same e ffe c t, although to a much 

lower degree p a rt ly  because the resu lting  active center has much less 

m ob ility . A ll o f these mechanisms would lead to decreases in  the rate 

o f polymerization and, i f  employed, would improve the a b i l i t y  o f the 

present model to p red ic t the appropriate lim it in g  conversion. However, 

the application o f these ideas is  le f t  to fu ture  work, while noting tha t 

d e fin it iv e  work in  th is  range o f the conversion p ro f ile  w i l l  be d i f f ic u l t .  

The s u ita b i l i ty  o f the predictions made without these considerations 

w i l l  be discussed in  Chapter 5.
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4.5 CONCLUDING REMARKS

This Chapter concludes the theoretical description o f the 

polymerization rate and molecular weight development fo r the bulk 

polymerization of vinyl monomers over the entire conversion range. I t  

has been proposed that such reactions are comprised of four d is t in c t  

phases in which the term ination and propagation reaction steps may be 

controlled by d iffe re n t phenomena. The theory has been developed w ith

out the use of adjustable parameters and the tran s ition  from Phase I I  to 

Phase I I I  and from Phase I I I  to  Phase IV occurs na tu ra lly  w ith in  the 

theory. The trans ition  from Phase I (classical k ine tics) to Phase I I  

which marks the onset o f the gel e ffe c t must yet a t th is  time be treated 

as an adjustable parameter. The conversion and molecular weight p ro file s  

are quite sensitive to the choice o f th is  point o f tra n s itio n  and 

s ig n ifica n t discussion w il l  be devoted to i t  in the la s t paper in  th is  

series. Thus, the theory as presented may be c lass ified  as a one 

adjustable parameter model, and contains fewer adjustable parameters than 

any other comprehensive model put fo rth  at th is  time.
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COMPARISON OF THEORY AND EXPERIMENT

5.1 INTRODUCTION

TfiLtî Chapter • w il l deal with the application o f the theory to a 

varie ty  o f bulk polymerization systems, including methylmethacrylate 

(MMA), ethylmethacrylate (EMA), ethyl acry la te  (EAC), propylacrylate (PAC), 

styrene (STY), and vinyl acetate (VAC). Polymerization rate and 

molecular weight data available in the lite ra tu re  are compared with 

the predictions o f the model. The systems analyzed cover a wide varie ty  

o f monomers and reaction conditions, and provide excellent tests fo r the 

general v a lid ity  o f the theory. Table 5̂ 1 shows the selected polymer

iza tion  systems and th e ir important cha rac te ris tics .

The format to be followed in the fo llow ing discussion w il l  be 

f i r s t  to  present an overview of the theore tica l computations based upon 

the theory presented in Chapter 2?Chapter 4, and then to analyze 

each o f the s ix  polymerization systems in TableS.l. P articu la r emphasis 

w ill be placed upon molecular weight development and those aspects o f 

each system which makes its  polymerization rate behavior d iffe re n t 

from the others.

88
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Table 5.1

SELECTED POLYMERIZATION SYSTEMS

Mode o f Approximate Reaction 2^
Monomer term ination tgp,°C temperature,°C data Reference

3,11

14

15 

23

10,11,43 

41

MMA D 115 45-90 P,M

EMA D 62 70-90 P.M

EAC 0 - 24 35 P

PAC D -  48 35 P

STY R 100 45-100 P,M

VAC R 35 50 P

1. D = d isproportionation. R = recombination

2. P = polymerization rate, M = molecular weight
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5.2 METHOD OF ANALYSIS

This section deals with the general computational procedures and 

the set o f equations used fo r the modelling o f v iny l polymerizations with 

the proposed theory. Only an ou tline  is  given below since the de ta ils  

o f the theory have already been discussed.

The fo llow ing equations constitu te  a set o f governing re la tio n 

ships capable o f predicting the polymerization rate and molecular weight 

development.

1. in i t ia to r  decomposition: R. = 2 f k^Cl] (5.1)

[I]_
where [ I ]  = exp(-k^e)

2. radical concentration: [R«] = (R.j/i<^)^^^ (5.2)

3. polymerization rate: dX/de = k_ [R *](l-X )/(l-e X ) (5.3)

4. instantaneous number average molecular weight:

^  = MQkp[M]/(R^[R.]/r + (5.4)

where [M] = [M ]o(l-X )/(l-eX )

and
r  =

1 fo r disproportionation

2 for recombination

5. instantaneous higher order molecular weights:

Mj = ZjM^ (5.5)

where j  may refer to the w, z, z+1, etc. averages. The £ j 's  

are defined in Chapter 2.

6. cummulative molecular weight averages:

XdflydX = (5.6)

XdflydX = (5.7)

Reprocfucecf w ith permission o f the copyright owner. Further reproctuction prohibitect w ithout permission.



91

j-1
XdA./dX = (M.-A.) n (M./M. ) (5.8)

J J J k=w K K

fo r  j>w, i . e . , j  = z, z+1, etc. where equations 5.6

and 5.7 are rou tine ly  used(36) and equation 5.8 is derived in

Appendix A.

Among the reaction rate constants involved, only and were allowed to 

change w ith conversion, k^ can be calculated by the method developed in 

Chapter 4 o f th is  th e s is , but i t s  value remains constant fo r  most o f 

the conversion range. The values o f k^ and change s ig n ific a n tly  w ith 

conversion and those dependencies d if fe r  fo r  each phase o f the polymer

iza tio n .

Phase I -  Conventional K inetics

1 / 2For conventional k in e tics , only the ra tio  kpg/(k^^) is  required 

to pred ic t the rate and molecular weight development, but fo r Phases I I- IV  

the ind iv idual values o f kp^ and k.̂ .̂  are necessary. Values o f kp^ are 

usually availab le, but those fo r  k̂ j.̂  are not. During Phase I ,  

and the Cj 's are constant at the values shown in Table 2.1.

As the k ine tics and molecular weight development are adequately under

stood during Phase I ,  the data obtained during th is  period can be used 

to determine f  and k^^. These are not usually known with much accuracy, 

but f/k^Q can be determined from time-conversion data via equation 5.3, 

and fk^Q can be found from the molecular weight data through equations 

5.1 ,5 .2 and 5.4-5.8. Combining these two independent values, i t  is 

possible to obtain separate values fo r  f  and k^^.
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Phase I I  - Gel Effect

The trans ition  between Phases I and I I  marks the s ta r t  o f the gel 

e ffe c t and the exact location o f the s ta rtin g  point serves as the only 

adjustable parameter o f the proposed model. In addition to the constants 

normally known (k^, kp^) and those found from the data o f Phase I ( f , 

k^^), the free volume parameters (determined from v iscos ity  measurements 

as shown in Chapter 4, and the entanglement chain length are 

necessary. Free volume parameters fo r  some systems are given in Chapter 

4 and tabulation of x^^ is given in  the lite ra tu re  (p. 76 o f reference 

20, P- 409 o f reference 14) The fra c tio na l free volume v^ and entangle

ment parameter x^ are calculated by the fo llow ing equations.

“ ( 1 - X ) / ( 1 - E X )  ( 5 . 9 )

Vf = + Vfm*m

The two dimensionless parameters s and y  are calculated by

6 = (5-12)

"here

Y = x^(R,k^^^)1''2/kp[H] (S. 13)

where k^^^ is  calculated as

" t v f  '  ( 1 /V f x c  *  1 / ' f )  ( 5 - 1 4 )

where v^^^ is  the adjustable parameter which determines the s ta rting  point 

o f the gel e ffe c t, or Phase I I ,  and k^y^ is  determined to s a tis fy  the 

follow ing equation

= k j^  (5.15)

V  = Vfxc

Now g and y  are determined with the aid o f equations 5.14 and 5.15, the
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dimensionless indices Z and f j ' s  ( j  = w, z, z+1, e tc .) are read from the

master charts o f Chapter 2, and is  calculated as

Rf = k f Z (5.16)
^ ^vf

As Z accounts fo r the entanglement con tribu tion  to i t  is 

equal to 1.0 when the polymer/monomer so lu tion as a whole is  not entangled. 

This consideration gives rise  to the expectation tha t there should be two 

d iffe re n t kinds o f gel e ffec t behavior during Phase I I .  One type the 

authors have named the "true gel e ffe c t" , where the entanglement condition 

is  met from the s ta rt of Phase I I .  The c r ite r io n  used to establish the 

entanglement point is

i  V c
V  = 'fx c  ' ' f  '  Vfxc

( 5 . !7)

A ctua lly  the entanglement e ffe c t occurs gradually w ith increasing polymer 

concentration and/or molecular weight, and th is  tra n s itio n  is made more 

d iffu se  by broader molecular weight d is tr ib u tio n s ( l4 ) .  Also Turner (37) 

has proposed a "close-packing model" which predicts (A^)^'^^ dependence 

instead o f the dependence shown in equation 5.17- More discussion is 

devoted to th is  subject in Appendix L- However, fo r  conditions correspond

ing to the "true gel e ffec t" where the existence o f entanglement coupling

is  assured by both equation 5.17 and Turner's model, the choice does not

a ffe c t the predictions o f the model.

For the "true gel e ffe c t" , as both and Z o f equation S .]g

decrease with increasing conversion, the rate o f decrease of k^ w ill be 

much fas te r than the other type, which we w i l l  ca ll the "pseudo gel e ffec t", 

Here the condition fo r entanglement (equation 5.17 ) is  not met at the 

s ta r t  o f Phase I I  as
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«w (5.18)
' f  "'fxc ^ f '^ fx c

For the pseudo gel e ffe c t, Z w il l  be equal to 1.0, and equation 5.16 can 

be s im p lified  to

''t  = ktV f '  (1/Vfxc - 1/V f) (5.19)

The phrase "pseudo gel e ffe c t"  is  used because the £ j ' s  remain at the same 

values as during Phase I ,  and hence the polymerization k in e tics  and the 

molecular weight development are iden tica l with the Phase I ,  except that 

the e ffec tive  term ination rate constant decreases w ith conversion and 

rate acceleration is  observed. For the pseudo gel e ffe c t, the polymer

ization system w il l  eventually reach a point a fte r the s ta r t  o f Phase I I  

when the condition fo r  the entanglement is  met. From tha t point (w ith 

fractiona l free volume the system enters a period o f "true gel

e ffe c t" . To re ta in  the co n tin u ity  o f R̂  a t R̂  should be calculated

during the "true gel e ffe c t" period fo llow ing the "pseudo gel e ffe c t" as

= (5-20)

From the analysis o f a number o f actual systems, styrene polymerization 

frequently shows pseudo gel e ffe c t behavior due to i ts  short k in e tic  chain 

length formed during Phase I .  For the pseudo gel e ffe c t, the location of 

the s ta rtin g  point o f the entanglement coupling (v^=v|^^) does a ffe c t the 

subsequent polymerization behavior markedly. The predictions o f the en

tanglement theory, as estimated by equations 5.17 and 5.13 were used to 

determine v^^^ during the computers computations, while hoping that 

better c r ite r io n  w il l  become availab le in the fu ture .
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Phase I I I  - Limited Gel Effect

The term ination rate constant during th is  period includes the 

consideration o f the residual term ination rate constant k^p. The method 

proposed fo r i t s  computation was developed in Chapter 3 which is  re

w ritten  here as

k jp  = T ,o2aN ^ ^ k p C M ]fp /1000  ( 5 . 2 1 )

f t =  [P ( l | -P ( l ) lx .o .5 ] / [ l -P (1 l lx .0 .5 ]  (5-22)
P(l) = e x p { - 0 - Y ^ / 2  - y / ( 2 / I ) }  ( 5 . 2 3 )

where a  is  calculated by the methods proposed in Chapter 3, and the

values o f a  are found in the lite ra tu re  (p. 24- o f reference 20,p .362 

of reference 14, p. 40-42 o f reference 25). The parameter which indicates 

the contribu tion o f the residual rate to  the to ta l termination rate be

havior, W, is  given as

w = k ty f /C k p ^ f+ k tp )  ( 5 .2 4 )

The other dimensionless parameters, s  and y» are calculated by the 

method used during Phase I I ,  while Z and the f j ' s  are computed as functions 

o f 6, Y and W as shown in Chapter 3. is  then computed as

h  °  (*tv f+ktp )2  (5-25)

Sometimes the resu lting  R.̂ . value calculated by equation 5.25 may increase 

w ith conversion during the early portion o f Phase I I I .  This is  the resu lt 

o f the a r t i f i c ia l i t y  o f equation 5.22, and i t  was avoided here by 

se tting  R.̂  constant u n til the conversion is  reached when equation 5.25 

begins to predict a k^ value which decreases again with the increasing 

conversion.
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Phase IV -  Final Stages of Polymerization

During th is  period, and a l l  parameters other than are 

calculated as in Phase I I I .  The propagation rate constant was allowed to 

decrease by the method outlined in Chapter 4. This may be done fo r

the en tire  conversion range i f  desired, but the e ffe c t is  not at a ll 

s ig n ifica n t u n til very la te  in the reaction.

Computer Modelling

The actual computations were done by the computer programs described 

in this section. Copies of the programs are found in the Appendix E.

The main program INT.FOR forst calls the subroutine COEFF.FOR which 

reads the interpolation coefficients necessary for the calculation of the 

entanglement factor, and the molecular weight indices are read from the 

data f i le  CQNST.DAT and GAMMA.DAT from the disk storage area. Then i t  

accepts the values of the parameters which are most lik e ly  d iffe r for 

each run from the terminal. The calculations which need be done only once 

fo r each run are done by calling the subroutine MONOM.FOR. The instanta

neous values at any given conversion are calculated in the subroutine 

UPDATE.FOR, which w ill be called for each integration step in the IMSL 

integration subroutine DVERK.FOR which is called from INT.FOR and performs 

the sixth order Runge-Kutta variable step integration. For systems where 

the pseudo gel effect is expected, the subroutine MONPCK.FOR and UPDPCK. 

FOR replaces MONOM.FOR and UPDATE.FOR. The computation techniques 

involved in the preparation and interpolation of the master charts were 

described in Chapter 2 and 3. More descriptions of each program are found
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in the comments of the listed programs in the Appendix E. Computer output 

for methyl methacrylate polymerization at 90° C and 0.5% AIBN concetrat- 

ion (Table 5.2) is also presented in Appendix E.
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5.3 METHYL METHACRYLATE POLYMERIZATION

Balke and Hamielec (3) have presented the most extensive data 

fo r  MMA to be found in the lite ra tu re . This work includes both rate 

and molecular weight data obtained over a range o f temperature and 

in i t ia to r  levels. Ito  (11) has shown s im ila r resu lts fo r a single

polymerization temperature but covering a much broader rante o f in i t ia to r  

leve ls . Both sources of data w ill be used in the follow ing comparisons 

between theory and experiment.

The in it ia to r  dissociation rate constant fo r azobisisobutyroni- 

t r i l e  (AIBN) used in the above experiments was taken from the lite ra tu re  

(21) as

k j = 1 .5  X lO^S exp (-15450/T) (5,23)

The propagation rate constant was obtained in an absolute manner from

seed emulsion polymerization data .(27) as

kp^ = 1.62x10? exp (-3500/T) (5.24)

The chain transfe r to monomer constant was taken to be temperature in 

dependent a t a value of Ĉ  ̂ = 10” ^, (38). Other physical property data 

used are;

^co “ reference(20 )

d^ = 0.973 - 1.164x10"^t

The expression fo r  d^ was found by least squares lin e a r regression of 

the density data tabulated in reference (39).

£ = 0.183 + 9.0 X 10"^t reference (40 )
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where t  is  the temperature as °C.

As indicated in the previous section, and f  were determined 

from the rate and molecular weight data o f Phase I .  The free volume 

parameters used are» from Chapter 4;

v^p = 0.0194 + 3.0 X I0 '^(t-1Q 5), t  > 105

= 0.0194 + .13 X 10” ^(t-105), t  < 105

v ĵj, = 0.149 + 2.9 X ICT* t

The adjustable parameter v^^^ was selected to provide the best f i t  to the 

analyzed data o f Phases I I  and I I I .  I t  should be mentioned here tha t the 

calculated resu lts  are quite sensitive to the value o f v^^^ and i t  must be

determined ca re fu lly . Table 5 2  shows the k^^, f  and v^^^ values used fo r

the MMA calcu la tions.

The fa c t tha t the k^^ values found from I to 's  data are d iffe re n t 

from those expected based on Hamieleis data may not have to be taken too 

seriously because only one set o f molecular weight data was used to 

determine and, more im portantly, the molecular weight data were 

obtained from v isco s ity  measurements, which were approximated to be equal 

to the weight average molecular weight by the authors. Also i t  may be 

noted tha t the contribution from recombination mode o f term ination may be

come more important at low temperature, which was not considered in th is  

work. For the purpose o f f i t t in g  the polymerization rate data alone, even 

100% erro r in the value o f k^^ does not change the model prediction 

s ig n ific a n tly  as long as the same in i t ia l  rate (determined by the ra tio  

f/k tp )  is  used and v^^^ is  adjusted as discussed above.

I t  appears that the value o f v^^^ necessary to f i t  these data 

decreases s lig h t ly  as the in i t ia to r  concentration is  increased. This may 

be expected since lower in i t ia to r  concentration produces higher molecular
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Table 5.2 

CONSTANTS FOR MMA POLYMERIZATIONS

Data Reaction k^oXlO
Source Temp.(°C) (lit/m o l,se c ) f Vfxc

3 50 0.30 wt% 1.3 0.44 0.152

0.39 1.2 0.42 0.151

0.50 1.2 0.40 0.150

70 0.30 2.2 0.44 0.149

0.50 2.2 0.44 0.149

90 0.30 3.0 0.48 0.138

0.50 3.2 0.44 0.138

11 45 0.20 m o l / l i t  2.9 0.42 0.146

0.10 2.9 0.42 0.149

0.05 2.9 0.42 0.152

0.025 2.9 0.42 0.153

0.0125 2.9 0.48 0.154

0.00625 2.9 0.48 0.155
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weight, enabling the trans ition  to Phase I I  to  occur a t an e a rlie r stage 

o f the reaction.

The resu lts  o f the model predictions are compared with both rate 

and molecular weight data in Figs. 5.1-8. A ll data are explained re

markably well by the model u n til the very end o f the polymerizations 

where lim it in g  conversion behavior may occur. Disagreement in th is  region 

was expected and is discussed in Chapter 4.

I t  was noted in Chapter 2 o f th is  thes is  that i f  the

time-conversion data are used to determine the adjustable parameter(s) 

in any p a rtic u la r model, the model w i l l  autom atically f i t  the data as 

good as the f i t  o f the time-conversion data irrespective  of the s u ita b i l i ty  

o f the p a rtic u la r model to describe the chain length dependency o f k^.

Thus i t  is  imperative to compare the predictions o f any proposed model 

with the higher order molecular weight data in order to discriminate an 

acceptable model from un rea lis tic  models.

I t  is  in th is  vein that a tten tion  is  drawn to Figs, 5.4-7 where 

the molecular weight averages A^, and A^^^ are shown with the 

model p red ictions. These figures c le a rly  show th a t the molecular weights 

remain re la t iv e ly  unchanged during Phase I as conventional kinetics 

pred ic t. During Phase I I ,  higher order molecular weights (A^, A^, A^^^) 

increase very rap id ly , with increasing by about a factor o f 5 during 

the 20-60% conversion range, and A^ -̂j increasing from 10-30 times in the 

same period. Strong agreement between theory and experiment is found 

fo r a ll o f these cases.

The authors believe that th is  is  the f i r s t  reported attempt to 

predict higher order molecular weight development (especially Â  and 

A^^]) while considering the gel e ffe c t. The apparent agreement between
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the theory and the data should be considered as supporting evidence fo r 

the v a lid ity  o f the model. Especially, the fa c t tha t and higher 

molecular weights agree very well necessarily means tha t the theory, and 

in p a rticu la r, the form of the chain length dependence function fo r  the 

term ination reaction, is  va lid .

Recently, Hamielec and Marten (13) presented a sophisticated 

model o f d iffu s ion  controlled term ination reactions which is  based upon 

free volume theory. The model contains molecular weight dependence 

through the cumulative weight average molecular weight as follows;

V H o  '  ( ' ’ y ' ’ w c r ) * ® ’‘ p ( A C V v ^ - l / V f ^ ^ ] )  

where the subscrip t cr refers to the value at the s ta r t o f the gel 

e ffe c t, and A and a are adjustable constants. They assumed that the 

instantaneous molecular weight d is tr ib u tio n  o f newly formed polymer chains 

always conforms to tha t o f the Schulz-Flory most probable d is tr ib u tio n .

In contrast, the model proposed in the present work trea ts  the term ination 

rate constant fo r  each chain length separately and allows the d is tr ib u tio n  

of newly formed polymer to deviate from the most probable d is tr ib u tio n .

The average value o f k^ fo r a ll chains is  p a r t ia l ly  determined by th is  

d is tr ib u tio n  and may lead to d iffe re n t predictions than the re la tio n  used 

by Hamielec. In comparing these two models, i t  is  found that both give 

nearly iden tica l time-conversion curves (except near the lim it in g  con

version where Hamielec's model shows bette r agreement w ith the data) pa rtly  

because each use at least one adjustable constant which is  (are) determined 

by f i t t in g  these same data. Since i t  is c lear that a model which f i t s  the 

rate data must also f i t  the data, whatever differences ex is t 

between the models w ill only be v is ib le  from data fo r  the higher
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molecular weight averages (M^, M ,̂ ^ tc ) . From F ig .5 .6 and 5.7 i t

may be judged that both models give equivalent goodness o f f i t  to the 

data (only one curve is  drawn through these data as both models predict 

the same values), except tha t the present model has only one adjustable 

constant compared to Hamielec's which has three. However, the real 

d iffe rence between the models becomes apparent fo r  the weight average 

molecular weight predictions. Here i t  becomes evident tha t the chain 

length dependency of o f the present theory leads to a much more 

adequate description o f the data. I t  should also be noted tha t 

d iffu s io n  controlled propagation which may be important near the lim it in g  

conversion, does not appear to s ig n if ic a n tly  a ffe c t the molecular weight 

data even during Phase IV.

The proposed model not only gives a good f i t  of the data, but 

also gives a fresh insight in to  the reason why MMA shows such profound 

gel e ffe c t. This is  not because the polymethyl methacrylate chains have 

orders o f magnitude lower d if fu s iv ity  than the polymer chains which show 

less gel e ffe c t, but because the k in e tic  chain length produced from the 

conventional Phase I is  much longer than the entanglement spacing. This 

enables the decrease of segmental m ob ility  and the entanglement fac to r

to work syne rg is tica lly  in an accelerating fashion to produce rapid

polymerization rate and higher molecular weight. As w ill be discussed 

la te r ,  ethyl acrylate shows the same mechanism, resu lting in the profound 

gel e ffe c t, while fo r polystyrene, the entanglement factor does not play 

a s ig n ific a n t ro le u n til high conversion. This is  due to the short

k in e tic  chain length, resu lting in a very moderate gel e ffe c t so le ly  in 

duced by the change o f the segmental m o b ility , resu lting  in a pseudo-gel 

e ffe c t.
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5.4 POLYMERIZATION OF ETHYL AND PROPYl ACRYLATE

Generally the acrylate series shows a very strong gel e ffe c t in 

spite o f the fa c t that the polymerization is  usually carried out well 

above th e ir  glass tra n s itio n  temperatures. Because the free volume re

mains re la tiv e ly  high throughout the reaction (due to the low tgp) and 

cannot explain such a s ig n ifica n t gel e ffe c t, entanglement coupling should 

be the main d riv in g  force fo r  the rate acceleration. Patra 's data (23) 

fo r  ethyl acrylate (EAC) and n-propyl acrylate (PAG) a t 35°C show tha t 

the gel e ffe c t causes rapid acceleration at very low conversions. This 

can only be explained by the high values of acrylate monomers leading 

to high molecular weights rap id ly  exceeding the entanglement spacing. 

Computationally th is  is  seen in the value o f Z decreasing rap id ly  and 

causing a pronounced lowering o f

Since Patra's data do not include molecular weight resu lts , i t  

was not possible to  obtain separate values fo r and f  from his data. 

Besides, re lia b le  values o f other rate constants and parameters were not 

read ily  available so tha t reasonable values of kp^, k^^, and Cĵ  were 

used consistent w ith  the values reported fo r  th e ir  close homologues 

(38 and 39 ). The x^^ value o f 200 is  the average value fo r  many 

polymers (14). These values are;
Value at 35°C

Constant EAC PAC

k^(AIBN). sec"^ (21) . 2 . 4 6 x 1 0 “ ^ 2 . 4 6 x 1 0

kpQ, lit/m o l,se c . 8 4 0 7 0 0

kto» lit/m o l,se c 2  X  1 0 ® 2  X  1 0 ®

1 0 - 5 1 0 - 5

-7
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Pg

Value at 35°C
Constant EAC PAC

\ o
200 200

"m- g/cm^ 0.978 0.959

e 0.163 0.1565

‘'gp’ °C -24 -48

^gm’ °C -106 -106

The free  volume calculations u t il iz e d  the universal constants

fo llow ing expressions;

= 0.025 + 0.001 ( t - t g j  (5. 25)

v^p = 0.025 + 4.8 X 1 0 '4 (t-tg p ) (5. .26)

In a manner s im ila r to th a t fo r  MMA, the in it ia to r  e ffic ie ncy  

was obtained from the in i t ia l  polymerization rate and was adjusted

to coincide w ith the s ta rt o f Phase I I .  The values determined fo r f  and

Vfx'' lis te d  in  Table 5.3.

Figs. b .9-5.10 show the predicted behavior and the experimental 

data points. Very good agreement is  found over the whole conversion 

range except fo r  the runs u t i l iz in g  the lowest concentrations o f 

in i t ia to r ,  and those only deviate above 50% conversion. On the whole, 

however, the agreement is seen to  be qu ite acceptable. The importance 

o f presenting these data and th e ir  analyses is  tha t i t  c le a rly  establishes 

I the ro le  o f polymer entanglements in bringing about s ig n ifica n t gel

|| e ffe c t behavior in systems where such behavior should be much less

[I severe by the free volume changes alone. I t  would be in te resting  to

I te s t the e ffe c t o f the addition o f chain trans fe r agents in quantities

capable o f lowering the chain lengths below the entanglement spacing,

Xco’ to view the anticipated reduction in the gel e ffe c t.
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Monomer

EAC

PAC

Table 5.3

Constants For EAC and PAC Polymerizations

[I]g ,m o l/1 i t f Vfxc

0.04 0.584 0.1602

0.03 0.584 0.1602

0.02 0.584 0.1607

0.014 0.475 0.1620

0.008 0.428 0.1634

0.03 0.528 0.1617

0.02 0.528 0.1622

0.0121 0.428 0.1635

0.008 0.428 0.1637
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5.5 POLYMERIZATION OF VINYL ACETATE

I t  was suggested in the preceeding sections th a t fo r  MMA the 

free volume e ffec t and the entanglement coupling combine to produce a 

profound gel e ffe c t, while fo r  EAC and PAC, entanglement coupling is  

the main driving force fo r  th e ir  strong gel e ffe c t. VAC gel e ffe c t is  

also expected to be driven mainly by the entanglement fa c to r as most 

polymerizations are done above its  glass tra n s itio n  temperature.

The data o f F r iis  i41) at 50°C was used fo r  comparison in  th is

case. Unfortunately th is  work only reports the resu lts  a t a single

in i t ia to r  level and contains no molecular weight measurements. Con

sequently the values o f f  and ky are le f t  as a combined parameter which 

was determined from the in i t ia l  rate data.

Thus the l i te ra tu re  values are used in the ca lcu la tion  and fk^

value was found from the Phase I portion o f the data. The remaining

constants used are as fo llow s;

Constant Value a t 50'’C Reference

kpQ, lit/m o l,se c . 3 5 0 0 41

k^Q, lit/m o l,se c . 2  X  1 0 ® 41

^M 1 0 - 4 3&

f k j ,  sec."^ 3 . 0 1 x 1 0 " ® th is  work

^co 2 5 6 14

d^. g / c n ? 0 . 8 9 39

E 0 . 2 4 7 39

The free volume ca lcu la tions u tiliz e d  the parameters reported in 

Chapter 4 with the fo llow ing  expressions;

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



118

v^p = 0.0218 + 5.0 X 1 0 '4 (t-2 6 .5 ), t  ^  26.5

= 0.0218 + 2.7 X 1 0 '4 (t-2 6 .5 ), t  < 26.5

= 0.154 + 5.1 X lOT^t 

An in h ib it io n  time o f 22 minutes was chosen as i t  appeared tha t 

F r iis  did not compensate fo r  i t  in the p lo t of his data. The in h ib it io n  

time was found by extrapolating the in i t ia l  rate data to zero conversion 

as shown in Fig. 5.11.The v^^^ value was adjusted to coincide w ith the 

onset o f the gel e ffe c t, and was found to be 0.13. As shown in F ig .5.11, 

the re la tive  mildness o f the gel e ffe c t is due to the short duration o f 

Phase I I .  As the polymerization system reaches the Phase I I I  before a

strong gel e ffect is  developed, and as the decrease o f during the

Phase I I I  is slow a t best, VAC shows a mild gel e ffe c t although the other 

k in e tic  parameters point towards a strong gel e ffe c t comparable to  EAC 

and PAC. The success o f the proposed theory lie s  in the fa c t tha t the 

theory correctly  accounted fo r  such vast differences in co n tro llin g  

parameters without any m odification pa rticu la r to each system.
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5.6 POLYMERIZATION OF ETHYL METHACRYLATE

Considering that the glass tra n s it io n  temperature o f polyethyl 

methacrylate is  6 Z ° C  (38), the EMA gel e ffe c t is  expected to be less 

severe than MMA, i t s  close homolog. O 'D r is c o ll's  data (15) at 70°C 

and 90°C were used with the fo llow ing parameters:

kpo =1.01 (10 ') exp (-3253/T) 

C,,̂  = 2.71 (10)"2 exp (-2440/T)

- 0.18 + 0.001 t
1-3= 1.081 - 3.36 (10) " t

Xc„ = 200

t tp  = 62°C 

‘ gm "

reference (15) 

reference (15) 

reference (39) 

reference (39) 

average value 

reference (38) 

universal value

Free volume parameters were calculated using equation 5.25 and 5.26.

The values o f f  and the adjustable parameter v^^^ calculated 

in the manner previously described are lis te d  in  Table 5.4. The reason

tha t the la s t value o f f  in Table 5.4 is  so d iffe re n t from the others 

is  not known. However, since the data fo r  1^ = 0.0098 did not include 

molecular weight measurements, i t s  f  value is  not certa in  e ithe r. An 

adjustment fo r  in h ib it io n  time was made fo r  the data a t 90°C and 1  ̂ = 

0.0032 m o l / l i t .

The predicted ra te and molecular weight values are compared to 

O 'D risco ll's  experimental data in Figures 5.12-5.15. Agreement with

these data is  considered to  be excellent and demonstrates the general 

v a lid ity  o f the proposed model.
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The most s ig n ifican t d ifference between EMA and MMA polymeri

zations is  tha t the pronounced gel e ffe c t in EMA occurs a t s ig n ific a n tly  

higher conversions, and tha t the molecular weight changes fo llow  d iffe re n t 

paths. and higher molecular weight averages fo r MMA rap id ly increase 

early in  the reaction and level o f f  or begin decreasing a t about 50-60% 

conversion. Those fo r EMA do not level o f f  u n til 80-90% conversion fo r  

nearly identica l experimental conditions. These differences are due to 

the combined differences in the entanglement spacing, x^^, free volume 

levels a t equivalent conversions, and sta rting  points fo r  Phase I I  

a ll leading to a delayed and less s ig n ifica n t gel e ffe c t. Since does 

not decrease as fast as tha t fo r  MMA, the value o f W(=k^y^y[k^y^+k^p]) 

remains close to 1.0 u n til qu ite high conversions and thereby prevents 

s ig n ifica n t contribution from the residual termination reaction. I t  has 

been previously shown that i t  is  the influence o f k^^ (via W) which causes 

the leve ling o f f  or decreasing o f molecular weight, and tha t point is  not 

reached fo r EMA polymerizations u n t il quite la te  in the reaction.
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Table 5.4

Constants For Ethyl Methacrylate Polymerization

Temp
(°C) (mol/I i t . ) f 1 it./m o l,sec . Vfxc
70 0.05 0.42 2.5 0.167

70 0.02 0.42 2.5 0.167

90 0.0098 0.44 2.2 0.167

90 0.0032 0.71 2.2 0.163

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Ln

CM

I—«

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

123%

c

E

ÜJ

<c
INI

OSÜJ

LÜ
OSou.

§a.
ÜJs
I

ÜJ

s
CVJ

in
0»

u.



00

eu 2
s §
Q q  
o o

t/t
eu

eu

N 0ISy3A N 00

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

124

2

eco

CO
LU_J
I—*

1
a.
UJ

s
V
1
2  
LU

s
PO
U)

d)
Ll_



125

20

o Mn 
^ M w
Data from O 'Driscoll (15) 

temp;70*C,AIBN=0.QÇ A

lO

O

X

h-
X
o
ÜJ

<
- 1
3
U
LU

O o
o o

1.00.6 0.80 0.2 0 .4
CONVERSION

Fig. 5.14 MWD FOR EMA POLYMERIZATION

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



126

20
0 :Mn

Data from O 'Driscoll (15) 

temp:90®C,AIBN:0.0032 m o l/ l it
If)

o
X

H-
X
o
ÜJ

A

cr
<

3
u
ÜJ
_ jo
2

0 0.2 0.4 0.6 0.8 1.0
CONVERSION

Fig. 5.15 MWD." FOR EMA POLYMERIZATION

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



127

5 , 7  POLYMERIZATION OF STYRENE

The bulk polymerization o f styrene is  known to display con

ventional k ine tics  up to quite high conversions. I t  w il l  be shown in  the 

fo llow ing discussion that th is  is  due to the re la t iv e ly  short k in e tic  

chain length which prevents the occurrence o f entanglement 

o f the conversion range. The mild gel e ffe c t seen below the entanglement 

point is  due to  free volume change alone, th is  having been named the 

"pseudo gel e ffe c t" e a r lie r in th is  paper.

The fo llow ing constants were used fo r the model ca lcu la tions, a ll 

o f them being available in the lite ra tu re  or determined independently 

e a r lie r  in the present work.

Constant Reference

I  kpQ = 2.17 X lo /  exp (-3905/T) 42

^ C. = 8.0  X 10-5 3g

d = 0.9236 - 8.87 x lO '^ t 39

'M

I  £ = 0.137 + 4.4 X IQ-^t 39
i
;  *0 0 = 385 14

i  V. = 0.0245 + 4.5 X 10"^(t-82), t  ^  82
I A ~
I  = 0.0245 + 1.4 X 10'4 (t-8 2 ), t  < 82 Chap. 4

= 0.112 + 6.2 X 10 ^ t  Chap. 4

The other constants necessary ( f ,  and v^^^) were determined in the 

manner described e a r lie r  by using data reported by a number o f researchers. 

F irs t, Tobol sky's rate data (43 ) a t 90 and 100°C were analyzed with the 

assumption tha t f  = 1.0. At these conditions used by Tobol sky, the re

actions d isp lay "dead end polymerization" behavior due to premature
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Table 5.5

Constants for Styrene Polymerization

temp °C In it ia to r
a k t o /

xlO-7 f Vfxc
Data

source

100 aibn 0.0337 6.16 1.0 0.142 43

100 AIBN 0.0093 6.16 1.0 0.142 43

90 AIBN 0.021 4.6 1.0 0.1261 43

80 AIBN 0.0212 4-8 1.0 0.11 43

80 BPO 0.0347 4.8 0.63 0.105 Append!x

70 AIBN 0.0214 6.0 1.0 0.11 43

70 BPO 0.104 6.0 1.0 0.105 Appendix

60 AIBN 0.0992 5.2 0.49 0.103 10 .

60 AIBN 0.0268 5.2 0.81 0.105 10

60 AIBN 0.0164 5.2 0.64 0.119 10

60 AIBN 0.00858 5.2 0.81 0.115 10

45 AIBN 0.2 3.3 0.52 0.085 11

45 AIBN 0.1 2.75 0.545 0.085 11

45 AIBN 0.05 2.75 0.545 0.093 11

45 AIBN 0.025 2.75 0.545 0.097 11

45 AIBN 0.0125 2.75 0.545 0.103 11

a m o l/ l i t

b lit/m o l,se c .
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depletion o f the in i t ia to r .  These data and the model pred ic tions are 

shown in Ft?*5.16. As the reaction temperature is  lowered, the gel 

e ffe c t becomes more appreciable. Tobolsky's data a t 70 and 8G°C obtained 

with AIBN, and soiçe data obtained w ith benzoyl peroxide were also

used. The d issoc ia tion  ra te  constant fo r benzoyl peroxide was taken as 

k j =8 .5*10^^ exp (-15200 /  T), sec’ ^

Appendix K shows the experimental procedures user.

Saito (10) reported ra te  and molecular weight data a t 60®C and as such, 

both k̂ Q and f  values can be determined independently. I to 's  data (11) 

a t 45°C included v is c o s ity  average molecular weights. Although these are 

not simply re lated to e ith e r  or M ,̂ they-are usually f a i r l y  close to 

and were assumed id e n tica l to  fo r th is  analysis. The resu ltan t 

values fo r  f ,  k^^ and v^^^ are shown in Table 5.5.

To examine the a cce p ta b ility  of the k^^ values shown in  T a b l e 5 . 5  

they were p lo tted  in  an Arrhenius form as in  Fig«5,17. Included in  th is  

p lo t are k^^ values derived from Tobolsky's (kp^/k^^) v a l u e s  ( 4 5 )  by using 

the kpp re la tio n  suggested by Matheson ( 4 2 ) .  The p lo t shows reasonable 

agreement o f a l l  k^^ values and a least squares f i t  to  a l l  o f the data

shows

k^Q = 8.2 X 10^ exp (-1747/T)

Fig 5.18 shows the agreement between the model pred ictions and 

Saito 's rate data a t 60°C, while Fig’ 5..T2 makes the same comparison fo r 

the data o f Tobol sky and Soh a t 70 and 80°C. Note tha t the gel e ffe c t 

is  very m ild u n t il the conversion reaches about 50%. This is  in  marked 

contrast to the acry la tes and methacrylates and is  due to  the delay o f
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chain entanglements. I to 's  rate data at 45°C show th is  delayed gel 

e ffe c t very c lea rly  in Fig. 5‘.A0, A close analysis of the model's re

sponse shows that better agreement could have been obtained with these 

data i f  the s ta rting  point fo r the "true gel e ffe c t"  = v|^^) is  de

layed s lig h tly .  I f  one uses Turner's c r ite r io n  (Appendix J.J fo r 

obtaining the c r it ic a l polymer concentration fo r  entanglement, the onset 

o f the "true gel e ffec t" appears too la te  to explain the experimental 

data. Adjusting v^;^^ to be mid-range between Turner's c r ite r io n  and that 

suggested here (equation K ID  can y ie ld  very good f i t s  to a l l  data used 

here, but tha t was not done.

Ito  ( I  I) presented his molecular weight data as plots in the 

form o f 1/M^ vs. conversion. He noted tha t these plots reached a 

maximum and due to the fact that he f e l t  the data above 70% conversion 

were not useful fo r  his purpose, he did not report them. The available 

data and the model predictions are presented in F ig .K 22. and i t  is 

evident tha t there is  reasonable agreement. The maximum in these curves 

c le a rly  marks the points at which begins to increase a fte r decreasing 

during the f i r s t  50% conversion. This is  due to the tra n s itio n  from the 

"pseudo gel e ffe c t" to the "true gel e ffe c t" a t the point of occurence 

o f polymer chain entanglement.
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5.8 CONCLUDING REMARKS

Tfte st% d tffe re n t polyjrjeri'zetti.'on systems analyzed in th is  Chapter 

gaye Breen, shown, to dtsplay a wtde y a r ie ty  of norK Itleal Behavi.tDr, a l l  of 

wfttch: are related to tge d tffostona l cfiLaracterl'sttcs: o f the reacting 

species^. The reaction model proposed in  thtS' worR Bas Been shown to 

explain th ts  range of Behayior By using only one adjustaBle parameter. 

Especially important are the model ‘'s a B tl ity  to predict higher order 

molecular weight averages M^, e tc . I  and to explain the co n tro llin g  

primary reaction steps responsiBle fo r  the d iffe re n t types o f Behavior 

displayed By these polymerization systems. Central to the development 

o f th is  capacity is  the consideration o f chain length dependent and 

residual termination reactions. Residual termination reactions w i l l  

require the most refinements due to the various assumptions involved in 

the derivation o f th e ir  governing equations. However, the general success 

o f the model should ju s t i f y  i t s  use as a guideline fo r  fu tu re  studies.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS

Many o f the minor conclusions which can be drawn from the theore tica l 

derivations and the applications to the experimental data have already

I been discussed at the ends o f Chapters 2-5. In th is  section the most

s ig n ific a n t conclusions which the author believes to have far-reaching 

im plications on the modelling o f polymerization k ine tics  are included.

They are ;

1) The existence of the chain length dependence o f the termina

t io n  has been established.

2) The existence o f the residual con tribu tion  has been e s ta b lis 

hed.

3) I t  was demonstrated tha t a general method o f dealing w ith the 

chain length dependent polymerization k in e tics  is  possible 

«without specifying the functional form o f the chain length 

dependence.

4) I t  was demonstrated tha t a set o f  models can explain a varie ty  

o f  polymerization systems. This may seem t r i v ia l ,  but th is  work 

may be the f i r s t  to show working examples.

IB
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6.2 RECOMMENDATIONS

The success o f the presented method o f dealing w ith  the chain length 

dependent termination reaction and the proposed models based on the free 

volume concept and the entanglement coupling concept gives r ise  to  the 

expectations o f successful applications to more complex systems such as 

so lution polymerization, copolymerization, and emulsion polymerization 

systems. Applications to  these systems require the genera lization o f the 

present models to three component systems, but i t  is  expected to be 

straightforward and may produce, i f  successful, very valuable c r ite r ia  

fo r  the solvent se lection in  solution polymerization and the analysis o f 

the copolymerization reacto r performance.

In copolymerization stud ies, the change o f copolymer composition 

w ith the overall conversion level is  not expected to  be influenced by 

the occurrence o f  the chain 'length dependent term ination. However, the 

polymerization rate and the molecular weight development are expected to  

be profoundly affected by the gel e ffe c t and subsequent d iffu s io n  cont

ro lle d  reaction k in e tic s . I t  is  d i f f ic u l t  to  speculate on the to ta l e ffe c t 

as there exists s u rp ris in g ly  l i t t l e  information in the li te ra tu re .

The presented theories are also expected to be applicable to emulsion 

polymerization, but the analysis w i l l  be complecated by the radical d is t 

rib u tio n  w ith in  the la te x  pa rtic le s  and more deta iled investiga tion  is  

necessary to speculate about the re su lt.

The general methodology used in th is  thesis is  free  from any p a rtic 

u la r assumptions regarding the chain length dependence o f the term ination 

reaction rate constant, and should be useful fo r  a ll fu tu re  works which
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may employ d iffe re n t sp e c ific  physical models. Regarding the p a rtic u la r 

models used in  th is  work, several improvements may be made. These are ;

1) conceptual developments about the segmental d iffu s io n -tra n s la 

tiona l d iffu s io n  tra n s it io n  period. This thesis treated i t  by 

an adjustable parameter, but also produced more fundamental 

questions about the nature o f the tra n s itio n  as already discus

sed in Chapter 2.

2) tra n s itio n  from pseudo-gel e ffe c t to the true gel e ffe c t.

This requires precise d e fin it io n  o f the entanglement po in t in  

the presence o f the molecular weight d is tr ib u tio n . The p re d ic t

ions o f the c lassica l entanglement theory and Turner's c r ite r ia  

need to be examined c lo se ly , but i t  is  the subject o f polymer 

physics ra ther than polymerization k in e tics .

3) residual term ination. Although the model proposed here e s ta b lis 

hed the existence o f such a mechanism which can lead to  residual 

termination behavior, i t  is  s t i l l  fa r  from a precise and quanti

ta tive  descrip tion as pointed out already in Chapter 3, and 

requires major in ve s tig a tio n . This thesis is  a t th is  po in t content 

w ith the establishment o f such phenomenon and providing ra ther

crude estimation method.
4) d iffus ion  con tro lled  propagation. This work provided fo r  the

f ir s t  time an estimation method, which the author feels to be 

good at least within an order of magnitude. An experimental 

measurements are necessary and w ill help to explain the abnormal

itie s  of the high conversion polymerization. The main d iff ic u lty  

of propagation rate constant measurement at high conversion
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is  the necessity o f holding the conversion leve l and the rad i

cal . concentration as constant as possible to obtain reason

able data. This can be extremely d i f f i c u l t  in  mass polymeriza

tion  and batch emulsion polymerization. The most promising 

technique is  the semi-continuous emulsion polymerization where 

th e o re tic a lly  one can keep both the polymer:monomer ra tio  and 

the rad ica l concentration constant. However, more study is  nece

ssary to  rea lize  such ideal conditions in  an experimental setup.
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i n d e x  c f  m o l e c u l a r  w e i g h t  d i s t r i b u t i o n  o f  

c o r r e s p o n d i n g  o r d e r

w e i g h t  i n d e x  c f  m c l e c u l a r  w e i g h t  d i s t r i b u t i o n  

2 o f  m o l e c u l a r  w e i g h t  d i s t r i b u t i o n  

2 + Î  c f  m o l e c u l a r  w e i g h t  d i s t r i b u t i o n  '

2 + i  o f  m o l e c u l a r  w e i g h t  d i s t r i b u t i o n  

c o n c e n t r a t i o n  c f  m o t e r n e  r  T m c l / l i t ]  

m o l e c u l a r  w e i g h t  

n u m e r i c a l  c o n s t a n t

c r i t i c a l  m o l e c u l a r  w e i g h t  f o r  e n t a n g l e m e n t
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n t c l i E c u l a t  w e i g h t  c f  a c n c m e r

m o l e c u l a r  w e i g h t  o f  p o l y m e r  c h a i n  o f  c e g r e e  o f  

p o l y m e r i z a t i c i  i

e n t a n g l e m e n t  s p a c i n g  i n  u n i t  c f  m o l e c u l a r  w e i g h t

i n s t a n t a n e o c s  a v e r a g e  m c l e c u l a r  w e i g h t  c f  o r d e r  i

i  m a y  b e  s u b s t i t u t e d  b y  n , w , z , z + 1  e t c .

c u m u l a t i v e  a v e r a g e  m c l e c u l a r  w e i g h t  o f  o r d e r  i

i  m a y  b e  s u b s t i t u t e d  b y  n , w , z , z + 1 ,  e t c .
2 3

A v c q a d r o ’ s  l u m b e r ,  6 . 0 2 3 * 1 0

n u m e r  m o l e c u l a r  w e i g h t  d i s t r i b u t i o n  f  u n  t i o n  f o r  

d i s p r o p o r t i o n a t i o n  m o d e  o f  t e r m i n a t i o n ,  i  m a y  b e  

s u b s t i t u t e d  b y  y  t c  d e n o t e  c o n t i n u o u s  v a r i a b l e  

n u m b e r  m o l e c u l a r  w e i g h t  d i s t r i b u t o r  f u n c t i o n  f o r  

r e c o  m b i n a i t c  t  n o d e  c f  t e r m i n a  t i o n .  i  m a y  b e  

s u b s t i t u t e d  b y  y  t o  d e n o t e  c o n t i n u o u s  v a r i a b l e  

m o m e n t  o f  t h e  c o r r e s p o n d i n g  n u m b e r  m o l e c u l a r ,  

w e i g h t  d i s t r i b u t i o n  f u n c t i o n

p r o b a b i l i t y  o f  p r o p a g a t i o n  a t  t h e  s p e c i f i e d  c h a i n  

l e n g t h

p r o b a b i l i t y  d i s t r i b u t o n  f u n c t i o n  f o r  m a c i c r a d i c a l  

o f  t h e  s p e c i f i e d  c h a i r  l e n g t h  

h y p o t h e t i c a l  f u n c t i o n  d e f i n e d  i n  C h a p t e r  3  

m o m e n t  c f  P  t y )

p r o b a b i l i t y  d e f i n e d  b y  T u r n e r  ( 1 5 )  ,

r a t e  o f  h e a t  d i s s i p a t i o n  f c a l / s e c ]  

e n t a n g l e m e n t  f a c t o r  

n o d e - t o - c h a i n  e n d  d i s t a n c e  [ c m ]
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r  c o e f f i c i e n t  e ç u a l  t c  1 f e r  d i s p r o p o r t i o n a t i o n ,

2  f o r  r e c o m b i n a t i o n  

r  R  *  1 i  t o t a l  f r e e  r a d i c a l  c c r c e n t r a  t i o n  [ m o l / l i t ]

r p » l  l o c a l  c o n c e n t r a t i o n  o f  i - r a e r  r a d i c a l s  

r  R  "  1 l o c a l  e f f e c t i v e  c c n c e n t r a  t i e n  d e f i n e d  i n  C h a p t e r  3

Ei
•o
“ h i
Sh,(7)

< ; # >

^o

Î S l

S

T

Sm

gP

m

i n i t i a t i o n  r a t e  f  m e  l / l i t / s e c ]

h y d r o d y n a m i c  r a d i u s  o f  i - m e r  p c l y m e r  c h a i n  [ c m ]  

l y d r c d y r a t t i c  r a d i u s  c e r r e s p e n d i n g  t o  c h a i n  l e n g t h

y r cm]

a v e r a g e  m e a n  s q u a r e  r c d e - t o - e n d  d i s t a n c e  f  c m  1

a v e r a g e  r  c e t - n e a  n - s g  o a  r e  c h a i n  d i s t a n c e  )" c m  1

t e r m i n a t i o n  r a t e  F m o l / l i t / s e c  1

p c l y m e r i z a t i c r  r a t e  f Œ c l / l i t / s e c  1

r a d i u s  o f  p o l y m e r i z a t i o n  r e a c t o r  F c m  1

I - B .  o f  p o l y m e r i z a t i o n  r e a c t o r  f c m  1

O . D .  c f  p c l y n e r î z a t i e n  r e c t o r  f c m  1

c o n c e n t r a t i o n  o f  c h a i n  t r a n s f e r  a g e n t  F n c l / l i t ]

s l i p p a g e  f a c t c r  f e r  p c l y m e r  c h a i n  s e g m e n

t e m p e r a t u r e  F d e g .  K ]

t e m p e r a t u r e  f d e g .  C 1

d u c a y  i n t é g r â t i c n  v a r i a b l e

b o i l i n g  p o i n t  F d e g .  C ]

g l a s s  t r a n s i t i o n  p o i n t  f d e q .  C l

g l a s s  t r a n s i t i o n  p o i n t  o f  m o n o m e r  [ d e g .  C l

g l a s s  t r a n s i t i o n  p o i n t  o f  p o l y m e r  F d e c .  C l

m e l t i n g  p c i r t  [ d e g .  C   ̂ •

t e m p e r a t u r e  S  r e a c t o r  c e n t e r  F d e g .  C l
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t e m p e r a t u r e  5  r e a c t c r  w a l l  [ d e g ,  C ]

u { i )  u n i t  s t e p  f u r e t  i c n

V v o l u m e  o f  t t e  s y s t e m  f c m ^ l

y ^  f r a c t i o n a l  f r e e  v c l u n e

c r i t i c a l  f r a c t i o n a l  f r e e  v o l u m e  

v ^ g  f r a c t i o n a l  f r e e  v o l u m e  2  g l a s s  t r a n s i t i o n  p o i n t

V f m  f r a c t i o n a l  f r e e  v o l u m e  o f  m o n c m e r

V f p  f r a c t i o n a l  f r e e  v o l u m e  c f  p o l y m e r

v ^ g  f r a c t i o n a l  f r e e  v o l u m e  2) t ^  d e g .  C

^ f x c  f r a c t i c n a l  f r e e  v c l u m e  a t  t h e  o n s e t  o f  c e l  e f f e c t

v f x c  f r a c t i o n a l  f r e e  v c l u m e  a t  t h e  e n t a n g l e m e n t  p o i n t

V q  o c c u p i e d  v o l u m e  f  c n f - ^ / œ c l  1

V p ( 0 )  o c c u p i e d  v c l u m e  c f  p o l y m e r  2  0 d e g .  K

r  c m  ^ / m e r -  m o l  ]

% d i m e n s i o n l e s s  p a r a m e t e r  d e f i n e d  i n  C h a p t e r  3

w f M )  w e i g h t  m c l e c u l a r  w e i g h t  d i s t r i b u t i o n  f u n c t i o n

K { r )  c h a i n  e n d  d i s t a n c e  d i s t r i f c u t i c r  f u n c t i o n

x , x  f r a c t i o n a l  c c r v e r s i c n

y  i , X  j  m o l e  f r a c t i o n  o f  t h e  c o r r e s p o n d i n g

l e n g t h  m a c r c r a d i c a l s  -
d  r

X X n  t h e  c o r r e s p o n d i n g  n u m b e r  a v e r a g e  d e g r e e  c f

p o l y m e r i z a t i o n  

X  c O  c r i t i c a l  d e g r e e  o f  p o l y m e r i z a t i o n  f o r  t h e

e n t a n g l e m e n t  c f  p u r e  p c l y m e r  

X c  c r i t i c a l  d e g r e e  o f  p o l y m e r i z a t i o n  f o r  e r t a n g l e a e n t

X  0 c o n v e r s i o n  a t  t h e  o n s e e  c f  e n t a n g l e m e n t

y  r e d u c e d  c h a i n  l e n g t h
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7^ , t h e  c c r r e s p c E d i n q  r u m b e r  a v e r a g e  d e g r e e  o f  
n '  n

p o l y m e r i z a t i o n  i n  c o n t i n u o u s  c h a i n  l e n g t h  v a r i a b l e  

Z  e n t a r q l e m e n t  f a c t o r  f o r  t e r m i n a t i o n

2 ° , 2 '  h y p o t h e t i c a l  2  v a l u e  c f  p h a s e  I I I

2 c o c r d i n a t i c n r  f u n h e r

G E I E K  L E T T E R S

a . ^  t h e r m a l  e x p a r s i c n  c o e f f i c i e n t  o f  f r e e  v c l u m e  f o r

m o n o m e r

U p  t h e r m a l  e x p a n s i o n  c o e f f i c i e n t  c f  f r e e  v c l u m e  f o r

p o l y m e r

a - Q  f r a c t i o n a l  f r e e  v c l u m e  c f  m o n o m e r  2  0  d e g -  C

6 » Y  d i m e n s i o n l e s s  p a r a m e t e r  d e f i n e d  i n  C h a p t e r  2

d i m e n s i o n l e s s  p a r a m e t e r  d e f i n e d  i n  c h a p t e r  3

Y  o v e r l a p  f a c t c r  d e f i n e d  i n  C h a p t e r  4

e  v o l u m e  s h r i n k a g e  f a c t c r ,  e q u a l  t o  d p / d m - 1

Ç ^  f r i c t i o n  c o e f f i c i e n t  c f  i - r o e r  c h a i n

C ^  f r i c t i o n  c o e f f i c i e n t  o f  m o n o m e r

Ç g  f r i c t i o n  c o e f f i c i e n t  c f  p c l y m e r  c h a i n  s e g m e n t

n  v i s c o s i t y  o f  s o l u t i o n  [ c p 1
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n

9

u

V

I C

" 0

%

Ê

P •

v is c c s i ty  o f ncrctner fc  p ] 

t im e  o f  r e a c t io n  f s e c l  

num erica l c c rs ta n ts  

i - t h  moment o f w (H) 

k in e t ic  c h a ir  le rq th

s iz e  r a t io  o f  p o lym e r segment and p e n e tra n t 

d e n s ity  c f  t i e  p c ly s e r iz a t ic n  medium 5 i= x  

param eter o f  ch a in  end d is t r ib u t io n  

d e fin e d  in  C h a p te r 3

c o l l i s i o n  r a d i u s  f o r  t e r m i n a t i o n  f e r n ]  

i u i p  f r e q u e n c y  [  1 / s e c j  

v o l u m e  f r a c t i o n  o f  m o n o m e r  

v o l u m e  f r a c t i o n  o f  p o l y m e r

e

S U B S C R I P T S

A

E
c

d

d

compound A 

cccpcund B

c r i t i c a l  degree o f p o ly m e r iz a t io n

i n i t i a t o r  d e c c m p o s it ic r ,  c r  d is p ro p o r t io n a t io n

p e n e tra n t
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I
I

e

f

q

h

i

1
k

M ,m 

n 

P 

r  

s 

s 

£

Vf

V

z

z+1

r 1 

0

entançlen iG iît 

f r e e  volume 

g la s s  t r a n s i t io n  

hydrodynam ic

degree o f  pc 1 y v e r iz a t io n ,  i n i t i a t i o n ,  o r  in te g e r  

degree o f  p o ly m e r iz a t io n ,  o r  in te g e r  

degree c f  f c l y i e r i z a t i c n ,  c r  in te g e r  

monomer

number ave ra ce , c r in te g e r

p ro p a g a tio n

re c c  nbina t i e r

c h a in  t r a n s fe r  agent

re fe re n c e  tem perat u re ne a r t  deg. C

po lym er segment

unen ta n q le d  s ta te

w e igh t average

z -ave rag e

z+1—average

c c n c e n t ra t ie r  S X=0

va lu e  3 X=0

SUPERS CP.IPTS
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d is  p r o p e r t ic t a t i e r

mode o f  te r m in a t io n ,  d o r r

recc irfc ina  t i e r

a c o n s ta n t

phase I I I

v a lu e  o f  h y p o th e t ic a l system d e fin e d  in  C h a p te r 3
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APPENDÎK A

^STANTAMEQÜS AND CUMULATIVE: MQLECUUR WEIiSRT AVERAGES

The d é fin itio n  of ( i  = 0,1,2, etc) can be written as

Mz+i

f  w(M)
J_o___________

I ”  w(M)

dM

dM
(A-1)

where M is the molecular weight as an integration variable and w(M) is  

a weighting function at a fractiona l conversion X. S im ilarly at a con

version of X + 6X,

r  w(M)!
—

x+ax

dM
Mz+i

X+aX

Mi+1 w(M) j
i

(A-2)
dM

0 ‘ X+aX

Let us assume w (M) is  normalized in such a way as to satis fy

w(M) dM = X (A-3)

The instantaneous value Mz+i is  defined as

Mz+i

f  aw (M)
_J_o____________

X r  M^"^^ Aw(M)
J n

dM

dM
(A-4)

(A-5)where Aw(M) = w(M) -  w(M)
‘ X+AX

Substracting equation (A-1) from equation (A-2) gives an expression fo r

""z+i - M
X+AX Z+l . )

1^5
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iM.z+i
,  '-̂ i+2 ^ "1+2 

’'"i+1 ‘'i+1
'-'i+2
‘' i+ l

(A-6)

= ^1+2^1+] '  ^i+2^i+l 
^ i+ l(^ i+ l "i+1^

where

and " j  =

M̂ w(M) dM

M^aw(M) dM

(A-7)

(A-8)

The difference between the Instantaneous and averaged z+i molecular 

weights is

Mz+i -  Mz+i
=  ""1+2 

^i+1
^i+2 
y i+1

= ^ i+ 2  ^i+1 " '^ i+ 2 ^ i+ l 
i+1 “ i+1

Substituting equation (A-9) in to (A-6) gives

“ i+1

(A-9)

-  MZ+i )
‘ i+1 + “ i+1

(A-10)

As a mathematical iden tity , can be w ritten  as

Ù

MAw(M)dM

‘ i+1

0C 9

w(M)dM

Aw(M)dM

M’ ‘̂ ^Aw(M)dM

M^Aw(M)dM
(A-11)

From equation (A-3) the f i r s t  term on the r ig h t hand side is simply aX,

while the second term is M̂ , the th ird  M^, etc. Thus 

WÎ+1 = AX{(MJ(M^)(M^+^)......... (M.)} (A-12)
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Li kewi se
Mw(M)dM

i*
w(M)dM

•'o w(M)dM M*w(M)dM

(A-13)

When (A-12) and (A-13) are s u b s titu te d  in to  equation (A-10)

k=w
Iz+i = (AX/X)(M^+^ 'z+1

k=wk=w

Rearranging and ta k in g  the  l im i t  as aX goes to  zero y ie ld s  the  fo llo w in g  

d if fe r e n t ia l  ;

(A-14)

fo r  j  = 2 , z+1, o r  h ig h e r
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APPENDIX B 

DERIVATION OF MOMENT RELATIONSHIPS 

B.1 EVALUATION OF ZEROTH MOMENTS

To derive the recurrence relationships, i t  is necessary to evaluate 

the zeroth moments as follows;

From the definition of eq'n 2.31, which can be written for i*0  and

0 mwd.

"̂ 0 ' " " Nd(y}dy (B .i)
0

The expression for N^(y), eo'n 2.29 is substituted to eq'n B.I

XcM̂  « 7 [B+Y(Z+f(y))/2//Z]P(y)dy (B.2)
0

P'(y)*-Ca+Y{Z+f(y)}/2//Z] (B.3)

Eq'n B.2 can be integrated by parts with the aid of eq'n B.3.

X *  P'(y)P(y)dy
"  0

-  -P (y )o

*1 (B.4)

Another expression for can be obtained from eq'n B.2 as

*c.No '  %
;“ [6tT(Z+f(y) )/2/2]P(y)dy

 ̂ (b -V *2/2 ) P(y)dy+7y2/ *Zf(y)P(y)dy (B.5)
0 0

Considering the definition of Z given by eq'n 3.18,

15B
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Q ^P(y)dy (B.6)

Substituting eq'n 8.5 into eq'n B.5 yields

Xg Nq »i g+y/Z/2 ) J P(y)dy +y»^/2 j P(y)dy

*( e+y/z ) ” P(y)<iy (b.7)
0

Combining eq'n B.4 and B.7,

P « f P(y)dy « V ( 6 +y/Z ) (8.8)
I  "  0

Substituting eq'n B.8 into eq'n 2.18 gives the expression for Pq .

CD 00 co

F» *   ̂ f(y)P(y)dy /   ̂ P(y)dy *   ̂ P(y)dy
0 0 0 0

» Z/( e+y/ Z) (8.9)

An expression for Nq is  obtained d irectly from eq'n B.4.

Nq *  1 /  Xg (B.IO)

y»
An expression for Ng is obtained as follows;

From eq'n 2.30,

J  2
Xc NJJ *  ” [g P(y) +  ̂ (f(t)+ f(y -t)) /2 *P (t)P (y -t)d t]d y

o v  0 ^ 0
CO

” P(y)dy + ^^^ (f(t)+ f(y -t))/2 *P (t)P (y -t)d td y8 ' r iyva y  *  ' yy 
0 *̂  ̂ 00

(B .ll)

The f i r s t  term in eq'n B .ll bas already been evaluated and only the 

second term needs be evaluated to obtain an expression for
O'

The f i r s t  integration can be done as follows;
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I llÜJ£Jj!:t)p(t)P{y-t)dt 
. , y /2  , y/2

« i f  f(t)P (t)P (y -t)d t + i  Jf(y-t)P (t)P (y-t)dt (8.12)
0 Vo

The second integration in eq'n B .I2 can be transformed by changing the

dummy variable t  to y -t.

y/2 y/2
f f(y -t)P (t)P (y -t)d t « -  ff(t)P (y -t)P (t)d t 
0 P

*  jr f(t)P (t)P (y -t)d t (B.13)
y/2

Substitution of eq'n B.13 into eq'n B.12 gives,

y/2 " y
f ■̂Ü y i ^ .“^)p(t)P (y -t)d t » h  f(t)P (t)P (y -t)d t (B.14)

Eq'n B.14 can be evaluated by using the Laplace transform with the aid 

of the convolution theorem (1 ).

y
L[ J f(t)P (t)P (y -t)d t]= L [f(t)P (t)] L[P(t)] (B.15)

0

Substitution of eq'n B.14 into the second term of eq'n B .ll gives the 

integral,

f(t)P (t)P (y-t)d tdy (B.16)
GO

Using the relationship B.15, eq'n B.16 becomes

J  -
n  f(t)P (t)P (y-t)d tdy»LC f(t)P (t)is=0 L[P(t)]@s=0 (B.17)

Ai L [ f ( t )P ( t ) ]  -  T f(t)P (t)d t-Z f P(t)dt-z/(B+Y/Z) (B.18)@5=00 m y
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:

8

I

And L[P(t)3g5=o= 7 p ( t ) d t =  1/(P+T'^Z) (B.19)
0

Substituting eq'n B.18 and B.19 in to  eq'n B.16 gives

^  f(t)P (y -t)P (t)d td y  =-----^ ------------------------ ^ Y  (B.20)
00 3+y»^ 3+Y>  ̂ (8+y/Z)

Substituting eq'n B.20 in to  eq'n B . l l  gives the desired expression.

Xr ”  P(y)dy + - U t Y ^ -— L
f  ^  0 0 2/Z
f ,  _ .A _ _ .+  __Z/2-
f  J g+y/Z g +y i/Z

.^.±%A / 2. (8.21)
g +y/Z

B.2 EVALUATION OF MOMENT

Substituting eq'n 2.26 in to  eq'n 2.33 gives
00

F. =  ̂ y^f(y)P(y)dy
 ̂ 0

GO y
=  ̂ y^f(y)exp[-( 8+ir /z /2 ) y ]e x p [ - ^ ^  ^%(y)dy] dy (B.22)

Using the relationship

f ( y ) e x p [ - ^  f ( y )d y ]= ^  [ -  ^  e x p ( -^ ^ f (y )d y ]  (B.23)

•  7y^exp[-( B+ . ) y ] ^ -  ^ ^ x p ( - ^ ^ f ( y ) d y ]d y  (B.24)

Integrating eq'n B.24 by parts,
O O 4

Fj »y^exp[-( 3+Y»^Z/2)y] g + ^ ” [y ie x p [- (B + ï^ )y J '*
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exp[- p%-j^f(y)dy]dy (B.25)
C ^ L  Q

As the f i r s t  term of eq'n B.25 disappears, F̂ . is equal to the second 

term of eq'n B.25, and can be further simplified as follows;

F * [ i ” y’ *lp(y)dy ^y‘*P(y)dy]
T ^ 0 0  0

« 2 ^  [iP i-1  - ( 3 + yv' Z / 2 ) P . ]  (B.26)

Eq'n 8.26 is identical to eq'n 2.36.

B.3 EVALUATION OF MOMENT

The eq'n 2.34 for can be easily obtained from eq'n 2.29 as 

XcN j» ” y^XçN^(y)dy

CO

*  M  B+ y /2 * /Z )y ip (y )dy  + y^f(y)P(y)dy

*  (b + t/Z /2 )P .+ y /2 //Z *F . (B.27) 

Substituting eq'n B.26 gives

X c N ? * iP i. ,  (B 2 8 )

The expression fo r NC (eq'n 2.35) requires more calculations as 

shown below;

Substitution of eq'n 2.30 to eq'n 2.31 yields

Xç nJ*   ̂y ’ XçNÿ.(y)dy

f gy^P(y)dy y if(t)P (t)P (y -t)d td y  (B.29)
0 T Z  00
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Note th a t the exprssion B.14 has been used in  deriv ing  eq'n B.29.

The second term o f eq'n B.29 can be evaluated by using Laplace transform  

properties shown in  eq'n B.15.

I

fÿ ( t ) P ( t )P (y - t ) d td y  = ( - l ) i  y [L (P ( t) ) ]L ( f( t)P ( t) ]@ s = o

(B.30)

d"Considering th a t ( -T )"  jgh L(P(t))@g=Q = P„

And th a t (-1 )^ L ( f ( t ) P ( t ) )  @s=cf

Eq'n 8.30 can be expanded in to  the eq'n B.33.

^0 y ’ r f ( t )P ( t )P (y - t ) d td y  = % ^ j '^ i - j
0 j=0

S ubstitu ting  eq'n B.33 in to  eq 'n  8.29 y ie ld s  eq'n 2.35.

(B.31)

(B.32)

(B.33)
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APPENDIX C

I

I
I

DERIVATION OF AND yj[

The term y j  is  defined as

N.d
(C.l)

In  eq 'n  C . l .  N  ̂ is  equal to  l/X g  by eq'n B.IO and the expression fo r

can be obtained by se ttin g  i= l in  eq'n B.28.

(C .2)

As Pq is  equal to  by eq'n B .8, eq 'n  C .l can re w ritte n  as

y^ « 1 /(3 +yv^ )  (C .3)

Also from the d e f in it io n  o f y jj.

n! [ / nJ ( C . 4 )

In eq 'n C.3, is  equal to  B.21 and an expression

fo r  can be obtained by s u b s titu t in g  i= l  in  eq'n 2.35.

As

x̂ Nlj* = bP^+y/2 //Z * (6 + y /Z )*(F qP^+F^Pq) 

Fq, * Z/(g+Yv7)

F,y  -  2 / Z / y* ( P q- ( b+y - ^ ) / 2 * P , )

n  “  l / ( g + Y / Z )

Eq'n C.5 can be transformed as

JP,+Y/2//Z*(ZP,+2/Z/y*Pp-2,7/Y*(6+Y/Z/2)*P, )

164

( C . 5 )

( C . 6 )

( C . 7 )

( C . S )
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(C.9)

Substituting eq'n C.9 and the expression for n» into eq'n C.4 gives

n Z/2 (C.IO)
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APPENDIX D 

EVALUATION OF 1^'s

D.l EVALUATION OF

Eq'n 2.41 can be rew ritten  as

i j  '  /  Mg ■ y? /  y j  (0.1)
0 0  c o

As y ï *   ̂ yNu(y)dy /  T N .(y)dy (D.2)n 0 a 0

From eq'n C.3, y^ » V ( b+yi^ )  (D.3)

S im ila rly , y j  = y^N^(y)dy /  y ^ "^ N j(y )d y = iP ./( i- l )/P^. (0.4)

Thus, I j  » y^ /  yd *  (B+Y*^)i/(i-l)*P^-/P,-_-, (0.5)
Substituting i«2 fo r  1^, i=3 fo r  1^, and i=z+n fo r  1^+^ gives Table 2.2.I

& 0.2 EVALUATION OF iHfeï' 1

Fg has been evaluated in  eq'n B.9 and the higher moments Fj can 
be expressed in  terms o f p_. by setting 1=1,2,3, etc. in  eq'n B.26.

F q= Z / ( b-Fy / Z ) (0.6)

F.j= 2 » / 2 / y * ( P q - ( 6 + y » ^ / 2 ) P - j ) (0.7)

F 2 = 2 / Z / Y * [ 2 P , - ( 8 + y / Z / 2 ) P 2 ] (0.8)

F 3 = 2  v 7 / y *  [ 3P2 -  (  3 + y  1 ^ / 2  )  P3 ] (0.9)

Evaluating Pi in  terms o f 1^'s from the le f t  column o f Table 2.2,

P i = 1^ / 2/ ( B + y / Z )2 (0.10)

Po=2i V / 3 / ( b+y /Z )
166
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= i f  1  ̂ /  3/ ( b+y/ z )^w z

P3 = 3 1^1 Pg /  4 /(e + v - 'Z )= 'w l^2 + ,/4 /(» ^v ^ ) ' 

sim ilarly, the recurrence relationship 0.13 can be derived.

Pi 1^ /(1+1)/(g+Y 4)'+1 
j=2

I t  should be noted that

4 <

(D .ll)

(0 .12)

(0.13)

(0.14)

(0.15)

'3+i 'z+i

Substituting eq'ns 0.10-0.13 into eq'n D.6-D.9, along with the 

definition of f-| as shown in the footnote of Table 2.2 gives

(0.16)

Fq  = / Z  / ( e +  Y ’^Z)

F̂  = 2 ’ Z (1- f / 2 ) / y / { ^ y ^ l )
r

Fg = 2^Z (T - flf /3)/Y /(B fY*^Z)^

F3 = i h  (1- f l^ /4 ) /Y /(^ Y i/z )^

Sim ilarly, for an arbitrary integer i ,

F. = i h  (1- f l^ / ( i+ l ) ) /Y / (B fY /z )^ ’

Now eq'ns 0.17-0.21 can be resubstituted into eq'n 2.35.

Nq = BPq +t (B+yi^ ) / 2/>^ *  Fg Pg

(0.17)

(0.18)

(0.19)

(0.20)

(0.21)
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=Pg[P+Y( B+y / Z ) / 2 / / Z * Z / ( B+y/Z ) ]

=f (D.22)

N^=BP^+y/2 /^ * (B + y /Z)*(F^Po+FqP^)

= P^(b+yv^ /2 )+ y/2//Z*F^

= l^*f/2/(B+Y7Z) + Y /2 / /Z * 2 /Z /Y * ( l - f l f /2 ) / (B + Y /Z )

=1/(3+y/Z )  (0.23)

N2=BP2+Y/2//Z*(B+Y/Z)*(F2Pg+2F^P^+FgPg)

= P2(8+Y/Z/2) + l f ( l - f l f /3 ) / (6 + Y > 'Z )^  + 2Y /2 //Z*(B +Y/Z )*2 /Z /Y*  

( l - f l^ /2 ) / (B + Y /Z )* l f /2 / (B + Y /Z )^

I = l2 (2 -fl^ /2 )/(B + Y /Z )2  (0.24)

g  N^=BPg+Y/2//Z*(B+Y/Z)*(F3Pg+3F2P^+3F^P2+FgP3)

+ 3 Y /2 //Z *(B + Y /Z )*1 ^ 2 /(B + Y /Z )^ *2 /Z /Y * l^ /(B + Y /Z )^ *( l- f l^ /3 )

+ 3 Y /2 / /Z * (B + Y /Z )*2 /Z /Y *( l- f l^ /2 ) /(B + Y /Z )* l f l^ /3 /(B + Y /Z )^

I = 31^/(B+Y/Z)^*(2/3*1^ + 1^/2 -  f l j l ^ / 3 )  (0 .25)

#
% K,d_ f id id id  id  i c u r . ^  /-7\4' v  + ï/2//Z*(e-iY7Z)*(F^Pg+4F3P,i-6F2P2

= fl2 lJ l2 + llj+ 2 /5 /(B iT ''Z )^  + •r/2/^Z*(e-PY/Z)*[1^1^1^,/(e+Y»'Z)^*
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( l - f l ^ ^ . 2 / 5 )  + 4 * 2 / Z / Y * l f l d / ( g + Y / Z ) 3 * ( l - f l L / 4 ) * l f / 2 / ( B + Y / Z ) 2W Z' ' “ 4 ' • ■ Z+1' ■' w'

d/1 / , v 2 * , d , d , / , x 3  ^ ^id+ 6*2v/Z /Y *l^(l-fi;/3 )/(B + Y /Z )^*l^ l^ /3 /(6+Y /Z )'" + 4 ( l - f l “ /2 ) *w z

(D.26)

In deriv ing equations D.22-D.26, the re la tionsh ips D.10-D.13 and D.17- 

D.21 were substituted w ith the d e fin itio n s  f.j= f and f2 = 2 -f^ lf/2 . These 

re la tionsh ips are summarized in the r ig h t column o f Table 2.2.
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APPENDIX E

LIST OF COMPUTER PROGRAMS

AND

SAMPLE COMPUTER OUTPUT

I
g

f

I

The following table is a brief description of the computer programs 

used and mentioned in thid work. The printed programs have been edited 

by the RUNOFF text editing program. The sample ; output at the end of 

this Appczndix is the simulation of Hamielec's methyl methacrylate data 

(3/ at §Q deg. c and AIBN concentration of 0.05 wt. %.

Table E.1

COMPUTER PROGRAMS

Filename.Extension Description

INT.FOR

DATA.FOR

MONOM.FOR
MONPCJC.FOR

UPDATE.FOR

UPDPCK.FOR

MOLWT.FOR

COEFF.FOR

SBRKPL.FOR

Main progaam for producing the time-conv. 
and MWD data
Block data subroutine which supplies the 
physical and rate constants 
In itiation  for the "True Gel Effect"
Same as MONOM except for the 

"Pseudo Gel Effect"
Calculates instantaneous rate and molecular 
weights for the "True Gel Effect"
Same as UPDATE except for the "Pseudo 
Gel Effect"
Converts the instantaneous values from 
UPDATE or UPDPCK into the derivatives 
of the fractional conversion, the integration 
variable
Calculates the cubic spline coefficients 
for the interpolation of master charts 
Calculates Z and 1  ̂ 's with the given

170
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CALCU.FOR 
AUX.FOR 
DIST.FOR

CONST.FOR

171

Table E.1 con'd

p, Y  and W
Interpolates the master charts 
Interpolates the master charts 
Calculates the moments of P(y) 
given values of Y , and Z 
Produces the master charts data f i le  
CONST. OAT to be used by CALCU and AUX

with crié
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

a a i n  E r o q r a n  : I K T .  FOR

T h i s  i s  t h e  m a in  p r o g r a m  used f o r  t h e  c o m p u te r  

s i m u l a t i c n  .

o f  D i f f u s i o n  C o n t r c l l e d  V i n y l  P o I y r a e r i 2a t i o n s  

where t h e  monomer and t h e  p o l y m e r  a r e  m i s c i b l e .

T h i s  p ro g ram  i s  b e s t  s u i t e d  f o r  t i m e - s h a r i n g .

The v a l u e s  o f  t h e  a d i c s t a t l e  c o n s t a n t s  o f  t h e  m ode l  

s h o u l c  be t y p e d  i n  e a c h  t i m e  th e  p rogram  i s  r u n .

To run  t h i s  p r o c r a m , t h e  f c l l c w i n q  command i s  i s s u e d  

- EX I S T , D r D ? T I , C C N C M , H G X R T , I A T 5 , SERKPL, COFFF,  

aOX,Cf l ICtr ,  ; I M S L / S î f l E C H

I t  i s  r e c c m e n d e d  t o  make a M IC  f i l e  w h ich  

c o n t a i n s  t h e  a b o v e  command f o r  c o n v e n i e n c e .

W ith  th e  a b o v e  c o m m a n d , t h e  c o m p u t e r  w i l l  respond  

TYPE I N  CDTPDT DEVICE NUMBER.

You have  t o  t j p e  T i f  you w ant  the  r e s u l t s  s t o r e d  

i n  yo u r  d i s k  a r e a ,  3 i f  y o u  w a r t  t h e  l i n e  p r i n t e r  

o u t pu t .

F o r  t r i a l  r u n s ,  i t  i s  b e t t e r  t o  t y p e  i n  5 t o  s e e  

i f  t h e  r e s u l t  i s  w o r t h  t o  be p r i n t e d .

I f  you h a v e  t y p e d  i n  ?,  t h e  c o m p u t e r  w i l l  r e s p o n d ;

ENTEF OUTPUT F I L E N A M E .

You s h o u ld  l e a v e  t h e  f i r s t  l e t t e r  b l a n k ,  and t h e  

f o l l o w i n g  f i v e  l e t t e r s  w i l l  t e  t h e  name o f  t h e  

o c t p u t  f i l e  w i t h  t h e  e x t e n s i o n  .D A T .

1 7 2
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B

I

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

I f  y o u  t y p e  i n  *  S T O P ’ ,

t h e  p i c o r a m  w i l l  i c t  r u n -  O t h e r w i s e ,  o r  i f  y o u  

t y p e d  i n  a  r u i r b e r  n o t  e q u a l  1 ,  t h e  c o m p u t e r  

r e s p o n s e  w i l l  t e ;

ENTES TEKF, IN C O N .

Y o u  t y p e  i n  t h e  r e a c t i c n  t e m p e r a t u r e  i n  d e g .  C  a n d  

t h e  i n i t i a t o r  c c n c e n t r a t i c n  i n  n c l e s / I i t e r .

T h e  i n i t i a t o r  d e c o m p o s i o n  c o n s t a n t  

h a s  t o  h a v e  b e e n  c u t  i n  t h e  D A T f l - F C E  f i l e  a l r e a d y .  

E x a m p l e : 5 0 . , C . C C 1 2  

T h e  c o m p u t e r  w i l l  r e s p o n d ;

E N T S f i  F î î , E X , V F X C , X K -  

F N  w i l l  m u l t i p l y  t h e  m c l e c u l a r  w e i g h t  v a l u e s  

c a l c u l a t e d  t y  t h e  f a c t o r  F R .

F X  w i l l  m u l t i p l y  t h e  p o l y m e r i z a t i o n  

r a t e  c a l c u l a t e d  b y  t h e  f a c t o r  F X .

7 F X C  i s  t h e  f l a c t i c r a  1

f r e e  v o l u m e  f r c m  w h i c h  t h e  g e l  e f f e c t  s t a r t s .

I F  i s  t h e

r e s i d u a l  t e r n i r a t i c n  r e a c t i o n  e f f i c i e n c y  f a c t o r .

T h e  v a l u e s  E  W a n d  F X  w i l l  a u t o m a t i c a l l y  c h a n g e  t h e  

t e r m i n a t i o n  r a t e  c o n s t a n t  a n d  t h e  i n i t i a t o r  

e f f i c i e n c y  t c  f i t  t h e  s a i d  r e c u i r e r a e n t s .

E x a m p l e :  1 . , 1 . , . 1 3 , T ,

T h e  n e x t  c o m p u t e r  r e s p o n s e  w i l l  b e ;

E N T E R  X F T N A L , E E D E L , T I M E  S C A L E , T C I .

X F I N A l  i s  t h e  c o n v e r s i o n  l e v e l  w h e r e  t h e
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i n t e g r a t i o n  w i l l  s t o p .

P R D E l  i s  t l i €  p r i n t  i n t e r v a l .  T IM T  SCALE

i s  u s e  a  t o  c c r v e r t  t i i t e  i n t o  m i n u t e s , h o u r s , e t c .  .

T I M E  S C  A I E  o f  Î  w i l l  g i v e  t i m e  i n  s e c o n c s ,

6 0 .  i n  m i n u t e s ,

3 6 0 0 .  i n  h o u r s , e t c . .  T C I  i s  t h e  e r r o r  t o l e r e n c e  f o r  

t h e  I M S I  D V E E K .  T C X  o f  0 . 0 0 1  w i l l  g i v e  a p p r o x .

0 .  r e l a t i v e  e r r o r  f o r  e a c h  F E D E l  i n t e r v a l .

I f  e r r o r  c r i t e r i a  c a n  n o t  b e  m e t ,  t h e  c o m p r t e r  w i l l  

t y p e  a  e r r o r  n e s s a q e  a n d  e  t o p .

I t  i s  r e c c m m e n d e d  t o  u s e  t h e

l a r g e s t  a c c e p t a b l e  T O L  v a l u e  f o r  f a s t  r e s u l t .  

E x a m p l e  9 9 , . 0 5 , 6 0 . , . 0 0 2

T h e  p r o g r a m  c a l l s  t h e  f o l l o w i n g  s u b r o u t i n e s ;

O P E A T E , R C r C b , P C I W T , S E 5 K P L ,  I A T A ,  C A L C 0 , A b  X , C O E F F ,  

D V E 5 ? , n E E T S T  

T h e  l a s t  t w o  s u b r o u t i n e s  a r e  I K S I  r o u t i n e s .

T h e  d a t a  f i l e  C C N S T . D A T  i s  r e a d  i n  C O E E F  r o u t i n e .

C C P E C Ï  b l o c k s  w i t h  o t h e r  s u b r o u t i n e s

S X T E T K A L  U F I A T Ï  

D I ü S M S I C Î l  X D A T A  ( 2  5 )  , X 8 ( 9 )  

C O M M O N / D A T f l / X E A T A  

C C E K C N /  E A T E / X a ,  F T O
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C 0 M M C » f / y ? D T / 7 F X C

CCHMCK/EEV/JCiV

COMMON/TCL/TCI

CCKBC S /T F /T F S C T

R E A L  a a V  ( 5 )  ,RATE ( 5 )  , I N C C S

D I M E N S I O N  C  ( 2 4 )  , H  ( 5 , 9 )

E A T  A  F W / 5 ,  5 /

C

c  I n i t i a l  p r e p a r a t i o n  t o  m a k e  t h e  f o r m u l a s  f o r  t h e

c  m a s t e r  c h a r t s

c

C A L L  C O E F ?

C

C  S e l e c t  o u t p u t  D e v i c e

C

T Y P E  6 9 0

6 9 0  F O E M A I  (  Î O X ,  * T Y P E  I N  O D T F O T  D E V I C E  N O M E E P .  »)  

A C C E P T  6 8 f ) , I C î V  

5 8 0  F O E  R A T  ( 1 3 )

7  0 0  I E ( I D E V . E O . 1 )  T Y P E  5 0  0

5 0 0  F O E M A T  ( l O X , ’ E N T E S  C C T P Ü T  F I L E N A M E . ’ )

I E  ( I E E 7 .  E C .  1 )  a c c e p t  9 0 0 ,  F I L E  

9 0 0  E C S K A T 1 A 6 )

I F ( I D S V . E Q . T )  T Y P E  9 0  0 , F I  I E  

I N D =  1

I F  ( F I L E .  E C .  ’ S T C P ’  )  S T O P  

I F  ( I E E V .  E C .  1 )  C A L L  O F I L  E (  1 ,  F I L E )
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C

C

c

C

C

C

c

c

c

c

C

c

c

c

B e a d  t h e  r e a c t i o n  t e m p e r a t u r e  a n d  t h e  i n i t i a t o r  

c c n c e n t r a t i c n

T Y P E  4 G 0  

I  N D =  1

4 0 0  F O B M A T  1 1 0 X , ' E N T E R  T E M P , I  N C C  N »)

A C C E P T  * , T E  M P , I N C C N

R e a d  t h e  a d j u s t a b l e  p a r a m e t e r s

T Y P E  3 0 2  

I N D =  1

A C C E P T  * , X D A T A  ( 2 4 )  , X D A T A ( 2 5 )  , V F X C , X 8 ( 9 )  

J D E 7 = I D E 7

I n t e g r a t i c n  l i a i t , p r i n t  i n t e r v a l ,  t i m e  s c a l e ,  

e r r o r  c r i t e r i a

T Y P E  1 4 8

1 4 8  F O R M A T  ( X , ' E N T E R  X F T  N A I  ,  E S D E I  ,  T X W E  S C  A I E , T C I ' )  

A C C E P T  « , X F I N A Î , F B D E L , T F A C T , T C I  

3 0 2  F C P M A T  f  1 0 X ,  ' E F T Î B  F Î T ,  F Y ,  V  F X C ,  X K  » )

I n i t i a l  s e t t i n g  o f  t h e  v a r i a b l e s

X = 0 .

D O  3 0  1 K = 1 , 5
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301 MA7 ;P) =0 .

X C = 0 .

c a n  EC 5CM ( T E R I ,  I N C C N )

C A i l  0 F r A T E { 5 , X , H A V ,  E A T Î )

C

C  I n t e g r a t i o n  u s i n g  t h e  I K S L  r o u t i n e  D V E P . K

C

1 5 1  X C = X C + E E D E L

C

C  T e s t  f o r  t h e  i n t e g r a t i o n  l i m i t

C

I F I X F I K A l .  L T . X C ) S T O P

C

C  V a r i a b l e  s t e p  i n t e g r a  t i e n  s i t h o t t  p r i n t o u t

c  

J DEV=0

c a n  C V F 5 K  ( N , D i r a T E , X , M a V , 7 C , T 0 L , I N D , C , N « ,  R , X E H )

C

C  P r i n t o u t  a t  c o n v e r s i o n  l e v e l  i n t e g e r  m u l t i p l e  o f

c  P E D E L

C

J D E V = I D E V

c a n  U P I A T E  ( N , X ,  w a v ,  E A T Î )

C  D i s c o n t i n u e  i n t e g r a t i o n  w h e n  T O L  l i m i t  c a n  n o t  b e
C  m e t .
c

I ?  ( I N D . L E . O . O E , I E B , G E  .  1 2 9 )  G O  T C  2 5 0
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C

C

C

C

C

C

250

350

C o n t i n u e  i n t é g r a t i o n  

G O  1 0  1 5 !

E r r o r  n e s s a q e  

T Y P E  3 E 0 , I N P , I E P

F C E M A T  (  1 R 0 ,  » I N E = »  , 1 3 ,  Î C X ,  '  I B R = » , T 4 )

S T O P

E N D

C

c

c

c

c

c

c

c

c

c

c

c

c

c

S D B B C T I T I N E  O P E I T E

T H I S  S O B 5 0 D T I N E  C A I C U I A T E S  T H E  D 1 F I V & T I V Ï S  

O F  M A Y ’ S  W I T H  R E S P E C T  T C  C C N V E F S I C N  X ,  R A T E ’ S  

W H E N  C A I I E C  E Y  T E E  M A I N  P E O C - R S W  I N T  O R  T E E  I M S I  

R O N G E - K U T A  E C Ü F T H  C E D E R  I N T E G R A T I O N  R O O T I N E  

D V E R K  .

N : N U M B E R  O F  V A R I A B L E S  T C  B E  I N T E G R A T E D .

6  W E E N  H O I .  V T .  D E V E I C E H E N T  O F  T O  K Z + T  

A R E  C S I C a i A T I E .

X ; T H E  F R A C T I G K A I  C C N V E F S I C N

M A V  ( 1 )  : T I K E  r  S I C .  1

M A V  ( 2 )  : M N ,  C U M U L A T I V E  A V E R A G E .
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:

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

M A  V f  3 )  :  M R  

M A V  ( 4 )  : K Z  

M A V  ( 5  )  : M Z + 1

R A T E C O E F E S f C N D I E G  D E F T V A T I V E  W I T H  R E S P E C T  

T C  X  C F  M A V  f l )

M I N S T  f l )  ; T  H E  C C E F E S P O N r i N G  I N S T A N T A N E O U S  V A L U E  

E C Î  K I V  f l )

2 : T H E  E N T A N G L E  M E E T  C O O E I I N G  F A C T O R

K T V E : T F F  U N E K T A K G L E D  R E F E R E N C E  T E R M I N A T I O N  F A C T O R

X C : « I S I M O B  D .  Î .  F C E  E N T A N G L E M E N T

L ? : T B E  H O I F C U I A F  W E I G H T  I N D E X  F O R  T H E  C C R E E S P C N D I N G  

aiNST?.

M C D E r T E E  K C D E  C F  T E R M I N A T I O N

X K T P :  T E E  E F F E C T I V E  T E R H I N A T I C N  F A C T O R

P H I 8 : V C 1 ,  F R A C T I O N  O F  M C N O M  F R

V E : F R A C T I O N A L  F R E E  V O L U M E

EPS ZVCLDME SHFIbKAGE FACTOR FOR POLYMN.

V F M r F E A C T I C S A I  F R E E  V O L U M E  O F  P U R E  M O N O M E R

7 F P : F R A C T I O N A L  F R E E  V C I D K E  C F  P U R E  E C I Y M E F

V F X C : V F  A T  T E E  S T A R T  O F  P H A S E  2

X B D C T  :  R A D I C A L  C O N C E N T R A T I O N  [ n O L / L ^

W : F E C T I O N  O F  R E F E R E N C E  T R A N S L A T I O N A L  C C K T R I E U T I C N  

F O R  T H E  E F F E C T I V E  T E R H I N A T I C N .

K P I K r f i C N C H E F  D I F F U S  I O N  C O N T P O L L  E D  P R O P A G A T I O N  

R A T E  C O N S T A N T .

K P : T H E  P R O P A G A T I O N  S A T E  C O N S T A N T  [ L / M C I / S E C . 1 

X K P : R A T I O  O F  K P  T C  K P O  

K P O i K E  A T  I N F I N I T E  D I L U T I O N
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

K T O : X K T  A T  I N F I N I T E  D I L C T I C N  

X S : X C  A T  P U Î E  I C . L Y M F F  

C M : C E A I N  T R A N S F E R  B A T E  C C N S T A N T  

B I T S :  C I K E K S  I C K I F S S  C O N S T A N T  

G A M M A  : C I M E K S I C N I E S S  C C S S T A N T  

M N O : I N I T I A L  K l f S T  ( 2 )

K E z I K I T T A T C R  C F C O M P O S I T I O N  R A T E  C O N S T A N T  

P T : P E O B .  D I S T R I E Ü T T C N  F C N C T I C N  F  ( Y )  S Y =  1 

S I G : E A D I D S  O E  E T E E C T I V E  T E R M I N A T I O N  S P H E R E  

B E T  :  E F T  A  V A I U E  C F  G A U S S I A N  C H A I N  D I S T R I B U T I O N  

X F T P : E F S I E U A L  T E R M I N A T I O N  R A T E  C O N S T A N T  

P D O T : R A T I O  C F  X Î D C T  T C  F D C T O  

R D O T O : X F I C T  S X = 0

A L L  O T H E R  S Y M E C I S  A R E  E I T H E R  D E F I N F E  I N  O T H E R ,  

S U B R O U T I N E S  A L R E A D Y  O B  DUMMY V A R I A B L E S .

SUESCUTINF U P I A T E  ( N , X , M A V ,  RATE)

D I M E Î S I C N  X D J 4 ) , X 1 8 C 1 8 )

D I M E N S I O N  M A V  ( N ) , R A T E ( N )

R E A L  M A V , M I N S T  ( 5 )  , F T T F , M N O , H D ,  K F , L W , I Z ,

L Z P 1 ,  F T , K E D M , K F O ,  K T O  

C O M M C N / M O D E / M O D E , T E R M I N A T I C N  

R E A L  P C E E

C O M M O N / R A T F / R D C T O , S O . X K F D M , M K O , K D , C M , K P O , F T 0 , X K , S I 0

COMMON/TE/TEACT

C C M E C f / H T V F / X K T V F
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C

C

C

C O M M O N / V F / V f M , V ? P , ï ï P S , C C N M , D S E G  

C C M Ü C K / C f V / i r f V  

C O M M O N / V f D T / V F X C  

C G K K C S / t A T A / X r ,  A N G S T ,  I S , X S , X 1 8

P O M M Y  C C M W C N

C O K H O N / O L D / X C I D  , X K T C L D

; K T V F = X K T V T ; X C = X S * T 0 0 0 . ; L K = 2 . ; L Z = 3 .  ; L 2 P t = U .  

I F t e C E f . E Ç .  » F f C C H  E * ) L W = 1 .  5  

I F  { M O D E . E Q .  * P E C C  M B  » )  L Z = 2 .

I f { M O D E . E Q , * R f C C H B ' ) L Z P l = 2 . 5  

I f  ( X .  G T .  . 0 0  t )  G C  T C  2 0 0  

I F  ( M C D E . E Q ,  ‘ E Î S Î E O ' )  H I N S T  f  2 )  = H N O  

I f  ( M O D E . E Q .  ’ E E C C F B » )  M I  N S I  ( 2 )  = 2 . * M N 0

X K T P  =  0 .  î X K T C = 0 . î M â V { 3 )  =  M I  N S I  ( 2 )  ♦  I R  ; X E D C T =  !  t O T O  ; W =  î .  

2 0 0  C C N T î î D E

P H I K =  ( 1 .  - X ) /  ( 1 . - E P S * X )

V f = V f M * P H I M + 7 F P * { 1 . - P H I M )

I f  { V F .  I I .  V F  X C )  F T V F = X X I V f  * E X P {  1 . / V f  X C - 1 . / V F )  

K P D M = ] I K P C » * E X P  ( !  .  / X ü  ( 1  )  - 1  . / V F )

K t =  R I O  4 R I D K /  ( K I T M + K P O )

X  F P =  K E / K Î O  

I f ( X K P . G T .  1 . )  X K F = 1  .

I f  ( X . G I . . O O  î )  Î C  = X S / ( î  . - F f î I M )

B E I  A = X C = » C M

G A M M A  =  X 1 3 ( 7 ) * X C * S  G E T { K T V ? / { 1 . - F P S * X ) )  / X K ? / F H I M / M N 0  

1 * S X P  { -  R D * M A  V  { T )  / 2  . )
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C

C

c

c

1 = 0  ! P A R A M  T C  E î  O S E E  T O  P R E V E N T  I N F I N I T E  L O O P  

I P  ( X -  I E , .  5 ) X K = 0 .

1 0 0  A 1 = B E T A 4 G A M M A * E C E T  ( Z / W )  / 2  . + G A M M A / 2 .  * { 1 .  - S ) / S Q R T  {l i  * Z )  

A 2 = G A M Î 1 A / 2 .  = » S Ç E Î  ( V / Z )

P 1 = E X E  ( - 1 .  * A 1 - A 2 )

I E  ( X .  E Ç . . 5 )  Ï C = E 1  

X K O L D = X K

I E ( X .  G T . . 5 ) X K =  ( I 1 - P C ) /  ( 1 , - P C )

I P  { X K C I D . { r r . X K ) X K = X K O L E

I P  ( X K . I T . 0 . )  X K = 0 ,

6 0 0  B E Î  =  S Q H T ( 3 . / X C ) / A S G S T / 1  . E - 8

S I G = S C S T ( Ü I C G ( 2 . 9  8 E - 2 2 * E F T * * 3 / X P E 0 T ) ) / B E T

X K T P =  2 .  6 7 6 E 1  3 # A N G S T * K P * P  H I M * C O S f l  * S I G * *  2 / E Q S T  ( X C )  *
1 X K / K 3 0

I P  ( X K T  P .  G T .  1 .  )  X K T  P =  1 .

I P  { X K T P . E Q ,  1 .  , A S D . K T V F . E Ç ,  1 . )  X K T P = 0 .

3 0 0  C O N T I N U E

W = K T V E / ( H T V E + X K T P )

I E  | P ! A V  t 3 ) / X C / X  1 8 ( 7 )  . G T .  1 .  .  A N  D .  V P . L  T .  V F X C )

1 C A L L  S B P K P L  ( M O D E , B E T A , G A M M A , S , 2 , L R , 1 Z , I Z P  1 )

I F  ( Z .  L T .  1 . - N )  Z = 1  

X P T = Z  =» ( K T V P + X K T r )

C C M E A Î Î  X K T  ? N t  T E E  D U M M Y  C O M M O N  O L D  V A L U E S  

T O  P R E V E N T  I N C Î  E A S I N G  X K T  W I T H  C O N V E R S I O N

I E  ( X .  G T . . 5 .  A N I . X .  C T . X O L I .  A N C . X K T .  G T .  X K T O L D )  
1 X K T = X K T C I D

I F  ( X K I . G T .  1 . )  X K T  =  1 .

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Faqe  183

500

4 00

EB0T=SCBT ( 1 . /  ( 1 - -E F S * X >  /XKT)  * E X P ( - K D * M A V  ( 1) / 2 . )  

XRDOT=SDOTO*RDCT

RATE ( 1) = 1 . / R D C T / H 0 / P H I M / X K F * E X P  (KC*HAV{ T ) / 2 . )  

XMIN=HNO^XKP=*PHTR/RCOT/XK3*EXF (KD*MAV V ) / 2 . )

I E  («CD E.5Ç .  * C I S E E C » ) X X = 1 .

I F  (MCDE-EC. * E5CCHE*)XX = - 5

MIN ST (2 )  = 1 . /  { X Î / X H I N + C M / X K P / X T 8  (7 )  )

MIN ST (3 )  =LW *M IKST (2)

MINST (4)  = I Z  4MINST (2)

MINST (5 )  = I Z I 1 * f f I N S T  (2)

I E  ( X . I E . . 5 ) G C  TC 4C0

l E C X K T C . E Q . 0 . .AND . X K T F . E Q , 0 . ) G C  TC 400  

I E { X K T O . E Ç . O . ) GO TO 500  

I E  (AES ( X K T P / X K T O - 1 . )  . L E . .  001) GO TO 400  

1 = 1 +  1

I E ( I . G T . 2 0 )  GC TO 400

XKTO=XKTP

GO TO ICO

CCNTIEUE

C

C

CHANGE THE ITIMMY COMMON VALOES

I E  (X.  I E . .  5)  XBTCID=XKT  

I E  (XHTCID.  GT.  XKT) XOLD=X 

IE ( X K T O L D .G T . X K T )  XKTCID=XKT  

CALL H O I S T ( X , W A V , 5 A T F ,M I N S T )  

T E ( i r  EV. KE. 0 )  WEIT E ( ID E V ,  30)

1 X , P H IR ,V E , K T V E , X K P ,S ,B E T A ,G A M M A ,
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M I N S T ( 2 )  , K P B H , Î K T F  , S I G , 2 , L H , I Z , L Z F T  , X K T  

F C E H A T  ( 1 H 0 / 1 H 0 , 5 X , * X = » , Î 5 . 3 / 1 B O , t O X ,

» P a i R  =  * , E 1 4 .  6 ,  1 0 X , ' V  F  = %  E 1 4 . 6 /

1 H 0 , 1 G X , ' K T V F  = * , E  1 4 . €  , 1 0 X , ' K P  = ' , E 1 4 . 6 /  

1 H 0 , 1 0 X , * W  = » , E Î 4 . 6 , 1 O X , » E E T A  = ' , F 1 4 . 6 /

1 H 0 ,  1 0 X ,  • G A H H A = *  , E l 4 . 6 , 1  O X , '  H I l i S T = '  , S ' 4 . 6 /  

1 H 0 , 1 0 X , * K P D M  = » , E 1 4 ,  6 ,  1 0 X , ' K T P  = * , H 1 4 . é /  

1 H 0 , 1 0 X , » S I G  =  * ,  E  1 4 .  6 ,  1 0 X ,  » Z  = ' , E 1 4 . 6 /

1 H 0 , 1 C X , » L W  = * , E T 4 , 6 ,

1 0 X , * I 7  = * , Î 1 4 . 6 / 1 H C , 1 0 X , ' 1 2  +  1 = '  , E 1 4 . 6  ,  1 0 X ,

• H T E F F =  '  , F  1 4 .  6 )

T I J l S = f î A 7  t 1 ) / T F A C T  

S A I T = X / M A V  ( 2 )  * X  1 8  ( 7 )

I F  ( I D E  V .  N E .  0 )  R Î I ' r E ( I D E V , 7 0 )  X E D C I , T I M E , B A T  F  ( î )  ,

( M A V  ( I )  , 1 = 2 , 5 )  ,  P 1 , 3 A I T

F O R M A T  ( I H O , î e x , * E D C T  = ' , E 1 4 . 6 , 1 0 X , ' T I M E  = ' , E 1 4 . 6 /

l a O ,  1 0 X , ' D T P 5  = '  , E 1 4 . 6 , 1 0 X ,
• ? 1 N A V G = * , E 1 4 . 6 / 1 H 0 ,  1 0 X ,  ' H H f l V G = '  ,

E  1 4 .  6 ,  1 0 X ,  » a Z A V G  =  » , E 1  4 . 6 / l H 0 , 1 0 X , » a Z ' -  1 A =  » , E 1 4 . 6 ,

1 0 X ,  * P  1

R E T O E K

E N D

=  » , E 1 4 . 6 / 1 H  C , 1 O X , »  X / M N A = ’ , E Î 4 . 6 )

C

C

C

C

S U B B C D T T N E  Ü P Î I T E

I B I S  S D B P O C T I N E  I S  T H E  S A M E  A S  U P D A T E  

E X C E P T  T H A T  I T  I S  U S E D  F C E  T H E
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P S E U E C - C C l i V F S T I C N  A L  K I Î I E T I C S ,

S U B E C Î J T I K E  Ï Ï F r i T E  ( E , X , H Æ V ,  F A T E )

D I « E Î S I C N  X D ( 4 )  , X  1 8 ( 1 8 )

D I M E N S I O N  « A 7  ( N )  , S A T E  ( N )

H E A L  M A ? , M I N S T ( 5 )  , K I V F , M N O , K B , K E , I W  , 1 Z , I Z E 1 , K î  ,

K F D C , K E O , K T O

C O M H O N / M O D E / M G B E , T E H M I N A I T C N  

R E A L  S C D E

C O M a C N / S A T E / ' R D C 1 0 , E 0 , X K E I > S , M N 0  , K B  , C S  , K P C ,  P I 0 , X K ,  E I O

C C M M C N / T P / T F A C T

C C M 8 C Î / F T V P / X K T V F

C O M M O N / V F / V F M , ? F P , E P S , C C Î i  M , D S E G

C C K M C K / D E V / I C I V

C O M M G N / V F D T / V F X C

C C M M C K / r A T A / X I , A N G S T ,  t S , X S , X l 8

D A T A  P H A S E / .  9 /

Z =  î .  ;  K T ? F = X K T V F ; X C - X S *  1 0 0 0 .  ; L 5 = 2 .  ; L Z = 3 .  ; 1 Z P  1 =  ( $ .

I ? { M O D E . E Q . « E E C C M B « ) L H = 1 . 5  

I F ( K C C î .  F .Ç . » Î E C C M Î *  ) L Z = 2 .  

l î  { M C B E ,  E Q ,  ’ F Î C C M I ’ ) L Z P 1 = 2 . 5  

I F  ( X . G T .  . 0 0  ? ) G C  T C  2 0 0  

I F { M O D E . E Q . « D I S P R C * ) M I N ' T  ( 2 )  =  M N 0  

I F { « C D E . E C . ' F F C C M E ' ) M I N S T ( 2 ) = 2 . * « N 0

X K T P = 0 .  ; X K T 0 = 0 .  ; M A V  ( 3 )  = M I N S T {  2 )  * L  W ;  X P . D O T = R B G T O ;  R = 1  .  

C C N I I N D E

P H I M =  { 1 . - X )  /  î  1 , - E P S * X )
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V ? = V F K * E H I H  + V ï E = »  f l . - P H I M )

I F  { V F  . G T . V P X C )  I I  =  1 

I F C  v F . G I .  V F X C )  Z C = T ,

I F  { V F .  I T . V F X C )  K T V F = X K T V I * E X P  { I  . / V F X C -  1 . / V F )  

K Î D F = X K Î D t î * S X  Î  ( 1 ,  / X D (  1 )  - 1 . / V F )

K P = K P O * K P D M / { F Î D M + K P O )

X K P = K P / K P O

I F  { X K P .  G T .  1 .  ) X K F =  1 .

I F  ( X . G T . . 0 0 1 )  X C = X S /  ( 1 . - P H I M )

B F T A = X C * C K

G A K M A  =  X  Î 8  C 7 ) * X C * S Q R T ( K I V F / ( ? . - E P S * X ) ) / X K ? / I H I M / M W O  

1 * E X P ( - K P * W A V ( 1 ) / 2 . )

1 = 0 !  P A B  A 8  T C  E Î  U S E D  T O  P R I V E N T  I N F I N I T E  I  O O P  

I F  ( X . L E . . 5 ) X K = C .

T O O  a  T = B E T A + G S  M 8 A  ♦ S Ç E T  ( 2 / H )  / 2  . + G A M M A / 2 .  *  ( 1 .  - W ) / S Q S T  { W * Z )  

A 2 = G A F K A / 2 .  * 5 ( 1 1  { W / Z )

P 1 = E X I  ( - 1 . * A 1 - A 2 )

I F  ( X . S Q . . 5 )  P C = P T  

X K O L D = X K

I F  ( X . G T . . 5 ) X K = I I I - P C ) / { 1 . - P C )

I F  { X K C I D .  G T . X K ) X K = X K O L r  

I F  { X K . 1 T . 0 . ) X F = C .

5 0 0  D E T  =  S Q E T  ( 3 . / X C ) / A  N G ' T / I  . F - a

S I G = S C H T  { A I C G  ( 2 .  9  8 E - 2 2 *  F F T * * 3  / X P  D O T )  ) / B E T  

X K T P = 2 . 6 7 6 E 1 3 * A N G S T * K P * P H I M * C 0 N M * S I G * * 2 / S Q E T ( X C )  *

.1 X K / K T O

I F  { X F T P . G T .  1 .  ) X K T P = T .

I F  ( X K T  I .  F Ç .  T .  .  A t e .  K T V  I .  I Q .  1 . )  X K T ?  =  0 .
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3 0 0  C O N T I N U E

W =  K T V F /  ; F T V E + X R T P * Z  C )

I E  ( K A V  | 3 ) / X C / X 1 8 ( 7 )  , G T .  1 .  .  A N  E .  V F . L T .  7 F X C )

1 C A L L  S B E K P L  ( H O D E , B E I A , G A f l . M A ,  » ,  2 , L K  , L Z , 1 Z P  1 )  

I E ( Z . L T .  ! . . A N D . I I . E Q . 1 )  Z C = 2  

I F ( Z .  I T .  1 .  .  A N E .  I I . I Q .  1 )  1 1 = 0  

I F  Î X K T E .  E C .  0 .  .  O E . 2 . L T .  1 .  .  A N E . Z . G T . Z C )  Z C  =  Z  

I F  ( Z . L T .  ! . - » )  2 = î  . - 8

X K Ï = Z *  Î K T W / 7 C  + 5 K T P )

I F  Î X K T . G T .  1 . ) X F T = 1 .

P E C T = S C B T  ( 1 . / ( 1 . - F P S * % )  / X K T )  ♦ E X P  ( - K n * M A ? (  1 )  / 2 . )  

r R D O T = R D O T O * E D C T

R A T E f 1 ) = T . / I D C 1 / R 0 / P H I M / X K P * F X P ; K D * M A ?  ( î ) / 2 . )  

X K I S =  E S O  4 X K I * E H I M / F D 0 T / X K T *  E X P  ( K D * M A 9  

I F  { N O D E .  E C -  ’ D I S T E C ' ) X X =  1 .

I F ( M O D E . E Q .  ' E E C C M 3 • ) X X = . 5

M I N  S T  ( 2 )  = 1 .  /  { 2 Î / X S I N + C M / X K P / X Î 8  ( 7 ) )

M I N S T  ( 3 }  =  L 8 = » M I I i S T  ( 2 )  

a i N S T  ( 4 )  =  l Z * M i a S T  ( 2 )

M I N S T  ( E ) = L Z P  Î  « K I N S T  ( 2  )

I F ( X . L E . . 5 ) G G  1 C  4 0 0

I  F Î X F T O . S C .  0 ,  . I S E . X K T P . E Q . O . )  GO  T O  4 0 0  

I  F  { X K T O . F Ç . 0 , )  G O  T O  5 0 0

I F  ( A 3 S  ( X K T P / X K T C - 1 . )  , 1 E . .  0 0 1 )  G O  T O  4 0 0  

1 = 1+ Î

I F  { I .  G T .  2 0 )  G C  T O  4  0 0  

5 0 0  X F T O = X F T P
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GO TO ICC 
C C O T I S O E

C & L L  MCLWT ( S , H A T , B A T E , 8 I N S T )

I F ( I D E ’? . WE.  0)  S R I T E  ( I D E V , 3  0 )  X , P H I M , 7 F , K T V P , X K P ,

W, B E T A , G A M M A ,

M I N S T  ( 2 )  , K P T ) M , 5 F T P , S I G , 2 , 1 H , I Z , 1 Z P 1 , X K T  

POE MAT ( Î H 0 y l H C , 5 X , ‘ X = » , F 5 . 3 / Î H 0  , ! 0 X ,

‘ P H I K  = € ,  1 0 X ,  • V F = * , E 1 4 . 6 /

1 HO ,  1 0 X , * K T V ?  = » , F 1 4 . 6 ,  1 0 X ,  ’ K? = ' , E 1 4 . € y

1 H 0 , 1 0 X , » B  = ' , E 1 4 .  6 , 1 0 X , « B E T A  = « , E 1 4 . 6 /

Î H O , 1 0 X , » GA HMA =  * , E 14 , 6 , Î O X , <M I K S T =  * , P 1 4 . 6 /

T H O , 1 0 X , ' K P D M  = * , E Î 4 .  6 , 1  O X , » K T P  = » , F T 4 . 6 /

1 H O , 1 0 X , » S I G  = » ,  E 14 ,  e ,  1 0 X , ' Z  = » , E 1 4 . 6 /

1 H 0 , 1 0 X , » L H  = * , E 1 4 . 6 ,

1 0 X , * I Z  = » , R 1 4 . 6 y 1 H O , T O X , * I Z + 1  = * , E 1 4 , 6  ,  TOX,

• F T E F F - »  , E 1  4 .  €)

T I M E = K A 7  ( 1 ) / T I A C T  

S A I T = X / « A V { 3 )  * X 1 8 ( 7 )

I F ( I C E I i . N E . O )  f i HTTE ( I D E V , 7 0 )  X B D C T , T I M E , R A T  2 ( 1 ) ,  

( M A V ( I ) , 1 = 2 , 5 ) , 1 1 , S A I T , Z C

FORMAT ( 1 H O , 1 0 X , » R [ O T  = « ,  E l  4 .  6 ,  1 OX ,  * T I M E  = » , E 1 4 . 6 /

1 I ! 0 ,  1 0 X , » D T D X  = * , E 1 4 . 6 ,  1 0 X ,
’ M H A V G = * , E T 4 . 6 / 1 H G , I  O X , ' M * A ? G = '  ,

E 1 4 . 6  ,  t O X ,  * M Z A V G = » ,  S 1 4 . 6 /  1 H 0 ,  1 OX,  » M Z + 1A =» , E  1 4 .  6 ,

1 0 X , ' ? 1  = » , E 1 4 . 6 / I H O , 1 0 X ,
» X / M N A = ' , E 1 4 . 6 , 1 C X , » Z C  = ' , E 1 4 . 6 )

RET URN

E N D
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I

I

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
c
c

c

c

S U B R O U T I N E  M C S C B

T h i s  s c b r o c t i r . e  r e c i e v e s  t h e  r e a c t i o n  t e m p e r a t u r e  

a n d  t h e  i n i t i a t o r  c o n c e n t r a t i o n  a n d  c a l c u l a t e s  t h e  

n e c e s s a r y  r e a c t i o n  p a r a m e t e r s  u s i n g  t h e  d a t a  

s t o r e d  i n  D A T A . F O B  E L C C K  l A T f l  s u b r o u t i n e  a n d  

t r n s m i t s  t h e  r e s u l t s  v i a  t h e

C O M M O N  b l o c k s  t c  U P D A T E  S u b r o u t i n e ,  a n d  p r i n t s  o u t  

i n i t i a l  r a t e  c o n s t a n t s .

T E M P : r e a c t i o n  t e m p e r a t u r e  i n  d e g .  C .

I N C O N : i n i t i a l  i r i t i a t c r  c c n c e n t r a t i o n  i n  P C I E S / L I T E B

O M ï d e n s i t y  o f  m o n o m e r  i n  G S A M / C C

E P S i v o l u m e  s h r i n q k a q e  f a c t o r

V E M : f r a c t i o n a l  f r e e  v o l u m e  c f  m c n o m e r

7 F P : f r a c t i o n a l  f r e e  v o l u m e  o f  p c l y m e r

C O N M ; c c n c e n t r a t i c D  o f  p u r e  m c n c m e r  i n  M O L F 5 / L I T E R

T A B S ;  a b s o l u t e  t e m p e r a t u r e  i n  d e g .  K

K P r p r o p a q a t i o n  r a t e  c o n s t a n t  i n  L I T E R / M C I E S / S E C

K T ; t e r m i n â t  i o n  r a t e  c o n s t a n t  i n  L I T E H / K O T 5 5 / S E C

K D :  i n i t i a t o r  d e c c  m p c s i t  i c r  r a t e  c o n s t a n t  i n  1 / S E C

C M ; c h a i n  t r a n s f e r  r a t e  c o n s t a n t  t o  m o n o m e r

R I O  z i n i t i a l  r a d i c a l  g e n e r a t i o n  r a t e  M C I E S / I T T E R / s E C

F  E O T  :  c o n  c e n t  r  a t  i o n  o f  r a d i c a l  
3  t i m e = G  i n  M C L E S / I I T E H  

M S O r t h e  k i n e t i c  c h a i n  l e n g t b * m o 1 .  v t .  o f  m c n o m e r

R O : i n i t i a l  r e a c t i o n  r a t e  d T I M E / d X  i n  S E C .

D S E G : d i f f u s i v i t y  c f  m c n c m e r i c  u n i t  f o r  p u r e  p o l y m e r
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i n  C M * * 2 / S I C .

K P D M ; d i f f u s i c r  c c n t r c l l e d  p r o p a g a t i o n  r a t e  c o n s t a n t  

i D u l t i p ]  i c a t i c T  c c r s t a n t  

X I ; u s € d  t o  c a l c u l a t e  K P t M

B E T A ; t i e  d i f f e r e n c e  b e t w e e n  f r a c t i o n a l  f r e e  v o l u m e  

o f  p o l y m e r  a n d  m o n c m e r ,  o r  a  d i m e n s  i c r . l e s s  

p a r a m e t e r  à ) V P = V î X C  

P H I M : v c l u m e  f r a c t i o n  c f  m c n c m e r  5 V F = 7 F X C  

X C :  m i n i m u m  d e c r e e  c f  p o l y  m e  r i z a  t i  o n  < î V F = V F X C  

G A M M A ; d i m e n s i c c l e s s  p a r a m e t e r  3 7 F = V F X C  

F J ; r e c a l c u l a t e d  i n i t i a t o r  e f f i c i e n c y  

2 ; e n t a n g l e m e n t  f a c t o r  5 V F = V F X C

X  7 , X 2 , X 3 ; d u m m y  v a r i a b l e s  n e c e s s a r y  t o  c a l l  S B R K E L  

X K T V F  : m u l t i p l i c a t i o n  c o n s t a n t  f o r  p h a s e  I I  

t e r m i n a + i c n  r a t e  c o n s t a n t  

J C E V ; o u t p u t  d e v i c e  n u m b e r

S U B R O U T I N E  MC I C  S (  I F  M P , I  N C C S )

R E A L  I N C O N , L A f ! B A ,  M 0 , K E D M , K I , K D , M 5 0  , K F

C O M M O N  b l o c k s

C C n a C N / F A I E / . R D C I  , F 0 , K ? I ) E , K K 0  , K D , C K , K P , K T , X  F , R I 0

C C M M O N / M O D E / M C D E , I E B M I N A I I C N

R Î A L  f f C E E

C O M Ü C N / K I T F / X K I 7 F
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I

i

c

c

c

c

c

c

c

c

c

c

C C K K C  5 / V F D T / 7 I X  C

C O  M H O  N  /  TF/Ti ? M ,  P  , F P S  , C  C Ï  M , D  S E G

C C K M C K / r A T a / V T S , A L P , T S f l A M I A , A N G S T , D S , X S , E P S O , E 9 S T ,

1 A I H O  , A I 8 T , D f O , E f T , M O ,  A R T ,  I K T , A K ? , E K P  , A  K D  ,  E K D , A C  M ,

2  E C H , F , F W , E X  

C C M M C S / E E V / J P Î V

F r e e  v o l u m e s ,  d e n s i t y ,  a n d  m c n c m e r  c o n c e n t r a t i o n

D M = D M O * D M T * T E M P  

S P £ = E  E S O  +  E P S * T F F P  

7  F  B=  A I  SO + a i  3 T  * T F M P

I F  ( T I M P . G E . T S )  7 F P = V F S  +  a L P * ( T E M P - T S )

I F ( T E M P  . I T . I S )  \ F P = V F  S + a i P + I A K E  A * [ T E M P - T S )

C C K f ! =  1 C 0 C . / M Q « E K

T e m p e r a t u r e ,  a n d  r a t e  c c n s t a n t s  f r o m  A r h e n i u s  

e  s p r e s s i o n

T A B S = T F K P + 2 7 3 . T E  

K P =  A R P * E X P  ( - E K F / T  A f S )

K T = A K T * E X P  C - E K l / T A B S )  / F X / F S  

K D = A K D = » E X P  ( - E R D / T A B S )

C M =  A C S * E X P  ( - Î C K / T  A E S )

I n i t i a l  r a t e ,  k i n e t i c  c h a i n  l e n g t h

R I 0  =  2 -  * F * R D * I K C C N * F X / F W
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R D O l ^ S Q R T  { H I C / K I )

H N O = C C N M * K P * H C / S Q B 1 ( R I 0 * K T )

B 0 =  K E ^ F E C T

D i f f u s i o n  c o n t r o l l e d  p r c p a q a t i c n

X l=  Î lO O O . /C C f  K / e .  02 3123)  =<'*.3333 33 

D S E G = tS *TA B S /  {TS + 2 7 3 .  15) 

KPDa=i<g,=*DSEG/CCf lH/XL**2

C a l c u l a t i o n  o f  K T V F = *

B E T  A = V î î f - V F ?

P B I « =  I V F X C - V ? P ) / 3 H 3 A  

X C = X £ /  ( l . - P H I f f )

B E T a = C I ? * X C

S a a M a  =  X C * S Q R T  1 F I C * F T )  / K E / C C K F / E H T ? !  

F J = F * F X / F K

Z =  Î .  ; X 1 =  2 ,  ; X 2 =  1 .  ; X 3 = 1 .

C A L L  S B H K P L  ( M O D E , B 1 T A , G A £ K & ,  1 .  , 2 , X T  , X 2 , X 3 )  

X K T V F =  l . / Z

P r i n t c u t  c f  C c r s t a r t s

T F  ( J B E V .  S E -  0 )  W F Î T E { J  C E V ,  2 0 )  T  E M ?  ,  I N C O  N  ,  F  fc , F  X  ,  V F X C  ,  

Î  X K , C M  , E P S ,  V F M  , 1 i F P , C C R M , F P ,
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2  K T , F E , C P , B I O , S Î O , E O , R E O T , F J , K P r a

È

C

c

c

c

c

c

c

c

c

3 F 0 B M A 3  ( I H O , T O X ,

9  I R 0 , T 0 X , » 7 R

8  1 HO ,  10  7 ,  ’ V F 7 C  =

7  I H O , 1 0 7 , ' D n

1 1 H O ,  1 0  7 , ‘ V F  M =

2  T H O ,  1 0 7 , ‘ C O S H  =

3  T H O , 1 0 7 , ‘ K T

4  1 HO , 1 0 7 ,  ‘ C K

6  I H O , 1 0 7 , ‘ M H O  =

7  I H O ,  1 0 7  , ‘ n D C T  =

8  I H O ,  1 0 7 , * K P D « £  =

B H T U F K

E N D

3 1 H P  = »  , E 1 4 . 6 ,  1 0  7 , ‘ I  s e e ’ , E 1 4 . 6 /  

, E 1 4 . 6 , 1 0 7 , » F X  = ‘ , F 1 4 . 6 /

,  E i a . 6 , 1 0 X , * 7 K  = ‘  , 2 1 4 . 6 /

,  F 1 4 .  6 ,  1 0 7 , ' E P S  = ‘ , E 1 4 . 6 /

, E 1 4 .  € ,  1 0 7 , ‘ V F P  = ’ , F 1 4 . 6 /

, E T 4 . 6 , 1 0 7 ,  ‘ F P  

, E 1 4 . 6 , 1 0 7 , »  F D  

,  E 1 4 .  6 ,  1 0 7 ,  * E I 0  = »  , E  1 4 . 6 /

, E  1 4 .  6 ,  1 0 7 ,  * D X D T 0 = » , F 1 4 . 6 /

, E 1 4 . 6 , 1 0 7 , » F  =  » , E 1 4 . 6 /

, E 1 4 . 6 )

= ‘ , E T 4 . 6 /  

=  » , E » 4 . 6 /

S D B R C D T I K F  M C N C P

T H I S  S O E P O O T I S E  I S  T H E  S A M E  A S  M C N C M  

E X C E P T  T H A T  I T  I S  A P P L I E C  F O R  T E E  

P S E O D O - C O N V E N T I C N A I  K I N E T I C S .

S O E H C O T I N F  E C  Î C C  ( T E M P ,  I N C O N )

R E A L  I B C C S , I A P t 2 , M O , K P C « , K T , K D , N N O , K P

C C M M C g  b l o c k s
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C

C

C

C

c

c

c

C C K M C S / F A T I / E E C T ,  Î 0 , K P E M ,  D ,  C M , K P  , K T ,  X K  , R T O

C C Ê Î ? C A y î f C D E / w C E  F ,  T E R M I N A T  I C N

H I A L  M O D E

C C  M MC ¥ /  K T  V  ? / X  K T V  F

C C M H O N / V F D 3 / V F 7 C

C C R M C H / 7 F / V F H , V Î P , E P S , C C N M , E S F G

C O f î M O N / D A T A / V F S  , A  I P  , T S  , 1 A  M D A  ,  A N G S T ,  D S  , X S  ,  F I S G ,  F F S T ,

1 aLM0,ALMT,DM0,DKT,M0,AF3,EKT,AKF,HKP,aKr , ÎFE,  ACM,

2  F C M , F , î W , F X  

C O M M O N / D E V / J D E V

F r e e  v c l u r r e s ,  d e n s i t y ,  a n d  r a o n c i n e r  c o n c e n t r a t i o n

D M = D M O + D M T * T E K Î  

E P £  =  F P £ 0  + F F S * T F l f P  

7 F 8 = a i e O  + ALMT =«T F H F

I F  ( T E M P . G E . T S )  V F  P = V F  S + A L  P  *  (  T E M  P - T S )

I F ( T E H P  , L T . T S )  \ F P = V ? S + A L F ^ I A K D A * ( T E M P - T S )

C C F  M = T C C O . / M O ^ r M

T e m p e  r a t u r e ,  a r d  l a t e  c c n s t a n t s  f r o m  A r h e n i u s  

e x p r e s s i o n

T A B S = T F M Î  +  2 7 3 .  1 5  

K P = A K P * E X P ( - F K F / T A E S )

K I = A K T * E X P ( - E K 1 / T A B S )  / F X / F N  

K E = A K D * E X P  ( - E K D / T A B S )
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C M =  A C  S * ï ï X E  f - I C K / T  A P S )

I n i t i a l  r a t e ,  k i n e t i c  c h a i n  l e n g t h

a 1 0 = 2 .  4 f * K B * I N C G N * F X / F B  

R D O T = S Q B T  ( P I O / K T )

M N O = C C S H * K P * H C / £ Q B T  ( R I 0 * K T )  

g O = K P * R D O ' T

D i f f ü s i c n  c o n t r c l l e d  p r c p a g a t i o n

X L =  I 1 C O O , / C C N M / € . C 2 3 E  2 3 )  * * . 3 3 3 3 3 3  

D S E G = D S * T A 3  £ / ( T S + 2 7 3 . 1 5 )

K P D B = 4 8 ,  ♦ D S E G / C C N M / X L * * 2

F J = F * F X / F W

X K T V F = 1 .

P r i n t c u t  c f  C c x s t a n t s

I F  I J D E V . N E .  C )  K R I T E  ( J D E l i ,  2 0 )  T E P P  , I  N C C N  , F V  ,  F X ,  V F X C ,

T X K , D M , E P S , V F H , V F P , C G N 8 , K P ,

2  K T , F D , C f , H I O , K Î O , P O , E T O T ,  F J , K P E M  

2 0  F O R M A I  ( I H O , Î 0 X , » ' [ E M P  =  » , E  1 4  . 6  ,  1 0  X  ,  *  I N C O  K =  • ,  E l  4 .  6 /

9  T H 0 , 1 0 X , » F B  = • , E 1 4 . 6 , 1 0 X , » F X  = » , E Î 4 . 6 /

8  I H O ,  1 0 X , ‘ V F X C  = * , E 1 4 , 6 , 1 0 X , * X K  = * , E 1 4 . 6 /

7  Î H 0  , 1 0 X , ’ D H  = •  ,  E 1 4 .  6 ,  1 0 X , »  E P S  = »  , E  1 4 .  6 /

1 1 H 0 , 1 0 X , « 7 T M  = » , E 1 4 . 6 ,  1 0 X , » V 7 P  = » , E 1 4 . 6 /

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



P a g e  196

gg
I

I
I C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

2 1 H0 ,  1 C X , » C 0 N «  = » , E T 4 . 6  ,1 o x , *  KP = * , 7 1 4 . 6 /

3 1 H 0 , 1 0 X , * K T  = * , i i a . 6 , 1 0 X , ' K C  = * , 7 1 4 . 6 /

4 1 H 0 , 1 0 X , » C H  =  », E 1 4 .  6 ,  1 0 X , * E I 0  = * , 5 1 4 . 6 /

6 1 H O , 1 0 X , * M N 0  = » , 5 1 4 . € , 1 0 X , » D X D T 0 = » , 7 1 4 - 6 /

7 I H O , 1 0 X , * P D  C l  = * , 5 1 4 . 6 , 1  O X , * 7  = * , 5 1 4 . 6 /

8 Î HO,  10X,  *KPDM£ = * , 5 1 4 , 6 )

H E T 0 F 5

END

S a a R O C T l N F  S B E F Î L

I h i s  s u b r o u t i n e  r e c i e v e s  t h e  R O D E  o f  t e r m i n a t i o n ,  

a n d  t i e  d  i i r e n s  i <  n  l e s s  p a r a  n e  t e  r s  E 5 T A , G A K P A ,  a n d  

W a n d  c o m p u t e s  t h e  i n d i c e s  2 , L S , L Z , X Z + 1 .

M C C E :  e i t h e r  E 3 S T R C p o r t i o n a t i o n  o r  R E C O M B i r a t i o n  

B E T A :  c i m e n s i o t  3 e s s  p a r a n e t e r  

G A M M A  :  d i m e n s i o n  l e s s  p a r a m e t e r  

W :  d i i e n s i c n l e s s  p a r a m e t e r

Z : e n t a n g l e m e n t  f a c t o r  w h i c h  d e t e r m i n e s  t h e  

p o l y m e r i c a t i c n  r a t e  a n d  t h e  n u m b e r  a v e r a g e  

i n s t a n t a n e o u s  m o l e c u l a r  w e g h t  

L N , L Z , 1 Z ? 1 : c o r r e s  p e n d i n g  m o l e c u l a r  w e i g h t  i n d i c e s  

Z P N S W : n e w  t r i a l  v a l u e  c f  Z
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I*

a

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

HR : 1 /W-1

Z P :  e n t a n g l e m e n t  f a c t o r  f o r  t h e  h y p o t h e t i c a l  s y s t e m  

G l B î G A M M A  v a l u e  f o r  t h e  h y p o t h e t i c a l  s y s t e m  

B E I z B E I A  v a l u e  f o r  t h e  h y p o t h e t i c a l  s y s t e m  

H E E C E : e r r o r  c r i t e r i o n  f o r  t h e  t r i a l  a n d  e r r o r  

c  a  l e u  l a t i c r

G A E M 1 E : G A M M A  v a l u e  w i t h  r e s i d u a l  t e r m i n a t i o n  

X J W , F A C T O R , X J E 2 , X Z , X Z P 1 : i n t e r m e d i a t e  r e s u l t s

S E B R O  C T I N E  R B F  F I X  { M O D  E ,  B E T  A , G  A M M  A ,  H ,  2  , L W  ,  I Z ,  I Z F  1 )  

R E A L  X « , L Z , I Z F ?

E r r o r  n e s s a c e  f o r  H > 1

I F  ( K .  G T .  1 .  )  T Y P E  T M  

1 1 1  F C E M A T  n O X ,  ' E Î T C F  : 5 ? > 1  * )

E r r o r  m e s s a g e  f o r  H < 0
f

I F ( W . I T . O . )  . T Y P E  2 2 2  

2 2 2  F C E M A T  ( 1 0 X ,  » E Î I C E  : H < 0  • )

M a s t e r  i n d i c e s  w i t h o u t  r e s i d u a l  t e r m i n a t i o n

C A L L  C A I C Ü ( E E T 2 , G A M M A , Z , L W , L Z , L Z P 7 )

S h o r t c u t  f o r  . 9 5 9
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Dm

K

I

•0 .

C

C

c

c

c

c

&

I F  ( E . G K . 0 . S 9 S )  Z E K E 1 = Z  

I F C « . G E , 0 . 9 Ç 9 )  G O  T O  1 0 0

E q u i v a l e n t  s t a t e  w i t h  i c  r e s i d u a l  t e r m i n a t i o n

H E =  1 . / K -  t .

2 0 0  Z E = H * Z  +  1 . - W

G A H = G à  Ç P T  ( Z /  ( Z + W H )  )

B F T = B F T & 4 G a H M A * « 2 / S Q E T ( Z + H B )

C A L L  C 5 L C D ( B H T , G A H , Z , I ï , Î Z , I Z P Î )

Z F N E H = h ’ * Z + 1 .  - y  

E R F O R = A B S  ( 1 . - Z T / Z E N E W )

I F ( E R B O E . L T . C . C C I )  G O  T O  î O O  

G O  T O  2 0 0  

1 0 0  Z = Z E K F H

C a l c u l a t i o n  f o r  S E C O H  E i n a t i o n

I F  ( H C E E .  E Ç .  T I S Î E C * )  G C  T O  3 0 0  

GAMEAE=GAMMA/SCî T fW)

F A C T O H =  ( B E T A + G A K M A P * S Q B ' ] ( Z ) / 2 . )  /

1 { B E T A + G A M M A  P * S Q F T  ( Z )  )

X  J W =  2 .  - F A C T  C F * l W / 2 .

X J W 2 = 2 . - F A C T O R * I W  

X Z = L 2 * ï O R 2 + I « / 2 .

X Z P  1 = L Z *  { L Z P 1  ( î  . -  ( 1 Z + 1 Z P Î  ) * F A C T C B / 2 .  )  )
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3 3 3

300

L W =  F A C T C E * I W * X J W  

L Z = 3 . * ? & C T 0 B * X 2 / X J W  

I Z P 1 = 4 . * F A C ? C P * X 2 E ? / X Z  

T F  ( K C D E .  E C .  '  F Î C C H E *  )  B F T Ü P N

E r r o r  m e s s a g e  f o r  t h e  m o d e  o f  t e r m i n a t i o n

TYPE 333

E 0 B Î 1 A T  { t O X , ' E E R C R :  R C D E  C F  T E E « I  K A T I  C N ' )  

E E T D E H

C a l c u l a t i c n  f o r  D 1 S P E C p o r t i o n a t i o n

L  2  =  3 . * 1 2 ; L E F T = 4 . * 1 2 P I  ;  S E T  C R N

E N D

S U B R O U T I N E  C A L C C

T h i s  e n t r e n t i r e  c a l c n l a t e s  t h e  i n d i c e s  I Z ,

L Z + 1  u p o n  r e c i e v i r g  B E T A  a n d  G A M M A  v a l u e s .  

T h e  c a l c u l a t i o n s  a r e  d o n e  b y  f i r s t  c a l c u l a t i n g  t h e  

i n d i c e s  3  s p l i r e  p e i n t s  c a l l i n g  t h e  s u b r o u t i n e  A O X  

a n d  t h s r  i n t e r p o l a t i n g  b e t w e e n  t h e  v a l u e s .
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S U B E O Ü T I N F  C â l C U  ( E E T  A ,  G A M M  â ,  Z  ,  L  W ,  L Z  , L  Z? 1)

C C K K C  K f c l o c t s

• C O K M C N  / J / Z r  A T  ( 1 0 ,  3 )  ,%.W E A T  (  1 0 ,  3  )  ,  L Z  DAT (  1 0  , 3  )  ,

2  L Z  1 C  A T  1 1 0 , 3 )  ,

î  C 2  1 9 , 3 , 3 )  , C W  ( Ç , 3 , 3 )  , C Z P ( 9 , 3 , 3 )  , C 2 P 1 ( 9 , 3 , 3 )  , G A K p O )  

R E A L  L K , L Z , L 2 P  1 , ! « ?  , 1 2 1  , I Z P 1 I , I K 2  , 1 5 2  , 1 Z P 1  J  

P . E A I  l W I A T , L Z r A T , l Z  I I  A T

D e c i d e  t h e  n e c e s s a r y  s p l i n e  p o i n t s

I F  ( B E T A . I T . O .  )  Ï F T Ü E N

I f  ( B E T A .  G E .  1 0 . .  O R . G  A M M  A . G T .  1 0 . )  GO T O  1 0 0  

I F ( B E T A . G T . 0 . 1 )  G C  T O  2 0 0  

I ? ( B E T A . G E . O .  . A K D . B E  T A . I T . 0 . 0 0 1 )  1 = 1  

I F  {  B E T  A .  C E . G .  .  A N C . B E T A . L T . 0 . 0 0 1 )  J = 3  

I F  ( B E T A .  G E . O .  .  A 5 C .  B  I T  A .  I T .  0  .  0 0  1)  S C A L E = B E T A *  1 0 0 0 .

I F  ( B E T A  . G E . O .  0 0 1  . A N D . B E T A . I E . 0 .  1)  1  =  3

I F ( B E T A . G E . O .  0 0 1 . A N D . B E T A  . I E . 0 . 1 )  J = 2

I F ( B E T  A . G E . O . 0 0  1 .  A N  I . B E T A . L  E . O . 1 )

1 S C A 1 E =  ( B E T A - 0 .  0 0 1 ) / 0 .  0 9 9

C a l c u l a t e  t h e  i n d i c e s  a) s p l i n e  p o i n t s

Z 1 = 0 ,  ; Z 2 = 0 ,  ; 1 W  1 = 0 . ; L W 2 = G . ; L Z 1 = 0 .

1 2 2 = 0 . ; I Z F 1 1 = 0 - ; L Z P 1 J = 0 ,

C A L L  A U X  I I , G A M M A , 2 1  , I K l  , 1 2 1  , I Z P 1 I )
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C

C

C

C

C

C

c

c

c

c

c

c

C A l l  a n x  J O , G a i ' M A , Z  2 , 1 W 2 , 1 Z 2 , L Z ?  1 J )

L i n e a r  i n t e r p o l a t i o n  b e t w e e n  s p l i n e  p o i n t s

2 =  ( Z 2 - Z  1 )  « E C A I E + Z  T 

1 W =  j I W 2 - I K l )  * S C a i F 4 - L W  1 

L Z =  Î L Z 2 - 1 2 Î ) * S C A I E + I Z 1  

L Z P  î =  ( L Z P  1 J - L Z P 1 T )  * S C A L S + I Z F U  

G C  T C  3 3 0

S h o r t c u t  f o r  C - A M î ! a > 1 0  o r  E E T A > 1 0

T O O  Z = î . ; L ï i  =  2 .  ; L Z = 1  .  ;  I Z P 1  =  1 F H T D F N

S h o r t c u t  f o r  0 .  1 < E E T A < 1 0

2 0 0  C A L L  A O X  { 2 , G A F ? A ,  Z , 1 W , I 2 , I Z F 1 )

S C A L E = S Q R T  ( ( B E T A -  C . î )  / 9 . 9 )

Z = Z +  ( 1 .  - 2 )  ♦ S C A L E ;  i y = L W +  [ 2 .  - I W )  ♦ S C A L  E

L 2 = I 2 +  ( 1 . - I Z )  ♦ S C A L E ; L Z P 1 = L 2 P  1 +  { 1 . - L 2 P  1)  ♦ S C A L '

M i n o r  a d j u s t m e n t  i f  t h e  e s t i m a t e d  2 > T ,  e t c .

3 3 0  I F  ( Z . G T .  T .  )  2 =  1 .

I F ( I N . I T . 2 . )  1 5 = 2  .

I F  ( 1 2 .  I T .  1 .  )  L 2 = 1 .

I F  ( 1 2  Î  I .  I T .  1 .  )  1 2  P  1 = 1 .
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C

C

C

C

C

C

C

C

C

C

C

c

I E ( z . 1 I . 0 . )  Z = C .

I F  ( I N .  G T .  4 ,  )  L W = 4 .

I F ( 1 2 .  G T .  2 .  )  I Z = 2 .

I F  ( L Z P  Î . G T .  2 .  ) I Z F Î = 2 .  

R E T O R S  

E N D

S O B B C U T I S F  A U X

T h i s  s u b r o u t i n e  c a l c u l a t e s  t h e  i n d i c e s  Z  ,  LW ,  1 2  ,

1 2 +  1 f o r  G A K K A  v a l u e  g i v e n  b y  c a l l i n g  r c u t i n e  w i t h  

B E T A  v a l u e  S O , 0 . 0 1 ,  o r  0 . 1  u s i n g  t h e  c u b i c  s p l i n e  

c o e f f i c i e n t s .

S O E R G D T I N E  A O X  (  I ,  G A  H b  A ,  Z  ,  1 Î Î  ,  L Z P ,  L  2 P  ? )

C O M M O N  b l o c k s

C O M M O L '  / J / Z D A T ( T C , 3 )  , X W D A T (  1 0 , 3 )  , I Z C A T {  1 0 , 3 )  ,

2  L Z  1 D A T  { 1 0 , 3 )  ,

1 C Z ( 9 , 3 , 3 ) , C W  ( 9 , 3 , 3 ) , C 7 . P  ( 9 ,  3 , 3 )  , C 2 P  1 ( 9  ,  3  ,  3 )  , G A  M (  M )  

R E  A  I  L R [ A T , 1 2 I A T , 1 Z 1 I A T  

R E A L  L t i , I Z P , L Z P l
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C  S t a r t i n g  p o i n t

C

K= !

C

C  Bypass f o r  GAP.KA >10

c

I F ( G A M M A . G E .  G A H  { 1 0 )  )  G O  T O  3 0

C

C  S e l e c t i n g  t i e  r i g h t  g r i d

C

D O  1 0  0 = 1 , 9

I F ( G A K K A .  G E .  G A M  ( J )  )  K = J

I F  ( G A M M A .  I T .  G A M  U )  )  G O  T O  2 0

1 0  C O N  T I N O E  

2 0  C O N T I N U E

C

C  I n t e r p o l a t i o n  f c r n u l a s

c

D l = G A e f ' 5 - G A K  ( K )

Z  =  C Z  { K , 3 , I ) * F 1 * * 3 +

1 C 2  ( K , 2 , I )  * D  M + 2 +  C Z  ( K , 1  , 1 )  * D  1 + Z E A T  ( K , I )  

L H = C H ( K , 3 , I )  * D  1 * * 3 + C W  { K , 2 , I ) * D 1 * * 2  

1 + C »  ( F ,  1 , T )  ♦ E 1 + I S E A T  { K ,  I )

L Z P = C Z F  ( K , 3 , I )  * E  1 * * 3  + C Z P  ( K ,  2 , 1 )  * 0 1 * * 2  

1 + C Z P  ( K ,  1 , 1 )  * D  1 +  I Z D A T ( K , I )

L Z P  1 = C Z P  1 ( K , 3 , I )  * D 1 * * 3 + C Z F l  ( F , 2 , 1 ) * E 1 * * 2  

1 + C Z P 1  ( F ,  1 , 1 )  * E 1 + L Z  1 E A T  ( K ,  I )

EETUBN

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



P a q e  204

C

C

S h o r t c u t  f o r  GAMMA >10 .

3 0  Z = l . ; L K = 2 . ; L Z = 1 , ; 1 Z P 1 = 1 .  

R E T U R N  

E N D

C  .

C  S O B E C O T I N E  K C I R T

C

C  T h i s  s u b r o u t i n e  c a l c u l a t e s  t h e  d e r i v a t i v e  w i t h

C  r e s p e c t  t o  c c n v e r s i c n  X  o f  p o l y m é r i s a t i o n  r a t e  D M  ( 1  )

C  a n d  t h e  c u m u l a t i v e  m o l e c u l a r  w e i g h t  a v e r a g e s  D M ( i ) ,

. C  1 = 2 , 4  f r o m  t h e  i n s t a n t a n e o u s  p o l y  m e r i z a  t i c n  r a t e

C  M I N S  1 1 )  a n d  t h e  i n s t a n t a n e o u s  m o l e c u l a r  w e i g h t

C  a v e r a g e s  M I N S ( i ) ,  i = 2 , 5

C  c a l c u l a t e d  i n  t h e  s u b  r c u t i n e  U P D A T E ,

c

C  X : t h e  f r a c t i o t a  1 c c n v e r s i c n

C  M A V  [  1 )  :  T I M E  i n  s e c o n d s

C  M A V  1 2 ) r c u m u l a t i v e  n u m b e r  a v e r a g e  m o l e c u l a r  w e i g h t

C  M A V ( 3 ) ; c u m u l a t i v e  w e i g h t  a v e r a g e  m o l e c u l a r  w e i g h t

C  H A V ( 4 ) :  c u m u l a t i v e  z ^ a v e r a g e  m o l e c u l a r  w e i g h t

C  M A V [ 5 ) : c u m u l a t i v e  z + 1 - a v e r a g e  m o l e c u l a r  w e i g h t

C  D P  ( 1 )  : d  ( T I M E  i n  s e c o n d s ) / d X

C  D M  ( i ) , i = 2 , 5 : d / d x  c f  t h e  c o r r e s p o n d i n g  M A V ( i )
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C  M I N S  (  1 )  : e g i i a l  t o  M A V ( 1 )

C M I M S  l i )  , i = 2 , 5 : i r £ t a c t a r e o n f  m o l e c u l a r  w e i c b t

C  a v c r a c e s  o f  t i e  c  c r r e  s  p e n d i n g  M f l V ( i )

C

c

S D E E C O T I S E  Ü C I S T ( X , S A 7 , T H , M I K S )

R E A L  Ü A V  ( 5 )  , D H  ( 5 )  ,  M I N S ( 5 )

C

C  W h e n  X < l , F - 9 ,  t K  ( i )  = H I N S ( i )

c

I F  { X . L T .  1 . F - Ç )  G O  T C  1 0 0

C

C  E r r o r  m e s s a g e  w h e n  X > 1 .

C

I F f X . G T . T . )  T S F E  1 0  

1 0  F O R M A T  [ 1 0 X , ' 3 F P C R : X  G R E A T E R  T H A N  1 ' )

I F  ( X -  G T .  T .  )  F E T O R S

C

C  F c r n u l a s  f o r  D M ( i ) , i = 2 , 5

c

D K ( 2 )  =  M A V  ( 2 ) / X *  ( 1  . - M A V  ( 2 )  / M I N S  ( 2 )  )  !  M S  

D K  | 3 ) =  { K I N S  ( 3 ) - M A V  ( 3 )  ) / X  Î M W

D M  ( 4 )  = M I N S  ( 3 )  / K f t V  ( 3 )  / X *  ( « I  N S ( 4 )  - M A V  (  4 )  ) Î  P Z  

D M ( 5 )  = M I N S  ( 4 )  < K I N S  ( 3 )  / M A V  ( 4 )  / P 1 A Ï  ( 3 ) *

Î  K I N S  ( 5 )  - M A V  ( 5 )  ) / X  ! K Z  + 1

F E T O R  P
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c

l O t c u t  f o r  Z < 1 - E ” 95  h

100 0 C 200  T - 2 , 5

M A V  { I ) = M T N S  ( I )

2 0 0  D M ( I ) = 0 .

M A V ( 1 ) = 0 .

E E T U  E N  

E N D
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C

C

C T h i s  i s  a  B L C C K  E A T A  s u b r o u t i n e  w h i c h  s u p p l i e s

C  t h e  n e c e s s a r y  D A T A .

C

c

C M O D E :  t h e  t t c d e  c f  t e r m i n a  t i c n .

C  e i t h e r  Î I C C M E  o r  E I S P R O

C V  r s  ; f  r  a c t  i o n  a l  f r e e  v o l u m e  c f  p r  r e  p c l y m e r

C a t  T S  d e q . C .

C  A L P :  c o e f f i c i e n t  o f  t h e r m a l  e x p a n s i o n  C F  f r e e

C  v o l u m e

C T S : r e f e r e n c e  t e n p e i a t u r e  i n  d e q . C  a t  w h i c h  V F S  i s

C  o b t a i n e d ,  t b e  l o w e s t  t e m p e r a t u r e  w i t h  t h e  f r e e

C v o l u m e  t h e r m a l  e x p a n s i o n  c o e f f i c i e n t  i s  e q u a l

C t o  A L P .

C L A M D A : r a t i o  o f  t h e  f r e e  v o l u m e  t h e r m a l  e x p a n s i o n

C  c o e f f i c i e n t  b e l o w  T S  t o  t h e  v a l u e  a b o v e  T S .

C

C V F P :  T h e  f r e e  v c l u a e  c f  t h e  p u r e  p o l y m e r  a t  t e m p .  T

C d e q . C  i s  c a l c u l a t e d  b y  t h e  f o l l o w i n q

C f o r m u l a .

C  V F ?  =  ' S F S + A L P *  ( T - T S )  a t  T > T S

C = V F S + L A H D A * a i P *  ( T - T S )  a t  ' K T S

C

C A N G S T :  t h e  r o o t - m e a  r - s q u a r e  d i s t a n c e  p e r  m o n o m e r i c

C c h a i n  u n i t  i n  A N G S T R O M

C D S :  t h e  d i f f u s i v i t y  o f  m o n o m e r i c  c h a i n  u n i t  f o r  p u r e
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C p c l y a e t  a t  T S  i n  C E ¥ T I « E T E  F**  2 / s  EC

C  X S ; t h €  m i n i m  d e c r e e  c f  p o l y m e r i z a t i o n  f o r

c e u t a n q l e m e n t  f o r  p u r e  p o l y m e r .  I t  i s  a s s u m e d

C  X S  i s  t e m p e r a t u r e  i n s e n s i t i v e .

C  E ? S O , E ? S T ;  p a r a m e t e r s  t c  c a l c u l a t e  t h e  v o l u m e

C  s h r i n q k a q e  f a c t o r  b y  t h e  E Q N .

C  E î £ = E E S O + E P S T * T

C  D M 0 , D M T : p a r a m e t e r s  t o  c a l c u l a t e  t h e  d e n s i t y  o f

c m o n o m e r  b y  t h e  f o r m u l a

C  D M = D « 0 + D M T * T

C  A L K 0 , a i M T :  p a r a m e t e r s  t c  c a l c u l a t e  t h e  f r a c t i o n a l

C  f r e e  v o l u m e  o f  p u r e  m c n c m e r

C

C  b y  t h e  f o r m u l a

C  V E 5 = A L f f O + A L M T * T

C  H 0 : m c l e c u l a r  w e i g h t  o f  m c n c m e r

C

C  T h e  s u b s e q u e n t  r e a c t i o n  r a t e

C  c o n s t a n t s  h a v e  t h e  d i m e n s i o n  L I T E R / M C L E / 3 E C .

C

C  A K T , E K T :  A r h e n i u s  e q u a t i o n  p a r a m e t e r s

C  f o r  t e r m i n a t i o n

C  K T = A K T * E X P  Î - B K T / ( T + 2 7 3 . )  )

C  A K P  ,  E K P :  A r  h e n  i u s  e q u a t i o n  p a r a m e t e r s

C  f o r  p r o p a g a t i o n

C  E P  =  A K E * S X P  ( - E K F / { T + 2 7 3 . )  )

C  A K D ,  E K D :  A r  h e n  i u s  e q u a t i o n  p a r a m e t e r s
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C f o r  i n i t i a t o r  d e c o m p o s i t i o n

C  . K D = A K D * E X P { - E K D / ( T + 2 7 3 . )  )

C  a c i l ^ E C M :  A r f c e n i ï s  e q u a t i c n  p a r a m e t e r s

C  f o r  c h a i n  t r a n s f e r  t c  m o n o m e r

C  C K = A C P * E X P { - E C K / { T + 2 7 3 . )  )

C  ? : i n i t i a t o r  d e c c m p c s i t i c n  e f f i c i e n c y ,

c

C  T h e  v a l u e s  o f  F T  a n d  T  c a r  b e  a d j u s t e d  d u r i n g

C r u n n i n g  Î N T . F C Î  t o  f i t  t h e  r a t e  d a t a  a n c  c c l e c u l a r

C  w e i g h t  d a t a  s i m u l t a n e o u s l y  a n d  w i l l  b e  P R I N T E D

C  o u t  a c c o r d i n g l y  b y  t h e  s u b r o u t i n e  M O N O M  w i t h o u t

C c h a n g i n g  t h e  D A T A  f i l e .

C

T H I S  S r j E E C D T I t î E  S U P P L I E S  I  A T  A  î O F .  M M A .

B L O C K  D A T A

C C K  E C  1 /  E C D E / D I S E B C  ( 2 )

C C  K M C  N / D  AT  A / V  F S , A 1 P , T S , L A M C A , A N G S T , D S , X S , F P S O , E P S T ,

1 A L M O , A I » T , D E O , D K T , M O , A K T ,
1 E P T , A P F , E K I , A K r ,  E K D ,  A C M ,  E C M ,
2  F , F W , F X

C C K K C  K / V E C T / V E X C

R E A L  L A  M D A ,  M 0

DATA DIS E E C / ' E IS P F CV

D A T A  V F S  , A I P , T S , I A M D A / . C 1 7 5 ,  3 . E - 4 , 9 8 . , . 4 1 6 /
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D à i a  à ? î G S T , D S , X £ / 7 . 9 ,  1 . 5 7 5 F - 2 2  , ! 0 0 . /

D A T A  E Î S O , E Ï S T ,  I K O , I H T / . 1 8 3 , 9 . ï ï - 4 , , 9 7 3 , - T .  1 6 4 F - 3 /  

D A T A  A I K 0 , A 1 H T ,  K O / .  1 4 9 ,  2 . S E - 4 ,  1 0 0 . /

D A T A  A K T , E K T / 1 G . 9 4 F 8 ,  1 2 4 5  . / , A F E , E K P /  1 . 6 1 9 1 7 , 3 5 0 0 . /  

D A T A  A F D , E K D / 1 , 5 E  î  5 , 1  5 4  5  0  .  /  ,  A C  K , E C « / ’ .  F - 5  , 0 .  /

D A T A  E / .  4 /

E N D

C

C  T H I S  S O B P O U T I S E  S U P P I I E S  D A T A  F O B  Z M A .

C

B I C C K  l A T A

C O K M C N / M O D E / D I S  I R C  ( 2 )

C O M H C N / D A T A / V F S  , A I P , T S , I A  K D A , A N G S T , D S , X S  ,  Î P S O , E P S T ,

1 A l K O ,  A I K T ,  C î O , E E T , f l O ,  A K T ,
! E K T , A F P , E K ? , A P D , E K D , A C K , E C H ,

2  F , F W , F X

C O M M O N / V F D T / 7 F X C

B E A I  l A K I A , K O

D A T A  D I S F H O / » D I S P E C V

D A T A  V F S , A L T ,  T S , L I M r A / . C 2  5 , 4 . 3 E - 4  ,6  2 .  ,. 4 ’ 6 /

D A T A  A K G S T ,  r S , X S / 5 . 9 ,  1 .  ,  4 0 0 . /

D A T A  E P S O , E P S T , I  P C , D M 1 / .  1 8  , . 0 0 1  ,  1 .  0 8  1 1 , - 3 . 3 6 3 F - 3 /

D A T A  A L M 0 , A 1 Î 5 T , H 0 / .  1 3  î  ,  . 0 0 ?  , 1  1 4  . /

D A T A  A F T , E K T / 3 . E 4 E 1 0 ,  2 5 9 0 . /
D A T A  A K P , E K P / 1 . C 1 1 E 7 , 3 2 5 3  . /

D A T A
A K D , E K D / 2 .  5 9  4 6 E  1 5 , ? 5 7 2  4  . / , â C E , E C W / 8 . 1 1 9 E - 3 , 2 1 4 4 . /

D A T A  F / . 4 1 9 5 /

E N D
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C  T H I S  S ï ï B F O H T I Î i K  S Ü E F I I F S  D A T A  F C f î  E â C .

C

3 L 0 C K  D A T A

C C  g  MC h /  P C D E / D I S  E P C  ( 2 )

C C M M C Ü / D A T  A / 7  Î S  ,  A L P , T  S ,  1  A H  D A ,  A N G S T ,  D S ,  X S  ,  E P S a , E ? S T ,

1 A L M O , A I H T , D M O , D M I , M O , A R T ,
1 E Ï T , A E Î , E F F , A f r , E K D , A C M , E C M ,

2  F , F W , ? X

C C K M C  6 / V F D T / 7 T X C

R E A L  L A M D A , M O

D A T A  r i S F T C / » C T S P E C V

D A T A  7 F S , A L P , T S , L A M D A / . C 2 5 ,  4 . 6 E - 4 , - 2 4 . ,  . 4 1 6 /

D A T A  A N G S T , D S , Î S / 6 . 8 ,  1 .  , 2  0 0 . /

D A T A  E I S O , E I S T , I K O ,  D M T / . 1  6 2 6 ,  0 . E - 4 , . 9 4  1 , - .  8 8 F - 3 /

D A T A  A I C O ,  A I M T , a O / -  1 3  1 ,  . 0 0 1 ,  1 0 0 . /

D A T A  A K ' T , E K ' î / 2 . E 6 , C . / , A K F , E K P / 8  4 0 .  , 0 . /

D A T A  A F D , E K D /  1 . 5 F  1 5 , 1 5 4 5 0 . / , A C M , E C H / 1 .  E - 5  , 0 . /

D A T A  F / . 5 2 8 /

E N D

C

C T H I S  S O B R O O T I F F  E U P F I I E S  D A T A  F O R  P A C .

C

B I C C K  D A T A

C C M M C N / M O D E / D I S F R C  ( 2 )

C 0 M M C N / D A T A / V 7 S , A I P , T S , I A  K D A , A N G S T ,  B S  , X S , E P S O , E P S T ,

1 A I M O ,  A I S T ,  D f O , E Î ? T , M O ,  A K T ,
1 E K T , A F P , E K P , A F D , E K D , A C M , E C M ,

2  F , F N  ,  F X

C O M  H O  N  /  V ? D  T / 7 F 3 C  

R E A I  l A  M D A , M O
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DATA C I S P R O / ' D I S P E C ' /

DATA V ^ S , A I Î , T £ , 1 2 « r a / , 0 2  5 , 4 . 3 ? - y , - 4 8 . , . 4  1 6 /

DATA A ) G S T , D S , X S / 6 . 8 ,  1 . , 2 0 n . /

DATA E P E O f E P S T , D M C , D M T / . 156 5 , 0 . E - 4 , . 9 2 8 , - . E S E - 3 /  

DATA A I M O , A I K T , P O / . 131 , . 0 0 1  , 1 1 4 . /

DATA AFT,  E K T / 2 ,  E 6 ,  0 . / ,  AKP,  E K P / 7 0 0 . , 0 . /

DATA A F D , E K D / 1 . 5 E 1 5 , 1 5 4 5 0 . / , A C M , F C H / 1 - E - 5 , G. /  

DATA F / . 5 2 Ç /

HSD

C

C T H I S  S OE F C D T I K E  S Ü F P 1 I Î S  EATA FOP VAC.

C

B I O C K  E A T A

C C E M C  K / M C D E / E Î  C C H  E { 2 )

C C K M C  V D A T  A / V F S , A L P , T S , L A M E A ,  A N G S T ,  O S ,  X S  ,  F ?  S O  , E P S T  ,

1 A L M O ,  A L H T , . D  MO , D M 1 , M C , A F T ,
1 E K T , A ? F , E K ? , A F E , F K I , A C M , Î C M ,
2  F , F S , F X

C C F B C  K / V F D T / V  Î X  C

R I A L  L A M Î 1 A  , M 0

D A T A  F E C C M E / » F F C C  M E * /

D A T A  V P S , A I P , T S , l A M D A / - 0 2  3 5 , 5 . F - 4 , 3 0 . , . 5 4 /

D A T A  A N G S T , D S , X S / 6 . 9 , 3 . 7 7 7 7 - 1 9 , 2 5 6 . /

D A T A  E Î S O ,  E P S T - , r  M O ,  E M T / . 2  G 7 4  ,  8  .  0 2  E - 4  , .  9  6  ,  -  1 .  4 P - 3 /  

D A T A  A I E O ,  A L M T ,  H O / .  1 5 4 ,  5 .  1 E - 4 ,  8 6 . /

D A T A  A R T , E F T / .  9 4 2  4 P T 0 ,  1 2 4  5  . / , A K E , P K P / 1 . " 7 1 8 ,  3 5 0 0 - /  

D A T A  A F D , E F D / 1 . 5 7  1 5 , 7 5 4 5 0  . / , A C M , E C M / 1 .  E - 4 , 0 . /

D A T A  F / . 6  5 9 /
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E N D

C

C  T H I S  S Ü B H O D T I N F  S U F F I T E S  T A T A  F O B  S T Y .

C C H 8 C F / E C P E / F Î C G Î !  E f 2 )

C C F E C S / E Â T I / V E S , A l P , T S , L A M r A , A N G S T , D S , Z S , E P S O , E P S l ,

1 A L Î 1 0 , A I M T , D  8 G , D ? T , H 0 ,  A K T ,
1 F P T , A F I , E K  E ,  A K C ,  F K D ,  A C M ,  E C M ,
2  ? , F H , F X

C C M Î î C t / V F C T / V I X C

3  F  A L  L A M D A , M O

D A T A  B î C C H B / *  Î F C C M E ’ /

D A T A  V F S , A 1 P , T S , L A M D & / .  C 2  4 4  5 , 4 . 5 F - 4 , 8 4 . , . 2  6 8 /

B A T A  A N G S T , D S , 3 S / 1 . 4 ,  î . 7 9 2 7 - 1 3  , 3 8 5 . /

D A T A  F T S O , E P S T , C H O ,  C H T / . 1 3 6 9 , 4  . 4 2 9 E - 4 ,
1 . 9 2 3 6 , - . 8 8 7 3 2 - 3 /

D A T A  A L « 0 , A T M T , K O / . î î 1 7 , 6 . 2 1 F - 4 , 1 0 4 . /

E A T A  A F T , B K T / 3 8 ,  9 3 E 8 ,  1 6 7 0 . / ,  A K P ,  E K P / 2 .  1 6 7 7 7 , 3 9 0 5 . /

D A T A  A F r , E K r / . 6 5 5 3 H 1 5 ,  1 5 2 2 0 . / , A C M , E C H / . 8 E - ü , 0 . /

D A T A  F / . 7 V

E N D
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C  M a i n  P r o g r a m  C C N S T - F O P .

C

C  T h i s  p r o g r a m  c r e a t e s  t h e  C O N S T . C A T  f i l e  t o  b e  u s e d

C  i n  t h e  m o d e l  c o m p u t a t i o n s  o f  D i f f u s i o n  C o n t r o l l e d

C  V i n y l  P c l y m e r i y a t i c n s -

C  T h e  i n t e r p o l â t Î C r  c o n s t a n t s  a r e  e v a l u a t e d  b y

C  c a l l i n g  t h e  I H S l  s u b r o u t i n e  I Q B S C O .

C

C  G A M  ( i ) : G A M H A  v a l u e s  r e a d  f r o m  G A M M A . E A T  f i l e

C Z  i  Î  i )  :  Z  v a l u e  f o r  B E T A = C . i  a n d  G A M M A = G A M  ( i )

C  L W i  ( i )  , l Z i ( i ) , 1 1 1 ( i ) :  t h e  c o r r e s p o n d i n g  I N , 1 Z , I Z + 1

C  C Z i : c u t i c  s p l i n e  c o e f f i c i e n t s  c a l c u l a t e c  b y  I Q H S C D

C  C L W i : c o r r e s p o n d i n g  c o e f f i c i e n t s  f o r  L W

C  C L Z g : c o r r e s p o n d i n g  c o e f f i c i e n t s  f o r  X Z

c  C Î  T- j  z c o r r e s p o n d i n g  c o e f f i c i e n t s  f o r  L Z + 1

c  

c  

c

C  D I M E N S I O N  s t a t e n e n t s

c

R E A L  G A M  11 C )  , 2 0  ( 1 C )  , 2  1 (  1 0 )  , 2 0 0 1  (  1 0 )  , L W r i {  1 0 )  ,

2 LW 1 { 10)  , L N 0 C 1  ( 1 C ) ,

1 1 2 0  ( 1 0 )  , I Z 1  ( 1 0 )  , I Z O C  1 {  1 0 )  , L  1 0  { 1 0 )  , L  1 1 ( 1 0 )  , 1  1 G 0 1  { 1 0 )

D I M E N S I C S  C Z O  ( 1 0 , 3 )  ,  C Z  1 {  1 C ,  3 )  ,  C Z  C C  1 {  1 0 ,  3) ,

3  C L R Q  ( 1 0 , 3 )  , C L 1 i 1  ( 1  0 , 3 )  ,

1 C L  R C G  1 { 1 C , 3 )  , C I Z C  ( 1  0 , 3 )  , C I Z 1  ( 1 0  , 3 )  ,

'4 C I Z O O  1 ( 1 0 , 3 )  ,  c n O  ( 1 0 ,  3 )  ,

2  c m  ( 1 0 , 3 )  ,  C L 1 0 0 1  ( 1 0 ,  3 )
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3 , DUMMY 1 (  T O )  ,D DM M Y 2  (  Î  0 , 3  )

C o n s t a n t s  u s e d  i n  I C U S C C

N=10

1 1 0  F O R M A I { 5 F 1 0 . 6  , /  ! C X , 4 ? 1 0 . 6 , /  1 0 X , 4 F 7 0 . 6 )

210 FQFMAK 1 OX,f (E 14.6,5X) ,/ 1 0 X ,6 {E 14 . 6 ,5 X ) )
IC= s

C

C  R e a d  G A P M A .  C A T

c

D O  T O O  1 = 1 ,  t l

R E A D  { 0  2 ,  1 1 0 )  G A M  ( T )  , 2 0 ( 1 )  , 1 « 0 ( I )  , L Z O {  I )  , 1  1 0  ( I )  ,

1 2 1  ( I )  , l f i 1  ( I )  , 1 2 1  ( I )  , 1 1 1  IT) ,
2  Z O O  1 ( I )  , 1 W 0 0  1 ( I )  , 1 2 0 0 1  ( I )  , L  1 0 0  1 ( I )

1 0 0  C O N T I N U E

C

C  C a l l  I P S !  s u b r o u t i n e  I Q f i S C U

C

C A L I  I C H S C U  ( G A M , 2  0 ,  N , C Z  0 ,  I C ,  I F F )

C A L I  I C H S C U  { G  A M , Z  1 ,  K , C Z  1 ,  I C ,  1 E R )

C A L L  I Q H S C Ü  ( G A M , 2 C 0 1  , N , C 2 0 0  1 , I C , I 7 E )

C A L L  I Ç B S C D  ( G A M  , I K O  , N , C I S O  , I C , I E H )

C A L L  I C H S C U ( G A P , I W 1  , N , C 1 W 1  , I C , T E S )

C A L I  I C H S C U  ( G A « , L W 0 0 1 , N ,  C L W 0 0 1 ,  I C ,  1 E R )

C A L L  I Q H S C Ü  ( G A M  , 1 2 0  , N , C I 7 , 0  , I C , I E R )
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C A I I  I Ç H S C T J  ( G A M  , L  Z 1  , N  , C I Z ?  , I C , I E B )

C A L L  I C H S C U  ( G a P , L Z 0 0 1 , N , C L Z 0 0 1 , I C ,  J E F )  

C A L L  I Q H 5 C U  ( G A M ,  1  1 0  , N , C L 1 0  , I C , I E E )  

C A L L  I Q K S C D  ( G A M , I 1  T , N , C Î Î 1  , I C , I E F )  

C A I I  I C H S C U ( G A M , I 1 0  C l C X I  0 0 1  , I C , I F F )

C

C  c r e a t e  C O N S I . D A T  f i l e

C

C A L L  O F I I E  ( 0 1  ,  * C C  S S I  . D A I » )

D O  2 0 0  J =  1 , N -  1 

D O  2 0 0  K - 1 , 3

HR 1 1 7  ( 0  1 , 2 1 0 ) C Z C  ( 0  , K )  , C Z 1  ( J , K )  , C Z 0 0  1 (  J , K )  , C I W O  ( J ,  K )  ,

1 C L K Î  ( J , S )  , C L V C C  Î  ( J  , K )  , C I Z 3  ( J , K )  ,
1 C I Z 1  ( C , K ) , C I Z O O 1 ( J , K )  ,
2  C L  1 0  ( C  , K )  , C I 1  1 ( J , K )  , C I 1  0 0 1  ( J , K )

2  0 0  C O N T I N U E  

S T O P  

E N D
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C

C  S D B R 0 Ü T T N 7  C C E ? F

C

C  T h i s  s c b r c ü t i r e  r e a d s  t h e  d a t a  f i l e  G f l C M f l . D A T  a n d

C  C O N S Î . D A T  w b i c t  c c D t a i r s  t h e  c u b i c  s p l i n e  c o n s t a n t s

C  n e c e s s a r y  t o  i n t e r p o l a t e  t h e  e n t a n g l e m e n t  f a c t o r  2

C  a n d  t h e  m o l e c u l a r  w e i g h t  i n d i c e s .

C

C  G A H  ( i  )  : G A K H A  v a l u e

c  Z B A T  l i , 1 ) : e n t a r g l e f f e n t  f a c t o r  7  5  G A M K A = g a M ( i )  a n d

C  B 7 T A = C

C Z E A T ( i , 2 ) : y  3  G S M M ? = G  AM ( i )  a n d  B ï ï T A = O . O Î

C  Z r A T i i , 3 ) : 2  3  G A « M ? = G a W  ( i )  a n d  B P T A  =  0 .  1

C  L N B A T  l i , i ) :  m o l e c u l a r  w e i g h t  i n d e x  I N  c o r r e s p o n d i n g

C t o  Z C A Î  ( j , i )

C  L Z C A T  ( i , i ) ; I Z  c o r r e s p o n d i n g  t o  Z B A T { j , i )

C  I Z 1 C A T  { i ,  i )  : L Z  + 1  c o r r e s p o n d i n g  t o  Z B A T  (  i ,  i )

C  C Z  ( i , k , i ) : c u b i c  s p l i n e  c c e f f i c i e n t s  i = 1 ~ 3

C  f o r  t h e  c c r r e s p o n d i n g  Z D A T { i , k )

C  C N ( i , k , i )  : s p l i n € c o e f f i c i e n t s  f o r  t h e  c o r r e s p o n d i n g

C  t o  I N I A T  ( i ,  k )

C  C Z P ( i , k , i ) :  c o r r e s p o n d i n g  t o  I Z B  A T  ( i  , k )

C  C Z P  M 1  , i )  ;  c o r r e s p o n d i n g  t o  L Z l B A T ( j , k )

C

c

su B E O U T 1 f E  C C E F F

C

C  C C P B C N  b l o c k s  w i t h  s u b r o u t i n e  C A L C U
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C O M K C i J  / J / Z r  A T  ( 1 0 ,  3 )  , L W  E A T  { 1  0 , 3 )  , 1 7  E A T  ( ! 0  , 3 )  ,

2  L Z l E A T  ( 1 0 , 3 )  ,

1 C Z  1 9 ,  3 ,  3 )  , C W  ( 9 , 3 , 3 )  , C Z B  ( 9 , 3  , 3 )  , C Z P l ( 9 , 3 , 3 )  ,  G A M  ( 1 C )  

F E A L  L N C A T , L Z D A * I , I Z  I D  A T

C

C  R e a d  f r c u !  t h e  d a t a  f i l e  G  A M M  A .  C A T

C

C A L L  I F  I  I E  ( 1 ,  » G A 8 S A  . D  A T f  2 0 0  0  , 3  1 6  4  7  1 * )

1 0 0  F O R M A T  ( 5 F  1 0 .  E )

1 1 0  F O R M A T  ( 1 0 X , 4 F l 0 - € )

D O  1 0 0 0  J =  1 ,  1 0

R E A E  ( 0  I ,  1 0 0 )  G A P  ( 0 )  , Z D A  T  ( J ,  1 )  ,  I  H D  A T  ( J ,  1) , I Z E  S T ( J ,  1 )  ,

1 L Z 1 D A T ( 0 , 1 )

R E A D  ( 0  1 ,  1 1 0 )  Z E A T  ( J ,  2 )  ,  L H  I  A T  ( J , 2 )  ,
1 L Z D A T  ( J , 2 )  , I Z  H A T  ( J ,  2 )

R E A D  ( 0  1 ,  1 1 0 )  Z D  A T  ( J  , 3 )  , I H D A T  ( 0 , 3 )  ,
1 I Z C A T  ( J ,  3 )  , L Z  I E  A T ( J ,  3 )

1 0 0 0  C O N T I N U E

2 0 0  F O R M A T  (  l O X  ,  6 ( E  I 4 - 5  ,  5 X )  ,  /  1 0 X , 6  ( E  1 4 .  6  , 5 X  ) . )

C

C R e a d  t h e  s p  3 1  r e  c c e f f i c i e n t s  f r o m  C O N S T . D  A T

C

C A L I  I F I I E  ( 1 ,  • C C N S T .  E AT ( 2 0 0  0 ,  3 1 6 4 7  ) * )

D O  2 0  0 0  0 = 1 , 9  

D O  2 0  C O  K = 1 ,  3

R E A E f O  1 , 2 0 0 )  C Z  ( J , K ,  1 ) ,  C Z  ( J  ,  K ,  2  )  ,  C Z  ( J  ,  K  , 3  ) ,  

l e w  ( 0 , K ,  1 )  , C W  ( J ,  K , 2 )  , C W  { J , K ,  3 )  ,

2 C Z P  | J , K ,  1 )  , C Z ?  ( 0 , F , 2 )  , C Z E ( J , F , 3 )  ,
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3 C Z P 1  ( J , K , 7 ) , C Z P ? ( J , F , 2 )  , C Z P *  ( J , K , 3 )  

2 0 0 0  C O N T I N U E  

K S T U E N  

E N D

*  C S M P . D I S

*

*  T h i s  p r o q t a r a  c a l c u l a t e s  t h e  r a c m o n t s  o f  t h e

*  d i s t r i t u t i c n  f u r c t i o n  P ( y )  w i t h  t h e  g i v e n  v a l u e s  o f

*  G A M M A ,  E E T A ,  a n d  Z .

*  T h e s e  p a r a m e t e r s  a r e  s u p p l i e d  f c y  t h e  P A R A M E T E R

*  s t a t e m e n t  w h i c h  c a r  b e  a l t e r e d  e a s i l y  w i t h o u t

*  c h a n g i n g  t h e  C S H P . S A V  f i l e .

*

*  G A K K A r d i m e n s i c i l e s s  p a r a m e t e r

»  B E T A :  d i m e n s i c t l e s s  p a r a m e t e r

*  Z  :  e n t  a n g l e m  e n t  f a c t o r

*  T I M E  : d i m e n s i o n l e s s  c h a i n  l e n g t h  y

*  F Y :  t e r n i n a t i c r  c h a i r  l e r g t h  d e p e n d e n c e  f u n c t i o n

*  D P Y :  d P  ( y ) / d y

*  D P  1 :  (3 ( f i r s t  m o m e n t  o f  P ( y ) ) / d y

*  D E 2 : d  ( s e c o n d  n o i r e n t  o f  P ( y ) ) / d y

*  D I 3 : d  ( t h i r d  m c n e n t  o f  ? ( y ) ) / d y

*  P i :  f i r s t  mo  i r e  r  t  c f  P (  y )

*  ? 2 : s e c o n d  m o m e n t  o f  P  ( y )
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*  ? 3 : t h i r d  m o m e n t  o f  P { y )

*  F I N T I M : i n t é g r a  1 i o n  l i m i t

*  P E D E L : p r i n t  i n t e r v a l

*

*

*

*  P A P A t f e t e r  s t a t e  : e  c t

*

P A E A K  G A K M A = . 2  , B E T A = C .  , Z  =  . 0 5 5

D Y N A M I C  

*

*  C h a i n  l e n g t h  d e p e n d e n t  t e r m i n a t i o n  f r e q u e n c y

*  f u n c t i o n

*

N C S O E T

I T  ( T I M E .  I E .  1 . )  E Y = T I M E

I F  ( T I M E . G T .  1 .  )  F  Y = 1 . 7 1 4 2 8 6 - 1 1  M F * * ( -  1 . 4 )  /  1 .  4

SOP.  T  

*

*  E v a l u a t i c n  c f  t h e  d e r i v a t i v e s  o f  P ( y ) - i t h  m o m e n t s

*

D P Y = E X P ( - { 3 E 1 A  +  G A M M A * £ C T T  ( Z ) / 2  .  ) *  I I H E - G A 8 M A / 2 .  / S Q F T  ( Z ) * F Y )

D P I = 1 1 M E * C P Y  

r P 2 = T I M E * * 2 * D I Y  

D P 3  =  T I M E * D P 2  

*

*  I n t e g r a t i o n

*
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P  t = I N T G P L  ( 0 .  , D P  Î )  

? 2 = I N T G P L ( 0 . , D P 2 )  

P 3  =  I B T G B I  ( 0 .  , E E 3 )  

*

*  o u t p u t .

*

*  O c t p a t

*

P R I N T  P  Î , P 2 , P 3  

*

I n t e q r a t i c E  l i a i t  a n d  P R I N T  i n t e r v a l

T I M E R  E I N T 1 H = 2 C 0 0 .  , ? P . D E 1  =  5 C .

E N D

*

*  E x a m p l e s  o f  c h a i n q i n q  P A R A M E T E R S

*

P A R  A M  G A M K A = .  2  ,  B E T  A =  0 .  0  0  1, Z = .  0 5 5

E N D

P f i R A M  G A M B A = . 1 , E E T A = . 1 , Z = . 2

E N D

P A R  A M G A M M A = ,

. E N D  

S T O P  

E N D J O B

'.z,BETA = * 1, 2 = . 25
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Sample Output 
MMA Polymerization at 90°C with 0 . 3 %  AIBN (3) 

Corresponding to Fig, 5.2 and Fig. 5.4

x=

T g M p  =  

Fw = 

V F X C  =

Dm 5

Vt w = 
CUNM = 
K T  =  

C M  =  

WwO = 
R u O l  =  

K p D M S s

000 
P h T M  =  

K lv f  = 
W =

CAMMA= 
K P H M  =  

S I C  =  

Lw = 

LZ + 1 = 

Ru HT  = 

O T D A  =  

M i i ï ô  V G =  

MZ+1A=

O . 9 ü O O 0 ü E + 0 2  

0 . lüOüOOE + 01 

O . l i R O O u F t O ü  

0 . 8 b 8 2 4 ü G + 0 0  

0 ,  1 7 5 1 0 0 E + 0 0  

O . 8 o 8 2 4 0 G + 0 1  

O . 2 y 5 7 5 3 F f 0 a  

0 ,  1 o 0 ü O 0 E - 0 4  

0 . 6 ü 3 o 5 5 E + 0 5  

0 , 5 i 3 2 6 o E * 0 o  

0,2b6o6yE “’0b

0 .  l o O ü O ü E  +  01  

0 . 1 7 7 2 6 5 F + Ô 1  

n , l ü O ü O ü E + O l  

0 .2 2 0 4 8 b E i-0 i

0 . 5 b 7 i 0 2 F + l b  

0 ,  1 b4tt4yE-04 
O,20OoOüE+0l 
O . 4 Ü 0 0 0 0 E + O 1  

0 » 5 l 3 2 6 b E « 0 o  

0 . 1 b 4 5 4 l E t 0 4  

O.lZOuAoE+Oo 
0,240ü92E+Ob

IwCüN= 
F a  =  

X A  =  

E P S  =  

VpP = 
Kp = 
Ko = 
R I O  =  

DaD ID s 
F  =

Vt = 
K p  =  

8LTA = 
Mi N£)T= 
K ' i P  =  

Z =  

L Z —
K l E P F s  

T i M f c  =  

MwA VG= 

MZAVG=  

P i  =

0 . 1 b 2 2 0 ü E - 0 l  

0 , 120000F + 01 
0 , 5 ü 0 0 0 ü F + 0 u  

n . 1 8 3 ü 0 ü E + 0 o  

0 , 1 b 5 0  i  o E - O i  

0 . 1 0 S 5 7 6 F + 0 4  

n , 5 ü 0 i 7 l E - O 3  

0 . 7 7 9 1 3 7 E - 0 6  

n , 5 4 l b 8 4 E - 0 3  

0 , 4 b 0 ü 0 ü E + 0 U

0 , 1 7 5 1 0 Ü F + 0 0  

0 , luOüOüF+Oi 

0 , l ü O O O o F + O i  

0 , 6 ü O / 3 ü F + O b  

O . O ü O ü O ü E i - O u  

O . l ü O o O ü E + 0 1  

O . 3 o 0 ü 0 ü E + 0 1  

O.luOoOüFi-O l 

O . O ü O ü O ü F + O O  

0.6üd230F-t-Ob 
0 • 1 o O u 6 y F  +  O o  

O . O ü O u O u E + O ü

A  = .100
PhîM
K iV f
W

0 . 9 1 6 7 7 7 E + 0 0  

0 . l 7 7 2 6 b E + 0 1  

d, 1 u O O O O E f O l

V f  =  

K f =

B i lT a  =

0 . ib îy o iF ^ O ü  
0 .  l O O ü O ü E  + O l  

0 .  l 2 0 l 5 y F - 0 l
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KPDM =

LZ + 1 =
R uni =
DTD A =
M w A V G =

M Z tifl=

223

D .2 7 7 i2 lE + O i

0.34972bE+lo 
0 . 3 5 4 o 2 9 E - O 5  

0.2u0ü0üE+0l 
n . 4 o 0 ü 0 ü E t 0 1  

0 . 4 ÿ 2 t ) 5 i E - 0 b  

0.220o07F + 0*i 
0 . 1 / 0 2 5 b E + O b  

o.240b2lEt0o

M J,MbT =  

KTP = 
Z = 
LZ — 
KTEfF= 
TlM c, = 

MwA vG= 

MZAVG= 
P I  =

0 , 6 o 3 u 5 7 E + 0 b  

O . O o Ou OOEt OU 

0 , l ü O Ü O ü F + O l  

0 . 3 o O ü 0 O F t 0 l  

O . l ü O o O O F + O l  

0 . 3 3 5 y 2 9 F + 0 l  

0 , 6 ü î 2 8 b F - t ' 0 b  

n .loO 389F +0b  
0 . 6 1 7 1 5 1 E - 0 1

X = 200 
PhlM = 
K IV F  = 

W = 
GA**rtA = 
KPDM = 

SIG = 
T, W =  

LZ+l = 
RuOT = 
DTDA = 
MWAVG= 
M Z + 1 A =

0.830J92E1-0Ü 
0.17726bE+0i 
O.lüOûOüE+Ol 
0.l42b37E+0l 
0.l97b82Etlo 
0.274b72E-05 
0,2üOüOOE+Ol 
0.400000E+Oi 
0 ,4b7o54E-0b 
0 . 2 7 2 7 3 o £ + 0 4  

n.l20bOOEtOb 
0,24lol7E+no

V f = 
KP = 
BfcTA = 
MiNt»T= 
KTP = 
Z = 
LZ T 
KTEfF= 
T1MÊ = 

MwAVG= 
“ZAVG= 
PI =

O . I 4 8 2 O I E + O U  

0 , l ü O ü O O E + 0 1  

O . 5 b 9 b 9 b E - 0 2  

0 . 6 i l b 2 3 F + 0 b  

O . O ü O ü O ü E + 0 0  

O . l O O O O u F - r O l  

O . 3 O O Ü 0 Ü F + O 1  

0 . lUOOOvF+Oi 
0 . 7 4 4 1 7 3 E + 0 1  

O . 6 O 3 9 8 1 E + 0 5  

n , l b l 2 0 7 E + O b  

0 . 2 3 8 7 6 7 E + 0 Ü

A= . 3 0 0  

P h T M  : 

KTVP ; 

W
GAMMA; 

KPDM :

O .7 4 O0 62E+OU 
O.l42b42E+0l 
0. loOOOOF + Oi 
O.877U71E+00 
0.9b4tt4bE+lb

Vt = 
KP = 
Bc,Ta = 
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APPENDIX F 

EVALUATION OF J

The e ffec t of the excess chain end m ob ility  was visualized as a 

sphere o f e ffec tive  reaction radius a. Thus the jump distance 2 is 

id e n tifie d  as the distance the center o f g rav ity  o f the reaction sphere 

moves with one propagation step. As i t  was assumed tha t chain from a 

node to the end o f the chain is  composed o f monomeric un its  on the 

average, the problem of find ing 2 reduces to find ing  the change in the 

center o f g ravity  of a chain where the one monomeric u n it a t one end 

(the node side) moves to the other end while the other un its stay in the 

same position. Let us name the centers o f mass o f each monomeric units

as 1 ,2 ,----- , j^  s tarting from the node. The coordinate system can be set

without loss o f generality fo r the coordinate o f the f i r s t  monomeric un it 

to be the o rig in . Assuming the coordinate o f the monomeric units as

( x i , y i ,Z i) ,  (xg.yg.Zg), then x^=y^=z^=0, as i t  is

located at the orig in .

The center of g ravity  is  expressed by (x ,ÿ ,z ) ,  which are related

as

X = ( x ^ + X g + — + X j ^ ) / j ^  ( F I )

y = (y)+V— +yjc)̂ -ic (F .^
z = (z^+Zg+— + Z j^ )/j^  CF.3)

Now we visualize the propagation step as moving the (x^y^,z^) 

u n it a fte r  the (^ jc '^ jc '^ jc ^  u n it, esse n tia lly  making a new un it (xĵ . .̂-] 

y jc+ i >Zjc+i )• The node is now at u n it (x2 ,y2»Z2 ) . The new center of 

g rav ity  is related by

227
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= ( X j + X j  +  . . .  +  X j ^  4. X j ^ ^ i ) / ] ^

' ^ :^jc ^ ^jC+1 ) / jc
Z '  = ( Z g + Z g  +  . . . '  +  Z

Cf.A-')

C F 5 )

C F 4 )

Thus the vector I  is  represented by the difference between the two centers 

of gravity.

I
::

I

I  = (x^-x, ÿ ' - ÿ ,  z ' - z )

- /jc+r^ i ^jc+T’̂ 1 ^jc+r^n 
jc  ’ jc  ’ jc

->■

By vector algebra, the magnitude o f the vector 2 is  given by

I = -  (
'^c

^jc+1-^1
j .

1 / 2

and since x^, and z  ̂ = 0 (a t the o r ig in ),
2 2 _ 2

2 =
1

; 1/2
^jc+1 + ^jc+1 + ^jc+1

j. .  j

] l / 2

(F.l)

CF.8)
'C ' 'C

The term in the brackets is id e n tica lly  a, the average root-mean-square 

end-to-end distance per square root o f the number of monomer un its  in 

the chain. Thus

I  = a / j4 1/2
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APPENDIX G

DESCRIPTION AND EVALUATION OF

In order fo r  the s ta t is t ic a l  averaging implied by using equation 

3 3 ^  to  be meaningful, i t  is  necessary tha t the movement o f the chain 

0  end which leads to  the continuously changing configurations is  very fa s t

^  w ith in the time in te rva l between propagation steps, (kp[M ])“  ̂ seconds.

When the relaxation o f the chain end is  not complete w ith in  th a t time 

in te rv a l, the active  chain end w i l l  not be able to  sweep the whole space 

if w ith in the sphere o f te rm ination defined by a and w i l l  lead to  an

p  e ffe c tive  radius less than th a t given by equation 3.34- I f  one assumes th a t

0 is  completely determined by the volume which the chain end can sweep 

w ith in the time in te rva l fo r  propagation, the number o f con figu ra tions  re - 

0  qui red to sweep the e n tire  volume w i l l  be proportional to  a^. The number

of jumps which lead to new con figu ra tions  w il l  be proportional to  the 

d i f fu s iv i ty  of the chain end (o r a fre e ly  ro ta ting  segment o f the 

dangling chain) and w i l l  be proportiona l to the exponential o f the free 

volume as e x p (- l/v ^ ) , w ith  u n its  o f jumps/time. The to ta l number o f new 

configurations possible in  the propagation time in te rva l w i l l  thus be pro-

portional to [kp [M ]exp (l/v .p )]''^ . When comparing the possible number o f 

configurations to  those requ ired , one produces a ra t io  w ritte n  as

C-jO kp[M ]exp(l/v^), where is  some unknown constant. As long as th is  

I  ra tio  is  greater than or equal to  u n ity , equation 3.34 w i l l  be an adequate

description of o. Otherwise a should be proportional to  [e xp (-l/v .p )/

However, since the d i f f u s iv i t y  of the chain end w i l l  not be 

much d iffe re n t from tha t o f the monomer i t s e l f ,  the sweeping e ff ic ie n c y

229
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w in  not be impaired s ig n ifica n tly  during Phase I I I .  I t  is  a po ten tia l pr

oblem during Phase IV where the monomer d iffu s io n  decbmes re s tr ic te d , but 

there is  an o ffse ttin g  phenomenon there because the time in te rva l between 

propagation steps increases as both kp and [M] decrease. As shown in  Chap

te r 4, kp eventually becomes proportional to e xp (-l/v^ ) and i t  may be tha t 

th is  e ffe c tiv e ly  renders f^  equal to  un ity  even during Phase IV.

The other assumption which o ffe rs  some d i f f ic u l t y  in the real 

s itua tion  is  th a t the d iffu s ion  of external macroradicals in to  the sphere 

of term ination is  neg lig ib le . At conversions where the tran s la tio n a l motion 

o f these rad ica ls  is  s ig n ific a n t, th is  assumption may not hold and the 

resu ltan t rad ica l concentration p ro f i le ,  [R *] vs r ,  w il l change as shown 

in Fig.5.2 producing a smaller value o f a .  This e ffe c t w i l l  become less 

s ig n ific a n t w ith increasing conversion v ia  the exponentia lly decreasing 

d i f fu s iv i ty  o f the macroradicals. This behavior suggests tha t f.^ = 0 

below a certa in  conversion le ve l, esp ec ia lly  during Phase I I .  f.j. should 

increase rap id ly  from zero as the conversion increases due to the ex

ponentia lly  decreasing trans la tiona l m o b ility  o f the polymer chain as a 

whole. Dealing in  a quantita tive  fashion w ith  th is  phenomenon w i l l  be 

d i f f ic u l t ,  but the trans la tiona l d i f f u s iv i t y  w i l l  surely be re la ted to the 

molecular weight o f the polymer rad ica ls  and to th e ir  entanglement w ith 

other polymer. In Chapter 2, the p ro b a b ility  o f a polymer

radical growing beyond x^, the degree o f polymerization necessary fo r  en

tanglement, was described by P(y) a t y = 1, o r P(1) .  In the absence o f a 

better descrip tion  o f during the conversion period under consideration, 

i t  was a r b i t r a r i ly  chosen tha t f^  = 0 a t a conversion level o f 0.5 and th a t

f^  increases according to the re la tio n
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ft = CP(') - Pn)lx=o.5] t̂l.O-PO)lx=o.5] (ôr.l )

m

m

I
I

Although equation 6 . 1 is  a r t i f ic ia l ,  i t  has the desired property of 

increasing rap id ly  from zero towards unity and can be continuously 

computed from the knowledge of 3, y and f (y ) .  Equation 3,.39 w ill be used 

fo r the analysis o f experimental data presented tn. Chapter 5.
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APPENDIX H

SAMPLE CALCULATIONS FOR SUGDEN'S AND BILTZ' METHOD

For styrene, the occupied volume Vq at 0 deg. K can be estimated 

by Sugden's method and B l i t z '  method.and shown here as an example. 

SUGDEN'S METHOD

8 carbon atoms 
8 hydrogen atoms

4 double bonds 
1 6-membered r in g

to ta l

8* 1 . 1= 8.8  

8*6.7= 53.6

4*8.0=32:0 
1* 0 . 6= 0.6

95.0 [cmVmole]

BILTZ' METHOD

i

2 a lip h a tic  carbon atoms 
6 aromatic carbon atoms

8 hydrogen atoms 
1 double bond

total

2*0.77= 1.54 
6*5.1 =30.6

8*6.45=51.6 
1* 8.6  =  8.6

92.3 [cm^/mole]

2 3 2
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APPENDIX I

RAW VISCOSITY DATA FOR MONOMER-POLYMER SYSTEMS

The viscometer used was B rookfie ld  Model LVF, which was f i t te d  w ith 
a cover l id  to  minimize evaporation. Four spindles were used and the

readings o f viscometer was converted in to  the u n it o f c .p. w ith the 

conversion chart supplied by the manufacturer.

VINYL ACETATE-POLYVINYL ACETATE DATA

I

I

I

I

w t.fra c tio n  
——  o f Dolvmer
trmp

0.5704 0.4484 0.3847 0.2780

32.2 deg.C 94600 c .p . 4640c.p. 1426c.p.
37.8 73800 4160 1266 294.5
43.3 63000 3520 1092 275.0
48.9 55200 2860 1006 246.5
54.4 47900 2600 932 220.0
60.0

STYRENE-POLYSTYRENE

41700

DATA

2260 816 187.5

w t.fra c tion  
polvmer

0.5163 0.4257 0.3095 0.2349

32.2 72850 9230 1920
37.8 68500 8750 1490
43.3 57450 8010 1075 964
48.9 46700 6730 954 829
54.4 38300 5980 836 726
60.0 33000 5220 744 640
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METHYL METHACRYLATE-POLYMETHYL METHACRYLATE DATA

temp.®C 
w t.frac tion  
of ooTvmer

32.2 37.8 40.0 43.3 48.9 54.4 60.0

ù A s à i 41400 8420 6545 4810 3470 4810
0.4274 5300 • • • • • 3870 » »  » a# 2270
0.3900 2410 1550 1030
0.3856 1510 1295 •  ••«■— 1100 994 920 994
0.3438 ———— 610 610 *** 300
0.3245 283 262 219 188 163 188
0.2870 ——— 135 135 95
0.2603 84 77 69 61 57 61
0.2210 — 50 50 32

a
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APPENDIX J

MEASUREMENTS OF VISCOSITY AVERAGE MOLECULAR WEIGHT

The v iscos ity  method o f measuring molecular weight is  based on the 

Mark-Houwink-Sakurada eq'n (49).

I
:
I

I
bÂ

KTÇ (J.l)

where [7 ^ ] is  the in tr in s ic  v isco s ity  defined by eq'n J .2 .

* c ! 4 o ^  (J.2)

where the re la tiv e  v isco s ity  7(^1s given by the ra tio  o f  the

e ff lu x  time fo r  the polymer solution to tha t of pure solvent.

Table J . l shows the values o f K used in th is  work. The de ta ils  
of experimental procedures are a routine one found in the textbooks (49),

Table J.2 shows the raw data obtained. These data are used to

calculate the values o f and are p lo tted in Fig. J . l .  The in tr in s ic  
viscosity is  found by the least-square f i t  o f the data. Fig. J . l  also

shows the s tra ig h t l in e  obtained by the least-aquare regression.

The v iscos ity  average molecular weight calculated by eq'n J . l  are

tabulated in  Table 4.3.

Table J . l 
VAI »FS OF K and a ( r e f .49)

polymer solvent temp.*C K*10^

PMMA aceton 25
PSTY cyclohexane 35 
PVAC aceton 25

0.75
7.6
2.1

0.70
0.50
0.68
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PSTY

PW1A

PVAC

Table J .2

DILUTE SOLUTION VISCOSITY DATA

polymer c ,g r/d l e ff lu x  timetsec An'*?,./c

0 268.2 1.0
0.0293 270.6 1.00895 0.3041
0.0585 273.6 1.02013 0.3408
0.0878 276.4 1.03057 0.3430
0.1171 280.2 1.04474 0.3738

0 106.8 1.0
0.0280 107.3 1.00468 0.1668
0.0560 108.0 1.01124 0,1996
0.0840 108.5 1.01592 0.1880
0.1120 109.4 1.02434 0.2147
0.1400 110.5 1.03464 0.2432

0 106.5 1.0
0.0861 112.4 1.05540 0.6262
0.1148 114.5 1.07512 0.6309
0.1436 116.6 1.09483 0.6309

* Cannon-Fenske viscometer, size 50
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Fig. J -Î Determination of Intrinsic Viscosity
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APPENDIX K 

STYRENE POLYMERIZATION DATA

EXPERIMENTAL PROCEDURES

To obtain tlme-copverslon data, flame-sealed glass tubes placed In

an isothermal water bath were used as reactors . Caustic washed, vacuum 
d is t i l le d  monomer was mixed w ith weighed In it ia to r  and in jec ted  in to  the

glass tube by a hypodermic syringe. The amount o f the reaction mixture

put in to  each reactor was approximately 1.0 ml. These reactors were

quenched and frozen in  the dry-ice-iscpropyl alcohol bath. Then the 
glass tube reactors were sealed w ith  a smallpropane blow torch while

vacuum was applied to  the end being sealed. These reactors were put in to

the water bath which has been maintained in the predetennined reaction

temperature. Due to the small diameter of the tubes used (5 mm 0 .0 .) ,

i t  was expected to  reach the reaction temperature very qu ick ly . No

K s ig n ific a n t in h ib it io n  time was observed in the data, so i t  was assumed
tha t the in i t ia l  period o f heating-inh ib ition  was n e g lig ib le . Samples . 
were taken a t regular time in te rv a ls , and the conversion was measured

by gravim etric ana lys is , where the samples were d issolved in  methylene

chloride and the the polymer was precip itated by adding excess amount 
o f methanol followed by drying in  the forced a i r  c irc u la tio n  oven u n til 
constant weight was obtained.

TEMPERATURE UNIFORMITY IN THE REACTOR

The proper diameter o f the glass tube reactor can be estimated by 

consideration o f the heat d iss ipa tion  requirement to  maintain the uniform 

reaction temperature a t the predetermined le ve l.
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I

The thermal con du c tiv ity  o f reaction mixture is  assumed to  be 

1.0 watt/m®C = 0.24 cal/sec,m**C. For the steady s ta te  heat conduc

tion  with constant heat generation, q in  in f in i te  cy lin d e r (47) is

(K.l)
By se tting  the maximum temperature d iffe rence between the

center o f the reacto r, tg ,  and the reactor w a ll,  t ^ ,  to  be 1°C,

and setting the heat d iss ip a tio n  rate q corresponding to  10%/min

conversion rate w ith the heat o f reaction 13.5 kcal/m ole, the

maximum value o f q is  estimated as 13.5 cal/cm^.min fo r  methyl

methacrylate. As methyl methacrylate shows very strong gel e f fe c t,

the value o f 13.5 cal/cm^,min can be considered to  be th e  

extreme case. In th is  case, R.- is  equal to  about 4 mm. With th is
4mm I.D . and 1mm wall thickness and the heat tra n s fe r c o e ffic ie n t o f

2
240 B tu /h r,ft ,*F , 1®C temperature difference is  more than enough to
dissipate the 13.5 cal/cm^,m in. Thus 5mm 0.0. glass tube w ith  1mm 
wall thickness is  used in  th is  work.

POLYSTYRENE MASS POLYMERIZATION DATA

Styrene monomer was supplied by Research Polymers, In c . ,  O ntario, 
New York. The In i t ia to r  used was benzoyl peroxide (BPO) and supplied

by A ldrich Chemicals, Milwaukee, Wisconsin.
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Table K.l

POLYSTYRENE MASS POLYMERIZATION DATA

terap.,®C wt.% BPO time,min % conversion

80 0.96

70 2.85

80 0.96

30 9.60
60 17.63
90 24.72

120 31.59
150 37.40
180 46.26
210 53.16
240 61.40
274 71,58
300 87.79
331 100.00

1.0 hrs. 13.34
2.0 26.18
3.0 37.37
4.0 49.32
5.0 65.22
6.0 58.75
7.0 96.52

240 min. 58.85
270 66.43
300 79.38
330 95.60
360 97.19
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Appendix L

THE ENTANGLEMENT POINT

Equations 5. 4 and.5.15used to  estimate the c r i t ic a l  conversion 

where entanglement coupling begins are d ire c t consequences o f the en

tanglement theory, but there have been some doubts raised about i t s

v a lid ity .  Equation 5.14 stated tha t entanglement occurs when equals 

or exceeds M x . Since x_ may be w r itte n  as x__/*__, equation S.14
U C C CO p 6

may be w ritte n  as

= constant ( L . l)

where is  the volume fra c tio n  o f polymer a t the entanglement po in t. 

Since $p is  roughly proportional to  fra c tio n a l conversion,

X M = constant (L.2)e w

I
B

Turner ( 7) has proposed an a lte rna te  form based upon macro- 

molecular close packing which predicts th a t the c r i t ic a l  conversion X  ̂

is described by

(L.3)

where C(w) is  a constant depending upon the molecular weight d i s t r i 

bution, and has the follow ing values;

D is tr ib u tio n  C(w)xlO^^

Monodi sperse 2.0
Most probable (recombination) 1.7
Most probable (d isproportionation) 1.5

I f  the molecular weight d is tr ib u tio n  p r io r  to the entanglement point

can be approximated by the most probable d is tr ib u t io n ,  = 1.5 fo r
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recombination and 2 fo r d isproportionation , and eq'n L.3 becomes

= constant (L.4)

I t  is  seen th a t the difference between Turner's model and the one used 

in th is  paper rests in the power to  which is  raised.

Recently, O 'D risco ll (46j made an attempt to define the onset o f 

the gel e ffe c t,  which he described as the "explosive region", w ith  the 

same type o f model as Turner's, i .e .  = constant. O 'D risco ll

applied th is  expression to the so lu tio n  polymerization o f MMA.

In order to  look a t the d iffe rences between the model and

the A model used in  the present work, as i t  a ffec ts  the outcome o f the 

I computed conversion p ro file s , i t  is  in s tru c t iv e  to  discuss the bulk

polymerization o f styrene. In th is  case i t  has been demonstrated th a t 

there is  a m ild gel e ffe c t (pseudo gel e ffe c t)  followed by a stronger 

gel e ffe c t a f te r  the entanglement p o in t is  reached. Recall tha t pseudo 

gel e ffe c t is  simply caused by the reduction, in free volume w ith in 

creasing conversion, and th a t the entanglement po int is  reached f a i r l y  

la te  in  the reaction because o f the short k in e tic  chain length o f 

styrene (espec ia lly  as compared w ith  MMA). Using equation ( L . l)  to  de

fin e  the entanglement point y ie ld s  the predicted conversion p ro file s

shown in  Figs. 5.18-5.20. I t  is seen here tha t the region o f true gel 

e ffe c t has been predicted to  be e a r l ie r  in the reaction than a c tu a lly  

happens. On the other hand, the use o f Turner's c r ite r io n  pred icts X  ̂

too high to obtain a good f i t  to  the conversion data. At th is  point the '' 

author has been unable to resolve the issde between the two models. I t  

should be mentioned once again that, whatever the method o f determining

Xg, the resu lts  o f the computations are sens itive  to the value used.
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For th is  reason i t  w i l l  be d i f f ic u l t  to  resolve the issues between the 

two models (or any others). New and more care fu l studies appear to  be 

necessary fo r  a va rie ty  o f polymer systems in  order to  bring th is  issue 

to a conclusion.

I
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