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Abstract

The paper presents a new numarical approach for diffusion-convection prob-
lems in non-uniform velocity field employing fundamental solution of the
corresponding steady-state difusion-convection equation with constant co-
efficients and an extreme concept of subdomain technique. Numerical ex-
ample of steady state flow in two-dimensions is included to demostrate the
accuracy present numerical technique.

Introduction

The diffusion-convection equation is one of the most basic governin equa-
tion describing the transport phenomena in classical physic. However, it
is still very difficult to numerically solve this type of equation, when the
convection term is dominant. Most of the common numerical methods give
emphasis on algorithms to suppress the well-known problems of oscillation
in numerical solution for high PC number values [4]. Applications of the
boundary-domain integral formulation is free from these problems due to
the correct degree of "upwind" presented in the fundamental solution of the
convection-diffusion equation [8].
A substantial number of different formulations by BEM for the diffusion-
convection equation has appeared in the literature. Some of them have
employed the elliptic or parabolic fundamental solution and treated the
convective term as pseudo-sources [6], but they are useful only for low
PC, number values. Alternatively, the velocity field can be decomposed
into an average and a variable part and the fundamental solution of the
diffusion-convection equation used incorporating the average velocity. The
variable part of field can be accented for either by domain diskretization [5]
or through DRM technique [7]. This approach is applicable for moderate
PC number values. For high PC number values only for constant velocity
field the BEM technique is developed [1].
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In the new algorithm for high Pe number values, the main restriction of the
formulation, fact that the fundamental solution are only available for equa-
tions with constant coefficients, is overcome by decomposition of the domain
under consideration into subdomains, which allows the use of constant co-
efficients [9]. Such formulation drastically cuts down the computation of
integrals and allows the use of the alternative solvers for sparse matrices.

Governing equation

Let us consider a general unsteady state nonlinear diffusion-convection equa-
tion describing time dependent transfer of an arbitrary scalar function w(r, t)
in a homogeneous and isotropic medium defined in solution domain R =
ft x / representing the product of space 0 and time interval 1(1^^1)

-^-itef-*-"*'-^ '"*• w

where Vj(r̂ ) is the local solcnoidal velocity field. The variable w(r&) can
be interpreted, e.g. as a temperature in heat transfer problems, concentra-
tion in dispersion processes, vorticity in fluid dynamics problems, turbulent
kinetic energy in its transport equation etc., and will be refered to as a
potential. The effective diffusivity (Ze(r&,%), the effective reaction constant
ke(rk,u) and the source term /u(^fc?w) are some monotonic space and po-
tential dependent functions. The effective diffusivity #<, and the reaction
constant k<> can be always partitioned into a constant a<, and a variable part

We = a, 4-o^(rt,%) . (2)

&c = 6, + ̂  (,'&,%) • (3)

This permits rewriting eq. (1) as

du dvjit , d ( du .
= Q in R, (4)

° dxjdxj f)t 8xj 8x

The eq. (4) represents a parabolic initial-boundary values problem, thus
some boundary and initial conditions have to be known to complete the
mathematical description of the problem, e.g. Dirichlet, Neumann or Cauchy
type boundary conditions have to be prescribed on the part of the boundary
FI, F% and I\ respectively

n — u on FI for t > t^ ,

-—nj = — on F2 for t > ̂  , (5)
OXj on

#% , \ r f , ,——nj — ««(« — Uf) on I 3 for t > t^ ,
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while the initial conditions are

. in H at f = /o- (6)

QU is transfer coefficient between the fluid flow surface defined by the unit
normal vector n, and the surrounding ambient at the potential iij.

Integral representation for the steady transport equa-

tion

Perhaps the most adequate and stable integral formulation regardless on
Reynold's number values can be obtained by using the fundamental solu-
tion of diffusion-convective PDE with constant coefficients. The general
steady-state transport including first order reaction can be governed by the
equation

d^u dvjU
<*OQ — n --- o -- KQU + 6 = 0 in ft , (7)(7ZjCfZj (7Zj ' \/

where 6 stands for the pseudo-body force term. In order to developed an
integral equation to the above PDE, a fundamental solution of eq. (7)
is necessary. Since it exists only for the case of constant velocity fields,
the variable velocity vector 7>j(r*) has to be decomposed into an average
constant vector vj and perturbation vector Vj, such that [5]

%, W = Dj + U;(r̂ ) , (8)

This permits rewriting eq. (7) as

The above diferential formulation can now be transformed into an equivalent
integral statement using a weighted residual technique or Green's theorems
for scalar functions, resulting in the following integral formulation

where Vn = Vn + i>n = Vi • n,- and u*^ is now the fundamental solution of the
diffusion-convective equation with constant coefficients [3], i.e. the solution
of
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where is

1

for 2D cases and

(12)

(13)

for 3D cases. A'o is modified Bessel function of order zero and factor ̂  is

2
v* = Vj-Vj (14)

Notice, that in the domain integral only the convection due to the perturba-
tion velocity field exists, making this approach combined with sub-structure
technique the most promissible one for the numerical solution of general fluid
flow problems for high Reynolds number values.

Integral representation for unsteady transport equa-

tion

Let us introduce left non-symmetric finite difference approximation of the
time derivative in eq. (1)

(15)

what permits rewriting eq. (4) as

d du ,

~ " " + "
(16)

After decomposition of velocity vector the following integral representation
can be obtained

[ ["/ c>«f \ f̂ «*" ,,
/ ( «FWj - flAT-o-^ ) -5 -- (*AT
Jil I \ <>*3 / V*j

1 / ,- / Ur_iU"
T JO

Parameter /( from (14) is now expanded for additional term
(17)

(18)
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The boundary-domain integral eq. (17) is formally identical to eq (10)
except for the additional initial conditions domain integral. Although! the
complete implicit scheme is developed, Crank-Nicholson and others, can be
simply formulated on the same mariner.

Extreme concept of subdomain technique

Developed method is based on so called extreme concept of subdomain tech-
nique similar to that of finite volumes. Namely, in general fluid flow problem
the velocity vector is changing its direction and its absolute values from one
field point to another. The diffusion coeffitient, reaktion constant and the
source term also usually depends from the point to point, so that the vari-
able part in (4) becomes predominant for the whole domain. This problem
is overcame by decomposition of the interesting domain into subdomains,
which locally allow constant material properties and velocity vector (Fig.
i). boundary

interface

Fig.l: Extreme concept of subdomain technique

After discretisation, is one subdomain, described by integral formulation
(10) or (17), surrounded by four constant boundary elements (Fig. 1). The
domain integrals are captured by constant internal cell what follows next
discret form for each subdomain respectively

- [OIK,,} + (19)

Subdomains are connected at the interfaces (.brought the compatibility and
equilibrium boundary conditions.

(20)
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,du , _ du
" (21)

This approach unlike all previous Boundary Element and Boundary-Domain
methods provides us with extreme sparse matrix which allows an efficient
use of powerfull iterative solvers.

Test example and discussion

The effectivity of single subdomain is tested for steady state transport on a
simple example of one dimensional scalar transport [8]. Since the analytical
solution for high Pe number values (over 100) is practically a step function,
the comparison is done for outlet normal derivative of function. Results are
given in Table 1. It is obviesly, that the accuracy of the solution depends
only on exact calculation of integrals and is not dependent on the ratio of
V/K.

|| Pe || Analytically | Numerically

10'
10*
10*
10*
10*

100.0000
1000.000
10000.000
100000.00
1000000.0

100.000
1000.002
10000.46
100050.8
1004404.

Error (%) ̂
_
—

4.6 10-3
5.0 10-2
0.44

Table 1: Comparison of normal derivatives at x — L for different Pe

To study the applicability of the new numerical approach for a large prac-
tical problem with non-uniform velocity field, heat conditions in a five row
in-line tubular heat exchanger were computed. Velocity field for Re—850
(based on maximal velocity) was taken from previous computations by
Boundary-Domain Integral Method (BDIM) [2], where forced convection
in tubular heat exchangers was examined. Figure 2 presents the new re-
sults for temperature distribution for Pe=600 (Pr=0.7), where it is clearly
visible that cold fluid, which enters at left, gets heated up when passing
through the bundle. The effect of recirculation zones between the tubes
and behind the last tube can be noticed also in Nusselt number values for
each row, as these decrease in the weak recirculation areas (Fig. 3). Com-
parison of experimental and numerical data obtained by classical [2] and
alternative formulation for average Nu number is given in Table 2.

1 Conclusion

Boundary-domain integral method offers some important features in com-
putational fluid dynamics. Due to the fundamental solutions more or less
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|| Experimental [ Classical f.[2] | Alternative f.

'Nu || 10.68 | 7.22 | 1057

Table 2: Comparison of experimental and numerical data

transport process is transfered to the boundary, producing a very stable
and accurate numerical scheme. In a numerical algorithm, for example
based on Laplace's or diffusion Green's function, the diffusion is completely
described by boundary integrals only, and for the convection the domain
discretization is needed. Much more efficient numerical scheme can be for-
mulated regardless of Reynolds number values for the diffusion-convective
Green's function, where only the convection for the perturbation velocity
field is governed by the domain integrals. Very straight forward formulation
for the time dependent problems can be developed by using fundamental
solution of steady-state diffusion-convection equation including first order
reaction term and finite-difference approximation in time.

Figure 2: Temperature field for Re=850 and Pr-0.7

3.75 26.25 48.75 71.25 93.75 116.3 138.8 161.3
Tube angle

Figure 3: Local Nu numbers
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At it is well known the system matrices resulting in boundary-domain
technique are completely accupied at least in its original form and the Gauss
direct solver has to be used, the consequences of these fact are enormous
computation times and memory demands. The method can be drastically
improved by using sub-domain technique and mixed-type boundary ele-
ments, which can be developed in extreme case to the concept of finite vol-
ume. Using sub-domain approach the sparsity patherns of system matrices
are strongly improved, and the preconditioned conjugate gradient iterative
methods can be succesfully used in very promising computation time and
memory savings.
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