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NOTES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Diffusion during the Immersion Precipitation Process 

INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Polymer membranes can be obtained by the so-called immersion precipitation process in which 

a cast solution of a polymer in a solvent is immersed in a nonsolvent bath. The structure of the 
membranes produced in this manner is determined by two distinct factors: (i) the phase separation 
phenomena (equilibria and kinetics) in the ternary system, and (ii) the rate of diffusive solvent- 
nonsolvent exchange during the immersion. 

Mechanisms of formation of synthetic membranes which incorporate these two factors have been 
proposed by several In this note we comment on the mathematical description of the 
diffusion problem as suggested by Cohen, Tanny, and Pragefi in their paper “Diffusion-Controlled 
Formation of Porous Structures in Ternary Polymer Systems.” This description includes a 
steady-state assumption which, in our point of view, is erroneous. Nevertheless, when this as- 
sumption is not applied, the paper of Cohen, Tanny, and Prager offers a valuable approach to the 
diffusion problem. 

THE MODEL 

Cohen, Tanny, and Prager6 propose a theory for the appearance of two-phase structures during 
the formation of polymer membranes from a casting solution immersed in a nonsolvent bath. This 
theory contains a series of assumptions, some concerning the phase separation phenomena and the 
others the diffusion phenomenon. Since this note deals with the diffusion problem, we summarize 
here the diffusion model. 

(i) A schematic representation of the immersion process is given in Figure 1. At time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 the 
casting solution possesses its original volume fractions $:, $5, and $5 (1 denotes a nonsolvent, 2 a 
solvent, and 3 a polymer). At time t = t a diffusion layer has propagated to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = zd(t) .  The coordinate 
z is a position coordinate in a laboratory frame. .The volume fractions a t  the film surface are $!, 
$5, and $;, which are considered to be a t  equilibrium with the coagulation bath. At time t = t the 
f i lmhath interface has moved away from z = 0 as a result of the net volume outflow. 

(ii) A position coordinate is introduced, measured in terms of the volume m of polymer per unit 
area of membrane between the interface and the point of observationg: 

or 

d m  = 43-d.z (1) 

As a consequence, the film/bath interface is always at m = 0. The position of the film/support in- 
terface on the m axis, M ,  is also independent of time: 

(iii) The diffusion fluxes J1 and Jz  through surfaces of fixed m areassumed to be linearly relate$ 
to the driving forces: 

Dj and Dz are the diffusion coefficients for nonsolvent and solvent in the polymer-fixed reference 
frame and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl and pz are the chemical potentials. Cross terms have been neglected, but nevertheless 
eqs. ( 3 )  are interrelated through the expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD1, Dz,  p1, and p2. 
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m=O 

casting solution diffusion Layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7//, support zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/A '// ' G o p i  '/A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 1. Schematic representation of the immersion process at  two different times. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ1 and Jz are 
the nonsolvent and solvent volume flux, respectively. The coordinate z is fixed; the coordinate m 
is measured in terms of the polymer volume per unit area membrane between z = 0 and the point 
of observation. 

(iv) Fick's law, applied in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"m" reference frame, gives (see Appendix A) 

d('#J1/'$3) dJ1 d($"2/$'3)- ~ J z  -- ,---- 
at dm dt dm 

where 63  = 1 - 61 - 42. 

The initial and boundary conditions are: 

t = 0 h(m,O)  = 4L @z(m,O) = @$ 

m = 0 h ( 0 , t )  = 67, &z(O,t) = 6; 

m = M; J l (M, t )  = Jz(M, t )  = 0 

(4) 

(v) Cohen, Tanny, and Prager restrict themselves to the case in which the diffusion layer has not 

m = rndt ) :  &(md,t) = $4, @z(md,t) = 65 (8)  

(vi) Furthermore, they assume that the concentration distribution in the diffusion layer at  every 
time is the steady-state distribution for a sheet of thickness md(t) satisfying the boundary conditions 
(6) and (8). This implies that the fluxes J1 and J2 are independent of m: 

yet reached the support. Thus, eq. (7) is replaced by 

It should be noted that, owing to the steady-state assumption, eq. (4) and the initial condition (5) 

no longer have a bearing on the solution of the diffusion problem. 
(vii) The diffusion problem is now reduced to eqs. (3). The ratio of J1 and Jz can be written 

as 

(10) 

The assumption made here is that the ratio &(@1,&)/Dz(&q,&) is constant and unity. The ratio 
u normally has a negative value. 

(vii) If the differentials of the chemical potentials are expressed as functions of the volume frac- 
tions, one finds 

61 dpi  J i  

J 2  42 dpz 
g=-.- -=  

This first-order differential equation yields the relation between $1 and $2 in the diffusion layer as 
a function of the ratio u and one of the boundary conditions. 

With the aid of the Flory-Huggins expressions10 for the chemical potentials together with eq. (ll), 
Cohen, Tanny, and Prager calculated the composition paths within the ternary phase diagram and 
discussed them in relation to the formation of membranes. 

Critique of the Steady-State Assumption 

Equation (11) has been derived using the steady-state condition (9). In our view this condition 
can not be applied to this diffusion problem. The use of it neglects the initial condition (5) and 
therefore does not satisfy the mass conservation law. 
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To make this point clear, the following example is considered. Equations (3) are rewritten as 

Equation (12) together with the steady-state assumption and one of the boundary conditions yields 
the concentration profiles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&q(m,t) and @z(m,t). Since there is no analytical solution for the coupled 
differential equation (12), we represent the solution as follows: 

In this way 61 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 2  are expressed as functions of all these parameters. With respect to time t = 
0 the change in nonsolvent and solvent content per unit area of membrane at time t = t l  is, respec- 
tively, 

and 

The result is 

A V1lA Vz = Fdm ,t d l  ,D2,J1, JZ,M ,~ td  (15) 

On the other hand, the concentration distribution as described by eqs. (13) is generated by the 
nonsolvent and solvent fluxes through the interface, so the quantities AV1 and AV2 must be equal 
to - .f&' Jl( t )dt  and - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.fS' Jz(t)dt, respectively, where Jl( t ) /Jz(t)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu at every time, and there- 
fore 

Comparing eqs. (15) and (16), we see that this condition is not fulfilled. Equations (15) and (16) 

are identical only if the concentration profiles are computed under the restriction of eqs. (4) and 
(5). From Eqs. (12) and (15) it can be seen thatin the Cohen, Tanny, and Prager description the 
ratio AV1IAV2 depends on the interaction parameters that appear in the Flory-Huggins expressions 
for the chemical potentials. 

DISCUSSION 

It has been pointed out above that the 61 vs. $2 curve, calculated with the aid of eq. (11) and 
characteristic for a certain ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu (see Fig. 21, cannot give the correct concentration distribution 
in a film which is subject to a nonsolvent-solvent exchange with the same ratio u. The consequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

md 0 md M 

(a) (b) 

Fig. 2. Concentration profiles: (a) concentration distribution in a cast polymer film, when the 
diffusion boundary has reached md; (b) steady-state concentration distribution in a sheet with 
thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmd. 
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is that the composition paths drawn in the ternary phase diagrams by Cohen, Tanny, and Prager 
are not valid. This can be illustrated by two peculiar features of the composition paths shown in 
Figures 3-5 of their paper and also in our Figure 3. Figure 3 has been taken from the thesis of Al- 
tena," who used in Eq. (11) the following expressions for the chemical potentials'o: 

(PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/L?)/RT = M'$d - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. & z  - r .  '$3 

+ (1 + XlZ '$2 + x13. '$3) * (1 - '$1) - sx23'$263 

The chemical potentials are expressed per mole of segments, one mole of segments having the same 
volume as one mole of species 1. The xij parameters are the interaction parameters of components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ;  s and r are v,/up and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ~ l u , ,  the ratios of the molar volumes. 

From Figure 3 it can be seen that (i) the location of the composition path a t  a constant ratio c 
depends on the thermodynamic properties of the system and that (ii) the average polymer content 
does increase for c = -1. 

Although the interaction parameters will have some influence on the concentration distribution, 
it is clear that the average change in composition in the film should be solely determined by the fluxes 
J1 and J 2 .  Furthermore, it is obvious that if c = -1, i.e., if the volume of solvent leaving is replaced 
by an equal volume of nonsolvent entering, the average polymer concentration should remain con- 
stant. In fact, the latter has been stated implicitly by Cohen, Tanny, and Prager themselves in de- 
riving their eq. ( This equation, the result of the mass balance in time, reads 

* 

If the ratio u has the value -1, which means J1+ Jp = 0, this equation implies that 3 = '$5. 
Since eq. (11) cannot be applied to our diffusion problem, we have to return to eqs. (3) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(41, 

which describe the diffusion phenomenomtogether with the conditions (5)-(7). The use of boundary 
condition (6) presumes equilibrium between the nonsolvent bath and the film surface. In case the 
bath is not well stirred, Cohen, Tanny, and Prager suggest the use of finite transfer coefficients within 
a boundary layer, which will influence the surface concentrations. 

In our opinion, even if there is no concentration gradient in the bath, there will be another resistance 
to the mass transport, i.e., the resistance in the film/bath interface itself. Thus, eq. (6) is replaced 
by 

polymer 

Fig. 3. Composition paths for various values of c in the ternary polymer/solvent/nonsolvent system. 
Parameter values: s = 0.2; r = 0.002; x13 = 1.5, x p 3  = 0.0, and x 1 p  = 1.0 (-) or x l p  = 0.0 (- - -1. The 
binodals for liquid-liquid phase separation have been calculated."J2 
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L1 and Lz are the permeability coefficients for nonsolvent and solvent in the interface. The potential 
difference Ap, is the difference a t  the interface: 

Api zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi, casting solution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn = o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(41,42) 
- p i ,  coagulation bath, m = 0 ( U 1 , U Z )  

The volume fractions of nonsolvent and solvent in the bath are u1 and u2. We have used similar 
relation to describe the volume fluxes through the interface a t  the first instance of coagulation.'3 
Equations (3)-(5), (7), and (19) together describe the diffusion during immersion precipitation and 
they can be solved numerically in order to yield the concentration profiles in the polymer film as 
a function of time (see Appendix B for a specific example). In this way it is possible to evaluate the 
influence of the transport parameters L, and D,; this work is in progress. From eq. (19) it can already 
be deduced that the ratio Jl(O,t)/Jz(O,t) in general is not independent of time. In our opinion this 
is very important with respect to the formation of asymmetric structures in the 

APPENDIX A 

The mass conservation law is applied to the differential volume element shown in Figure 4. For 
the accumulation of species i we write 

Flow of species i in minus flow of species i out can be expressed as 

APPENDIX B 

The diffusion problem as described by eqs. (3)-(5), (7), and (19) has been solved for the case 

Jl(O,t) = -Jz(O,t) = const (B1) 

This boundary condition has been chosen to permit us to compare the computed concentration profile 
with the concentration path calculated with the aid of eq. (11) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACJ = -1 (see Fig. 3). The numerical 
procedure used is the NAG library routine D03PGF14 and the parameters in the equations had the 
following values: 

Jl(O,t) = 2 x 10-5 m/s 
Jz(0,t) = -2 x 10-5 m/s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4: = 0.0001 
$5 = 0.7999 
48 = 0.2000 
2 = 1.10-4 m 

The concentration profile and the concentration path a t  time t = 0.1 s are displayed in Figure 5. 

Fig. 4. 

surface 

- 
A rn = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ3. Az  

Differential volume element. 

surface 

- 
A rn = Q3. Az  

Differential volume element. 
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Fig. 5. Concentration profile (a) and concentration path (b) calculated with the aid of eqs. (3)-(5), 
(7), (19), and (Bl). 

From this figure it appears that the overall polymer concentration in the film has not changed in 
the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = -1, as would be expected. 
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