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5Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
(Received 6 July 2012; published 8 January 2013)

We study the time scales associated with diffusion processes that take place on multiplex networks, i.e.,

on a set of networks linked through interconnected layers. To this end, we propose the construction of a

supra-Laplacian matrix, which consists of a dimensional lifting of the Laplacian matrix of each layer of

the multiplex network. We use perturbative analysis to reveal analytically the structure of eigenvectors and

eigenvalues of the complete network in terms of the spectral properties of the individual layers. The

spectrum of the supra-Laplacian allows us to understand the physics of diffusionlike processes on top of

multiplex networks.

DOI: 10.1103/PhysRevLett.110.028701 PACS numbers: 89.75.Hc, 89.20.�a, 89.75.Kd

Modern theory of complex networks is facing new chal-

lenges that arise from the necessity of understanding prop-

erly the dynamical evolution of real systems. One such

open problem concerns the topological and dynamical

characterization of systems made up of two or more inter-

connected networks. The standard approach in network

modeling assumes that every edge (link) is of the same

type and consequently considered at the same temporal and

topological scale [1]. This is clearly an abstraction of any

real topological structure and represents either instanta-

neous or aggregated interactions over a certain time

window. Therefore, to understand the intricate variability

of real complex systems, where many different time scales

and structural patterns coexist we need a new scenario, a

new level of description [2].

A natural extension which allows us to overcome pre-

vious drawbacks is to describe a multilevel system as a set

of coupled layered networks (multiplex network) where

each layer could have very particular features different

from the rest and, in this way, define a richer structure of

interactions [3]. Multiplex networks are thus structured

multilevel graphs in which interconnections between

layers determine how a given node in a layer and its

counterpart in another layer are linked and influence each

other. Thus, they are essentially different from simple

graphs with colored edges, multigraphs, or hypergraphs

and provide a mathematical ground for the analysis of

many social networks (e.g., Facebook, Twitter) and of

several biological systems—for instance, in biochemical

networks, many different signaling channels do actually

work in parallel, giving rise to what is called multitasking,

which can be modeled through a network of interconnected

layers [4]. Although some works have recently focused on

the description and analysis of interconnected networks

[5–9], theoretically grounded results about general dy-

namical processes running on them are yet to come.

In this Letter we focus on a particular setup of multilevel

networks in which nodes are conserved through the differ-

ent layers of the multiplex (see Fig. 1). The current study

analyzes a diffusion process that takes place at the whole

system level, i.e., within and across layers. This setup

could account, for instance, for diffusion dynamics taking

place on top of a social network of contacts. Admittedly,

the latter is a network of networks, i.e., the aggregate of

many different social circles or subnetworks, each having

its own temporal or structural patterns (for example, think

of our online activity, which includes different social net-

working sites such as Facebook and Twitter). The same

applies to multimodal transportation networks [10], on top

of which individuals ‘‘diffuse’’ within and between differ-

ent layers (e.g., bus, subway). Let us remark, however, that

our interest here is not to solve a specific real problem but

FIG. 1. Example of a multiplex network with M ¼ 2 layers.

Nodes are the same in both layers. The connectivity at each layer

is independent of each other, and the connectivity interlayer is

from each node to itself (dashed links).
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to illustrate the analysis of diffusion processes on top of

these structures.

We propose a mathematical setting that allows us to

scrutinize the emergent diffusion time scales in multiplex

networks. We concentrate on diffusive processes, as they

constitute a good approximation for different types of

dynamical processes (e.g., synchronization and other non-

linear processes amenable of linearization [11]) whose

dynamical properties can be captured by the behavior of

the eigenvalues of the Laplacian matrix. For instance, the

time needed to synchronize phase oscillators in a network

is related to the second smallest eigenvalue of the

Laplacian, �2 [12], and the stability of the synchronized

state is determined by the eigenratio �N=�2 [13]. The

spectral analysis of complex networks constitutes then a

still promising area of research [14,15]. Following a per-

turbative analysis of the spectra [16], our results allow us to

get new physical insight about diffusion processes through

the analytical determination of the asymptotic behavior of

the eigenvalues of the Laplacian of the multiplex (supra-

Laplacian) when the diffusive coupling between layers is

either small or large. Our findings prove that the emergent

physical behavior of the diffusion process when consider-

ing coupled layered networks is far from trivial; in some

cases (specified below) the coupling of networks shows a

superdiffusive behavior meaning that diffusive processes in

the multiplex are faster than in any of the networks that

form it separately.

Let us consider a setup in which the diffusive dynamics

is linearly coupled within nodes in each layer K, through a

diffusion constantDK, and among nodes in different layers

K and L, in this case with a diffusion constant DKL. The

network at each layer is assumed to be connected and

undirected, but it can be weighted. The state of each of

the N nodes is represented as a vector indexed by layers

xKi ðtÞ where the subscript stands for the node and the

superscript for the layer. The equations describing the

dynamical evolution of the states of the nodes, considering

a multiplex of the M layers, are

dxKi
dt

¼ DK

X

N

j¼1

wK
ijðx

K
j � xKi Þ þ

X

M

L¼1

DKLðx
L
i � xKi Þ; (1)

where wK
ij denotes the weight matrix at layer K (wK

ij ¼ 0

means that there is no link between nodes i and j in layer

K). This set of equations can be dimensionally lifted to a

space of N �M dimensions. To have a more clear picture

of our formalism we will consider, without loss of general-

ization, the most simple case of two layers M ¼ 2. First,

we define a column vector state of 2N elements,

ðx1
1
� � � x1Njx

2

1
. . . ; x2NÞ ¼ ðx1jx2Þ ¼ x. Then Eq. (1) can be

written in matrix form, where the interaction matrix has a

block structure that conforms to an object we call supra-

Laplacian L, with the same properties that any zero-sum

rows Laplacian has,

L ¼
D1L1 þDxI �DxI

�DxI D2L2 þDxI

� �

; (2)

where L1 and L2 are the respective Laplacians of each

layer, and I is the identity matrix. Here we have replaced

D12 with Dx to emphasize the role of the diffusion process

among the same node at different layers. The Laplacian

matrix of each layerK is just LK ¼ SK �WK, whereWK is

the weights matrix at layer K, and SK a diagonal matrix

containing the strength of each node i at layer K, ðSKÞii ¼

sKi ¼
P

jw
K
ij. Note that the diagonal block structure of the

supra-Laplacian reflects the interaction within layers and

the off-diagonal blocks the connectivity between layers.

The dynamical properties of the system can then be cast

in terms of the eigenvalues of this matrix. Equation (1) can

be written as _x ¼ �Lx and, given thatL is symmetric, its

solution in terms of normal modes is �iðtÞ ¼ �ið0Þe
��it,

where �i are the eigenvalues ofL (see, e.g., Refs. [17,18]).

The diffusion time scale � of the multiplex is controlled

by the smallest nonzero eigenvalue of L. Specifically,

� ¼ 1=�2. To get a physical insight on these eigenvalues

as a function of the different diffusion coefficients within

layers (D1 and D2) and between layers (Dx), we propose

analyzing the whole system using perturbation theory. To

simplify the notation, we choose the diffusion coefficients

D1 ¼ D2 ¼ 1 fixing then the relative time scale of the

problem.

Let us consider the decompositionL ¼ L0 þD, where

L0 is the block diagonal matrix corresponding to the

Laplacians of every layer, with zeros in the off-diagonal

blocks, and D is formed by the rest of the elements. In

matrix form it reads

L ¼ L0 þD ¼
L1 0

0 L2

� �

þDx
I �I
�I I

� �

: (3)

Let us start the discussion by consideringDx ¼ 0. Then,

the eigenvalues ofL are the set formed by the union of the

eigenvalues corresponding to the Laplacians of each layer

L1 and L2. The eigenvalues are 0 ¼ �1

1
< �1

2
� . . .�1

N and

0 ¼ �2

1
< �2

2
� . . .�2

N , respectively, while the eigenvalues

of the supra-Laplacian matrix are 0 ¼ �1 ¼ �2 < �3 �
. . . � �2n, being �3 ¼ minð�1

2
; �2

2
Þ. It is interesting to

note that to analyze the eigenvector space it is convenient

to move to a new basis where the space corresponding

to �1 ¼ �2 ¼ 0 is spanned by vectors (1 � � � 1j1 � � � 1)
and (1 � � � 1j � 1 � � � � 1) instead of the canonical

(1 � � � 1j0 � � � 0) and (0 � � � 0j1 � � � 1).
Now let us consider that the diffusion between layers is

different from zero, Dx � 0. In this case, the supra-

Laplacian will have the trivial eigenvalue �1 ¼ 0 with

corresponding eigenvector (1 � � � 1j1 � � � 1), and a nontri-

vial eigenvalue � ¼ 2Dx that corresponds exactly to the

eigenvector (1 � � � 1j � 1 � � � � 1), because

L

�

1

�1

�

¼

�

0

0

�

þ 2Dx

�

1

�1

�

: (4)
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Note that this eigenvalue always exists, but it will be the

smallest nonzero one only when Dx is very small, as

compared to D1 and D2.

Next, we focus our attention on the opposite limit, a very

large diffusion coefficient [19] between layers Dx � 1.

Defining Dx ¼ 1=�, we can write

L ¼ Dx

�

I �I
�I I

� �

þ �
L1 0

0 L2

� ��

¼ Dx
~L: (5)

The spectrum of ~L is considered here a perturbation of that

at � ¼ 0. It is worth recalling that, for � ¼ 0, the spectrum

corresponds to that of the coupling matrix

I �I
�I I

� �

; (6)

which consists of two eigenvalues (~�1 ¼ 0 and ~�2 ¼ 2)

both N-degenerate and spanned by eigenvectors of the

form (uju) and (uj � u), i.e., vectors having identical or

opposite values in the ith and (iþ N)th components,

respectively. Thus, in the limit Dx ! 1, the set of eigen-

values of L will split in two groups, one showing a linear

divergent behavior � � 2Dx for the subspace (uj � u),

and another having a finite value � as the result of the

undetermined limit (0 � 1) in Eq. (5) for the subspace

(uju).
Now, we use the common ansatz in perturbation theory

and propose a perturbed solution in terms of both eigen-

values and eigenvectors:

�i ¼ �ð0Þ
i þ ��ð1Þ

i þOð�2Þ;

vi ¼ v
ð0Þ
i þ �vð1Þi þOð�2Þ;

(7)

where the superindices within parentheses represent the

order of the perturbation [20,21]. Given that a set of

eigenvalues of L will diverge linearly as 2Dx, we concen-

trate in proposing perturbations for the finite solutions.

These correspond to the following perturbation of the

eigenspectrum of ~L:

~� ¼ 0þ �~�0; v ¼

�

u

u

�

þ �

�

u0
1

u0
2

�

: (8)

Expanding to Oð�Þ the eigenvalue problem ~Lv ¼ ~�v we

obtain

�

�

ðu0
1
� u

0
2
Þ þ L1u

ðu0
2
� u

0
1
Þ þ L2u

�

¼ �~�0

�

u

u

�

þOð�2Þ: (9)

Matching each of the components in Eq. (9) we get

L1uþ ðu0
1
� u0

2
Þ ¼ ~�0

u; L2uþ ðu0
2
� u0

1
Þ ¼ ~�0

u;

(10)

that, after adding and subtracting Eqs. (10), transform into

ðL1 þ L2Þu ¼ 2~�0
u ðL1 � L2Þu ¼ 2ðu0

1
� u

0
2
Þ:

(11)

From the system of Eqs. (11) it is revealed that u is an

eigenvector of the network formed by the superposition of

both layers’ Laplacians, and that the eigenvalue of L, at

first order in the expansion, is

� ¼ ~�0 ¼
�s

2
; (12)

with �s being the eigenvalue of the superposition (L1 þ
L2) corresponding to the eigenvector u. Moreover, given

that the vector perturbation in Eq. (8) must be orthogonal

ðujuÞ ? ðu0
1
ju0

2
Þ, we can also find the eigenvector of the

superposition (L1 þ L2) such that u0
2
¼ �u

0
1
� �u

0, then

u
0 ¼

1

4
ðL2 � L1Þu: (13)

Summarizing, the eigenvectors with finite (i.e., nondi-

vergent) eigenvalues of the supra-Laplacian L for a large

value of the diffusion coefficientDx ¼ 1=� between layers
are

v 0 ¼

�

uþ �u0

u� �u0

�

with eigenvalue
�s

2
; (14)

being u and �s the eigenvectors and corresponding eigen-

values of the superposition (L1 þ L2).

The physical insight obtained is the following: for low

values of the diffusion coefficient between layers, the

diffusion time scale of the global system is controlled by

the inverse of 2Dx. This asymptotic result is valid until the

order of Dx is similar to those of D1 and D2. For large

values of Dx the eigenspectrum splits into a set of values

that diverges as 2Dx, and a set of finite values, associated

with the superposition of the layers. The minimal eigen-

value different from zero turns out to be half the eigenvalue

corresponding to the superposition of both layers �s=2.
A comparison between the diffusion time scale of the

independent layers and the whole multiplex is possible

using known bounds about the eigenvalues of the

Laplacians [22]. The time scale associated with the multi-

plex for Dx � 1 is � ¼ 1

2Dx
, which means that the

cross-diffusion between layers is the limiting value of the

diffusion spreading. On the other hand, the time scale

associated with the multiplex for Dx � 1 is � � 2=�s.

This latter case is far less trivial than the previous one.

Using the bounds in Ref. [22] we deduce the following

result:

�s

2
	

�1

2
þ �2

2

2
	 minð�1

2
; �2

2
Þ: (15)

The above inequality implies that the diffusion in the

multiplex will be faster than the diffusion in the slowest

layer. Thus, as a consequence of the multiplex structure, at

least one layer (the one with the largest diffusion time

scale) has its diffusion speeded up. The emergence of a

superdiffusion—i.e., the fact that the time scale of the

multiplex is faster than that of both layers acting sepa-

rately—is, in general, not guaranteed and depends on the
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specific structures coupled together. Furthermore, the fol-

lowing inequality also holds [22]:

�s

2
�

2N

2N � 1
min
i

�

s1i þ s2i
2

þDx

�

; (16)

with sKi being the strength of node i at layer K.
Finally, it is worth noticing that although the previous

analysis assumes that the networks within layers are con-

nected, we have also analyzed the case in which this

hypothesis is relaxed. Imagine for example two layers

such that one layer has two disconnected components. In

this situation, the results hold in the limit Dx � 1, and in

the limit Dx � 1 the lowest (different from zero) eigen-

value scales as �Dx, with 0<� � 2 although the per-

turbed eigenvector is far more intricate.

To illustrate our results, we have computed the evolution

of the eigenvalues of the supra-Laplacian for the example

represented in Fig. 1, which corresponds to two random

networks of N ¼ 6 nodes. In Fig. 2 (top panel) we plot the

eigenvalues as a function of the diffusion coefficientDx.We

observe the splitting of the eigenvalues into two groups,

divergent and finite values, as predicted. Figure 2 (bottom

panel) shows the theoretical estimates for �2 in the

asymptotic limits Dx � 1 and Dx � 1. Note that, except

for the intermediate zone (Dx � 1), where the analysis does

not hold, the agreement is excellent. In this panel we have

represented, as indicated in the legend, the eigenvalues of

each layer, the eigenvalue of the superposition of both

layers, and the line corresponding to 2Dx, as well as the

eigenvalue of the supra-Laplacian. The results undoubtedly

confirm that both theoretical limits (small and largeDx) are

correctly identified by the analytical derivations. Note that

themodel allows us to switch on and off the consideration of

isolated layers or the whole multiplex, simply by putting

Dx ¼ 0. For the example exposed, we observe a super-

diffusion process for the whole multiplex, which means

that the time scale associated with the whole multiplex

network is smaller than that of layer 1 and layer 2 if they

were considered independently, i.e., � < �1 < �2. Other
examples comparing multiplex networks with 1000 nodes

per layer, with different standard topologies, including

clustered networks, are presented in the Supplemental

Material [23] accompanying this letter, all of them showing

perfect agreement with the developed analysis.

In conclusion, we have developed a formalism to unveil

the time scales of diffusive processes on multiplex net-

works. The approach has been specifically presented for a

two-layermultiplex, in a particular setup inwhich nodes are

preserved through layers. We obtained analytical results in

the two asymptotic limits of small and large diffusion

coefficients between layers. The findings show that the

multiplex structure is able to speed up the less diffusive of

the layers. In principle, it could also give rise to a super-

diffusion process thus enhancing the diffusion of both

layers. This striking result appears when one considers

that the diffusion between the layers of the multiplex is

faster than that occurring within each of the layers. Thus, it

paves the way to the analysis of superdiffusion processes in

real multiplex scenarios such as multimodal transportation

systems. On more general grounds, given the wide applica-

bility of the properties of the Laplacian to address many

dynamical properties of networked systems, our results

constitute a first step toward a better understanding of linear

and nonlinear processes on top of multiplex structures.
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