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1E.T.S.I. Aeronáuticos
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An analysis is presented for the flow, temperature, and concentration fields in the region of attachment
of fuel jet diffusion flames, near the wake of the fuel injector, where upstream heat conduction and diffusion
are important. The characteristic scales for the size and velocity in this region are identified as lN �

and UN � , in terms of the kinematic viscosity of the fuel and the wall value of the fuel velocitym /A m A� �0 0

gradient. The parameters that characterize the structure of the flame attachment region are identified, and
some representative cases are numerically analyzed. There are cases with large activation energy, for which
the flame will be attached if the Karlovitz number, , or non-dimensional velocity gradient, is smaller2m A/U0 L

than a critical value; for larger values, the flame lifts off far from the rim of the injector. For smaller values
of the activation energy, the diffusion flame is attached, with its edge near the rim of the injector if the
Karlovitz number is small; the distance to the injector of the edge of the flame grows with the Karlovitz
number, and the edge takes on a triple-flame structure.

Introduction

In gaseous jet diffusion flames, the flame may be
either attached to the near-wake region of the injec-
tor or lifted off, away from the injector, if the velocity
of the fuel jet or that of the coflowing air stream goes
above a critical value.

The problem of determining the conditions of at-
tachment of diffusion flames and flame lift-off has
received considerable attention in the literature.
See, for example, work by Robson and Wilson [1],
Kawamura and Asato [2], and Kawamura et al. [3],
and in particular, the extensive reviews by Takahashi
and Schmoll [4] and Takahashi et al. [5]. However,
due to the difficulties in numerical or analytical de-
scription of the flow in the region of flame attach-
ment, and the large number of parameters involved,
there are few reliable general descriptions of the
flame and flow field in this region.

The Reynolds number of the flow associated with
jet diffusion flames is typically large compared with
unity and is often large enough for the flow to be
turbulent. Due to this, the mixing between the fuel
stream and the stagnant or coflowing air takes place
in a thin mixing layer between the streams, without
significant effects from upstream diffusion or con-
duction. These effects are important only in a small
region, which we call the Navier-Stokes region, near
the rim of the injector. Upstream conduction and
diffusion plays an essential role in the attachment of
the diffusion flame to the injector, as was already
understood by Gaydon and Wolfhard [6], who indi-
cated that the molecular mixing in the region creates

a small volume of combustible mixture able to sus-
tain a premixed flame propagating against the flow.

The formulation of the problem of the flow struc-
ture in the region was advanced by Liñán [7]. Sim-
plified models for the flow in the region were given
by Wichman [8–9] and Buckmaster and Weber [10].
Reliable numerical simulations based on the com-
plete equations were given by Takahashi et al. [5].

Here, the formulation of Liñán [7] has been gen-
eralized and completed with the appropriate de-
scription of the boundary conditions. The main
scales and non-dimensional parameters characteriz-
ing the flame attachment process have been identi-
fied. The problem has been numerically solved for
a few representative cases in which the thickness of
the injector wall at the rim is small compared with
the characteristic size of the region.

Although triple-deck concepts have to be used to
describe the flow at the end of a splitter plate sepa-
rating two streams, here, the analysis has been con-
fined to the small Navier-Stokes region, at the core
of the triple deck (Fig. 1). The first descriptions of
the flow in the Navier-Stokes region, lying at the end
of the injector where the two boundary layers begin
to merge, were given by Dijkstra [11] and Daniels
[12]. The flow is determined there by the two wall
velocity gradients, A for the fuel flow and �A for the
air flow, at the end of the injector wall. As shown by
Higuera and Liñán [13], these values, if � � 0, are
modified by overpressures created by displacement
effects due to heat release from their boundary layer
values upstream of the triple-deck region where
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Fig. 1. Sketch of the coordinate
system and the characteristic scales
of the triple-deck and Navier-
Stokes regions: lT � lB ,1/4ReB

lV � lB , lN � lB .�1/4 �1/2Re ReB B

these overpressures act. The fuel wall velocity gra-
dient, A, gives the characteristic timescale 1/A for
flow in the Navier-Stokes region. The length and ve-
locity scales in the region are lN � and UN �m /A� 0

, based on the kinematic viscosity of the fuel.m A� 0
They are such that the local Reynolds number is of
the order unity, and therefore, upstream heat con-
duction and diffusion effects are important. In terms
of the Reynolds number, ReB � UFlB/m0, based on
the velocity UF of the fuel stream and the thickness,
lB, of the fuel boundary layer, lN/lB � UN/UF �

, while lT � . Thus, one can under-�1/2 1/4Re l ReB B B
stand why Takahashi et al. [5] needed to use a large
computational domain to incorporate effects of the
overpressures in the triple-deck region.

Important parameters characterizing the structure
of the flow in the flame attachment region are the
ratio, of the wall velocity gradients, �, the non-di-
mensional thickness, h, of the injector wall, mea-
sured with lN, and the Damköhler number (UL/
UN)2, or its inverse, the Karlovitz number ,2m A/U0 L
based on the premixed flame propagation velocity,
UL, of the stoichiometric mixture between the fuel
and air. An analysis of the effects of the heat release
due to diffusion flames on the flow in the wake of
injectors with moderately large values of h was given
by Higuera and Liñán [13].

Here, we consider the flow in the Navier-Stokes
region to be laminar, quasi-steady, and quasi-two-
dimensional, but we can conjecture that the results
will also apply, at least qualitatively, to turbulent
flows. In these flows, the scales of the flame attach-
ment region are the friction velocity and the thick-
ness of the viscous sublayer, where the local Rey-
nolds number is of the order unity and the Reynolds

stresses are no longer dominant; the main effect of
turbulence is to introduce time variations in the wall
velocity gradients.

Gravity effects have not been included in the for-
mulation. The effects of gravity appear first in the
analysis of the reacting mixing layer of the triple-
deck region, when the velocity due to the buoyancy
forces, of the order of (glT)1/2 in this layer, becomes
of the order of the characteristic forced flow velocity,

, in the layer. If the jet is directed upward,�1/4U ReF B
a vertical acceleration of the reacting mixture due to
gravity may lead to entrainment into the mixing
layer, which increases the value of the velocity gra-
dient, A, that determines the structure of the Navier-
Stokes region. For gravity to affect directly the struc-
ture of the Navier-Stokes region, (glN)1/2 must be of
the order of UN.

Formulation

With the scale lN of the Navier-Stokes region, we
see the base of the fuel and the air boundary layers
as two parallel streams of uniform shear, A and �A,
approaching the end of the injector that appears as
a splitter plate, with the plate at temperature T0.
They begin to mix and react when they reach the
Navier-Stokes region.

The reaction is modeled, for simplicity of the pre-
sentation, by a single, irreversible, one-step reaction,
F � sO2 → (1 � s)P � (Q), where s grams of
oxygen is consumed and (1 � s) grams of product
is generated, together with a thermal energy Q per
unit gram of fuel consumed. The fuel consumption
rate per unit volume is modelled by an Arrhenius
rate
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2W � Bq Y Y exp(�E/RT)F F O

involving, respectively, the pre-exponential factor,
the density, the mass fractions of fuel and oxygen,
the activation temperature E/R, and the tempera-
ture.

In the analysis given here, we consider the Prandtl
number, Pr, to be constant, as well as the Lewis
numbers LeF and LeO of fuel and oxygen, and the
molecular mass of the mixture. We use a power law
dependence of the coefficient of viscosity with T as
l/l0 � (T/T0)m.

The equations describing the steady two-dimen-
sional flow in the Navier-Stokes region are written
using lN � and UN � as scales for them /A m A� �0 0

spatial coordinates, and velocity as scale forr 2v, q U0 N
the pressure variations p, q0 for the density, and l0
for the viscosity. The initial values YF0 and YO0 of
the fuel and oxygen mass fractions are used as scales
for YF and YO. Then, the non-dimensional equations
take the form

r(�•qv) � 0

r r(qv •�)v � ��p � �•s�

rPr(qv •�h) � �(l�h) � (1 � S)w

rPr(qv •�Y ) � �(l�Y )/Le � wF F F

rPr(qv •�Y ) � �(l�Y )/Le � SwO O O

m �1l � (1 � ch) , q � (1 � ch) (1)

Here, � l(�i • vj � �j • vi) is the viscous stresss�ij
tensor, and h � (T � T0)/(Ts � T0) is the non-
dimensional temperature rise based on the initial
value of the temperature T0 and the adiabatic flame
temperature Ts � T0 � QYF0/cP(1 � S) of the stoi-
chiometric fuel air mixture; c � (Ts � T0)/Ts is a
heat release parameter, and S � sYF0/YO0 is the
mass of air required to burn the unit mass of the fuel
stream.

The non-dimensional reaction rate, w, is given by

b(h � 1)3 2w � db q Y Y expF O � �(1 � c(h � 1)/(c � 1))
(2)

where b � E(Ts � T0)/ and d � b�3(Bq0YO0
2RTs

Pr/A) exp(�E/RTs) are the Zeldovich number and
reduced Damköhler number, respectively. For sin-
gle reaction schemes, the Damköhler number is a
good characterization of the chemistry; however, for
real schemes where we find a large number of re-
actions, the Damköhler number is not well defined.
A better characterization of the chemistry for this
case is given by the stoichiometric, premixed, planar
laminar flame velocity, UL. For an Arrhenius reac-
tion with a large activation energy, this velocity UL

was calculated by Zeldovich and Frank Kamenetskii
[14], leading, in first approximation, to �2UL
2BYO0b�3 (k0/cP) exp(�E/RTs)/(1 � c)2�m. This
can be used to write the reduced Damköhler num-
ber used above, in terms of the Karlovitz number,
Ka � m0A/ . Thus, Ka�1 � (UL/UN)2 � 2d/Pr2(12UL
� c)2�m, which we anticipate to be of the order
unity in the flame attachment regime.

We write the boundary conditions for equation 1,
the case of plate of thickness h K 1, as

h � u � v � �Y /�y � �Y /�y � 0F O

at y � 0, x � 0 (3)

and
2 2 2r � x � y → � (4)

y � 0: u � y � v � h � Y � 1 � Y � 0F O
y � 0: u � �y � v � h � Y � Y � 1 � 0F O

upstream and far from the plate, outside the down-
stream mixing layer. Notice that we do not allow for
a finite x displacement of the u component of the
velocity at large r. Downstream, for x → �, the flow
must approach the asymptotic solution of the bound-
ary layer for equation 1, to be described below.

The modification of equations 3 and 4 to account
for the finite non-dimensional thickness, h, of the
injector wall is straightforward. The generalization
of this formulation to more realistic reaction mech-
anisms is also straightforward.

Asymptotic Form of the Solution

The decay toward zero, for r k 1, of the velocity
perturbations is so weak that it must be determined,
as shown below, to arrive at an accurate numerical
solution of the problem.

Asymptotic Solution in the Wake Mixing Layer

Downstream, the thickness of the mixing layer, of
order x1/3, becomes small compared with x, so that
the conservation equations 1 can be approximated
by their boundary layer form. In addition, the resi-
dence time becomes large compared with the reac-
tion time, and thus, the flame can be considered, in
first approximation, as an infinitely thin flame sheet
corresponding to the Burke-Schumann limit of in-
finite reaction rates. For x k 1, the flow in the mix-
ing layer becomes self-similar, as in the non-reacting
case analyzed in Ref. [15]. The solution is of the form

2/3 2/3w � x F(f), p � Cx , Y � U(f)
1/3h � G(f), x k 1, y � x (5)

where w is the stream function, defined as �w/�y �
qu, ��w/�x � qv, and f � y/x1/3 is the similarity
variable, of order unity in the mixing layer. Here, C
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Fig. 2. Pressure gradient constant, C, as a function of c.

is a constant, to be determined as part of the nu-
merical solution, which measures the pressure gra-
dient required to eliminate a finite x-wise velocity
displacement, which we encounter further down-
stream in the triple-deck region, as shown in Ref.
[13]. The functions F, G, and U of f are given by
the solution, with boundary conditions derived from
equation 4, of a system of ordinary differential equa-
tions, which we do not include here for the sake of
brevity. For large values of |f|, F behaves as

1 2F(f → ��) � f � C
2

� C2and F(f → ��) � � f � (6)
2 �

where the constant C(�, c, S) also determines the
fuel and air entrainment velocities, ve � (2/3)
Cx�1/3 and (2/3�)Cx�1/3, by the mixing layer, and
therefore the flow in the outer inviscid region.

The most important result from the analysis of the
Hakkinen and Rott mixing layer is the value of the
constant C. When C is positive, which is the case for
low values of c, the mixing layer entrains fuel and air
from outside. As shown in Fig. 2, for values of c
larger than a critical value cc(�, S), due to the effect
of heat release, C becomes negative, and the mixing
layer introduces an outward displacement on the
flow. For � � S � 1, C changes sign at c � 1.19.
For c � 0, the equation for F is not coupled with
the equations for U and G, and C is a function only
of �.

In the limiting case � � 0, when there is no forced
flow in the oxidizer side, the function F(f) tends, for
f → ��, to a constant, F�. In this case, C � 0, and
the pressure gradient in the mixing layer is absent.
At small values of �, the constant C is linear with �,
C � �F��. The value of F�(c, S) determines the
air entrainment velocity by the mixing layer, ve �
(2/3)F�x�1/3.

Far-Field Inviscid Flow Perturbations

The positive or negative values of the entrainment
velocity generated by the reacting mixing layer dom-
inate the velocity perturbations outside the Navier-
Stokes region. Thus, it can be shown that far from
the plate and outside the downstream mixing layer,
the solution of the governing equations 1, matched
appropriately with the downstream boundary layer
and upstream boundary layers near the plate, is
given by

Y � 1, Y � 0, y � 0F Oh � 0, (7)
Y � 0, Y � 1, y � 0O F

2 2/3y /2 � 2Cr sin(2(p � u)/3)/
1/33 � D ln(y/r ), y � 0�

w � 2 2/3��y /2 � (2C/�)r sin(2(p � u)�
�4/3 1/3/3)/ 3 � D� ln(�y/r ), y � 0�

(8)

This flow field corresponds to an isothermal flow,
with x → �1 � Dy�2 at y → � and x → � �
D��4/3y�2 at y → ��, where x � �v/�x � �u/�y.
D is determined by matching with the solution for
the upstream viscous boundary layers described be-
low.

Upstream Viscous Layers

As was shown in Ref. [11], viscous effects must be
retained in the wall viscous sublayers for (�x) k 1,
shown in Fig. 1. There, h � 0 and

2 1/3y /2 � DU(y/(�x) ), y � 0
2 �4/3 1/3w � ��y /2 � D� U((�y)/(�x) ), (9)�

y � 0

where U(z) is given by 3U� � z2U � 1, with the
conditions U(0) � U�(0) � U�(�) � 0. The solution
leads to U�(�) � 1.15 . . . , which when used with
the matching conditions with the outer inviscid so-
lution, determines D � 4C/33/2U�(�), where U�(�)
� �1.15 . . . .

Numerical Results

With the above-mentioned boundary conditions,
we can proceed with numerical methods to solve the
system of equation 1. The parameters remaining in
the formulation are �, c, S, , b, Pr, LF, LO,2 2U /UL N
and h. In the calculations presented here, only for h
� 0 and a few representative cases, we fix Pr �
0.72, LeF � LeO � 1, � � S � 1, and m � 0.5.

We begin by showing in Fig. 3 how the total non-
dimensional heat transfer to the plate, q, based on
k0(Ts � T0), varies with the Damköhler number,
1/Ka, and the non-dimensional activation energy.
The calculations for the case c � 0, when the effects
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Fig. 3. Total heat transfer to the injector as a function
of inverse Karlovitz number (lines 1, 2, 3: c � 0, b � 8,
10, 12; dashed line: c � 5, b � 12; triangles: Burke-Schu-
mann limit, c � 0). S � � � 1.

Fig. 4. Temperature (dashed lines) and reaction rate
(solid lines) for frozen solution, c � 0, S � 1, b � 12, and
d � 0.26 (Ka�1 � 9.26).

Fig. 5. Temperature (dashed lines) and reaction rate
(solid lines) for attached solution, c � 0, S � 1, b � 10,
and d � 0.8 (Ka�1 � 3.08).

Fig. 6. Temperature (dashed lines) and reaction rate
(solid lines) for attached solution, c � 0, S � 1, b � 12,
and d � 0.24 (Ka�1 � 9.26).

of the thermal expansion on the flow field are left
out, show that for values of b � 10, only one solution
exists, with a smooth transition from frozen flow to
diffusion-controlled combustion at large Damköhler
numbers. In these solutions, we find a nearly frozen
regime upstream of the edge of the diffusion flame;
this edge moves downstream with decreasing values
of the Damköhler number, becoming a triple flame,
as shown in Fig. 4, which approaches the splitter
plate at large Damköhler numbers. The position of
the triple flame is a result of the balance of the fluid

flow and triple-flame front velocity, which decreases
with the ratio of the thickness of the mixing layer.
This front velocity decreases to zero if the flame lies
close to the injector. For b � 10, three solutions exist
for Karlovitz numbers lower than a critical value Kac
(the intermediate one is unstable and cannot be ob-
tained by our numerical procedure). One of the so-
lutions shows, as seen in Fig. 5, a flame attached to
the Navier-Stokes region. The other corresponds, as
seen in figure 6, to a weakly reacting flow in the
region.
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Fig. 7. Distance from the edge of the flame to the in-
jector as a function of the inverse Karlovitz number (line
1: c � 0, b � 12; line 2: c � 5, b � 12).

Fig. 8. Critical values for lift-off of the Damköhler num-
ber or the inverse of the Karlovitz number, as a function
of c for b � 12.

Fig. 9. Stream function (thin solid lines), isolines for the
temperature (dashed lines), and reaction rate (thick solid
line) for an attached flame, c � 5, S � 5, b � 10, and d

� 2000 (Ka�1 � 525).

If, for the attached flame, we define the flame
edge as the point with maximum reaction rate, its
non-dimensional distance, L, to the injector, shown
in Fig. 7, increases with decreasing values of the
Damköhler number, until, at Ka�1 � , we find�1Kac
a sudden jump in q to a very small value correspond-
ing to the lifted flame. The dependence of L on the
Damköhler number is weak for large values of Ka�1.

The critical Damköhler number, , for lift-off,�1Kac
when the attached flame solution suddenly jumps
into the frozen solution, is shown as a function of c
in Fig. 8.

In Figs. 5 and 6, corresponding to the points a and
b in Fig. 3, we show the isotherms and reaction rate
isolines. The difference between the forms of the
attached solution and the nearly frozen solution is
self-explanatory. The form of the diffusion flame
edge depends, as shown by Dold et al. [16] and
Daou and Liñán [17], on the ratio of the thickness
of the mixing layer and the thickness of the planar
stoichiometric flame. Only for large values of this
ratio is the flame edge a triple flame, as shown in
Fig. 4. Near lift-off, the ratio is of order unity and
the leading edge of the flame appears to be what
Takahashi et al. [5], called a reaction center.

As representative of the form of the flame edge
for a typical hydrocarbon fuel, c � 5 and S � 15, we
give in Fig. 9 the flow field and shape of the flame.
Due to the large value of the mass stoichiometric
air/fuel ratio, S, the flame lies well on the oxidizer
side.

Conclusions

We have presented in this work the theoretical
basis for the analysis of the structure of the region
of flame attachment of diffusion flames to the rim of
an injector. We have identified the characteristic val-
ues for the velocity, UN � , and size, lN ��A�

, of the region of diffusion flame attachment to�/A�
the rim of a fuel injector, in terms of the values A
and �A of the uniform shear of the flows of the fuel
and air surrounding the region. We have shown how
to describe the asymptotic form of the velocity per-
turbations to these flows, at large distances com-
pared with lN. These perturbations are independent
of the kinetics of the reaction as long as the flame
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remains attached, and therefore the flame is diffu-
sion controlled in the downstream mixing layer.

The calculated perturbations have been used in
the numerical description of the structure of the
flame attachment region, which we present here
only for some representative cases. They show the
role of the Damköhler number (UL/UN)2 or of its
inverse, the Karlovitz number, m0A/ , to character-2UL
ize the flame attachment and flame lift-off.

The large number of parameters involved and the
few cases analyzed numerically in this paper (only
for infinitely thin injector walls) limit the comparison
with the experimental results to qualitative aspects.
For quantitative agreement, the calculations are be-
ing extended to finite values of h and to more real-
istic kinetics.

Although there been extensive empirical research
on the subject of flame attachment, a direct quan-
titative comparison is not possible due to the lack of
sufficiently detailed fluid flow data to estimate the
velocity gradient at the wall.
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17. Daou, J., and Liñán, A., Combust. Theory Model.

2:449–477 (1998).

COMMENTS

Forman Williams, UCSD, USA. This is interesting work.
What would be the effect of roughness of the plate? The
analysis assumes a smooth plate.

Author’s Reply. For the analysis to be applicable, the
grain size must be small compared with the Navier-Stokes
length, which becomes of the order of the premixed flame
thickness near liftoff.

●

Andy C. McIntosh, University of Leeds, UK. A most in-
teresting piece of work showing how Karlovitz number de-
termines the location of the attachment of the diffusion

flame behind the fuel/air splitter plate. Do the authors
have any feel for the stability of the flame, both when it is
close to the rim of the fuel injector, or when far away?

Author’s Reply. The numerical results reported here are
limited to equal diffusivity of the reactants when the struc-
ture is expected to be stable. Instabilities may be encoun-
tered when the Lewis number of the fuel is different from
unity; even though the strong stretch effects on the flame
edge have a stabilizing influence. Certainly, these instabil-
ities may be more important near liftoff if the flame edge
moves far away from the injector.


