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Al~tract--The usual diffusion-equation description of transport in the base of a junction transistor breaks 
down if the base length is comparable to the minority carrier mean free path. We present a rigorous 
analytic treatment of this problem, based on an exact solution of the Boltzmann transport equation (BTE). 
A key ingredient of our approach is formulation of the boundary conditions for the distribution function 
f(r, k, t) at the base-emitter interface. Numerical solution of the BTE shows that there are significant 
corrections (of order 100%) to the diffusion-equation estimates of both the static current gain and the 
frequency cut-off in a short-base bipolar junction transistor (BJT). In a model where the electron scattering 
mean free path and the recombination length are both assumed independent of energy, the steady-state 
BTE reduces to an integral equation for the electron concentration. We present an approximate analytical 
solution of this equation that gives an excellent agreement with the exact numerical solution. The analytic 
solution is asymptotically exact in the limit of ultra-short base lengths, where the minority-carrier 
transport can be regarded as thermionic, as well as in the long-base limit (where the diffusion equation 
is rigorously valid). On the basis of our analytic solution, we propose and test a new expression for the 
effective (concentration-dependent) diffusivity, that interpolates between the diffusive and thermionic 
limits. 

I. INTRODUCTION 

Electrical characteristics of bipolar junction transis- 
tors (BJTs) are in large part determined by the 
transport of  minority carriers across the base. For  not 
too high injection currents, the base is quasi-neutral 
and the minority-carrier transport is described classi- 
cally as a neutral-particle diffusion process. The 
concept of diffusion across a region of length W is 
valid only if the particles undergo multiple collisions 
during their characteristic transport time 
zd~ r = W2/Do, where D O is the diffusion coefficient. 
Since Do ~ vxl~, the condition W ~> l~ is equivalent to 
the requirement that the effective transport velocity 
W/xaitr be much less than VT- Here v T is a thermal 
velocity of carriers, T the temperature, k the 
Boltzmann constant, m the effective mass of the 
carriers and l~ is the scattering length. In the opposite 
limit, W ~< l~, the transport is largely ballistic. Inad- 
equacy of the diffusion approximation in this limit 
manifests itself in regions of low concentration n and 
high concentration gradient, where the effective diffu- 
sion velocity n - l D o V n  may become larger than the 
thermal velocity. 

It had been noted long ago[l-3] that the cut-off 
frequency f r  in high-frequency transistors is usually 
below theoretical predictions based on the diffusion 
approximation for the minority-carrier transport in 
the base. Having correctly observed that the problem 
arises from a breakdown in the validity of the diffu- 
sion equation in regions of high carrier concentration 
gradient, Persky[l] proposed an empirical formula 
for "diffusion saturation", which smoothly replaces 
the diffusion flux D O d n / d z  by a thermionic flux nv R 

when the former becomes comparable to or exceeds 
the latter. Here o R - - -~ (kT/27tm) t/: is a particular form 
of the thermal velocity (often referred to as the 
Richardson velocity), corresponding to the mean 
velocity of carriers moving in the positive z-direction 
in equilibrium. Persky's formula is supposed to in- 
terpolate between the regimes of diffusive and 
thermionic transport (see, however, the discussion in 
Section 5 below). A somewhat different formula was 
proposed by Berz[3] who derived it from a micro- 
scopic model, assuming a Maxwellian distribution of 
carrier velocities. It may be worthwhile to note that 
Berz's model corresponds to the so-called Milne's 
problem (transport of  neutral particles subject to 
elastic collisions in a semi-infinite medium with a 
perfect sink at the boundary) and it admits of an 
exact solution, well-known in the neutron transport 
theory. 

In the case of a junct ion transistor, the diffusion 
saturation effects can be expected within a region of 
a few mean free paths lsc from the base-collector 
junction, which acts as a sink for minority carriers. 
The problem becomes important,  therefore, when this 
region becomes comparable to the total base thick- 
ness W, while in the limit W >> lsc the usual descrip- 
tion on the basis of the macroscopic diffusion 
equation is accurate. In order to properly account for 
the effects arising from a breakdown of the diffusion 
equation, it is essential to consider the transport 
across a thin slab (rather than semi-infinite medium). 
A natural framework for this would be to start with 
an exact solution of the Boltzmann transport 
equation in the base slab. Such a consideration, 
however, requires a resonable approximation for the 

SSE 35/9--~ 1299 



1300 ANATOLY A. GRINBERG and  SERGE LURY1 

boundary conditions on fir ,  k, t) at the emitter-base 
and the base-collector junctions. This has proven to 
be a tricky problem, since the boundary functions 
themselves depend on the solution in the base. For 
example, in a stationary problem, the full functions 
f (0 ,  k) and f ( W ,  k) uniquely determine the emitter 
and the collector current, respectively, and hence if 
we had known these functions, no further work 
would be necessary for many practical problems. The 
progress in analytic modeling of the Boltzmann trans- 
port in the transistor base seems to have been im- 
peded by the lack of convenient boundary conditions 
on the distribution function. This problem does not 
arise in Monte-Carlo treatments[4,5] that can afford 
to impose the boundary conditions deep inside the 
emitter and collector layers, where the distributions 
are near equilibrium to a good approximation. 

In the present work, we propose a simple way 
around this problem. The boundary conditions we 
derive represent a natural generalization of those 
underlying Bethe's thermionic theory of barrier trans- 
port. Namely, we assume that at some distance into 
the emitter-base junction within less than a mean free 
path from the "beginning" of the proper region, the 
electron distribution is in an approximate equilibrium 
with the emitter. In other words, we neglect the 
variation of the electron imref Ev,o in the region 
z < - z  0 where z 0 < lsc, cf. Fig. 1. Conditions for the 
validity of this assumption are similar to those for the 
validity of the thermionic theory in Schottky diodes, 
namely that the electric field F(z o) is sufficiently large, 
but a subtle conceptual change should be made, cf. 
Section 2, in the usual formulation of these con- 
ditions[6]. 

The assumption of equilibrium at z0 translates into 
a definite boundary condition f (0 ,  k; k-z > 0) that 
describes only a part of the electronic ensemble at 
z = 0 with velocities directed into the base. On the 
base-collector boundary we assume a perfect-sink 
condition, f (W, k; k.z < 0) = 0, that applies to the 

_ -~0 ~W 
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Fig. 1. Schematic band diagram. 
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complementary part of the electronic ensemble. Nei- 
ther of these two functions determines the carrier 
concentration, the drift velocity or the current at the 
respective boundaries, but combined they constitute 
an adequate set of boundary conditions for the 
Boltzmann transport equation in the base. 

This paper is organized as follows. In the next 
section the boundary conditions are mathematically 
formulated. We shall be treating a 1-D problem, 
assuming homogeneity in the x - y  plane. Section 3 
introduces a particular model for the collision inte- 
gral which assumes energy-independent lengths of 
electron scattering and capture. The former assump- 
tion is strictly justified only for collisions of carriers 
with acoustic phonons. However, we believe that the 
qualitative picture following from our analysis is 
rather general and it depends only weakly on the 
concrete scattering mechanism. In the present model, 
the Boltzmann transport equation including the 
boundary conditions is brought into the form of an 
integral equation for the spherically symmetric part 
.f0(z, Ek, t) of the distribution function. Section 4 
describes the solution of the steady-state problem. 
The results are compared with those following from 
the diffusion equation. Section 5 discusses possible 
generalizations of the diffusion equation, introducing 
an effective diffusivity that depends on the local 
concentration and concentration gradient. Section 6 
deals with the small-signal frequency response; the 
frequency cut-offfx of the transistor current gain is 
calculated for a wide range of base thicknesses. Our 
conclusions will be summarized in Section 7. 

2. BOUNDARY CONDITIONS FOR THE 
MINORITY-CARRIER DISTRIBUTION 

FUNCTION IN THE BASE 

Referring to Fig. 1, let us assume that within a 
scattering mean free path lsc from the base origin at 
: = 0 there is a plane z = -z0 where the electron 
distribution function can be taken in the Maxwellian 
form, corresponding to an approximate equilibrium 
with the electronic ensemble in the emitter. Con- 
ditions for the validity of this assumption will be 
discussed below. In the region - z o < z  < 0  the 
steady-state distribution function satisfies: 

hk, Of" eF. ~f 
- -  " - - - - 0 .  (1)  
m ~z+ h ~k. 

Solution of this equation is an arbitrary function of 
the form: 

f = c~(k~, ky, [2meV(z)/h 2 + k~] '/2) F = -aV/Or.  

(2) 

Therefore, if we know that f(-zo,k)  is an equi- 
librium Maxwellian function, we can conclude that 
for k.z > 0 the function f (0 ,  k) is of the form: 

n *  V E~7 
f(O, k ) =  ~cc e x P L - ~ j ,  k - z >  O, (3) 
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where N c = 1/4(2mkT/Trh2) 3/2 is the conduction band 
density of states, E k = h2k2/2m: 

n* = n~ e x p [ - e ( ~  - VBE)/kT ], (4) 

n~ is the majority-carrier concentration in the emitter, 
VnE is the applied base-emitter voltage and • > 0 is 
the built-in potential in the base--emitter junction. 

Even though eqn (4) formally coincides with a 
standard expression in the bipolar transistor theory, 
n* does not represent the minority-carrier concen- 
tration n (0) at the emitter side of the base. The actual 
carrier concentration includes the contribution of 
electrons with k .z  < 0, and if these were absent (as 
would be the case in Schottky contact neglecting 
reflections) then we would find from eqn (3) that 
n (0) = n*/2. This conclusion is in excellent agreement 
with the results of Monte-Carlo simulations of 
Schottky diodes[7], according to which the velocity 
distribution at the top of the barrier is very close to 
a unidirectional Maxwellian distribution with a mean 
velocity towards the metal given by 2'vR and the 
concentration 0.5n*, so that the resulting current 
density is still given by the standard Richardson 
formula. Similar results were found in Monte--Carlo 
simulations[8] of triangular (planar-doped) barriers; 
for those barriers, however, the reflected electrons 
make a non-negligible contribution and the simulated 
electron concentration on the top of the barrier lies 
between 0.5n* and n*. 

Let us now discuss the validity of our assumption 
of an equilibrium distribution at the plane z = - z0  in 
the emitter-base junction. A similar assumption 
underlies the thermionic theory of barrier injection[6]. 
As discussed above, the consequences usually drawn 
from this assumption--regarding the carrier concen- 
tration and the mean velocity on the top of the 
barrier--must be revised but the final result 
(Richardson formula) remains valid due to a cancel- 
lation of two factors of 2. The assumption itself is 
justified if the net flux of electrons at z0 is much 
smaller than either of the oppositely directed diffu- 
sion and drift fluxes. That condition is ensured by the 
inequality Do(dn/t3z)~>nvR which, in light of the 
Einstein relation, eDo = #kT,  is equivalent to: 

#F >> VR = (kT/2~zm) 1/2, (5) 

where/~ is the equilibrium electron mobility. Another 
way of stating this condition is to require that the 
field F(zo) is sufficiently large for the potential gain 
over a mean free path to much exceed the thermal 
voltage: 

FI~ >> k T/e. (6) 

Equations (5) and (6) are mathematically equivalent, 
because in general one has D o ~ vrl~ (Ref. [9], p. 40), 
VR ~ Vr and hence l~kT ~ eVRlsc. 

The boundary condition (3) should be comple- 
mented by another condition at the base-collector 

interface for k ' z  < 0. These conditions combined 
do not overspecify the problem of finding the distri- 
bution function f ( r ,  k). It is clear that the distri- 
bution of minority carriers incident on the base 
region from outside, i.e. the values of f (0 ,  k) for 
k.z>>0 and o f f ( W , k )  for k . z ,~0 ,  gives a com- 
plete and non-contradictory input to a physical 
description of the transport process of interest to us. 
This represents a special case of the uniqueness 
theorem for solution of the transport equation in a 
bounded volume[10]. 

In this work we shall assume that on the 
base-collector boundary the function f (r, k) satisfies 
the "perfect sink" condition: 

f ( W ,  k) = 0, k .z  < 0. (7) 

It is easy to generalize this condition to the case of a 
partially reflecting boundary[3]. 

3. INTEGRAL FORM OF THE TRANSPORT EQUATION 
IN THE BASE, INCLUDING BOUNDARY 

CONDITIONS 

The general 
equation is: 

t~f (r, k, t) 

form of the Boltzrnann transport 

l aEk t~ f e aV  a f  

~t h ~k  ~r h ~r ~k  

+ [ , ~ + ) - S ~ - ) ] f ( r , k ,  t), (8) 

where S~+) and S~-) are the collision operators de- 
scribing, respectively, the scattering into and from a 
point k of the momentum space. 

We shall assume that the system is homogeneous in 
the scattering parameters, that the electric field is 
zero, ~V/~r  = 0 and that the distribution is inhomo- 
geneous only in the z-direction. We shall also assume 
a periodic perturbation with an angular frequency to; 
since the equation is linear, we can look for a solution 
in the form: 

f ( r ,  k, t) = f  (z, k, u)f f% (9) 

where u is the cosine of the angle between k and the 
z-axis. 

The outgoing collision integral S~-)fcan be gener- 
ally represented in the form: 

m ~ - ~ r  = f ( r ,  k, t) (10) 
hk ~k J /tot(k ) 

This term can include not only scattering processes 
but electron captures as well: 

1 1 1 
+ - -  ( ID 

/tot Ix(k)  lq,(k)'  

where lcp (k) is the scattering length corresponding to 
the capture processes. 

The incoming collision integral S~+~f-Kr(z ,k  ) 
is in general a complicated functional on fl For  
the scattering of electrons by phonons, it can be 
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expressed in terms of the symmetric part f0 of the 
distribution function: 

fo(z, k) = ~ (z, k) d[~ = ~ f (z ,k ,u)du.  
-1 

(12) 

Interaction with optical phonons leads to an 
expression containing f0 at energies Ek + hcooo. For 
the scattering by charged impurity centers, the func- 
tion Kf is expressed by an integral over u of a 
weighted distribution f ( z , k ) .  These microscopic 
expressions are adduced in Appendix A. Exact 
inclusion of either the optical phonon or the impurity 
scattering leads to complicated equations and will not 
be pursued in this work. We shall confine ourselves 
to the simplest case, when the incoming collision 
integral can be approximated by the following 
expression: 

m ~+~f =fo(z, k) (13) 
hk l~(k) 

This expression is exact for scattering due to acoustic 
phonons only (in the quasi-elastic approximation), in 
which case, moreover, the scattering length is not a 
function of the electron energy, l~: ~ l~c(k). Within a 
reasonable approximation (see Appendix A), the 
collision integral can also be reduced to the form (13) 
for scattering by charged impurity centers. 

Substituting (9) into eqn (8), we obtain: 

df(z,k,u) f (z ,k ,u)  fo(z,k) 
u dz + l*(k, co~ = l~(k) ' (14) 

f ° (z 'k)=n*exp(-Ek/kT)E I z l ~ c  2 ~ 

+2J0 / .~)  ,Ll,(k, co)jdz', (17) 

where the functions E.(x) are defined by (see 
Appendix B): 

E.(x) = t"-~'exp(-x/t)dt. (18) 

It is convenient to introduce an energy density 
G(z, k) of the electron current J(z): 

J(z) = G(z, k) dE k. (19) 

With the help of eqns (16) we find the following 
expression for G(z, k): 

-2e fhk '  G ( z , k ) = - - ~  m-f(z,k ' ,u ')u'6(Ek-E~,)d3k'  

_ --emEk f] 
7r2h 3 f (z ,  k, u)u du 

1 

- - -emEk[n*exp(-Ek/kT)  E 3 ( ~ ) T z Z h  3 [_ Nc 

r k) E { 
+Jo 2k / 

x sign(z - z ' )  d z ' ] .  (20) 
J 

where 

1 icom 1 
= -~ . (15) 

t*(k, co) hk 6or(k) 

Equation (14) is a linear differential equation, 
describing the coordinate dependence o f f  for each 
value of the parameters co, k and u. Therefore, the 
boundary conditions themselves may depend on these 
parameters. Using the boundary conditions (3) and 
(7), we find: 

/7* 
u > 0 :  Lf (Z, k, u ) = ~c exp(-- Ek/k T) 

1 f~fo(z', k) x exp(-z/ul*)+ u l~c(k) 

x exp [ - ( z  - z')/ul*] dz'; 

(16a) 

1 (W£(z', k) .<0: J(z ,k ,u)= - u  L " ~ 

× exp [ - ( z  -- z')/ul*] dz'. (16b) 

Substituting eqns (16) into (12), we obtain an integral 
equation for fo(z, k): 

4. STEADY-STATE SOLUTION 

In a steady-state problem, o9 = 0 and I*=/tot. 
Using the properties of En((), discussed in Appendix 
B, it can be shown that in the abscence of capture 
processes ( l ~ =  0) the current, calculated from eqns 
(19) and (20), is continuous, dJ/dz = 0, as it should 
be. This is, of course, true even if the scattering length 
l~c is energy dependent, l~ = [~(k), and including 
inelastic scattering processes. For elastic processes 
only, in the abscence of capture, the current energy 
density is itself constant, dG/dz = O. 

In what follows, we shall confine ourselves to the 
case when the length l~¢ does not depend on the 
electron energy. Moreover, we shall assume that l~p is 
also energy-independent. The carrier concentration 
n(z), defined by: 

n(z) = ~ (z, k) dk fo(z, k)k 2 dk, (21) 
7:'.1o 

satisfies (to within a constant factor) an equation 
identical to (17): 

n* /,or ;0" n (~) = ~-- E2 (if) + ~.~ n (ff ')E 1 (1( - ff ']) d~ ', (22) 
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where ( = z/l* and w = W/l*. Equation (22) is ob- 
tained by integrating eqn (17) over dk. Comparing 
eqns (17) and (22) we see that the distribution func- 
tion and the concentration are related as follows: 

n(z ) f Ek ~ 
f0 ( z ,k )= -~ -c  e x p l k - ~ ) ,  (l~=const). (23) 

The electron current density is determined from eqns 
(19), (20) and (23): 

( J(~)=--2vRe n'E3 (~) + 7~- ~ n(~') 

x E2(l~ - ~'l)sign(( - if') d ( ' ) .  (24) 

Differentiating eqn (24) and using eqns (B3a) and 
(B5), we obtain the continuity equation: 

dJ 4vRen(z) 
(25) 

dz l¢p 

It follows from eqn (25) that the capture time %p and 
length lCp are related by z~ = l¢r,/4v R. This relation is 
a consequence of the assumed independence of l~p on 
energy, cf. Appendix C. 

Below we present the results of a numerical inte- 
gration of eqn (22) and compare them with an 
approximate analytical solution. 

4.1. Exact solution 

In eqn (22), the kernel El (1~ -~ '1)  has a logarith- 
mic singularity at ~'--*;. It is convenient to eliminate 
this singularity prior to a numerical discretization of 
eqn (22) by rewriting it in a different form: 

(l  _ltot[2- E2(og - ( ) -  E2(~)l~ n(~) E2(~) 
21~ } n* 2 

lt°t f0* ('[) [n(~')- n(~)] d~'. (26) + ~ e,(l; - n* 

1.0 r . . , ,  • i i I i 

1',. 
0.8 ~ % _ " , .  

i " 

o, ,  

i5 Q w - 10 I= ,. "~-~',~" 
0.2 ~ w-z0,: "',."%~ 

- i  W = 4.0 Ise • 

0.0 I I I I • 
0.0 0.2 0.4 0.6 0.8 1.0 

Coordinate in units of the base thickness 

Fig. 2. Calculated concentration profile in the base. Solid 
lines: exact [eqn (26)]; dashed lines: approximation [eqns 

(33-35)]; stippled line: diffusion approximation. 
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Fig. 3. Dependence of the calculated boundary values n(0) 
and n (W) of the dimensionless concentration (in units of n *) 
on the dimensionless base thickness w = W/I~. Solid lines: 
exact solution of eqn (26); dashed lines: approximation 

[eqns (33-35)]. 

Figure 2 presents the calculated coordinate depen- 
dencies of the concentration for different base thick- 
nesses W. For the time being, capture processes are 
neglected (i.e we have set/tot = 1~). The dashed line 
corresponds to a purely diffusive approximation 
(valid in the limit W >> 1~, cf. Section 5), when 
n(z) = n*(1 - z / W ) .  

As is evident from Fig. 2, the concentration profiles 
n(z) are linear to a good approximation, even far 
away from the diffusion limit. Small deviations from 
linearity are seen only near the base boundaries. It is 
important to note, however, that the boundary values 
of the concentration depend strongly on the base 
thickness• The decrease of concentration at the 
base--emitter boundary corresponds to the fact that as 
the base thickness decreases, the diffusive transport 
goes over into a "ballistic" regime. In the latter limit, 
most of the electrons in the base move in the collector 
direction and n(0).~ n*/2. On the other hand, for 
W >> l~ the distribution function becomes nearly sym- 
metric as a result of scattering, and the concentration 
increases, n(O)~n*. The concentration at the 
base-collector junction varies in the opposite way: 
n(W)--*n*/2 for W--*0 and n(W)--,O for W--,oo. All 
of these features of the distribution function can be 
ascertained directly from the solution of eqn (26)--by 
first expressing f0 in terms of n(z) with the help ofeqn 
(23) and then substituting it into eqns (16). Both the 
coordinate and the angular dependencies o f f  (z, k, u) 
can be evaluated in this way. 

The calculated variations of n(0) and n(W) are 
plotted in Fig. 3 against the dimensionless base 
thickness w ==- W/I~. We note that n (0) + n (W) ~ n* 
for all values of W. This result is intimately related 
to the good degree of linearity of n(z) in the base, cf. 
Section 4.2. 

Substituting the obtained n(z) in eqn (24), we can 
evaluate the current. Expression (24) can be further 
simplified, using eqn (25): 
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J ( z ) = - - 2 v R e ( n - ~ - - ~ f ; n ( z  ') 

2 
× Ez(z ' / l ,o , )dz ' -~f fn(z ' )dz ' ) .  (27) 

The dependence J (W),  calculated from (27), is shown 
in Fig. 4 by open circles. The fact that even for 
w = 0.1 the current does not yet reach its thermionic 
limit (en*vR) is owing to its weak dependence on w, 
which is shown below to be of the form oc(l - w). It 
is interesting to compare the exact current with 
predictions of the diffusion model. According to the 
latter: 

eD o n * 
Jdiff = W ' (28) 

where the diffusivity D o is related to the energy- 
independent mean free path by the usual expression 
(Ref. [9], p. 96): 

Do = 34-1~ v R . (29) 

The standard diffusion-model result (28) is plotted in 
Fig. 4 by the dotted line; the dashed line corresponds 
to replacing n * / W  in eqn (28) by the exact gradient 
[ n ( 0 ) - n ( W ) ] / W ,  calculated from eqn (22). We see 
that the diffusion model substantially overestimates 
the current. 

Figure 5 shows the ratio ~ of J to Ja~ff as a function 
of the base thickness. This ratio can be interpreted in 
a slightly different form, convenient for applications. 
The emitter efficiency 7: 

h 
7 = l + h' (30) 

is defined in terms of the ratio h of the electron 
current J,B, injected in the base, to the hole current 
JpE injected in the emitter: 

"1 '1 

1.2 ~ '" 

~ 1.0 ". 

~, . ~ ' ,  .. 
0.8 , - 

~ o.6 I- % ~ , ,  ... 

i~ 0.4 
"i'" .. 

t O 0  . . . . . . . .  I , 
0.1 1,0 10.0 100.0 

Base thickness in units of the mean free path 

Fig. 4. Dependence of the calculated current density (in 
units of en*vR) on the dimensionless base thickness 
w = W/I=. Open circles: exact [eqn (27)]; solid line: approxi- 
mation [eqns (36-37)]; dotted line: standard diffusion ap- 
proximation [eqn (28)]; dashed line: diffusion approximation 
as  in eqn (28) but with n* /W replaced by an exactly 
calculated average concentration gradient; stippled line: the 

generalized diffusion approximation [eqn (45)]. 

1.0 . . . . . . . .  i . . . . . . . .  1 

0.8 

"._~ 
o 
"5 0.6 
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0.0 . . . . . . .  I . . . . . .  L . . . . . .  
0.1 1.0 10.0 t00.0 

Base thickness in units of the mean free path 

Fig. 5. Ratio ¢ of the exact current to that calculated in the 
diffusion approximation [eqn (28)] as a function of the base 
thickness. Within the scale of the figure the curve is indistin- 

guishable from that calculated with eqn (37). 

OJnB J C3Jdi ~ 
h . . . .  ..~ ~hdiff, (31) 

~ J . E  J d ~  ~ J . E  

where hd~e is the value of h, calculated in the diffusion 
model. The approximate relation in the right-hand 
side of (31) is obtained from eqns (27) and (28) if we 
assume the emitter to be sufficiently thick that the 
diffusion aproximation be valid for the injected holes. 
A highly accurate analytical expression for ~(w) is 
derived in the next Section [eqn (37)]. 

4.2. Approximate analytical solution 

This solution is based on the observation that the 
dependence n(z)  is very close to linear, cf. Fig. 2. We 
can obtain, therefore, an iterative approximation for 
n(z)  by substituting into the integrand in the right- 
hand side of eqn (22) a linear interpolation of the 
form: 

n(O) - n ( W )  
n(z)  = n(O) z. (32) 

W 

Performing the integration with the help of the 
formulae in Appendix B, we find: 

n(~) = ½ n*E2(~) + ½ n(0)[2 - E2(w - ~) - E2(~)] 

n(O) - n ( w )  
- - - -  [24  - wE2(w - ~) 

2w 

- E 3 ( w  - ~ )  + E 3 ( ~ ) ] .  ( 3 3 )  

Letting ~ = 0  and ff = w in eqn (33), we obtain a 
system of equations determining both n(0) and n(w),  
whence we find: 

n *  
n(0) = -~-(1 + 6(w)); 

Z 

where 

(34a) 

n *  
n(w)  = -7-(1 - 6(w)), (34b) 

Z 

w[1 - E2(w)l 
6(w)= 1 + w - e - ' "  (35) 
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Equation (33) with the values of n(0) and n(w), 
substituted from eqn (34), accurately describes the 
coordinate dependence of the concentration, includ- 
ing small deviations from the linearity near both 
boundaries, cf. Fig. 2. 

Similarly, substituting (32) in the right-hand side of 
eqn (27) and using eqn (34), we obtain an approxi- 
mate expression for the current that agrees to within 
10% with the exact values plotted in Fig. 4. A still 
better approximation is obtained by substituting 
eqns (32) in eqn (24) and then averaging the resultant 
J(z) over the base length [the current has a slight 
coordinate dependence because (32) is only an 
approximation to n(z)]. This procedure yields: 

1 fow 4vRen*3w J = - ~  J ( z ) d ( z ) d z -  ~(w), (36) 

with the reduction factor ~(w) given by: 

3[wE4(w ) + 1 -- e -w] 
~(w) = 1 

4w 

311 -- e -w + wE:(w)] 
4(1 + w -- e -w) 

x + E4(w ) . (37) 
W 

The values of n(0) and n(w), calculated from 
eqns (34), are plotted in by Fig. 3 by the dashed 
lines. On the scale of the figure these curves are 
practically indistinguishable from the exact solutions. 
A similar agreement is obtained for the current, 
evaluated from eqns (36-37) and plotted in Fig. 4 by 
the solid line. 

The above analytic expressions for ~ and ~ can be 
used to investigate the asymptotic behavior of n(0), 
n(w) and J both for very long and very short base 
thicknesses. With the help of formulae in 
Appendix B, we find the following asymptotic 
expressions: 

For  w -+ 0: 

n(0)= l + ~ [ 1 - C - l n ( w ) ]  ; (38a) 

n ( w ) =  1 - ~ [ 1 - C - l n ( w ) ]  ; (38b) 

J(w) = -evRn*(1 - w), (38c) 

where C ~ 0.577 is the Euler constant. 

For w --* oo: 

n(O) = n* (1 _ l ) ;  (39a) 

n* 
n(w) = ~w ; (39b) 

J ( w ) - ~ -  4erR n - - -~*  ( 3 w  1 --~ww)'l (39c) 

5. EFFECTIVE DIFFUSION COEFFICIENT 

The fact that the exact concentration profile in the 
base turns out to be linear to a high degree, implies 
that it is possible to represent the current in the form: 

dn 
J = eD d z '  (40) 

with an effective diffusion coefficient D that may be 
a function of n and Vn. 

Beginning with Persky[1] there have been several 
attempts to introduce such an effective diffusivity. It 
was usually assumed that the sought after formula 
should interpolate between the purely diffusive trans- 
port, J = eDo dn/dz, at low concentration gradients 
and the "thermionic" formula, J = -envR, at high 
gradients. To satisfy the latter condition, the effective 
diffusivity must be a function of the logarithmic 
gradient V In n (r), at least in the thermionic limit. The 
simplest interpolation formulae with these properties 
are of the form: 

I 1 '1 " (41) D ( V l n n ) = D ° I I + \ v R n l d z l J  J " 

Persky's formula[I] has rn = 1. Interpolation for- 
mulae of the form (41) have had little success. In our 
opinion, the main reason for their failure is that the 
product nv R gives an incorrect flux in the thermionic 
limit. The correct flux, n*vrt, is given by eqn (38c), 
and if we want to express it in terms of a physical 
concentration n in the base, n ( W ) ~  n <~n(O), then 
we must choose the thermionic current limit in the 
form J = - e n  .2v R, cf. eqns (38a,b). This was already 
recognized by Berz[3] on the basis of a kinetic 
analysis of the transport near a perfect sink. 

Since we have obtained an exceedingly accurate fit 
to the exact solution for the current density in a 
model that starts from a linear interpolation for the 
concentration, eqn (32), it is reasonable to define the 
effective diffusivity in terms of the ratio of the 
calculated current to the calculated concentration 
gradient. This gives: 

Doe(W) 
D ( w ) =  6 (w----~- ' (42a) 

dn n(O) - n(W) 4VRn* 6(w) 
-- = - -  - - ,  (42b) 

dz IV" 3D 0 w 

where we have used eqns (29), (34) and (36). Eliminat- 
ing w from eqns (42), we can express D as a function 
of (1/n*)dn/dz). This function is plotted in Fig. 6 by 
the solid line. Moreover, we can look for an interp- 
olation formula of the form similar to (41): 

( 1  dn~ [1 [9-~,_=-*fD°2 dn'y~l-1/" 
D \~-~-d-~zj = D° " (43) dz: I 

Interpolations with m = 1, 2 and 3 are shown in 
Fig. 6 by the broken lines. The least square fit gives 
m = 2.01. As seen from Fig. 6, the fit with m = 2 is 
quite accurate. 
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Fig. 6. Fit of the calculated generalized diffusivity 
D (n *-tVn) (solid line) to interpolation formulae of the form 
(43). Stippled line: m = 1, dashed line: m = 2, dotted line: 

m=3.  

Formula (43) behaves correctly in both the diffu- 
sion and the thermionic limits. However, since D is 
not a function of the logarithmic derivative of n, this 
formula cannot be used directly in approximate 
calculations--unless one knows n *. The best approxi- 
mation in terms of the logarithmic derivative that can 
be inferred from (43) is to replace n*/2 by n, keeping 
in mind that we have n (0) + n (W) = n * for all values 
of W, cf. eqns (34). Thus, we arrive at a generalized 
diffusion equation of the form: 

J = eD o dn (44) 
[, +( Do 

\2VRn d z J  j-1'2 ] d z  

Solution of eqn (44) is given by: 

[ (2evRn( z )y_  111/2+ • / IYl ) \ Isl / arcs,n    2 

2VR(W -- Z) 
- D o  , ( 4 5 )  

where we have assumed the boundary condition at 
the collector interface in the form J = --2evRn(W). 
For a given current, eqn (45) describes the variation 
of n(z) in the base. Conversely, if we assume a known 
carrier concentration n(0) at the base-emitter inter- 
face, which may be obtained by solving the coupled 
transport and Poisson equations in the space-charge 
region, then eqn (45) yields the value of the current. 

In the exact solution n(O)/n* is a function of the 
base thickness, or--equivalently--of the current. The 
diffusion equation (44) does not allow a simultaneous 
determinaiton of both n(0) and J. In this sense, the 
equation is rather useless if we restrict ourselves to the 
base region alone. However, using the generalized 
diffusion coefficient in a description of the entire 
system from the collector to the emitter (in a device 
modeling program) should give a better approxi- 
mation to the concentration n(0). 

In order to test the consistency of such approach, 
we have evaluated J by substituting n(0) in the form 
(34a) into eqn (45). The values of J thus obtained are 
plotted in Fig. 4 by the stippled line. We see that this 
procedure gives a vast improvement over the stan- 
dard diffusion equation results. This offers hope that 
the generalized diffusion eqn (44) may find appli- 
cations in device modeling programs. 

6. H I G H - F R E Q U E N C Y  R E S P O N S E  

We shall assume that the periodic perturbation 
originates from an oscillatory variation of the 
base-emitter voltage: 

[ / 'BE( t  ) = V(0)  a -  " ( 4 6 )  - -BE t t) VBE e "ut 

and that the oscillating part is small in the sense that 
6 VBE ~ kT/e. The latter condition allows us to restrict 
ourselves to a harmonic perturbation of the boundary 
conditions (3): 

(0) 
VBE) e 6VBE e i''t. (47) 

6n*=nEexp k-T- / kT  

In modern short-base transistors, the high fre- 
quency response is controlled by the time of electron 
propagation across the base and the capture pro- 
cesses are not important. However, in order to trace 
the transistor gain in the entire frequency range, we 
shall assume that at low frequencies, the gain is 
controlled by recombination of injected electrons in 
the base. For energy-independent capture length lop, 
the recombination time Zcp is related to lop by 
lop = 4 V R I ' c p ,  c f .  Appendix C. 

The time-dependent problem is solved by replacing 
the parameter lsc/ltot, that enters eqns (22) and (24), 
by: 

lsc (,~ iooml~, 
l . ( E k ) - - l + ~ +  hk 

= l + / ~ p +  2VR \nEkJ . (48) 

The assumption of an energy-independent mean free 
path, used in the steady-state solution (Section 4), 
introduces no particular simplification in the time-de- 
pendent problem, since the length l* depends on the 
energy even when both lsc and lop do not. Thus, 
eqn (23) is no longer valid even for l~ = const. We 
must, therefore, solve eqn (17) for each Ek and 
determine the concentration by the following 
relation: 

n (z) 2Nc fo ~' f0 (z, Ek )x~k dEk. (49) 

Similarly, having determined fo(z, Ek), we can find 
G(z, Ek) with the help of eqn (20). The total current 
is then determined by eqn (19). 
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Fig. 7. Calculated current gain ft. The assumed capture 
length ~ = 103/~:, scattering length l~ = 500 A, and 
thermionic velocity VR= 107cms -~. Dashed lines corre- 
spond to the usual diffusion approximation. (a) Frequency 
dependence ~0 r) for several base thicknesses; and (b) base 

thickness dependence of the static gain fl(0). 

Figure 7 presents the current gain fl, defined as: 

~& (50) 
/3 =aT 

and calculated assuming a unity emitter efficiency 
and neglecting capacitive effects as well as recombina- 
tion in the space charge region. The frequency depen- 
dence / 3 ( f )  is shown in Fig. 7a for several base 
thicknesses. Dashed lines indicate the usual diffusion 
approximation to ]3: 

1 
/3diff ~--- 2 sinh2[(1 + itozcp)l/2W/2(Dozcp) 1/2] " (51) 

We see from Fig. 7a that for W ~ l~ the diffusion 
approximation overestimates the cutoff frequency fT 
by about a factor of 2. The static gain/3(0) is plotted 
in Fig. 7b against the dimensionless base thickness 
w. For w >> 1 the gain is proportional to w-2, which 
is characteristic of the diffusion approximation. 
In the short-base range the dependence is slower, 
approaching w- '  in the limit w ~ 0. 

7.  C O N C L U S I O N  

We have analyzed the transport of minority carriers 
in the base of a BJT. The analysis is based on the exact 
solution of the Boltzmann transport equation. A key 
ingredient of our approach is the formulation of the 
boundary conditions for the distribution function, 
eqns (3) and (7). The solution is presented both for 
the steady-state and the small-signal oscillatory prob- 
lems and is compared with the standard diffusion 
equation results. 

For the steady-state problem, we have derived an 
analytic approximation [eqns (33-37)] to the exact 
solution, which gives highly accurate results for arbi- 
trary base thicknesses. The analytic solution is asymp- 
totically exact in the limit of ultra-short base lengths 
[eqns [38)], where the minority-carrier transport can 
be regarded as thermionic, as well as in the long-base 
limit [eqns (39)], where the diffusion equation is 
rigorously valid. 

On the basis of our analytic solution, we propose 
and test a new expression [eqn (44)] for the effective 
(concentration-dependent) diffusion flux, that interp- 
olates between the diffusive and thermionic limits. It 
should be emphasized that no diffusion model can 
successfully describe the short-base transport, if one 
is confined to the consideration of the base region 
alone. Indeed, our results show that it is impossible 
in principle to impose conditions on the carrier 
concentration at the base junctions, since the boundary 
values of the concentration themselves depend on the 
transport in the base. This invalidates any model of 
transport in a short base (including generalized diffu- 
sion, hydrodynamic models, etc.) that require bound- 
ary conditions on the concentration. It is possible to 
treat the base transport in a self-contained fashion 
only within an approach based on the kinetic equation, 
where one can impose conditions on the inbound 
electron f luxes  at the boundaries, as we have done in 
eqns (3) and (7). Phenomelogical models based on the 
drift-diffusion equation can be useful provided the 
semiconductor region under consideration extends 
beyond the base--both into the emitter and the 
collector layers. A generalized diffusion equation (44) 
involving the effective diffusivity may find applications 
in numerical device modeling. 
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as can be easily verified by substituting (A8) into (AS) and 

APPENDIX A (A7). Choosing R(k; k’) in the symmetric form: 

Microscopic Expressions for the Scattering Integrals and the R(k; k’) = R(k^k’)= 
1 - cos(k^k’) 

[2y + 1 - cos(kAk’)12 ’ (A10) Mean Free Path 

For electron scattering by acoustic phonons (in the quasi- substituting (AlO) into (A7). and performing the 

elastic approximation) and by non-polar optic phonons, the integration, we find: 

outgoingcollision integral is of the form: 

hkQ-lf=_ fo(r, k) 

I,(k) ’ M (AlI 

_fO(&) -lk 
(All) 

w r(h) ’ 

with 

where 

ev(h%JkT)& - ho,, + exp( - hw,,lZkT)& + hw,, 1 _ j_ + L 

Uk) l,, 10, 2 cosh(ho,,/2kT),/E, 

= EhW 1 

1 
(A34 

ac Xpsw ’ 

1 E;,m%o,, coth(ho,,/2kT) 

I 2nps%4 
(A3b) 

OP 

E, and Eop are the deformation potentials for acoustic and optic displacements, respectively, ho,, is the optical phono 
energy, p the material density and s the sound velocity. 

The incoming collision integral is of the form: 1 
exP(h%,/2kT)Jwf,(E, + ho,,) + exp( - ho,,/2kT)~~~f,(E, - ho+,,) 

2 cosh(hw,,/2kT)& 

In the case when scattering is determined by the inter- 
action with impurity centers of charge Ze and concentration 

Ni,, 9 the collision integral is of the form: 

s (fi --_&I da,, 
[2y + 1 - cos(k^k’)]*’ (A5) 

Here e,, is the dielectric permittivity, Q,. is the solid angle in 
It’ space, k^k’ is the angle between vectors k and k’ of the 
same magnitude k, cos(k^ k’) 3 k. k’/k * and y is the screening 
parameter: 

y =8mE,* (‘46) 

where K is the inverse screening length. Inasmuch as y is 
usually small, y 4 1, the incoming collision integral is 
strongly anisotropic. With such a collision integral, the 
Boltzmann equation is much more difficult to solve than for 
isotropic scattering. It is possible, however to introduce an 
effective scattering term that produces the same results for 
the low-field diffusivity as the exact expression (A5), and, at 
the same time, is isotropic. To do this, we must modify both 
the incoming and the outgoing collision terms. This pro- 
cedure is sketched below. It results in an approximate 
expression for the incoming collision integral that is of the 
form (13). 

Assume that the effective collision integral is of the form: 

and choose R(k; k’) in such a way that both the approximate 
expression (A7) and the exact (A5) produce the same result 

where r(4) is the usual scattering time due to interaction 
with charged impurities: 

m 1 1 n N amp Z2e4 
=- 

hkr(4) 4,,,(&) 2 e:E: 

x [in(T) + &I. (A12) 

z 

Fig. Bl. The exponential integrals E,(z). 
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APPENDIX B 

Properties o f  Exponential  Integrals, Eqn (18) 

Exponential integrals E . ( z )  are defined by: 

E . ( z ) =  f l ® e - " t - " d t  = f ~  t " - 2 e - " ' d t .  (B1) 

Figure 1 plots E , ( z )  for n = 1 , . . . ,  4. The function El (z) is 
related to the exponential integral Ei(z )  by the following 
expression (see Ref. [11], pp. xxxii and 925): 

ov (__Z)Ic__Z k 

El(z  ) =  - E i ( - z ) - C - l n z - k ~ l ~ , =  ,~,~ : z >O, (B2) 

where C =0 ,577 , . .  is the Euler constant. Properties of  
E~(z) can be derived from those of  Ei(z )  using the recursive 
relations: 

dE,+l(z)  
E,(z); (B3a) 

dz 

nE,,+ I(z)  = e ~ - zE,,(z). (B3b) 

Relations and integrals used in this present work are listed 
below: 

1 
E. + l (0) = -. (B4) 

n 

dE. + I (Iz - z'l) 
- E. (Iz - z'l)sign(z - z'). (B5) 

dz '  

E~(lz - z ' l )  d n ' = -  - E .+l (w  -- z )  -- E~ + i(z); (B6a) 
n 

: ]  (z - 2")E~(Iz - z'[) d z ' =  (w - z)E~ i (w - z)  + 

- z E ~ + ~ ( z ) +  E ~ + , ( w - z ) - E ~ + 2 ( z ) ;  (B6b) 

o (z -- z ')2E.(Iz -- z'[) dz '  

4 
-- z2En+ i(z) -- 2zEn+2(z ) -- 2En + 3 (,z) 

n + 2  

- -  ( W  - -  z ) 2 E n +  I ( w  - -  z )  - -  2 ( w  - -  z ) E . +  2 (w - -  z )  

- 2E~ + s (w - z). (B6c) 

;~ ' -  z'l)sign(z - z') dz '  E.(Iz 

= E.+ t(w - z ) - - E . +  t(z); (B7a) 
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f o ( z  - z ' )E . ( l z  - z ' l)sign(z - z ')  dz" 

f 
w 2 

= ([z - z ' l ) E . ( l z  - z'l) dz '  - z E . + , ( z )  
0 n + l  

- g . + 2 ( z )  - (w - z )E.+ i(w - z)  - E. + 2(w - z). 

(B7b) 

For large values of  z, it is convenient to use the asymptotic 
expansion: 

( - l ) k+ l (n  + k - - 2 ) /  
f . ( z ) ~ e  -z 

k = (n -- 1) !z k 
1 
- e  -~, ( z ~ o o ) .  (88) 
Z 

APPENDIX C 

Transition to the Diffusion Equation 

Let us illustrate how the integral eqn (22) goes over into the 
usual diffusion equation in the limit when W >> I~. The 
kernel E t (1( - ('l) diverges logarithmically as ( ~ ( ' ,  while 
for I( - £'1 ~' 1 it decreases exponentially. Inasmuch as the 
concentration n(( ' )  varies little on the mean-free-path 
length, it can be expanded about ( to within terms of  order 
(( - ( '). The linear term vanishes upon integration. Neglect- 
ing the terms of order E . ( w  - ~) and E.(()  and integrating 
with the help of  formulae in Appendix B, we obtain: 

02n 1 
~ l~ ~z2 = ~ n ( z ) .  ( e l )  

In writing down eqn (22), we had assumed that the recom- 
bination length In was independent of  energy and l w ~. l~. 
For recombination on centers with a capture cross-section 
aw, the recombination length equals lop = 1~Non, where N 
is the concentration of  recombination centers. This implies 
that the capture cross-section ocp must also be taken energy- 
independent. Therefore, the average time of  capture is 
determined by the relation Z~p ~ = ~awN,  where 6 is the mean 
value of  the absolute magnitude of  electron velocity. For the 
Maxwellian distribution, t~ = 4VR, whence 

lep = 4VR't'ep. ( C 2 )  

Substituting this expresion in eqn ( e l )  and taking into 
account eqn (29), we arrive at the usual diffusion equation. 


