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We study diffusion processes in anomalous spacetimes regarded as models of quantum geometry. Several types
of diffusion equation and their solutions are presented and the associated stochastic processes are identified. These
results are partly based on the literature in probability and percolation theory but their physical interpretation
here is different since they apply to quantum spacetime itself. The case of multiscale (in particular, multifractal)
spacetimes is then considered through a number of examples, and the most general spectral-dimension profile of
multifractional spaces is constructed.
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I. INTRODUCTION

Although many different theories of quantum gravity have
been proposed to accommodate the gravitational interaction
and quantum mechanics in a unified framework, certain
features seem to be universal and deeply connected with one
of the most desired properties all these candidates should
possess: namely, the absence or control of divergences at
small scales. One of these features is dimensional reduction,
also known as dimensional flow [1–3]. In general, one of
the indicators characterizing quantum geometry, the spectral
dimension dS of spacetime, changes with the scale, running
from dS � 2 (or exactly dS = 2) in the ultraviolet (UV) to the
usual, classical value dS ∼ 4 in the infrared (IR). Numerical
and analytic examples can be found in causal dynamical
triangulations (CDT) [4,5], random combs [6,7] and random
multigraphs [8,9] (both sharing some properties with CDT),
quantum Einstein gravity (QEG, also called asymptotic safety)
[10,11], spin foams [12–15], Hořava-Lifshitz gravity [16,17],
noncommutative geometry at the fundamental [18,19] and
effective [20–22] levels, field theory on multifractal spacetimes
[23–25] (in particular, in the realization within multifractional
geometry [26–31]), and nonlocal super-renormalizable quan-
tum gravity [32–34].

The multifractional framework is rather effective in de-
scribing geometric and physical features of quantum gravity
at large. Therefore, it can be regarded either as an independent
proposal for a fundamental theory or an effective framework
wherein to better understand the multiscale geometry of the
other approaches (examples are [21,35,36]). For this reason,
we believe it is important to exploit the tools available in
multifractional spacetimes as much as possible. Due to the
young age of the proposal, these tools are largely unexplored
and the purpose of this paper is to continue the investigation
initiated in Refs. [26–29], in the meanwhile improving the
understanding of dimensional flow as a general phenomenon
of quantum geometry.

To begin with, we need to refine the discussion on diffusion
processes of Ref. [27]. Systems with anomalous dimension
are described by fractional versions of the standard diffusion
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equation, while multiscale systems are obtained by further
but simple extensions. In Ref. [30], which is a condensed
exposition of the contents of Secs. IV and V, the following
was pointed out. Once the forms of the Laplacian and of
the diffusion operator are determined independently (e.g.,
by phenomenology), the requirement that the solution of the
diffusion equation be non-negative definite allows one to fix
other details of the diffusion equation, such as the presence
of source terms, and to give a probabilistic interpretation to
the diffusion process. Associating diffusion with a stochastic
process is an important step towards the understanding of
the physical properties of the quantum geometry under
scrutiny and of dimensional flow. Multiscale cases are more
complicated than those with fixed dimensionality, but this does
not prevent the construction of systems with a composite scale
hierarchy. Examples exist in the literature of probability and
chaos theory that can be applied to quantum-gravity scenarios
in the present interpretation. We shall also construct the profile
of the spectral dimension for a multifractional spacetime with
a finite but arbitrary number of characteristic scales. The
author had the single-scale case in mind when presenting
the main features of fractal and fractional field theory in
Refs. [23–26,28], but multiscale extensions also have direct
applications to quantum gravity, like the two-scale profile for
asymptotic safety [30,35].

The plan of the paper is as follows. Section II introduces
the triple issue of universality, robustness, and uniqueness
of diffusion and geometric properties in quantum gravity,
and motivates why we expect and study nonstandard diffu-
sion equations generated by quantum-geometric effects. The
main geometric indicators of continuum models of fractal
spacetimes are reviewed in Sec. III with some additional
material. After the extension of fractional measures to bilateral
worlds [29], the calculation of the spectral dimension of
Ref. [27], with further comments on the diffusion probability,
can be generalized to these cases and to fractional Laplacians.
In Secs. III B–III D we exploit the recent construction of a
momentum transform in fractional spaces [29] and include a
class of fractional Laplacians not considered in Refs. [27,28].
The classification of different types of diffusion is heavily
based upon known results in the literature on probability
theory, stochastic processes, and diffusion, although here
we give the subject a different spin by identifying the
diffusion medium with spacetime itself (Sec. IV). Control
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of multifractional spacetimes is greatly improved in Sec. V,
where dimensional flow is treated analytically. Section VI is
devoted to conclusions.

II. UNIVERSALITY, ROBUSTNESS, AND UNIQUENESS

To probe the local geometry of a given classical spacetime,
there is a standard recipe founded upon a diffusion equation.
One places a pointwise test particle on the Euclidean (i.e.,
imaginary-time) version of spacetime and lets it diffuse from
point x to point x ′, parametrizing the diffusion with an external
variable σ . It is common to assume the diffusion equation
[37–39](

∂σ − ∇2
x

)
P (x,x ′,σ ) = 0, P (x,x ′,0) = δ(x − x ′), (1)

where the initial condition states the nonextension of the probe.
The parameter σ � 0 acts as an abstract “time” variable via the
diffusion operator ∂σ , an ordinary first-order derivative. The
Laplacian ∇2 (acting on the variable x), called more generally
the spatial generator in probability theory, is a second-order
differential operator.

Quantum geometry can emerge either by definition of
a nonstandard texture of spacetime (as in noncommutative
and multifractional spaces and in Hořava-Lifshitz theory) or
from the discretization or quantization of the gravitational
interaction (as in CDT and asymptotic safety), or for both
reasons. In all cases, the spectral dimension dS becomes
anomalous, i.e., different from the topological dimension, and
not because of curvature effects which exist already at the
classical level. Since dS stems from the diffusion equation,
quantum geometry effectively modifies either the diffusion
operator ∂σ , or the Laplacian ∇2

x , or the initial condition
P (x,x ′,0), or the three of them. To understand the origin of
such deformations of Eq. (1), we also quote some models
where this happens.

Modification of ∂σ . Diffusion “time” acquires an anomalous
scaling and the diffusion operator becomes fractional (see
below), signaling the emergence of a memory effect along
the diffusion flow. In the presence of one or more fundamental
quantum scales, the new operator is in fact a sum of operators
of different orders. To the best of our knowledge, there are
only two concrete examples of a quantum-gravity diffusion
equation with (multi)fractional diffusion operator: multifrac-
tional spacetimes [27] (but as an optional construction) and,
perhaps more interestingly for the habitués of the field, maybe
also quantum Einstein gravity [36]. There, the deformation
of ∂σ is realized because the cutoff scale of the theory is
not identified with the physical momentum as usual but, as
a powerful alternative, with diffusion time; the anomalous
scaling is due to the renormalization group flow realizing
asymptotic safety in the UV, while the presence of several
scales (and, hence, of several diffusion operators in the same
equation) is guaranteed by the type of action. This liberty in
the cutoff identification is part of the question of universality
and robustness outlined below. Also, a change in the diffusion
operator can be made equivalent (from the point of view of
the asymptotic scaling of the variance) to a change of spatial
generator, thanks to a duality between diffusion equations
which we will introduce later. Finally, the relation between
number of operators, number of scales, and scale dependence

of the spectral dimension is not a subject much explored in
quantum gravity (but see [40]) and will be extensively analyzed
here.

Modification of ∇2
x . As the spacetime texture gets modified

(by quantum-gravity effects or by a nonstandard Ansatz of
background geometry), the differential structure also changes,
and with that the notion of Laplacian. Noncommutative
geometry and multifractional spacetimes are two instances:
in both cases, calculus itself and the measure of spacetime
undergo deep revisions from first principles. Qualitatively,
asymptotic safety sports higher-order Laplacians (“dual” to
lower-order diffusion operators) because of the anomalous
scaling of the metric within (which survives in inertial frames).
In Hořava-Lifshitz gravity, higher-order Laplacians arise by a
simple power-counting argument of the quantum theory [16].
In CDT, spin foams, and simplicial gravity in general, the
deformation of the Laplacian is often not explicit but one can
understand it as coming from the semiclassical continuum
limit of a discretized geometry where multiple scales are
introduced [15]. Dilaton black holes are another example of
diffusion equation with modified Laplacian [41].

Modification of P (x,x ′,0). On a manifold with anomalous
properties such as in a quantum setting, the notion of “point
particle” can undergo a change to adapt to the different
geometric background. In other words, the Dirac distribution
δ(x − x ′) no longer plays the role of the “delta” and must
be replaced by a different distribution. Two cases where this
happens are quantum manifolds with a minimal length, where
pointwise objects are smeared to Gaussians [42,43], and, again,
multifractional spacetimes, where the Dirac distribution must
be substituted by its fractional generalization [27,29].

A classification of the possible diffusion equations should
help to understand the physics beyond these and other models
of quantum gravity. To carve concrete inroads into multiscale
quantum geometry, it is instructive to focus one’s attention on
the characteristics of dimensional flow, starting from the most
general ones. All models of quantum gravity can be equipped
with a diffusion equation and, hence, a sensible definition of
the effective dimension of spacetime (the spectral dimension
dS). Then, one can pose a series of questions grouped into
three main issues:

Universality. Are there geometric features common to all
or the great majority of the approaches to quantum gravity?
If not, are there features which are general to many models
although not universal?

Robustness. Are there features of dimensional flow insen-
sitive to the fine details?

Uniqueness. Given a model of quantum gravity, is the
diffusion equation (hence the stochastic process and the profile
of the spectral dimension) uniquely determined? If not, is the
physics robust?

Here we give a qualitative anticipation of what will emerge
during our analysis. This will help the reader in framing
the salient characteristics of multiscale and multifractal ge-
ometries within the mathematical presentation, placing proper
emphasis on those details that play a major role in the physics
of quantum gravity.

Part of the introductory motivation was based on the
observation that a spacetime dimension equal to 2 is univer-
sally associated with the UV finiteness of quantum gravity;
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dimensional flow from two limiting integer values (in partic-
ular, dS ∼ 2 to dS ∼ 4) is an almost universal feature of such
theories. While the value 2 is itself universal, the IR limit ∼4 is
an empirical datum forced into the construction of the models,
with barely one exception [26].

The number N of asymptotic regimes in dimensional flow is
not universal because there exist theories, or variations within
the same theory, predicting more than two plateaux in the
profile of dS(�), where � is the probed length scale. Asymptotic
safety (depending on the operators assumed in the action) and
multifractional models (depending on their construction) are
two instances. CDT show only two regimes but the small-scale
one is probably an intermediate, not a deep UV feature of the
model [44].

Once N is fixed, how the flow is realized is not universal
either, inasmuch as different models with the same number
of characteristic scales generate functionally different profiles
dS(�). Thus, while the value of each plateau may be the same
across all possible profiles and the interpolating regimes be-
tween them qualitatively similar, the actual function realizing
the interpolation can be different. Nevertheless, we point out
that a certain function dS(�) recurs often in the literature and
can be regarded as general, albeit nonuniversal, for systems
with just one characteristic scale �∗. In four topological
dimensions, this function is

dS(�) = 4
α∗ + (�/�∗)2

1 + (�/�∗)2
, (2)

where typically α∗ = 1/2 and, as we shall comment below, the
power of the length ratio is of little importance. The instances
where this profile is realized are at least the following.

(a) Multifractional spacetimes. Because this framework
aims to capture, by construction, universal or general multi-
scale geometries appearing in quantum gravity, the derivation
of Eq. (133) (for isotropic measures) automatically contains an
explanation of the generality of the profile (2) in single-scale
scenarios. It simply stems from the most natural adaptation of
rods in multiscale measurements.

(b) Dilaton black holes, where Eq. (2) is an accurate
estimate of an exact but more complicated profile dS(�) [41].
Since the dilaton plays the role of a power-law measure weight
in the action, technically this case is nothing but a radial version
of a multifractional spacetime.

(c) Causal dynamical triangulations. A numerical best fit of
dimensional flow yields α∗ ≈ 1/2 and (�/�∗)2 ≈ σ/50, where
σ is the dimensionless diffusion time in the CDT transport
equation [4].

(d) Random multigraphs, whose geometry was shown to be
closely akin to (certain approximations of) causal dynamical
triangulations [8,9]. The analytic form of the return probability
is, in fact,P(σ ) = 2G2/(2Gσ + σ 2), leading to dS = 4[1/2 +
σ/(2G)]/[1 + σ/(2G)], where G is Newton’s constant.

(e) Hořava-Lifshitz gravity. There, the scaling of time and
spatial coordinates is mutually anomalous and governed by a
parameter z which is fixed in the UV and in the IR (to the
values 3 and 1, respectively). In general, dS = 1 + 3/z [16];
this expression captures the asymptotic behavior of the spectral
dimension in the two (UV and IR) plateaux corresponding
to z = 3 and z = 1. The actual profile dS(�) would stem
from the exact diffusion equation featuring (at least two)

B

A

C

A

Probed scale

Spectral
dimension
ds

FIG. 1. Typical single-scale profile of the spectral dimension as
a function of the probed length scale. (A) Asymptotic regimes where
dS ∼ const (plateaux) and the values of dS therein are universal or
almost universal. (B) Also intermediate plateaux, possibly reduced to
local extrema, are robust within a given physical system, but different
mathematical realizations of the same system cannot produce extra
plateaux or transient features such as bumps, glitches, and so on.
(C) Details of dimensional flow such as the monotonic slope of the
profile between different regimes can change with the mathematical
realization but they are physically unimportant.

Laplacians of different order. The spatial generator of the
diffusion equation can thus be written, effectively, as a sum
over z of Laplacians with z-dependent order [40]. In turn,
z can be regarded phenomenologically as a scale-dependent
parameter, which reproduces Eq. (2) with α∗ = 1/2 if z(�) =
[1 + (�/�∗)2]/[(1/3) + (�/�∗)2].

The latter matching is justified by the evidence we shall
gather that multiscale (in particular, multi-Laplacian) and
multifractional diffusion equations yield the same spectral
dimension profile when the scale hierarchy is mutually tuned.

If the number N − 1 of characteristic or fundamental
scales of the system is specified, so is the number N � 2
of asymptotic regimes in the spectral dimension. Profiles with
different N belong to physically different systems. Figure 1
shows the typical two-regime (one characteristic scale, N = 2)
profile.

The question about uniqueness is more delicate and is
summarized in the following double claim:

(1) Given a physical system, we can associate different
diffusion equations realizing very similar dimensional flows
with the same physical features, i.e., (i) the number N − 1
of plateaux, (ii) their mutual position, (iii) their values, and
(iv) the monotonicity of the flow between any two plateaux.

(2) Other features such as (v) the length of the plateaux
and (vi) the way they are connected are not unique, can
vary depending on the mathematical implementation of the
model, and are not expected to play any role as far as physical
falsifiability is concerned.

The number N , the values of dS at the plateaux, and
their mutual position are almost always default ingredients,
specified by construction either explicitly (e.g., requiring that
dS ∼ 4 in the IR, or introducing only N − 1 = 1 funda-
mental scale such as the Planck scale in noncommutative
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geometries or the simplest multifractional setting) or im-
plicitly (e.g., choosing the operators in the action in QEG
determines N and, in a rather mysterious way, the value
and position of the intermediate plateau). This should high-
light the intrinsically empirical nature of the concept of
universality.

Throughout the paper a plethora of examples will show
that, once N and the values of the plateaux and their mutual
positions are fixed, different diffusion equations will be able
to generate an analytic dimensional flow connecting them
in about the same way. Obviously, the profiles for dS will
be different functions of the probed scale, but since N is
fixed there will be no intermediate local extrema (maxima or
minima, “bumps,” “glitches,” or other transient features like
the bump B in Fig. 1) between two plateaux. Thus, universal
or almost universal features are unique and robust, while the
interconnecting monotonic slopes in the flow (feature C in
Fig. 1) are nonunique but robust.

In transport theory, it is not altogether unusual to associate
different diffusion equations (i.e., different transport models)
with the same physical system and, at the same time, being
unable to place observational constraints on such models. The
reason is that, in practice, only anomalous exponents can be
determined by experiments, while details of the diffusion
process are more elusive. The theory itself, however, can
discriminate among the models, because diffusion equations
with no probabilistic interpretation are much less appealing
than those with a solution with stochastic meaning, even if
they all realize the same anomalous behavior asymptotically.
Below we will stress and illustrate this point on several
occasions.

In quantum gravity, where we have virtually no acknowl-
edged observational signature available (with the possible
exception of the cosmological constant), this limitation of
“uniqueness” is all the more cogent. On top of that, there
are explanations of why transient slopes in the dimensional
flow are associated with nonunique mathematical features of
the models: we refer, in particular, to regularization schemes in
triangulation settings (as in CDT) and in renormalization group
flows (as in asymptotic safety and Hořava-Lifshitz gravity).
Therefore, even from the point of view of quantum field
theory and simplicial geometry it is not always physically
meaningful to expect transient regimes to be unique. Finally,
we wish to advance the somewhat neglected idea that diffusion
must have a well-defined stochastic interpretation in quantum
gravity also. Diffusion, in fact, probes geometry itself via a
test particle and one should be in a position to meaningfully
ask what the probability is of finding the probe at a certain
point.

III. GEOMETRY OF CLASSICAL FRACTIONAL
SPACETIMES

A. Configuration space and Hausdorff dimension

Continuum models of fractal spacetimes are defined via an
embedding, a measure �, and a Laplace-Beltrami operator K.
Let MD be Minkowski spacetime in D dimensions, labeled by
Greek indices μ,ν, . . . = 0,1, . . . ,D − 1. The measure is of a
Lebesgue-Stieltjes type [23,24] such that it can be recast as a

Lebesgue measure with a nontrivial weight:

d�(x) = dDx v(x). (3)

We assume that, in momentum units, the scaling dimension of
the weight v(x) is

[v(x)] = −D(α − 1), α = 1

D

∑
μ

αμ,

(4)
1

2
� αμ � 1, ∀ μ.

Here the “fractional charges” αμ are parameters associated
with each direction. An explicit realization of this weight is
given by real-order fractional measures d�α(x) = dDx vα(x),
where [27,29]

vα(x) =
∏
μ

vα(xμ) :=
∏
μ

|xμ|αμ−1

	(αμ)
, (5)

where the absolute value is taken so that the measure is real
valued and positive. This has consequences for quantization
[31], because unilateral measures with support only in the
first orthant (xμ � 0) are eventually conjugate to problematic
non-negative momenta. Hence, we take the integration range
to be the whole real line for each coordinate. The “isotropic
case” αμ = α can be assumed, if desired, to illustrate the
properties of these spaces. Real-order fractional measures
make anomalous scaling apparent,

�α(λx) = λdH�α(x), dH = Dα, (6)

where dH is the Hausdorff dimension of spacetime. dH can be
computed from a similarity theorem or from its operational
definition, as the exponent in the power-law scaling of the
volume of a D-ball with respect to the radius, V (D)(R) ∼ RdH

[27].

B. Laplacians

The so-called harmonic structure of the fractal Minkwoski
spacetime MD

v is specified by the choice of Laplace-Beltrami
operator. Consider, for instance, the action of a free massless
scalar field:

S = 1

2

∫ +∞

−∞
d�(x) φKφ. (7)

One can show that a natural Laplace–Beltrami operator on
these spaces is given by the self-adjoint operator D:

K = ημνDμDν, Dμ := 1√
v(x)

∂μ[
√

v(x) · ], (8)

where ημν is the Minkowski metric with signature
(−,+, · · · ,+), Einstein summation convention is used, and
∂μ = ∂/∂xμ is the ordinary partial derivative. K is a second-
order differential operator guaranteeing that, upon integrating
by parts, the kinetic term in Eq. (7) can also be written in
the symmetric form −DμφDμφ (boundary terms vanish on a
suitable space of functionals [29]).

These properties are highly desirable, or even necessary,
when considering fractal field theory as fundamental. As
an effective model, however, MD

v can be equipped with
more general non-Hermitian Laplacians. Consider, in one

012123-4



DIFFUSION IN MULTISCALE SPACETIMES PHYSICAL REVIEW E 87, 012123 (2013)

dimension, the left and right Caputo derivatives

(a∂
γ f )(x) := 1

	(n − γ )

∫ x

a

dx ′

(x − x ′)γ+1−n
∂n
x ′f (x ′),

(9)
n − 1 � γ < n, x > a,

(b∂̄
γ f )(x) := (−1)n

	(n − γ )

∫ b

x

dx ′

(x ′ − x)γ+1−n
∂n
x ′f (x ′),

(10)
n − 1 � γ < n, x < b,

where ∂ is the ordinary first-order partial derivative and n � 1
is a natural number. A review of the properties of Caputo
integro-differential operators can be found in Ref. [27] and
references therein. Here we only recall some features. When
γ → n, a∂

n = ∂n = (−1)nb∂̄
n. Left and right derivatives are

mutually related by a reflection x → a + b − x. In our context,
the fractional measure splits the real line in two at x = 0, so
that the natural fractional derivatives are {−∞∂γ ,+∞∂̄γ } (also
called the Liouville and Weyl derivative, respectively) and
{0∂

γ ,0∂̄
γ }, which we shall denote, respectively, as

{∞∂γ ,∞∂̄γ }, {∂γ ,∂̄γ }. (11)

We paired derivatives which are conjugate under reflection, in
both cases at 0, x → −x. By conjugate, we mean

(∂γ f )(x) = (∂̄γ f−)(−x), (∂̄γ f )(x) = (∂γ f−)(−x),

(12a)

(∞∂γ f )(x) = (∞∂̄γ f−)(−x), (∞∂̄γ f )(x) = (∞∂γ f−)(−x),

(12b)

where f−(x) := f (−x). While for ordinary derivatives this
parity transformation leads to the same operator up to a sign,
∂ → −∂ , in fractional calculus it transforms left into right
derivatives, and vice versa. For instance [[45], Eq. (2.3.23)],∫ +∞

−∞
dx f ∞∂γ g =

∫ +∞

−∞
dx g ∞∂̄γ f. (13)

This is the reason why one cannot construct naive self-adjoint
fractional Laplacians on fractional spaces. In Ref. [27], the
fractional operators

Kγ = ημν∂γ
μ∂γ

ν , K̄γ = ημν∞∂̄γ
μ ∞∂̄γ

ν

were defined for a unilateral world where xμ � 0 (a subscript
μ denotes the left or right Caputo derivative with respect to
xμ). However, in a bilateral world the coordinate upon which
one differentiates must lie within the integration range of
the given derivative, so one can use both ∞∂γ and ∞∂̄γ at the
same time, or else the pair ∂̄γ and ∂γ . Therefore, adding some
weight factors for later convenience, here we shall define the
fractional Laplace-Beltrami operators1

K̄γ,α := 1√
v(x)

ημν
(
cγ ∂γ

μ∂γ
ν + c̄γ ∂̄γ

μ ∂̄γ
ν

)
[
√

v(x) · ], (14)

Kγ,α := 1√
v(x)

ημν
(
cγ ∞∂γ

μ∞∂γ
ν + c̄γ ∞∂̄γ

μ∞∂̄γ
ν

)
[
√

v(x) · ],

(15)

1We call them “fractional” even though in many formulas the
measure v(x) may be more general than a fractional measure vα(x).

where cγ and c̄γ are complex coefficients dependent on γ ,
which we choose so that cn + c̄n = 1 for n natural. Suitable
boundary conditions at x = 0 on the space of functionals
yield the properties ∂γ ∂γ = ∂2γ and ∂̄γ ∂̄γ = ∂̄2γ , while for
Liouville derivatives it is always true that ∞∂γ ∞∂γ = ∞∂2γ ,
∞∂̄γ ∞∂̄γ = ∞∂̄2γ ([27], Sec. 2.3.2). Thus, the order of
the Laplace-Beltrami operators (14) and (15) is 2γ , where
γ = ∑

μ γμ/D. In the isotropic case, γμ = γ for all μ. In
anisotropic formulations, summation with the Minkowski met-
ric must be accompanied by suitable dimensionful coefficients,
which we omitted in Eqs. (14) and (15). When γ = 1, K̄1,α =
K = K1,α; when γ = n and α = 1, K̄n,1 = Kn,1 = ημν∂n

μ∂n
ν .

In Euclidean signature, we denote the ordinary Laplacian as

∇2 =
D∑

μ=1

∂2

∂x2
μ

, (16)

and, in general, higher-order differential operators as

∇n =
D∑

μ=1

∂n

∂xn
μ

, n ∈ N. (17)

With the measure (5) and bilateral integration, from Eq. (13)
one sees that the operator (15) (with coefficients chosen as
below) is self-adjoint with respect to the scalar product of
the Hilbert space of suitably “good” functions given by the
intersection of the domain of Kγ,α and the space of functions
[29] which are L2 with respect to the measure �. Given two
such nontrivial functions f and g, the scalar product is defined
as

(f , g) :=
∫ +∞

−∞
d�(x) f ∗(x) g(x), (18)

where the asterisk indicates complex conjugation, so that

(f ,Kγ,αg) = (Kγ,αf , g) ⇔ c̄γ = c∗
γ . (19)

From now on, we set c̄γ = c∗
γ in the definition (15). This

argument is sufficient to exclude K̄γ,α (which cannot be
Hermitian on this space) but we shall give another motivation
soon.

In a field-theory setting, combinations of Laplacians with
integer γ � 1 will, in general, introduce ghost modes (e.g.,
[46–48]), while fractional Laplacians (0 < γ /∈ N) are typ-
ically associated with continuum quasiparticle spectra. The
first fact already foretells an issue with values γ � 1 which
will be further strengthened when looking at probabilities in
diffusion processes.

For later use, we recall that (e.g., [27])

∂γ Eγ (λxγ ) = λEγ (λxγ ), (20)

∂γ eλx = λx1−γ E1,2−γ (λx), (21)

where E is the Mittag-Leffler function

Ea(z) := Ea,1(z), Ea,b(z) :=
+∞∑
n=0

zn

	(an + b)
, a > 0.

(22)
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Analogous expressions hold for the right derivative with x →
−x. Also,

∞∂γ eλx = λγ eλx, ∞∂̄γ eλx = (−λ)γ eλx. (23)

C. Momentum transform

We restrict now the measure to be non-negative definite and
factorizable with respect to its coordinate dependence:

v(x) =
∏
μ

vμ(xμ), vμ(xμ) � 0, ∀ xμ, (24)

where the index μ in vμ is not vectorial. The fractional
measure (5) satisfies these conditions. Let MD

w be another
space in a D-dimensional embedding, spanned by “momenta”
k and with measure

dτ (k) = dDk w(k), dH = Dα′, (25)

where α′ is not necessarily equal to α. If w(k) obeys the same
properties as v [as in the case of two fractional measures
v = vα(x) and w = vα′ (k)], then there exists a family of unitary
invertible mappings F : MD

v → MD
w identifying MD

w as
momentum space [29]. This is the generalization of the Fourier
transform on Lebesgue-Stieltjes spacetimes with factorizable
measures:

f̃ (k) :=
∫ +∞

−∞
d�(x) f (x) e∗(k,x) =: F�,τ [f (x)], (26a)

f (x) =
∫ +∞

−∞
dτ (k) f̃ (k) e(k,x), (26b)

where e(k,x) are the kernel functions on which the transform is
expanded. By construction, they give an integral representation
of the fractal Dirac distributions in position and momentum
space:∫ +∞

−∞
dτ (k) e∗(k,x)e(k,x ′) = δv(x,x ′) := δ(x − x ′)√

v(x)v(x ′)
, (27)∫ +∞

−∞
d�(x) e∗(k,x)e(k′,x) = δw(k,k′) := δ(k − k′)√

w(k)w(k′)
, (28)

which are quite generally nontranslationally invariant. When
v = w, F�,τ is an automorphism, the δ distribution is the same
in both spaces and the kernels e are symmetric in x and k.

D. Eigenvalue equations

In Ref. [29], it was shown that the e’s are either weighted
Bessel functions of the first kind or weighted phases, where
the weight is [w(k)v(x)]−1/2. For calculational purposes, we
demand that the kernel functions e are eigenfunctions of
the chosen Laplacian operators. However, from Eq. (20) one
sees that none of the kernels can be eigenfunctions of the
operator K̄γ,α , so we cannot use the momentum transforms to
diagonalize this Laplacian. From now on we drop K̄γ,α from
the discussion. On the other hand, phases are eigenfunctions of
the ordinary derivative, of the left derivative from −∞ to x and
of the right derivative from x to +∞ [Eq. (23)]. In particular,
the phaselike kernel

e(k,x) = 1√
w(k)v(x)

eik·x

(2π )D/2
(29)

is an eigenfunction of both K and Kγ,α:

K e(k,x) = −k2e(k,x),
(30)

k2 : = kμkμ = −k2
0 + k2

1 + · · · + k2
D−1,

Kγ,α e(k,x) = F 2γ (k) e(k,x). (31)

We now determine the form of the eigenvalue F 2γ (k) =
F 2γ (k0,k1, . . . ,kD−1). Take a function f (x) = h(kx), where
k 
= 0 is a constant (later one can analytically continue the
final result to k = 0). From Eq. (10) one finds that(

∞∂2γ
x f

)
(x)

= (
∞∂2γ

x h
)
(kx)

z=kx= 1

	(n − 2γ )

∫ z

−sgn(k)∞
dz′ kn−1

[k−1(z − z′)]2γ+1−n
∂n
z′h(z′)

= k2γ θ (k)
(
∞∂2γ

z h
)
(z) + (−k)2γ θ (−k)

(
∞∂̄2γ

z h
)
(z)

= |k|2γ
[
θ (k)

(
∞∂2γ

z h
)
(z) + θ (−k)

(
∞∂̄2γ

z h
)
(z)

]
, (32)

where θ is the Heaviside distribution:

θ (k) =
{

1 , k > 0,

0 , k < 0.
(33)

In what follows, the value of θ at k = 0 is irrelevant as γ > 0.
Similarly, for the right Liouville derivative(

∞∂̄2γ
x f

)
(x) = |k|2γ

[
θ (k)

(
∞∂̄2γ

z h
)
(z) + θ (−k)

(
∞∂2γ

z h
)
(z)

]
,

(34)

so that we can combine Eqs. (32) and (34) into the operator

(�γ f )(x) := cγ

(
∞∂2γ

x f
)
(x) + c̄γ

(
∞∂̄2γ

x f
)
(x)

= |k|2γ
[
cγ (k)

(
∞∂2γ

z h
)
(z) + cγ (−k)

(
∞∂̄2γ

z h
)
(z)

]
,

(35)

where cγ (k) := θ (k) cγ + θ (−k) c̄γ .
For the function f (x) = h(kx) = eλkx , we get

�γ eλkx = [cγ (k) λ2γ + cγ (−k) (−λ)2γ ]|k|2γ eλkx, (36)

so that, for λ = ±i = e±iπ/2, we have

�γ e±ikx = [cγ (k) e±iπγ + cγ (−k)e∓iπγ ]|k|2γ e±ikx

= : c±
sgn(k)γ |k|2γ e±ikx . (37)

Some remarks about the eigenvalues of �γ follow:
(a) Choosing c̄γ 
= c∗

γ can lead to complex-valued spectra.
(b) Otherwise, for c̄γ = c∗

γ the spectrum of �γ has a dis-
continuity at k = 0 and, thanks to the self-adjointness of the
Laplacian, it is real. Writing cγ = |cγ | eiπϕ , one has

c±
sgn(k)γ = c±

γ := 2|cγ | cos[π (ϕ ± γ )]. (38)

(c) If cγ = 1/(2i) (ϕ = −1/2), then c±
γ =

± sgn(k) sin(πγ ) and the signature of the spectrum depends
on the sign of both k and the phase.

(d) If cγ = 1/2 (ϕ = 0), then c±
γ = cos(πγ ) depends

neither on the sign of k nor on that of the phase, and the
spectrum is semibounded. When γ = n + 1/2 is a half integer,
n ∈ Z, plane waves are in the kernel of �γ . When γ = n,
c±
γ = (−1)n and the spectrum is positive (negative) definite

for n even (odd), with zero eigenvalue at k = 0.
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Moving to many dimensions and the operator Kγ,α , we
conclude that the eigenvalue in Eq. (31) is

F 2γ (k) := −c+
sgn(k0)γ |k0|2γ +

D−1∑
i=1

c+
sgn(ki )γ |ki |2γ . (39)

Since the sign of the phase should not play any role, we will
often choose the coefficients

cγ = 1

2
eiπ(1−γ ), F 2γ (k) := |k0|2γ −

D−1∑
i=1

|ki |2γ . (40)

Other operators are possible whose eigenvalues have frac-
tional momentum dimension. Rotation-invariant examples are
Riesz Laplacian ([45], Secs. 2.10 and 5.5) and the Riesz-Bessel
operator [49,50], and, in Lorentzian signature, the Lorentz-
covariant fractional powers of the d’Alembertian, (� − m2)γ ,
corresponding to a spectrum F 2γ (k) = −(k2 + m2)γ [51–57].

IV. DIFFUSION EQUATIONS AND
STOCHASTIC PROCESSES

The spectral dimension of MD
v is defined via a diffusion

process [27]. Here we extend that calculation to the case
of bilateral measures and fractional Laplacians, as well as
to various classes of stochastic processes associated with
different ranges in the diffusion exponents β and γ . We
review these processes from the literature of stochastic theory
and comment on the physical meaning of the heat kernel as
diffusion probability.

To simplify the logic presentation, it is convenient to
specialize first to the case of fixed dimensionality (no scale
hierarchy). We concentrate on the continuum formulation of
fractional calculus, which guarantees anomalous (in particu-
lar, fractal) geometric properties of spacetimes [27–29] and
anomalous correlations in diffusion problems (e.g., [58–62]).
Another assumption we make here is to ignore curvature. The
latter modifies the spectral properties of spacetime even in a
classical setting, except in the UV limit σ → 0. In the absence
of dimensional flow, one can include this limit in the definition
of the spectral dimension, but in general this would prevent
the probing of large scales. Effective quantum spacetimes,
anyway, are modified by quantum-geometric effects even in
the absence of curvature, both globally and locally in inertial
frames, which motivates the assumption.2

As in the ordinary case (1), the geometry is probed by
a process governed by a hyperbolic diffusion equation (or
fractional wave equation, for 1 < β � 2), but of the form(

∂β
σ −KE

γ,α

)
P (x,x ′,σ ) =S(x,x ′,σ ), P (x,x ′,0) = δv(x,x ′),

(41)

2Another point of view is that a multiscale geometry is very often
probed in “snapshots” taken at different given scales; these snapshots
are then collected to give a fragmentary picture of dimensional flow,
typically in the UV and IR limits and in transient regimes. Each
snapshot is related to a fixed spectral dimension and the limit σ → 0 is
legitimate. In our approach we see global modifications of spacetime
and we have full control of dimensional flow, so we do not adopt this
perspective.

where ∂β
σ is the Caputo diffusion operator (we do not consider

∞∂̄β
σ since ∂β

σ is the natural derivative for a process with
memory loss starting at σ = 0), KE

γ,α is the Euclideanized
version of Eq. (15), P (x,x ′,σ ) is the heat kernel, and S is a
source term. The external “time” or “scale” σ has actually
dimension [σ ] = −2γ /β. As far as the author knows, the
source S has been set to zero in all diffusion processes in
quantum gravity considered in the literature.

Different ranges in the parameters β and γ can correspond
to physically inequivalent diffusion processes, for which there
exists extensive literature (for α = 1 and other types of
fractional Laplacians) [58–61,63]. Set, first, α = 1 and S = 0.

(a) When β = γ = 1 (Eq. (1)), one has ordinary diffusion
with the solution

P (x,x ′,σ ) = u1(r,σ ) := e−r2/(4σ )

(4πσ )D/2
, (42)

where r2 := ∑
μ |xμ − x ′

μ|2 is the Euclidean distance between
the two points. The diffusion equation is associated with
a Wiener process B(σ ), also known as standard Brownian
motion. A Wiener process is such that (i) B is continuous in
σ almost surely (i.e., with probability 1), (ii) B(0) = x ′, and
(iii) the increments of B are independent and governed by the
Gaussian distribution u1, so that B(σ ) − B(σ ′) ∼ u1(0,σ −
σ ′) for σ ′ < σ . Here B is the random variable denoting the
position x of the particle at time σ (in D dimensions, it is a
vector).

(b) When 0 < β < 1 and γ = 1, the process possesses a
heavy tail in waiting times, leading to a delay of particle
diffusion and, hence, to subdiffusion.3

(c) When β = 1 and 0 < γ < 1, the process is a Lévy
process. A Lévy process L has the following properties:
(i) L(σ ) is right continuous with left limits almost surely,
(ii) L(0) = x ′ almost surely, (iii) for any sequence σn−1 < σn,
the increments L(σn) − L(σn−1) are independent, and (iv) their
distribution is equal to the distribution of L(σn − σn−1). It is
a self-similar process like fractional Brownian motion, but
with an island-type structure, characterized by a heavy-tailed
distribution and “long jumps” connecting clusters of shorter
steps. This heavy tail in space is associated with superdiffusion.

(d) Systems outside the range

0 < β,γ � 1 (43)

correspond to transport pseudoprocesses for which Eq. (41)
may not provide a well-defined diffusion model in a prob-
abilistic sense (i.e., the signature of P may be indefinite,
depending on the case and on the presence of a source S 
= 0).
Probabilistic processes do exist for 1 < β � 2 when γ = 1
or γ � β/2 in one dimension [63]. Models of other systems
are still unknown, but there exists a wealth of studies on
pseudoprocesses.

For α 
= 1, one introduces extra friction and potential terms.
When β = γ = 1, diffusion is said to be normal or Gaussian
(the mean squared displacement of the test particle grows
linearly with diffusion time), otherwise it is anomalous.

3The fractional-time diffusion equation is not associated with
fractional Brownian motion [62,64,65], whose probability density
function is different from the solutions in Sec. IV D.
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In general, processes described by a fractional or higher-
order diffusion equation are not Markovian, meaning that,
in contrast to Markov processes, future states depend on
the present state but also on past ones, and the Chapman-
Kolmogorov equation does not hold. This feature is expected
in the case of fractional diffusion equations, where memory
drag is typical of pseudodifferential operators. However, it
holds also for integer higher-order equations where the initial
condition appears explicitly as a source term.

A. Solution scheme and probabilistic interpretation for S = 0

To solve the diffusion equation, assume v(x) is factorizable
and write P and S in terms of the kernel functions,

P (x,x ′,σ ) =
∫ +∞

−∞
dτ (k) fk(σ ) e(k,x)e∗(k,x ′), (44)

S(x,x ′,σ ) =
∫ +∞

−∞
dτ (k) sk(σ ) e(k,x)e∗(k,x ′), (45)

where the function fk must solve the fractional differential
equation[

∂β
σ − F 2γ (k)

]
fk(σ ) = sk(σ ), fk(0) = 1. (46)

Notice that the initial condition in Eq. (41) is respected, by
virtue of Eq. (27).

Setting sk = 0 for simplicity, the solution of Eq. (46) is

fk(σ ) =
{

eσF 2γ (k), β = 1,

Eβ[F 2γ (k)σβ], β general,
(47)

where

F 2γ (k) = −
∑

μ

|kμ|2γ (48)

is the Euclidean eigenvalue of the Laplacian with the “Riesz
choice.” Notice that, for γ = α, −F (k) = |k| is the 2α-norm
of kμ, naturally equipping fractional spaces [27]. Explicity,
Eq. (44) reads

P (x,x ′,σ ) = 1√
v(x)v(x ′)

uβ(x − x ′,σ ), (49)

uβ(x − x ′,σ ) :=
∫ +∞

−∞

dDk

(2π )D
fk(σ ) eik·(x ′−x). (50)

For later convenience, we make the β dependence explicit via
a subscript on u. The measure prefactor shows that P is not
translationally invariant.

The full calculation of P is not actually needed to get the
spectral dimension, but it is extremely useful for clarifying
the physical meaning of the diffusion equation. When the
Riesz Laplacian is chosen, the integral can be done exactly,
due to the fact that fk is rotationally invariant. However,
for the fractional Laplacian (15) with eigenvalues (48) the
solution of the multidimensional fractional diffusion equation
is considerably more demanding than in the one-dimensional
case.4 Here, we give an incomplete discussion of the properties
of P . First, we argue that, in D dimensions, P is not positive

4Its form is akin, but not equal, to the heat kernel in D dimensions,
for which several formulations and techniques (exact, asymptotic,
and numerical) have been developed. For simplicity we consider

definite for γ > 1. Then we find the exact solution and its
asymptotic behavior in D = 1, and then in D generic for β = 1
or γ = 1. Many of the steps are adaptations of their analogs
in ordinary spacetimes to the case of a fractional texture.5

For general β and γ , fk is the Mittag-Leffler function of
order β. Equation (49) implies the normalization∫ +∞

−∞
dDx v(x)

√
v(x ′)
v(x)

P (x,x ′,σ )

=
∫ +∞

−∞
dDx

√
v(x)v(x ′) P (x,x ′,σ ) (51a)

=
∫ +∞

−∞
dDx uβ(x − x ′,σ ) = 1 , (51b)

where we chose the natural symmetrization in x and x ′. The
extra factor in Eq. (51) suggests to consider P̃ (x,x ′,σ ) =√

v(x ′)/v(x)P (x,x ′,σ ) = uβ(x − x ′,σ )/v(x) as the probabil-
ity density defining the fractional system. The extra factor√

v(x ′)/v(x) would leave both the initial condition and the
return probability unchanged (it is 1, respectively, on the
support of the delta and when x = x ′) but it would imply that
the Laplacian in Eq. (41) does not correspond to the self-adjoint
operator appearing in the dynamics. In particular, it should be
of the form Ǩ = v−1(x)∂μ∂μ[v(x) · ]. This can be justified
by unravelling the natural structure of the probability density
as a fractional bilinear; this point will be further discussed
elsewhere.

If we interpret the heat kernel as the probability to find the
particle at x at time σ with initial position x ′ at time σ = 0,
then we must require that uβ � 0. Consequently, we can define
the moments along the direction μ as

〈|x − x ′|a〉μ :=
∫ +∞

−∞
dDx uβ(x − x ′,σ ) |xμ − x ′

μ|a , a > 0 ,

(52)

where we expressed the integral already in terms of uβ since
measure factors cancel one another. The definition of the
moments allows us to show that uβ (hence P and P̃ ) is not
positive definite for γ > 1. In general, not all moments will be

the case where the fractional order γ and the fractional charge α

are the same in all directions, although anisotropic configurations
γμ 
= γν can be of much interest [66–71]. Anisotropic transport is,
in fact, typical of Hamiltonian systems with nonergodic dynamics
and a hierarchical set of islands, where particle jump distributions
are asymmetric. Examples in nature are porous media in geologic
aquifers [72,73].

5A possible source of confusion might be that the fractional
diffusion equation with α = 1, i.e., the one considered in the literature
of chaos theory and percolation systems, already describes a diffusive
process on a fractal structure. Analogously, in quantum gravity one
could interpret the fractional diffusion equation with α = 1 as a
diffusion equation on a fractal spacetime; this is the case of QEG,
for instance, where α = 1 and spacetime does have fractal properties.
The introduction of a nontrivial measure weight v(x) in position
space further changes the background geometry and topology, as
happened in some first attempts to generalize the diffusion equation
to fractals [74–76].
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finite but we assume that 〈|x − x ′|2〉μ < ∞. This is the case
in D = 1 and for all the D-dimensional special cases below; it
is quite reasonable to expect finiteness of the second moment
in general, lest the walk dimension be ill defined. Assuming
also that uβ � 0, we have 〈|x − x ′|2〉μ > 0. Transforming uβ

to momentum space,

fk(σ ) =
∫ +∞

−∞
dDx uβ(x − x ′,σ ) eik·(x−x ′) , (53)

one also notices that

〈|x − x ′|2〉μ = − ∂2

∂k2
μ

[
fk(σ )

∣∣
kμ 
=kν=0

]∣∣
kμ=0

=
+∞∑
n=1

(−1)n+1 2γ n(2γ n − 1)σβn

	(βn + 1)
k2(γ n−1)
μ

∣∣∣
kμ=0

.

This expression identically vanishes if γ > 1, which contra-
dicts the assumptions. Therefore, P is not positive definite
if γ > 1. This conclusion holds only if S = 0 and it cannot
say anything about cases where the diffusion equation has a
source.

B. General solution in one dimension for S = 0

In D = 1 dimension, α = 1 and in the absence of a source,
one can find the exact solution of(

∂β
σ − ∂

2γ

|x|
)
uβ(x − x ′,σ ) = 0 (54)

and prove that uβ is non-negative definite for the range (43).
The solution is the same as for the Riesz Laplacian (e.g.,
[59,63]), and in fact we denoted as ∂

2γ

|x| the Riesz-type spatial
generator, i.e., the operatorKγ,1 in one dimension. The integral
to solve is the Fourier transform of the Mittag-Leffler function.
Rescaling the coordinates to the dimensionless variables

k̃ = σβ/2γ k, x̃ = σ−β/2γ x, (55)

we get∫ +∞

−∞

dk

2π
Eβ(−|k|2γ σ β) eik(x ′−x)

(22)= σ−β/2γ

+∞∑
n=0

(−1)n

	(βn + 1)

∫ +∞

−∞

dk̃

2π
|k̃|2γ neik̃(x̃−x̃ ′)

= σ−β/2γ

+∞∑
n=0

(−1)n

π |x̃ − x̃ ′|2γ n+1

	(2γ n + 1)

	(βn + 1)

× cos

[
π

2
(2γ n + 1)

]
,

where we used formula 17.21.25 of Ref. [77], valid for
noninteger γ . The series is absolutely convergent if 2γ < β

and can be resummed exactly for β = 2γ and also for certain
values outside this range [78]. The (translation-invariant part
of the) heat kernel is thus

uβ(x − x ′,σ ) = σ
− β

2γ

+∞∑
n=0

[
(−1)n+1 sin(πγn)

π

	(2γ n + 1)

	(βn + 1)

]

× 1

|x̃ − x̃ ′|2γ n+1
. (56)
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FIG. 2. (Color online) The probability densities (58) (dashed
curve) and P̃ = uβ/vα(x) (solid curve) with β = 1/2 = α, x ′ = 1
and σ = 1. The plot of P = uβ/

√
vα(x)vα(x ′) is very similar to the

one for P̃ .

Positiveness of uβ (and, hence, of P ) is guaranteed if the
fractional exponents are in the range (43) (in our case we have
also a measure prefactor but it is positive); the proof can be
found in Ref. [78].

For |x̃ − x̃ ′| � 1, the asymptotic limit of uβ is given by the
n = 1 term,

uβ(x − x ′,σ )

|x−x ′ |2�σβ/γ

∼
[

sin(πγ )

π

	(2γ + 1)

	(β + 1)

]
σβ

|x − x ′|2γ+1
. (57)

This expression implies that all moments 〈|x − x ′|a〉 are finite
if 0 < a < 2γ < 2.

When γ = 1, the above expressions are ill defined and
one should find the solution in a different way. Using the
Laplace-transform method, one can show ([45], Corollary 6.5)
that, if 0 < β < 1, the solution is

uβ(x − x ′,σ ) = σ−β/2

2
W

(
−β

2
; 1 − β

2
; −|x̃ − x̃ ′|

)
, (58)

where

W (a; b; z) :=
+∞∑
n=0

zn

n!	(an + b)
(59)

is Wright’s function. An exact solution also exists for 1 <

β < 2, which coincides with the one above if ∂σuβ(x −
x ′,σ )|σ=0 = 0 is imposed ([45], Corollary 6.6). The solu-
tion (58) and its fractional-space counterpart are plotted in
Fig. 2.

C. Lévy process (β = 1, 0 < γ < 1, S = 0)

The diffusion equation associated with Lévy processes is
integer in diffusion time and fractional in the spatial generator
(i.e., the Laplacian). Our Laplacian is not the Riesz operator as
in standard Lévy processes (except in D = 1) but the physics
is qualitatively the same. The diffusion equation is then(

∂σ − KE
γ,α

)
u1 = 0. (60)

When β = 1, Eq. (47) is the product of D Lévy distributions
e−|k|2γ

with Lévy index 2γ ([59], Sec. 4). The expression of
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the heat kernel is (D copies of) Eq. (56) with β = 1:

u1(x − x ′,σ ) =
D∏

μ=1

{+∞∑
n=0

[
(−1)n+1 sin(πγn)

π

	(2γ n + 1)

	(n + 1)

]

× σn

|xμ − x ′
μ|2γ n+1

}
. (61)

To get an asymptotic expression for x ∼ x ′, we notice [79] that
the integrand in the momentum expression for u1 is even and
one can take the real part of eik(x ′−x). Expanding the cosine,
we obtain in one dimension∫ +∞

−∞

dk

2π
e−σ |k|2γ

eik(x ′−x)

=
+∞∑
m=0

(−1)m

π (2m)!
(x − x ′)2m

∫ +∞

0
dk e−σ |k|2γ

k2n

=
+∞∑
m=0

(−1)m

(2m)!

	
(

2m+1
2γ

)
2πγ

σ−(2n+1)/2γ (x − x ′)2m,

where we used [77], Eq. 3.478.1. Then,

u1(x,x ′,σ ) =
D∏

μ=1

u1(xμ − x ′
μ,σ )

= σ
− D

2γ

D∏
μ=1

{+∞∑
m=0

[
(−1)m

(2m)!

	
(

2m+1
2γ

)
2πγ

]

× σ−m/γ (xμ − x ′
μ)2m

}
. (62)

Equation (60) can be modified to the case where the spatial
generator is the Riesz-Bessel operator [49].

D. Fractional-time diffusion equation (0 < β < 1, γ = 1, S = 0)

Some subdiffusive processes are characterized by a trans-
port equation with fractional diffusion operator and a second-
order ordinary Laplacian [59,63,80–84],6(

∂β
σ − ∇2

x

)
uβ = 0. (63)

A nontrivial measure dependence will be present in the
fractional-space case, but this generalization will be imme-
diate. When γ = 1, the integral in Eq. (49) can be factorized
into a radial and an angular part. Eventually, uβ can be cast
as a Fox function H

2,0
2,2 for 0 < β < 1 ([45], Corollary 6.7),

or as a Meijer G function as we shall do later; if one assumes
that ∂σuβ(x − x ′,σ )|σ=0 = 0, the same solution holds also for
1 < β < 2 ([45], Corollary 6.8). uβ (hence, P ) is non-negative
definite for all these values of β, including β = 2 [63,85].

Another formulation, more convenient to study the analytic
properties of P , is the following [86]. In one dimension, if

6Often it is also described by another transport equation, called
a bifractional or fractional Fick equation, where the diffusion
equation is “redistributed,” (∂σ − ∂1−β

σ ∂2
x )P = 0 [58,61]. For Caputo

derivatives these two formulations coincide, while for the Riemann-
Liouville derivative a source term must be added to the first equation.

0 < β � 1, the solution of(
∂β
σ − ∂2

x

)
uβ(x − x ′,σ ) = 0,

(64)
uβ(x − x ′,0) = δ(x − x ′), 0 < β � 1,

is

uβ(x − x ′,σ ) =
∫ +∞

0
ds

e−s2/(4σ )

√
πσ

u2β(x − x ′,σ ), (65)

where s is a parameter with engineering dimension [s] =
[σ ]/2 = −1/β and u2β is the solution of the analogous
problem (

∂2β
σ − ∂2

x

)
u2β(x − x ′,σ ) = 0, (66)

with initial condition

u2β(x − x ′,0) = δ(x − x ′), 0 < β � 1
2 , (67)

or

u2β (x − x ′,0) = δ(x − x ′),
(68)

∂σu2β(x − x ′,σ )|σ=0 = 0, 1
2 < β � 1.

Clearly, the initial condition in Eq. (64) is respected. In
particular, when β = 1/2 the solution is the integral product
of two Gaussians,

u1/2(x − x ′,σ ) =
∫ +∞

0
ds

e−s2/(4σ )

√
πσ

e−(x−x ′)2/(4s)

√
4πs

, (69)

and the generalization to D dimensions is straightforward. The
distribution

u1/2(r,σ ) =
∫ +∞

0
ds

e−s2/(4σ )

√
πσ

e−r2/(4s)

(4πs)D/2
(70)

is the solution of the diffusion equation(
∂1/2
σ − ∇2

x

)
u1/2(x − x ′,σ ) = 0,

(71)
u1/2(x − x ′,0) = δ(x − x ′), 0 < β � 1.

All the above solutions are manifestly non-negative definite
and normalized,

uβ � 0,

∫ +∞

−∞
dDx uβ(x − x ′,σ ) = 1, (72)

so they can be interpreted as probability densities. Under the
rescaling to dimensionless variables x̃ = σ−β/2x, s̃ = σ−β/2s,
the σ dependence of uβ can be factorized as

uβ ∝ σ−Dβ/2. (73)

The integral in Eq. (70) can be done exactly to yield a Meijer
G function:

u 1
2
(r,σ ) = 1

4π3
√

s r2
G30

00

(
r4

256σ

∣∣∣∣ 0 0 0
0 1

2 1

)
, (74)

which is positive definite (Fig. 3).
When γ = 1, Eq. (57) vanishes and all moments with a > 0

are finite. An explicit determination of the moments for even
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FIG. 3. (Color online) The solution (74) of the quartic diffusion
equation (84) (β = 1/2, dashed curve) and P̃ = u1/2/vα(x) (solid
curve) with D = 4, α = 1/2, x ′ = 1 and σ = 1. P̃ and u1/2 are non-
negative definite and can be interpreted as probability distributions.

a [78] makes use of the diffusion equation. In fact,

∂β
σ 〈|x − x ′|a〉μ (52)=

∫ +∞

−∞
dDx |xμ − x ′

μ|a ∂β
σ u1/2(x − x ′,σ )

=
∫ +∞

−∞
dDx |xμ − x ′

μ|a KE
γ,1u1/2(x − x ′,σ )

=
∫ +∞

−∞
dDx u1/2(x − x ′,σ )KE

γ,1|xμ − x ′
μ|a,

so that for γ = 1

∂β
σ 〈|x − x ′|a〉μ
=

∫ +∞

−∞
dDx u1/2(x − x ′,σ ) ∂2

μ|xμ − x ′
μ|a

= a(a − 1)
∫ +∞

−∞
dDx u1/2(x − x ′,σ ) |xμ − x ′

μ|a−2

= a(a − 1)〈|x − x ′|a−2〉μ. (75)

Using the fact that (e.g., [27])

σb−β = 	(b − β + 1)

	(b + 1)
∂β
σ σ b, b 
= 0, (76)

we obtain the second moment (a = 2)

〈|x − x ′|2〉μ = 2

	(β + 1)
σβ (77)

and, by recursion, all even moments:

〈|x − x ′|2n〉μ = 	(2n + 1)

	(βn + 1)
σβn, n ∈ N. (78)

Odd moments vanish, 〈|x − x ′|2n+1〉μ = 0. In particular, the
average of the square Euclidean distance r2 covered by the
particle is a function of diffusion time:7

〈(r − 〈r〉)2〉 = 2D

	(β + 1)
σβ. (79)

7In fractional spaces, the natural distance is a 2α-norm [27] but
here, for simplicity, we use a (2αp)-norm with p = 1/α � 1, which
is topologically equivalent. Restoring measure factors and extending
the discussion to fractional spaces does not entail further difficulties.

E. Iterated Brownian motion (β = 1, γ = 2, S �= 0)

An example of particular importance for us is iterated Brow-
nian motion (IBM) [86–104]. To illustrate iterated Brownian
motion, we set α = 1 and consider the ordinary D-dimensional
higher-order operator ∇n, Eq. (17). Given a process X(σ ), let
E be the expectation associated with X(0) = x ′. Then, the
function u(x − x ′,σ ) = E{f [X(σ )]} solves a certain diffusion
equation with initial condition u(x − x ′,0), where x ′ is
fixed. For an ordinary Brownian motion X(σ ) = B(σ ), the
distribution u obeys the diffusion equation(

∂σ −∇2
x

)
u(x − x ′,σ ) = 0, u(x − x ′,0) = δ(x − x ′). (80)

Let B± be two independent standard Brownian motions
defining the two-sided Brownian process

X(t) :=
{

B+(t), t � 0,

B−(−t), t < 0,
(81)

where t ∈ R. Let B be another independent Brownian motion.
The IBM is the process defined as

XIBM(σ ) := X[B(σ )], σ � 0, (82)

where the Brownian motion B acts as a clock to the two-sided
motion. For this reason, iterated Brownian motion is often
called also Brownian-time Brownian motion. Another
definition of IBM is, given two independent Brownian
processes B1,2,

X′
IBM(σ ) := B1[|B2(σ )|], σ � 0. (83)

One can extend these definitions to multiple iterations of n

processes. If X = XIBM or X = X′
IBM, the diffusion equation

is [95–97,100,105](
∂σ − ∇4

x

)
u(x − x ′,σ ) = 1√

πσ
∇2

xu(x − x ′,0) (84)

in D dimensions. Since the process is non-Markovian, the
initial condition u(x − x ′,0) explicitly acts as a source.
Other processes than Brownian motions can be composed
together and generate different diffusion equations (see [104]
for an account). In Sec. V B we shall consider telegraph
processes [85,86,98,105,106].

A remarkable duality shows that fractional and iterated
Brownian motions can be identified. Namely, Eq. (70) is a
solution of both (71) and (84). In general, there exists a
triple connection between fractional diffusion equations with
fractional time σ , higher-order diffusion equations with integer
time, and iterated processes [95,97,98,100,102,104].

When the kinetic term is a second-order differential
operator, the generator of the IBM is a “half derivative” which
can be rigorously defined [95]. Intuitively, this stems from the
iteration of the fractional diffusion equation (71). Let u1/2 be
the solution of Eq. (71). Applying ∂

1/2
σ twice and using the

property ∂1/2∂1/2 = ∂ , valid for Caputo derivatives (see, e.g.,
Eqs. (2.50)–(2.53) of Ref. [27]), we have for x − x ′ 
= 0

∂σu1/2 = ∂1/2
σ ∂1/2

σ u1/2

(71)= ∂1/2
σ ∇2

xu1/2

x−x ′ 
=0= ∇2
x∂

1/2
σ u1/2

= ∇4
xu1/2. (85)
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For x ∼ x ′, the third step is not correct and one can check that
u1/2 is indeed a solution of Eq. (84) in a weak sense (i.e., by
integrating the diffusion equation with a test function); this is
the point where the source arises. The interested reader can
find the proof in the references cited above.

The equivalence between fractional and iterated Brownian
motion can play a role in the interpretation of quantum
geometry at the UV fixed point, including QEG [36]. For
this reason, it is important to stress the physical meaning
of transport equations such as (71) and (84). There do exist
physical systems which are associated with these hyperbolic
equations. In fact, iterated Brownian motion provides one
stochastic description (among others) of diffusion in cracks
[94,107]. Intuitively, it consists in the Brownian diffusion of
a particle trapped in a random fractal set (a “crack”) whose
pattern resembles the graph of a Brownian motion. In the
interpretation of Eq. (83) in the crack model, large increments
of B1 over short intervals correspond to small-width spots
along the crack, which appear with regularity.

More generally, time fractional derivatives are involved in
diffusion equations describing transport on fractals [58,76,108,
109]. Both diffusion and the medium are then irregular.

F. Other higher-order diffusion equations

Without the source term, Eq. (84) reduces to the prototypi-
cal higher-order hyperbolic equation

(
∂σ − ∇4

x

)
u = 0. (86)

In contrast to hyperbolic diffusion equations [105,106],
parabolic equations such as

(
∂σ + ∇4

x

)
u = 0 (87)

describe unconventional diffusion processes.8 At first, such a
differential equation seems unphysical: changing the relative
sign between spatial and time derivatives is tantamount to
asking the ink in a bottle of water to condense back to a single
drop. The solution u is not positive definite and cannot be
interpreted as a probability density. These equations, anyway,
come from composite processes just as their hyperbolic
counterparts. In particular, they describe diffusion associated
with the original formulation of the IBM [87,106] (but not with
IBM as later formulated and presented above) or, in the case
of odd-order kinetic operators ∇2n+1

x , with the composition of
Brownian motion with stable processes [106].

G. Spectral and walk dimensions

Let us consider fractional spacetimes with measure vα . The
return probability is defined as the spatial average of P , i.e.,

8Parabolic equations of the type (87) were studied in Refs. [86,
104–106,110–112] and generalized to higher-order operators ∇n

x and
several other forms.

the trace of the heat kernel per unit volume,

P(σ ) := 1

Vα

∫ +∞

−∞
d�α(x) P (x,x,σ )

= 1

Vα

∫ +∞

−∞
d�α(x)

∫ +∞

−∞
dτα′ (k) fk(σ ) |e(k,x)|2

= 1

(2π )D
1

Vα

∫ +∞

−∞
dDx

∫ +∞

−∞
dDk fk(σ ), (88)

where Vα := ∫
d�α(x) is a divergent total volume prefactor.

Under the rescaling (55), we get

P(σ ) = Aσ−Dαβ/2γ , (89)

where A is a numerical constant:

A = Iβ,γ

∫ +∞
−∞ dDx̃∫ +∞

−∞ dDx̃ vα(x̃)
, Iβ,γ :=

∫ +∞

−∞

dDk̃

(2π )D
fk̃(1).

(90)

The σ dependence of P comes exclusively from (i) the
rescaling (55) and (ii) the volume prefactor in the denominator.
In particular, it depends on the topological dimension D

of position and momentum space. It does not depend on
(i′) the measure weight w(k) in momentum space, nor on
(ii′) the relative sign between diffusion and kinetic operators
(hyperbolic or parabolic diffusion equation), nor on (iii′) the
presence of friction or source terms, as one can convince
oneself by a direct inspection (e.g., [86,104] and references
therein). Consequently, all these properties will be inherited
by the spectral dimension.

The dimensionless coefficient in Eq. (89), formally inde-
terminate, can be regularized so that A = 1. For simplicity,
we specialize to the isotropic case αμ = α. The x̃-dependent
integrals must be regularized since they diverge at ±∞.
Defining two parameters ε = ε(ε) and 0 < ε � 1, we write

∫ +∞
−∞ dDx̃∫ +∞

−∞ dDx̃ vα(x̃)
=

[
	(α)

∫ +∞
0 dx̃∫ +∞

0 dx̃ x̃α−1

]D

:= lim
ε→0+

[
	(α)

∫ 1/ε

0 dx̃∫ 1/ε(ε)
0 dx̃ x̃α−1

]D

= lim
ε→0+

[
	(α + 1)

εα(ε)

ε

]D

.

Assuming that Iβ,γ > 0, we can take

ε = 	(α + 1)I1/D

β,γ εα. (91)

The arbitrariness of this procedure does not affect the physics,
which is encoded in the spectral dimension

dS := −2
d lnP(σ )

d ln σ
, (92)

leading to the final result

dS = β

γ
dH. (93)

We can distinguish three cases:
(1) For β = γ (including normal diffusion, β = γ = 1),

dS = dH, whether it be realized by integer or fractional
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TABLE I. Spectral dimension dS and walk dimension dW of
spacetime MD

v for different harmonic structures (Laplacians and
diffusion equations). MD

v is fractal only if dW � 2.

Laplacian

K = K1,α Kα,α

∂σ dS = dH dW = 2 dS = D � dH dW = α < 2
∂β

σ dS = βdH � dH dW = 2/β > 2 dS = (β/α)dH dW = 2α/β

differential operators ∂β
σ and Kβ,α . The important point is that

the order of the diffusion operator is the natural one, i.e., half
that of the Laplacian. MD

v is a fractal.
(2) When β < γ , diffusion is anomalous and the spacetime

MD
v can again be regarded as a fractal. This happens, in

particular, for integer-order Laplacian and fractional diffusion
(β < 1 is assumed).

(3) As remarked in Ref. [27], the superdiffusion case 1 �
β > γ does not correspond to a fractal, since dS > dH. In
particular, for integer diffusion (β = 1) this is a Lévy process.
When β = 1 and γ = α, the spectral dimension coincides with
the topological dimension of space, dS = D.

In the case γ = α, the results are summarized in Table I for
dS and the walk dimension

dW := 2
dH

dS
= 2

γ

β
. (94)

The walk dimension is also defined through the scaling of
the second moment, 〈r2〉 ∼ σ 2/dW . By a purely dimensional
argument, one can infer that 2/dW = β/γ , in agreement with
Eqs. (79) and (94). When dW > 2, dW = 2, dW < 2, and dW =
1 the process is, respectively, subdiffusive (γ > β), normal
(γ = β = 1), superdiffusive (γ < β), and ballistic (2γ = β).

A final caveat should be stressed. In the regularization
procedure, the choice (91) was possible under the assumption
that Iα,γ > 0. Otherwise, not only the limit of the regulator but
also the return probability could be ill defined, taking negative
or complex values. In turn, the positive definiteness of the
probability depends on the Hermiticity of the Laplacian. We
have already seen that there exists a parameter range such that
Iα,γ > 0 for the “Riesz choice” of the coefficients in Eq. (15).

V. MULTISCALE PROCESSES AND SPACETIMES

In quantum-gravity theories, the spectral dimension is
found to depend on the physical length scale � one is probing.
In the previous section we found the spectral dimension of
a fractal model with no scale dependence, so that dS is
constant. One needs to generalize the discussion to a multiscale
geometry. The latter will be multifractal only in certain ranges
of parameter space, where dS � dH. Some basic properties of
multiscale measures and systems [113–118] were reviewed in
Ref. [28].

Before dealing with multifractional spacetimes, we clarify
the problem of multiscaling at the level of the diffusion
equation, with α = 1 and D = 1. The generalization of
Eq. (54) to a multiscale process (and a source) is simply

achieved by summing over all possible values of β or γ :

⎛
⎝∑

β

ξβ∂β
σ −

∑
γ

ζγ ∂
2γ

|x|

⎞
⎠ u(x − x ′,σ ) = S(x − x ′,σ ), (95)

where ξβ and ζγ are dimensionful couplings which depend
on the characteristic scales of the system. The parameters
β and γ can be also let vary continuously, thus having
integrations instead of sums [59,119], or both [120]. In
particular, by making use of the so-called distributed-order
fractional derivatives [121–128] one can construct and analyze
multiscale fractional diffusion equations [125,127,129–134].
Here we limit the discussion to a simple case where the sums
in Eq. (95) are replaced by an integral over a length parameter
�,∫

d�
[
ξ (�)∂β(�)

σ − ζ (�)∂2γ (�)
|x|

]
u(x − x ′,σ,�) = S(x − x ′,σ ),

(96)

where the length � is not identified with (a power of) the
diffusion parameter σ and the range of � may be chosen
appropriately (for instance, � ∈ [�0,+∞) in the presence of a
cutoff). To get the solution of Eq. (96) for S = 0, it is sufficient
to solve for the integrand,

[
∂β(�)
σ − ζ (�)∂2γ (�)

|x|
]
u(x − x ′,σ,�) = 0, (97)

where ξ (�) has been absorbed into ζ (�). From Eq. (93), the
spectral dimension would be (dH = 1 here)

dS(�) = β(�)

γ (�)
. (98)

The sum representation is more convenient unless one has an
argument to choose the profiles β(�) and γ (�) in a specific
way (as we shall do in Sec. V C). Also, typically there is only
a finite number of terms in physical systems [115,116]. When
the sums are finite, Eq. (95) does admit analytic solutions in
several cases.

It is important to stress that the number of scales in the
system determines the number of plateaux or asymptotic
regimes in the profile of the spectral dimension dS. This
number, corresponding to the number of Hölder exponents
in a self-similar measure, is given by

(no. of asymptotic regimes of dS)

= (no. of β’s) + (no. of γ ’s) − 1

= (no. of characteristic scales of the system) + 1. (99)

Take, for instance, the multifractional-time diffusion equation
with N diffusion operators and the ordinary Laplacian (γ = 1).
Then, the number of characteristic regimes of the multifractal
spectrum is just the number of β’s. Assume that σ has
dimension of a squared length, so that the couplings ξβ can be
written in terms of N length scales �n, n = 1, . . . ,N :

ξβn
= �2βn−2

n . (100)
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If the N th operator has β = 1, the diffusion process is governed
by[

∂σ̄ +
N−1∑
n=1

(
�n

�N

)2(βn−1)

∂
βn

σ̄ − �2
N∂2

x

]
u = 0, σ̄ := σ

�2
N

,

(101)

where σ̄ is dimensionless. Later we shall better specify the
scale dependence of the coefficients.

The discrepancy between the number of fundamental scales
and the number of regimes is due to the fact that a multiscale
phenomenon is always defined by the relative size of the
scales, i.e., by a hierarchy. This means that we can choose
any of the N scales �n to represent the variable scale �

probed by a measurement. Thus, there are N − 1 (not N )
scales with the physical meaning of characteristic lengths.
The spectral dimension is fixed when N = 1; for N = 2 it has
two asymptotic values dS ∼ dS1,2 (with a monotonic9 transient
phase in between) in the regimes �2 � �1 and �2 � �1; for
N = 3 there will be two fundamental scales and a plateau
dS ∼ dS3 at intermediate scales; and so on.

We need only one scale to obtain a multifractal or,
more generally, a geometry with scale-dependent spectral
dimension. Therefore, as a first approximation, it is sufficient to
study diffusion equations with two diffusion operators ∂β1

σ and
∂β2
σ ,10 or with two Laplacians ∂

2γ1
|x| and ∂

2γ2
|x| . Certain realizations

of QEG can be regarded as a two-scale system, where there is
an intermediate genuine plateau [36].

A. Multiscale Lévy process

The first example is an interaction of Gaussian and
anomalous dynamics which can describe certain turbulent
media [68,125]. The diffusion equation is(

∂σ − ∂2
x − ζ∂

2γ

|x|
)
u(x − x ′,σ ) = 0,

(102)
u(x − x ′,0) = δ(x − x ′), 0 < γ < 1,

where [σ ] = −2, and ζ is a coupling constant which, by a di-
mensional argument, can be written in terms of a characteristic
length scale �∗:

ζ = �−2(1−γ )
∗ , [ζ ] = 2(1 − γ ). (103)

The Fourier transform of the spatial part is

(k2 + ζ |k|2γ )ũ(k,σ ) = �−2
∗ [(�∗k)2 + |�∗k|2γ ]ũ(k,σ ), (104)

stating that the transport is normal at small scales k−1 � �∗
and of Lévy type at large scales k−1 � �∗. At scales k−1 ∼ �∗
the two behaviors compete. The normalized analytic solution
can be written in different ways [68]. For us, the following is

9A local extremum, for instance a minimum value dS,min at some
point 0 < �min < +∞, would signal the presence of another scale
because this feature could not be removed by a finite conformal
rescaling of diffusion time.
10Some remarks on the case with a finite but arbitrary number N of

diffusion operators are given in Ref. [50].

convenient:

u(x − x ′,σ ) =
+∞∑
n=0

(−1)nyn(σ ) |x̄ − x̄ ′|2n,

(105)

yn(σ ) = 1

(2n)!π

∫ +∞

0
dk̄ k̄2ne−(σ/�2

∗)(k̄2+k̄2γ ),

where all barred quantities are dimensionless:

x̄ := x

�∗
, k̄ := �∗k. (106)

The coefficients yn can be expanded as a series for large
and small �−2

∗ σ . In particular, we are interested in the return
probability and for x = x ′ only the n = 0 term contributes:

P(σ ) = y0(σ ) ∼
⎧⎨
⎩

1√
4π

( �2
∗

σ

)1/2
, σ � �2

∗
1√
4π

( �2
∗

σ

)1/2γ
, σ � �2

∗
. (107)

Therefore, the spectral dimension is dS ∼ 1 at small scales and
dS ∼ 1/γ > 1 at large scales. This is consistent with Eq. (98)
with β(�) = 1 and a profile

γ (�) ∼
{

1, � � �∗,
γ < 1, � � �∗.

(108)

From the perspective of quantum spacetimes, this model
is multiscale but not multifractal, since dS > dH. Profiles of
dS overshooting the Hausdorff and topological dimensions of
space appear also in lattice-based [15] and noncommutative
geometries [22]. Due to the presence of a characteristic scale
(the noncommutative fundamental scale [22], or the lattice
cell size11 [15], or the label-dependent length of the edges of a
labeled graph [15]), the geometric information in the diffusion
equation determines a nontrivial spatial generator. On the other
hand, the diffusion operator is assumed to be the integer one
∂σ , so these models roughly mimic certain properties of Lévy
processes. In these cases, the flow is not monotonic since the
scale acts as a minimum length cutoff, so dS → 0 in the UV.
Since dS → D at large scales, there is one local maximum in
dS(�) (for labeled graphs there are, in fact, several extrema in
dS [15]).

B. Fractional telegraph process

A fractional diffusion equation with multiple diffusion
operators ∂βn admits a neat stochastic interpretation in the case
N = 2. For the purpose, we recall some results on the so-called
telegraph processes [135–138]. After this short review, we
shall make the connection with multiscale quantum spacetimes
apparent.

A telegraph process V in time σ (here [σ ] = −1) is defined
as

V (σ ) = V (0) (−1)N (σ ), (109)

where V (σ ) is the velocity of a particle at time σ running
on the real line, V (0) is the initial velocity which is ±c with

11In the case where the underlying lattice-type construction is taken
as a regularization, these are lattice artifacts.
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equal probability, and N is the cumulative number of events
of a homogeneous Poisson process. Thus, the velocity of the
particle flips direction at times obeying a Poisson distribution,
hence the name “telegraph.” The position of the particle at
time σ is the integrated telegraph process

T (σ ) = V (0)
∫ σ

0
ds (−1)N (s) (110)

and its probability distribution obeys the diffusion equation
[135,136](

∂2
σ + 2λ∂σ − c2∂2

x

)
u(x − x ′,σ ) = 0,

(111)
u(x − x ′,0) = δ(x − x ′),

where λ > 0 is the rate of the Poisson process. The variance
of the process can be shown to scale as 〈r2〉 ∼ σ at large
σ . When λ,c → +∞ and the ratio λ/c2 remains constant,
Eq. (111) reduces to the ordinary diffusion equation [136].
The limit λ → +∞ means that changes in the speed, abrupt
in the telegraph process, take place continuously.

The composition of a Brownian motion B with an integrated
telegraph process,

XDBM(σ ) :=
{

B[T (σ )], T (σ ) > 0,

iB[−T (σ )], T (σ ) < 0,

is called delayed Brownian motion (DBM) [106], and its
probability distribution is governed by the quartic diffusion
equation(

∂2
σ + 2λ∂σ − c2

4
∂4
x

)
u(x − x ′,σ ) = 0,

(112)
u(x − x ′,0) = δ(x − x ′).

In the double limit λ,c → +∞, λ/c2 → const, the delayed
Brownian motion reduces to Eq. (87). Other combinations
of telegraph and Brownian processes are possible, leading to
different quartic diffusion equations [105,106].

Finally, one can devise the fractional analog of the telegraph
equation [85,98]:(

∂2β
σ + 2λ∂β

σ − c2∂2
x

)
u2β(x − x ′,σ ) = 0, (113)

with initial condition given by Eq. (67) or (68). When λ = 0,
Eq. (113) reduces to the fractional diffusion equation (66),
while for β = 1 it is the telegraph equation. Generalizations
of Eq. (113) were inspected in Refs. [86,139].

The analytic solutions of the telegraph equation (111),
of the delayed-Brownian-motion equation (112), and of the
fractional telegraph equation (113) were found, respectively,
in Refs. [137,138], [106], and [98]. The latter, which is
non-negative and unique, is given as a Fourier integral:

u2β(x − x ′,σ ) = 1

2π

∫ +∞

−∞
dk ũ2β(k,σ ) e−ikx, (114)

ũ2β (k,σ ) = 1

2

[
η−

λ + η−
Eβ(η+σβ) + η+

λ + η+
Eβ(η−σβ)

]
,

(115)

where E is the Mittag-Leffler function (22) and

η± = ±
√

λ2 − c2k2 − λ. (116)

The variance of the process scales as 〈r2〉 ∼ σβ in the limit of
large σ .

In the special case β = 1/2, the fractional telegraph
equation becomes(

∂σ + 2λ∂1/2
σ − c2∂2

x

)
u1(x − x ′,σ ) = 0. (117)

Its solution can be written explicitly as a one-parameter
integral:

u1(x − x ′,σ )

= 1

2c

∫ +∞

0
ds

e−s2/(4σ )−λs

√
πσ

{δ(r − s) + δ(r + s)

+ θ (s − r)[λI0(λ
√

s2 − r2) + ∂sI0(λ
√

s2 − r2)]},
(118)

where r = |x − x ′|/c and I0(z) = ∑+∞
n=0(z/2)2n/(n!)2 is the

modified Bessel function of the first kind and zeroth order.
In the double limit λ,c → +∞, λ/c2 → const, the process

underlying (117) reduces to an iterated Brownian motion
and, in fact, the limit of Eq. (118) is (69). The probability
distribution u1 is associated with a telegraph process with
Brownian time,

XFTP(σ ) = T [|B(σ )|], (119)

which we call also a fractional telegraph process. The
composite process XFTP describes the random motion of
a particle during a time interval of length |B|, so that at
time σ the particle is located in the random spatial interval
(−σ |B(σ )|,σ |B(σ )|) [98]. This motion is governed by the
multifractional diffusion equation (117). Due also to the
different orders of composition of T and B, the fractional
telegraph process XFTP is different from the delayed Brownian
motion XDBM.

We now end the digression into probability theory and
recast these results in the language of multiscale spacetimes,
as follows. We have to reshuffle the units of the variables and
constants to agree with our past notation, where [σ ] = −2.
Setting c = 1 and � = 1/(2λ) as the probed scale, Eq. (117)
becomes (

∂σ̄ + �∗
�

∂
1/2
σ̄ − �2

∗∂
2
x

)
u1 = 0, (120)

where, as before, σ̄ = �−2
∗ σ is dimensionless. In the limit

� � �∗, diffusion in spacetime is Gaussian and described by
a Brownian process. At small scales � � �∗, on the other
hand, one reaches a regime where diffusion is fractional
and described by an iterated Brownian motion. In between,
diffusion in quantum spacetime obeys the law of a fractional
telegraph process.

The return probability

P(σ ) = u1(0,σ ) = 1√
πσ

{
1 + 1

4�

∫ +∞

0
ds e−s2/(4σ )−s/(2�)

×
[
I0

(
s

2�

)
+ I1

(
s

2�

)]}
(121)

can be manipulated to give a sum of generalized hypergeomet-
ric functions with argument σ/�2 = (�∗/�)2σ̄ . From that, we
can obtain the profile of the spectral dimension dS(�), which
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FIG. 4. (Color online) The spectral dimension dS(�) of a D =
1 multifractal space whose stochastic properties are given by a
fractional telegraph process.

is shown in Fig. 4 (the portion of the curve below dS = 0.65
down to dS = 1/2 is not shown because of bad convergence
of the code). As expected,

dS ∼
{

1 , � � �∗ (IR),
1
2 , � � �∗ (UV).

(122)

The results above can be generalized to D dimensions
because the Fourier integral (114) can be split into an angular
and a radial integral, dDk = d�D−1dk kD−1.

C. Multifractional measure

All the above examples are realizations of multifractional
spacetimes where α = 1 and the Hausdorff dimension of
position space equals the topological dimension, dH = D. The
spectral dimension is anomalous either because of a fractional
diffusion operator or due to a fractional Laplacian, or because
of both. Inclusion of a nontrivial measure weight for position
space makes dH anomalous, too. Formally, the extension of
fractional to multifractional spacetimes is simply achieved by
summing (or integrating) over all possible values of α [26,28].
A multifractal action with a finite number of charges α thus
reads

S =
N∑

n=1

gn

∫
dDx vαn

(x)Lαn,γ , (123)

where gn are some (dimensionful) couplings and Lα,γ is the
Lagrangian density, possibly dependent on α and/or the order
of the kinetic operator. The aim is to find the scale-dependent
spectral dimension dS. This entails a modification of the
diffusion equation and the introduction of scale dependence
in the parameters α, β, and γ . Due to its phenomenological
character, we do not expect to obtain a unique multiscale
extension. However, one can restrict the possibilities by an
educated guess.

The general diffusion equation on the spaces described by
Eq. (123) is

N∑
n=1

(
ξn∂

βn

σ − ζnKE
γn,αn

)
P (x,x ′,σ ) = S(x,x ′,σ ), (124)

given some initial condition P (x,x ′,0). If we fix γn = γ and
order the N − 1 scales of the system as �1 < �2 < · · · < �N−1,
we can argue that the coefficients ζn have the forms ζN = 1
and

ζ1(�) =
(

�1

�

)2γ

, ζn(�) =
(

�n

� − �n−1

)2γ

,

(125)
n = 2, . . . ,N − 1,

where � = �N > �N−1. To show this, we notice that the
Laplacians all have the same order 2γ , so the coefficients
ζn all have the same scaling dimension. By fixing the scaling
of the ξn suitably, we can always make ζn dimensionless. This
means, in particular, that we can write ζn as the ratio of some
length scales, ζn = (lA,n/ lB,n)q . Without loss of generality,
one can choose q = 2γ so that the spatial generator of the
diffusion equation can be rendered dimensionless, in the form∑

n(lA,n)2γKγ,αn
. Now, the nth term dominates over the others

at scales � � �n, so we could set lA,n = �n and, tentatively,
lB,n = �. However, at scales smaller than �n−1 the (n − 1)th
term takes the lead, so the smallest possible scale � at which the
nth term dominates is � ∼ �n−1. Therefore, the correct choice
is lB,n = � − �n−1. In other words, the dimensional flow is
always measured starting from the lowest of two scales �n−1

to the next �n, and relatively to the latter, which sets a gauge for
the rods. Beyond the smallest scale �1 there is nothing else to
compare with and �0 = 0. Since � = �N is the probed scales,
ζN ≡ 1 by definition.

In the Gaussian case β = γ = 1 and just two entries (N =
2, α2 = 1, α1 = α∗), dimensional flow is such that

dS ∼
{

D , � � �∗ (IR),

Dα∗ = 2 , � � �∗ (UV),
(126)

with no intermediate regimes in between. Explicitly, Eq. (124)
becomes[

∂β
σ − ∇2

x −
(

�∗
�

)2

KE
1,α∗

]
P (x,x ′,σ ) = S(x,x ′,σ ), (127)

where we set ζ2 = 1 and ζ1 = ζ = (�∗/�)2 according to
Eq. (125). When S = 0, the UV and IR asymptotics of the
solution are obvious.

Equations (124) and (127) are not much prone to manip-
ulation, since fractional momentum transforms are not easily
generalizable to the multifractional case when D � 2 [29].
However, we can reinterpret the sum over α by imagining the
dimensionless parameter α = α(�) to depend on the probed
scale. Equation (123) can be recast as

S =
∫ +∞

0
d� g(�)

∫
dDx vα(�)(x)Lα(�),γ (�), (128)

while the diffusion equation (124) generalizes Eq. (96) to∫
d�

[
ξ (�)∂β(�)

σ − ζ (�)KE
γ (�),α(�)

]
P (x,x ′,σ,�) = S(x − x ′,σ ).

(129)

In the absence of source, it is sufficient to solve for the
integrand,[

∂β(�)
σ − ζ (�)KE

γ (�),α(�)

]
P (x,x ′,σ,�) = 0, (130)
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where, as before, we absorbed ξ (�) in ζ (�). All the calculations
of the case with fixed dimensionality are transposed with
the replacement (α,β,γ ) → (α(�),β(�),γ (�)) and the spectral
dimension is the generalization of Eq. (98):

dS(�) = β(�)

γ (�)
dH(�), dH(�) = Dα(�). (131)

We can plot the spectral dimension for any given profiles
α(�),β(�),γ (�). To obtain a multifractal, β/γ � 1 throughout
the whole evolution, so for simplicity we assume γ = β = 1.
In Ref. [28], several Ansätze were given for an α(�) with the
desired asymptotic behavior (126).12 They are all monotonic
and lead to the same plot qualitatively, the only change being
in the time scale of the process. Here, however, we choose a
profile which can be motivated as a realistic approximation of
the sum (124) with γn = 1 for all n. Consider first the N = 2
case with α1 = α∗ and α2 = 1. In one dimension,(

∂2
x + ζ1KE

1,α∗

)
P

= (1 + ζ1)

[
∂2
x −

(
1 − 1 + ζ1α∗

1 + ζ1

)
1

x
∂x

+ ζ1

1 + ζ1

(1 − α∗)(3 − α∗)

4x2

]
P

=
[

(1 + ζ1)KE
1,α1(�) + ζ1

1 + ζ1

(1 − α∗)2

4x2

]
P, (132)

where

α1(�) := 1 + ζ1(�) α∗
1 + ζ1(�)

, ζ1 =
(

�∗
�

)2

. (133)

For both small and large ζ1 the kinetic term in Eq. (132)
dominates over the potential term, so the profile (135)
defines an effective fractional charge αeff ≈ α1(�) throughout
the dimensional flow. With N coefficients αn, αN = 1, the
effective fractional charge reads

αN−1(�) := 1 + ∑N−1
n=1 ζn(�) αn

1 + ∑N−1
n=1 ζn(�)

, ζn =
(

�n

� − �n−1

)2

.

(134)

In fact, this is nothing but the average 〈α〉 of the coefficients
αn with respect to the weights ζn.

The spectral dimension for D = 4 in the one-scale case
(N = 2, α∗ = 1/2) is shown in Fig. 5(a), in agreement with 4.
A two-scale profile with α1 = 1/2, α2 = 1/3, and �2 = 10�1

is plotted in Fig. 5(b):

α2(�) : = 1 + 1
2ζ1(�) + 1

3ζ2(�)

1 + ζ1(�) + ζ2(�)
,

(135)

ζ1 =
(

�1

�

)2

, ζ2 =
(

�2

� − �1

)2

.

At � = 0 (the beginning of the flow, UV critical point), dS = 2
in four dimensions. At � ∼ �1, the spectral dimension acquires
the minimum value dS = 4/3. At scales � � �2, the diffusion

12Equation (1.1) of Ref. [28] has a typo and should read α(�) =
1 + (α∗ − 1)/[1 + (�∗/�)α∗−1].

process corresponds to a recurrent random walk [140], where
dW > dH (dS < 2) and each site of the walk within a given
radius is visited several times. Well above the larger critical
scale, � � �2, both dimensions hit the IR value ∼4:

dS ∼

⎧⎪⎨
⎪⎩

D, � � �2 � �1 (IR),

Dα2 = D
3 , �1 ∼ � � �2 (intermediate),

Dα1 = D
2 , � � �1 � �2 (UV).

(136)

The two-scale spectral dimension of Fig. 5(b) reproduces
the dimensional flow of QEG [11,30,36].

VI. DISCUSSION

Dimensional flow, the change of spacetime dimensionality
with the scale, is a trademark of quantum-gravity scenarios
which appears in different guises but bears a simple, limited
set of general characteristics. We have listed and classified
these characteristics in a portable fashion (i.e., independently
of the quantum-gravity model) according to their degree of
dependency on the details of the diffusion equation. While
the number of asymptotic regimes (plateaux) for the spectral
dimension, their values and positions are physical quantities
related to the hierarchy of fundamental scales of the system,
the intermediate, transient regimes connecting them depend
on the specific realization of the diffusion equation. We have
dissected the latter in its constituent elements and classified a
number of ways to introduce a multiscale structure in it. While
doing so, we pointed out how uncharted territory in quantum
gravity can be explored using the maps of other branches
of physics and mathematics such as diffusion and stochastic
theory. Anomalous and multiscale diffusion equations, in fact,
have been known since long ago in these disciplines. Some of
the contributions of the present paper amount to link composite
stochastic processes to multiscale spacetime geometries, as
in the case of the fractional telegraph process (even in
probability-theory literature, to the best of our knowledge,
the latter seems not to be directly associated with a multiscale
system), to “locally” characterize asymptotic regimes in the
dimensional flow with specific stochastic processes, and to
provide a qualitative (Sec. II) and quantitative (Sec. V) general
analysis of dimensional flow. In parallel, we have improved the
status of knowledge of multifractional spacetimes regarding
fractional Laplacians, diffusion, and the analytic treatment of
multiscale configurations.

The single-scale example is clear-cut in the way it illustrates
how to associate a given dimensional flow or portions of it
with specific types of stochastic processes. Suppose we have
a quantum-gravity model with spacetime spectral dimension
following the monotonic profile of Fig. 1. Different diffusion
equations can give the same profile qualitatively, with the
same asymptotics but a different slope in between (Figs. 4
and 5(a) and, e.g., Fig. 1 of Ref. [41]). As we have seen, one
such diffusion equation governs what is known as a fractional
telegraph process, which is a telegraph process with Brownian
time (Sec. V B). In this stochastic process, the test particle
experiences abrupt changes of speed at times governed by
a Poisson law, in turn parametrized by a Wiener process
(i.e., Brownian motion). At large scales, towards the upper
right plateau of the figure, this process reduces to an ordinary
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FIG. 5. (Color online) The spectral dimension dS(�) in D = 4 for a multifractional model and normal diffusion (β = 1 = γ , dS = dH) in
four dimensions, with profile (133) (a) and (135) (b).

Brownian motion. At small scales, in the lower left plateau, the
process reduces to another composite process, called iterated
Brownian motion, which is a Brownian motion with Brownian
time. Iterated Brownian motion describes the diffusion of
a Brownian particle in a fractal medium. Now, suppose the
quantum-gravity model at hand does not realize this particular
diffusion equation (for instance, multifractional theory). Since
dimensional flow is essentially the same, we can still interpret
the one-scale anomalous diffusion equation as describing
the diffusion of a particle in an irregular fractal medium,
although the process is not really a fractional telegraph process.
Nevertheless, the existence of a specific stochastic process
in the same “equivalence class” of flows (in the example,
the class of monotonic single-scale flows) gives a sharper
characterization of the physics underlying diffusion in an
anomalous spacetime. This is also true asymptotically; in the

example, the asymptotic class of flows leading to dS ∼ D/2 is
that of the IBM.

Through the exact and approximate solution of the various
diffusion equations, we have replaced spotwise knowledge of
asymptotic values of the spectral dimension with a continuous
analytic control over dimensional flow in a model-independent
fashion. In particular, control over multifractional spacetimes
has been ameliorated. This should open up further advance-
ments in other aspects of the field as well as its application
as an effective framework to other theories of quantum
gravity.
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E. Çinlar, K. L. Chung, and M. J. Sharpe (Birkhäuser, Boston,
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9, 717 (1996).

[94] D. Khoshnevisan and T. M. Lewis, Ann. Appl. Probab. 9, 629
(1999).

[95] H. Allouba and W. Zheng, Ann. Probab. 29, 1780 (2001).
[96] H. Allouba, Trans. Am. Math. Soc. 354, 4627 (2002).
[97] R. D. DeBlassie, Ann. Appl. Probab. 14, 1529 (2004).
[98] E. Orsingher and L. Beghin, Probab. Theory Relat. Fields 128,

141 (2004).
[99] E. Nane, Stochastic Proc. Appl. 116, 905 (2006).

012123-19

http://dx.doi.org/10.1103/PhysRevD.84.061501
http://arXiv.org/abs/arXiv:1106.5787
http://dx.doi.org/10.1007/JHEP01(2012)065
http://arXiv.org/abs/arXiv:1202.5383
http://dx.doi.org/10.1103/PhysRevD.86.044021
http://dx.doi.org/10.1063/1.4757647
http://dx.doi.org/10.1063/1.4757647
http://dx.doi.org/10.1103/PhysRevD.86.044005
http://dx.doi.org/10.1103/PhysRevD.85.124030
http://dx.doi.org/10.1103/PhysRevD.85.124030
http://arXiv.org/abs/arXiv:1202.3151
http://arXiv.org/abs/arXiv:1209.4376
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19063261405
http://dx.doi.org/10.1103/PhysRevD.84.104018
http://dx.doi.org/10.1103/PhysRevD.84.104018
http://dx.doi.org/10.1103/PhysRevD.84.084029
http://dx.doi.org/10.1103/PhysRevD.81.104040
http://dx.doi.org/10.1103/PhysRevD.73.084004
http://dx.doi.org/10.1103/PhysRevD.73.084004
http://dx.doi.org/10.1007/978-3-642-33036-0_8
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.037
http://dx.doi.org/10.1088/1475-7516/2006/03/009
http://dx.doi.org/10.1088/1475-7516/2006/03/009
http://dx.doi.org/10.1088/1126-6708/2008/02/008
http://dx.doi.org/10.1088/1126-6708/2008/02/008
http://dx.doi.org/10.1239/aap/1013540349
http://dx.doi.org/10.1239/aap/1118858630
http://dx.doi.org/10.1007/BF02733756
http://dx.doi.org/10.1007/BF02812498
http://dx.doi.org/10.1142/S0217732392000562
http://dx.doi.org/10.1142/S0217732392000562
http://dx.doi.org/10.1088/0305-4470/25/19/026
http://dx.doi.org/10.1088/0305-4470/25/19/026
http://dx.doi.org/10.1063/1.530263
http://dx.doi.org/10.1142/S0217751X96001061
http://dx.doi.org/10.1142/S0217751X96001061
http://dx.doi.org/10.1023/A:1026696132216
http://dx.doi.org/10.1023/A:1026696132216
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1039/c2sm25701g
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1103/PhysRevE.59.5026
http://dx.doi.org/10.1103/PhysRevE.59.5026
http://dx.doi.org/10.1103/PhysRevE.63.021112
http://dx.doi.org/10.1103/PhysRevE.63.021112
http://dx.doi.org/10.1063/1.1372514
http://dx.doi.org/10.1029/2001WR001229
http://dx.doi.org/10.1103/PhysRevE.74.026706
http://dx.doi.org/10.1088/0253-6102/52/5/20
http://dx.doi.org/10.1088/0253-6102/52/5/20
http://dx.doi.org/10.1029/95WR01723
http://dx.doi.org/10.1029/95WR01723
http://dx.doi.org/10.1029/95WR02282
http://dx.doi.org/10.1029/95WR02282
http://dx.doi.org/10.1103/PhysRevA.29.1461
http://dx.doi.org/10.1103/PhysRevA.29.1461
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://dx.doi.org/10.1016/0378-4371(94)90064-7
http://dx.doi.org/10.1016/0378-4371(94)90064-7
http://dx.doi.org/10.1063/1.166272
http://dx.doi.org/10.1016/S1007-5704(03)00049-2
http://dx.doi.org/10.1016/S1007-5704(03)00049-2
http://dx.doi.org/10.1002/pssb.2221330150
http://dx.doi.org/10.1063/1.527251
http://dx.doi.org/10.1063/1.528578
http://dx.doi.org/10.1063/1.528578
http://dx.doi.org/10.1007/BF01051854
http://dx.doi.org/10.1016/0893-9659(96)00089-4
http://dx.doi.org/10.1214/08-AOP401
http://dx.doi.org/10.3792/pjaa.55.176
http://dx.doi.org/10.1007/BF02214652
http://dx.doi.org/10.1007/BF02214652
http://dx.doi.org/10.1007/BF02214084
http://dx.doi.org/10.1007/BF02214084
http://dx.doi.org/10.1214/aoap/1029962807
http://dx.doi.org/10.1214/aoap/1029962807
http://dx.doi.org/10.1214/aop/1015345772
http://dx.doi.org/10.1090/S0002-9947-02-03074-X
http://dx.doi.org/10.1214/105051604000000404
http://dx.doi.org/10.1007/s00440-003-0309-8
http://dx.doi.org/10.1007/s00440-003-0309-8
http://dx.doi.org/10.1016/j.spa.2005.10.007


GIANLUCA CALCAGNI PHYSICAL REVIEW E 87, 012123 (2013)

[100] B. Baeumer, M. M. Meerschaert, and E. Nane, Trans. Am.
Math. Soc. 361, 3915 (2009).

[101] L. Beghin and E. Orsingher, Stochastic Proc. Appl. 119, 1975
(2009).

[102] E. Nane, Stochastics Dyn. 10, 341 (2010).
[103] B. Baeumer, M. M. Meerschaert, and E. Nane, J. Appl. Probab.

46, 1100 (2009).
[104] L. Beghin, E. Orsingher, and L. Sakhno, Stoch. Anal. Appl. 29,

551 (2011).
[105] E. Orsingher and X. Zhao, Acta Math. Sinica 15, 173

(1999).
[106] K. J. Hochberg and E. Orsingher, J. Theor. Probab. 9, 511

(1996).
[107] K. Burdzy and D. Khoshnevisan, Ann. Appl. Probab. 8, 708

(1998).
[108] M. Giona and H. E. Roman, Physica A 185, 87 (1992).
[109] R. Metzler and T. F. Nonnenmacher, J. Phys. A 30, 1089 (1997).
[110] V. Yu. Krylov, Sov. Math. Dokl. 1, 260 (1960).
[111] K. J. Hochberg, Ann. Probab. 6, 433 (1978).
[112] L. Beghin and E. Orsingher, Stochastic Proc. Appl. 115, 1017

(2005).
[113] P. Grassberger and I. Procaccia, Physica D 13, 34 (1984).
[114] M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia, and

J. Stavans, Phys. Rev. Lett. 55, 2798 (1985).
[115] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B.

I. Shraiman, Phys. Rev. A 33, 1141 (1986); 34, 1601 (1986).
[116] G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).
[117] D. Harte, Multifractals: Theory and Applications (Chapman &

Hall/CRC, Boca Raton, FL, 2001).
[118] K. Falconer, Fractal Geometry (Wiley, New York, 2003).
[119] G. M. Zaslavsky, Physica A 288, 431 (2000).

[120] G. M. Zaslavsky, Chaos 4, 25 (1994).
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