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The change of the effective dimension of spacetime with the probed scale is a universal phe-
nomenon shared by independent models of quantum gravity. Using tools of probability theory and
multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffu-
sion equation, and physically interpreted as a composite stochastic process. The simplest example
is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to
2 in the ultraviolet and monotonically rising to 4 towards the infrared.

PACS numbers: 04.60.-m, 05.45.Df, 05.60.-k, 47.53.+n

The spectral properties of effective quantum space-
times show that the ultraviolet (UV) finiteness of inde-
pendent theories of quantum gravity is universally asso-
ciated with a lower spectral dimension of spacetime (typ-
ically, dS ∼ 2) at small scales, while dS ∼ 4 is recovered in
the infrared (IR). Instances are causal dynamical triangu-
lations [1], asymptotic safety [2, 3], spin foams [4, 5], non-
commutative geometry [6], Hořava-Lifshitz gravity [7],
and other approaches or models [8].
The change of dimension with the probed scale is

known as dimensional reduction or dimensional flow [9].
Understanding its physical meaning is an eventually im-
portant piece of the puzzle of quantum gravity, since the
multiscale behavior is deeply related to the renormaliza-
tion properties of these theories. Differential geometry
and ordinary calculus, as employed in general relativity
and field theory, are inadequate to study this and other
properties of quantum spacetimes, and stochastic pro-
cesses and multifractal geometry can offer powerful tools
of analysis and novel insight. While there is the ten-
dency to label all multiscale spaces as “fractal,” the ac-
cumulated knowledge from these branches of physics and
mathematics permit to make sharper statements about
the geometric and physical properties of quantum-gravity
models. This philosophy inspired the revisiting of a re-
cent problem, the construction of quantum field theories
in fractal spacetimes, under a fresh perspective focused
on an effective continuum geometry [10], in particular via
the formalism of multifractional spacetimes [11].
Here we reexamine the spectral dimension starting

from its foundation, the diffusion equation. A critical ap-
praisal of the latter in multifractional theory will allow
us to classify quantum geometries in terms of stochastic
processes on one hand, and to get a precise back-up to
the notion of “fractal spacetime” on the other hand. For
the process to be meaningful, the solution P of a given
diffusion equation must be nonnegative at all points,

P ≥ 0 . (1)

If P is normalized to 1, it is interpreted as the probability
to find the diffusing particle (if the probe is pointwise) at
a given point. This probability distribution describes a
stochastic process, i.e., a sequence or collection of random
variables. We shall use Eq. (1) as one of the guiding

principles to identify the random process associated with
a given behavior of quantum geometry. Here we do not
pay attention to the techniques employed for solving the
diffusion equations; an expanded discussion is in [12].
Classical spacetimes. In a smooth classical spacetime

with D topological dimensions, the diffusion equation is

(

∂σ −∇2
x

)

P (x, x′, σ) = 0 . (2)

The parameter σ ≥ 0 acts as an abstract “time” vari-
able via the diffusion operator ∂σ, an ordinary first-order
derivative. Writing σ = ℓ2σ̄ in terms of a fixed length
scale ℓ and a dimensionless parameter σ̄, Eq. (2) is recast
in the form (∂σ̄ − ℓ2∇2

x)P = 0. The spatial generator ∇2
x

is the Laplacian in the given metric background in Eu-
clidean signature. The subscript x indicates its action
on the x dependence of the heat kernel P , while x′ is
the initial point where diffusion starts. In translation-
invariant spacetimes, P depends on the difference x−x′,
but in fractional spaces with nontrivial measure this is
no longer true; therefore we keep the notation P (x, x′, σ)
separate from the often-employed u(x−x′, σ) [or u(x, σ),
fixing x′ = 0]. The diffusion equation is not completely
specified without the set of initial conditions at σ = 0.
The choice P (x, x′, 0) = δ(x−x′) describes diffusion of a
point particle starting at x = x′. Extended shapes of the
probe are possible (e.g., [8]), but the pointwise one allows
to explore the local manifold structure of spacetime.
The solution P must be nonnegative for all x and x′,

Eq. (1), and normalized as
∫

dDx
√
gP (x, x′, σ) = 1 (g =

det gµν). From the spatial trace of P , one gets the return
probability P(σ) := (

∫

dDx
√
g)−1

∫

dDx
√
g P (x, x, σ)

and the spectral dimension

dS := −2
d lnP(σ)

d lnσ
. (3)

When divergent, the volume prefactor in the definition
of P can be regularized. In the case of a translation-
invariant background, it cancels out with the position
dependence in the numerator and P(σ) = u(0, s).
Ignoring curvature, the normalized solution of Eq. (2)

is the Gaussian heat kernel P (x, x′, σ) = u1(∆x, σ) :=

e−∆x2/(4σ)/(4πσ)D/2, where ∆x2 :=
∑

µ |xµ − x′
µ|2 is

the Euclidean distance, µ = 1, . . . , D. Clearly, P > 0.
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The return probability and spectral dimension read P ∝
σ−D/2 and dS = D, respectively. There is no quantitative
distinction between spectral and topological dimension.
They are also equal to the Hausdorff dimension dH of
spacetime, determining the scaling law of the volume of
a D-ball of radius R, V(D) ∝ RdH . Notice that, because
ℓ is the only scale, it is not possible to define a hierarchy
of scales and the geometry (and dS) is scale independent.
The ordinary diffusion equation (2) is associated with

a Wiener process B(σ), also known as standard Brow-

nian motion. A Wiener process is such that (i) B is
continuous in σ almost surely (i.e., with probability 1),
(ii) B(0) = 0, and (iii) the increments of B are indepen-
dent and governed by the Gaussian distribution u1, so
that B(σ)−B(σ′) ∼ u1(0, σ − σ′) for σ′ < σ.
Quantum geometry with fixed dimension. We now turn

to quantum gravity. In the literature, it is common to
assume the diffusion equation (2). The idea is that quan-
tum geometry should modify either the initial condition
P (x, x′, 0) [8] or the Laplacian ∇2

x → Kx, or both. In the
presence of one or more fundamental quantum scales ℓn
(the Planck scale, or the label-dependent lengths of the
simplices in a cellular complex), the operator Kx and/or
the initial condition can introduce a complicated scale de-
pendence which gives rise to a multiscale behavior. We
maintain this attitude and modify the Laplacian, later
introducing other changes to the diffusion equation.
It is instructive to specialize first to the case of fixed

dimensionality (no scale hierarchy). We concentrate on
the continuum formulation of fractional calculus, which
guarantees anomalous (in particular, fractal) geometric
properties of spacetimes [11, 12] and anomalous correla-
tions in diffusion problems (e.g., [13]). We ignore curva-
ture. The latter modifies the spectral properties of space-
time even in a classical setting, except in the UV limit
σ → 0. Quantum geometric effects, however, often mod-
ify spacetime globally even in the absence of curvature,
which motivates the assumption (see also [3]).
For each direction, we replace ∂2

x with the operator

Kγ,α := − 1
√

vα(x)

∞∂2γ
x + ∞∂̄2γ

x

2 cos(πγ)

[

√

vα(x) ·
]

, (4)

where vα(x) = |x|α−1/Γ(α) is the measure weight of the
ambient space (the singularity in x = 0 is integrable and
does not pose particular problems for the classical and
quantum dynamics), 0 < α ≤ 1 and γ > 0 are real
parameters, and we make use of left and right Liouville-
Caputo fractional derivatives (see [11, 12]). When 2γ =
m is integer, ∞∂m = (−1)m∞∂̄m = ∂m. Definition (4)
is such that, in a suitable domain, the operator Kγ,α is
self-adjoint and with eigenvalue −|k|2γ [11, 12].
We classify the stochastic and geometric properties as-

sociated with the diffusion equation

(∂σ −Kγ,α)P = 0 , (5)

with initial condition P (x, x′, 0) = [vα(x)vα(x
′)]−1/2

×δ(x − x′). By the self-similarity of P , one can show

that dS = Dα/γ [12]. • When γ = 1 = α, we recover
ordinary diffusion and dS = D. • For γ = 1 6= α, this
is ordinary Brownian motion but on a fractal spacetime
with dS = Dα. • For 0 < γ < 1 and α = 1, we have
a Lévy process. It is a Markovian process like Brown-
ian motion (we recall that a process is Markovian if fu-
ture states depend on the present state but not on past
states), but characterized by a heavy-tailed distribution
and “long jumps” connecting clusters of shorter steps.
One has superdiffusion and dS = D/γ > D = dH. This
does not correspond to a fractal spacetime (dS ≤ dH for
fractals). • For 0 < γ, α < 1, one has a Lévy process
on an anomalous spacetime (fractal if α ≤ γ). • When
γ > 1, the solution of (5) is no longer nonnegative defi-
nite and the equation must be modified. In fact, one can
include a source term, (∂σ −Kγ,α)P = S(x, x′, σ), which
does not alter the spectral dimension. Hence, overlooking
the check of (1) for the Ansatz (5) might result in the cor-
rect spectral dimension but a wrong diffusion equation.
Processes associated with nonhomogeneous equations

may be non-Markovian even if they are meaningful in a
probabilistic sense. An example is the quartic equation

(

∂σ −∇4
x

)

u(x, σ) = (πσ)−1/2∇2
xu(x, 0) , (6)

with α = 1 and source given by the initial condition. The
solution gives the same dS = D/2 as the naive Eq. (5)
with γ = 2, but the presence of the source guarantees
that u ≥ 0. Equation (6) governs an iterated Brownian

motion (IBM) or Brownian-time Brownian motion [14].
Given two independent Wiener processes B1,2, IBM is
defined as XIBM(σ) := B1[|B2(σ)|], where B2 acts as a
clock to B1. Equation (6) can be regarded as the “iter-

ation” of the fractional equation (∂
1/2
σ −∇2

x)u = 0, with
same solution u. ∂β

σ is the left Caputo derivative with
lower terminal σ′ = 0. In general, there exists a deep
connection between higher-order diffusion equations with
integer time, iterated stochastic processes, and diffusion
equations with fractional time (∂β

σ − ∇2
x)u = 0, with

0 < β ≤ 1. The solution u is positive definite [15]. The
process described by this equation (fractional Brownian
motion) is subdiffusive: Due to a heavy tail in waiting
times, in average it takes longer (with respect to Brow-
nian motion) for the particle to cover a certain distance.
Consequently, also Eq. (6) gives subdiffusion.
Extending the discussion to a nontrivial spacetime

measure, the spectral dimension associated with the frac-
tional diffusion equation (∂β

σ − Kγ,α)P = 0 is dS =
(β/γ)dH, where dH = Dα [11, 12]. A fractal configu-
ration is obtained whenever β ≤ γ.
Multiscale quantum spacetimes. We now make a

twofold conceptual step of relevance for quantum gravity.
In stochastic and chaos theory, the adoption of a diffusion
equation is motivated by phenomenology. Given a set of
experiments evidencing some anomalous scaling laws, one
proposes an ad-hoc diffusion equation reproducing those
scalings. The theoretical model is then further tested
against experiments. Or else, one defines the stochastic
process underlying a certain physical system, and from
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its probability distribution one infers the correct diffu-
sion equation. For instance, IBM provides a stochastic
description of diffusion in cracks [16]. Intuitively, it con-
sists in a Brownian diffusion of a particle trapped in ran-
dom fractal set (a crack) whose pattern resembles the
graph of a Brownian motion. In quantum gravity, on the
other hand, we do not have experiments but fragmentary
knowledge such as the existence of anomalous scaling be-
haviors in the UV. This information determines the dif-
ferential order of the operators in the diffusion equation,
but it may be unable to fix the latter univocally. This
means that dimensional flow in quantum geometry may
be insensitive of the presence of source terms [see [3, 12];
Eq. (6) without source or with flipped sign in front of
∇4 would still give the same dS], and we must resort to
positivity of the diffusion solution to fix more details of
the diffusion equation. In turn (this is the second part of
the step), once we determine a reasonable diffusion equa-
tion with probabilistic interpretation, we can also find the
stochastic process associated with that, thus physically
characterizing quantum geometry.
Without further input from the theory except the be-

havior in the UV and in the IR, we can prescribe a sensi-
ble diffusion equation (with nonnegative solution P ) re-
producing the whole dimensional flow. This is achieved
by applying the techniques of multiscale phenomena and
multifractal geometry to the texture of spacetime itself
[11, 12]. The generalization of the diffusion equation to
a multiscale process is realized by summing over all pos-
sible values of α, β, and γ:

∑

n

(

ξn∂
βn

σ − ζnKγn,αn

)

P (x, x′, σ) = S(x, x′, σ) , (7)

where ξn and ζn are dimensionful couplings which de-
pend on the characteristic scales of the system. Typi-
cally, there is only a finite number N of terms in phys-
ical systems, so the sum representation (7) is realistic.
The number N − 1 of characteristic scales (hidden in ξ
and ζ) determines the number N of plateaux (asymp-
totic regimes) in the profile of dS. The discrepancy be-
tween the number of scales and the number of regimes
is due to the fact that a multiscale phenomenon is al-
ways defined by the relative size of the scales, not by an
absolute hierarchy. This means that we can choose any
of the N scales ℓn to represent the scale ℓ probed by a
measurement. If we order the scales of the system as
ℓ1 < ℓ2 < · · · < ℓN , we can take the largest as ℓ = ℓN .
Thus, there are N − 1 (not N) scales with the physical
meaning of characteristic lengths. The spectral dimen-
sion is fixed when N = 1; for N = 2 (one scale), it has
two asymptotic values dS ∼ dS1,2, with a monotonic tran-
sient phase in between, in the regimes ℓ ≪ ℓ1 and ℓ ≫ ℓ1;
for N = 3, there will be an intermediate plateau where
dS ∼ dS3 between the limiting values dS1,2; and so on.
The first example is an interaction of Gaussian and

anomalous dynamics which can describe certain turbu-
lent media [17]. The diffusion equation is (∂σ − ∂2

x −
ζ1Kγ,1)u = 0, u(x, 0) = δ(x), where 0 < γ < 1 and

we write the constant ζ1 = ℓ
−2(1−γ)
1 in terms of a char-

acteristic length. As the analytic solution shows, the
transport is of Lévy type at large scales ℓ = k−1 ≫ ℓ1
(dS ∼ 1/γ > 1 = dH) and normal at small scales ℓ ≪ ℓ1
(dS ∼ 1). From the perspective of quantum spacetimes,
this model is multiscale but not multifractal. Profiles
of dS overshooting the Hausdorff and topological dimen-
sions appear also in lattice [5] and noncommutative ge-
ometries (last reference in [6]), with some caveats [12].
A second example is a fractional diffusion equation

with two diffusion operators ∂
β1,2

σ . To see its neat
stochastic interpretation, we recall some results on the so-
called telegraph processes ([18] and references therein).
A telegraph process is defined as V (σ) = V (0) (−1)N (σ),
where V (σ) is the velocity of a particle at time σ run-
ning on the real line, V (0) is the initial velocity which
is ±c with equal probability, and N is the cumula-
tive number of events of a homogeneous Poisson pro-
cess (the latter is a Lévy process) with rate λ > 0.
The velocity of the particle flips direction at times obey-
ing a Poisson distribution, hence the name “telegraph.”
The position of the particle at time σ is the integrated
telegraph process T (σ) = V (0)

∫ s

0
ds (−1)N (s) and its

probability distribution obeys the telegraph equation
(∂2

σ + 2λ∂σ − c2∂2
x)u = 0 with delta initial condition.

We now consider a composite process called Brownian-
time telegraph process or fractional telegraph process,
XFTP(σ) := T [|B(σ)|]. It describes the motion of a par-
ticle that at time σ is located in the random spatial inter-
val (−σ|B(σ)|, σ|B(σ)|). This motion is governed by the

diffusion equation (∂σ+2λ∂
1/2
σ −c2∂2

x)u = 0. Other com-
binations of telegraph and Brownian processes are possi-
ble, leading to different diffusion equations. The solution
of the fractional telegraph equation and its generaliza-
tion (∂2β

σ +2λ∂β
σ − c2∂2

x)u = 0 is nonnegative and unique
[18]. In the double limit λ, c → +∞, λ/c2 → const, the
stochastic process reduces to an IBM. Recasting these
results in the language of multifractal spacetimes and
extending to D dimensions, we set [σ] = 0, c = ℓ2∗ as
the characteristic scale, and ℓ = ℓ∗/(2λ) as the probed
scale. In the limit ℓ ≫ ℓ∗, diffusion in spacetime is Gaus-
sian and described by a Brownian process (dS ∼ D). At
small scales ℓ ≪ ℓ∗, on the other hand, one reaches a
regime where diffusion is fractional and given by an IBM
(dS ∼ D/2). In between, diffusion in quantum spacetime
obeys the law of a fractional telegraph process.
The monotonic profile dS(ℓ) of this single-scale space-

time can be plotted from the analytic form of the return
probability. The probability distribution for more com-
plicated multiscale spacetimes can be computed as well,
but here we show how all these profiles are easily re-
produced in the framework of multifractional geometry
(αn 6= 1) when β = 1 = γ and S = 0. The coefficients ζn
in (7) may be adjusted to give phenomenological profiles
with different features, but here we argue that they have
the natural form ζN = 1 and

ζ1(ℓ) = (ℓ1/ℓ)
2 , ζn(ℓ) = [ℓn/(ℓ− ℓn−1)]

2 , (8)
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FIG. 1. The spectral dimension dS(ℓ) in D = 4 for a multi-
fractional model and normal diffusion (β = 1 = γ, dS = dH)
with single scale (dashed curve) and two scales (solid curve).

where ℓ = ℓN . First, we notice that the Laplacians all
have the same order 2, so the coefficients ζn all have the
same scaling dimension and, in particular, we can always
make them dimensionless. Write ζn as the ratio of some
length scales, ζn = (lA,n/lB,n)

q. Without loss of gener-
ality, one can choose q = 2 so that the spatial generator
of the diffusion equation can be rendered dimensionless,
in the form

∑

n(lA,n)
2K1,αn

. Now, the nth term domi-
nates over the others at scales ℓ ≪ ℓn, so we could set
lA,n = ℓn and, tentatively, lB,n = ℓ. However, at scales
smaller than ℓn−1 the (n−1)th term takes the lead, so the
smallest possible scale ℓ at which the nth term dominates
is ℓ ∼ ℓn−1. Then, the correct choice is lB,n = ℓ − ℓn−1.
In other words, the dimensional flow is always measured
starting from the lowest or two scales ℓn−1 to the next

ℓn, and relatively to the latter, which sets a gauge for the
rods. Since ℓ = ℓN is the probed scale, ζN ≡ 1.
We can plot the spectral dimension for any given profile

α(ℓ). Upgrading on [11], we motivate a realistic profile
α(ℓ) as an approximation of the sum in (7). Consider
first the N = 2 case with α1 6= 1 and α2 = 1. In one
dimension, and by Eq. (4), (∂2

x + ζ1KE
1,α1

)P = {(1 +

ζ1)KE
1,α(ℓ) + ζ1(1− α1)

2/[4(1 + ζ1)x
2]}P , where α1(ℓ) :=

[1 + ζ1(ℓ)α1]/[1 + ζ1(ℓ)]. For both small and large ζ1
the kinetic term in this expression dominates over the
potential term, so the profile α1(ℓ) defines an effective
fractional charge throughout the dimensional flow. With
N coefficients αn, αN = 1, the effective charge reads

αN−1(ℓ) :=
1 +

∑N−1
n=1 ζn(ℓ)αn

1 +
∑N−1

n=1 ζn(ℓ)
. (9)

This is nothing but the average 〈α〉 of the coefficients αn

with respect to the weights ζn.
For two entries (N = 2, α1 = 2/D, α2 = 1, one

scale), dimensional flow is such that dS ∼ D in the IR
and dS ∼ Dα1 = 2 in the UV, with no intermediate
regime in between. This is the type of flow considered
in [10, 11] and is shown in figure 1 (dashed curve), in
agreement with the fractional-telegraph profile. A two-
scale profile dS(ℓ) = 4α2(ℓ) with α1 = 1/2, α2 = 1/3 and
ℓ2 = 10ℓ1 is also plotted (solid curve). At ℓ = 0, dS = 2.
At ℓ ∼ ℓ1, the spectral dimension acquires the minimum
value dS = 4/3. At scales ℓ ≤ ℓ2, the diffusion process
corresponds to a recurrent random walk, where dS < 2.
Well above the larger critical scale, ℓ ≫ ℓ2, dS hits the
IR value ∼ 4. Notably, this profile reproduces the dimen-
sional flow of asymptotically-safe quantum gravity [3].
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