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Abstract

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of

dementia in the elderly population. In this study, we used the APP/PS1 transgenic mouse model to explore the

feasibility of using diffusion kurtosis imaging (DKI) as a tool for the early detection of microstructural changes in the

brain due to amyloid-β (Aβ) plaque deposition.

Methods: We longitudinally acquired DKI data of wild-type (WT) and APP/PS1 mice at 2, 4, 6 and 8 months of age,

after which these mice were sacrificed for histological examination. Three additional cohorts of mice were also

included at 2, 4 and 6 months of age to allow voxel-based co-registration between diffusion tensor and diffusion

kurtosis metrics and immunohistochemistry.

Results: Changes were observed in diffusion tensor (DT) and diffusion kurtosis (DK) metrics in many of the 23

regions of interest that were analysed. Mean and axial kurtosis were greatly increased owing to Aβ-induced

pathological changes in the motor cortex of APP/PS1 mice at 4, 6 and 8 months of age. Additionally, fractional

anisotropy (FA) was decreased in APP/PS1 mice at these respective ages. Linear discriminant analysis of the motor

cortex data indicated that combining diffusion tensor and diffusion kurtosis metrics permits improved separation of

WT from APP/PS1 mice compared with either diffusion tensor or diffusion kurtosis metrics alone. We observed that

mean kurtosis and FA are the critical metrics for a correct genotype classification. Furthermore, using a newly developed

platform to co-register the in vivo diffusion-weighted magnetic resonance imaging with multiple 3D histological stacks,

we found high correlations between DK metrics and anti-Aβ (clone 4G8) antibody, glial fibrillary acidic protein, ionised

calcium-binding adapter molecule 1 and myelin basic protein immunohistochemistry. Finally, we observed reduced FA

in the septal nuclei of APP/PS1 mice at all ages investigated. The latter was at least partially also observed by voxel-based

statistical parametric mapping, which showed significantly reduced FA in the septal nuclei, as well as in the corpus

callosum, of 8-month-old APP/PS1 mice compared with WT mice.

Conclusions: Our results indicate that DKI metrics hold tremendous potential for the early detection and longitudinal

follow-up of Aβ-induced pathology.
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Background
Alzheimer’s disease (AD) is the most common cause of

dementia and imposes a serious healthcare burden. Cur-

rently, 5.1 million Americans have AD, a number set to

double by 2050 [1]. Whilst a tremendous amount of re-

search has been conducted in an attempt to elucidate

the pathological factors driving the sporadic form of AD,

so far its aetiology remains enigmatic. As a consequence,

no real cure yet exists, and currently used drugs are fo-

cussed on the management and relief of cognitive symp-

toms [2]. It is commonly accepted that accurate and

early treatment helps to better preserve the patient’s

level of function and reduces the societal cost associated

with caregiving for patients with AD [3]. Additionally,

disease-modifying treatments are expected to delay AD

progression optimally when they are administered during

the early stages of AD pathology [4]. Therefore, it is of

utmost importance to develop the means to detect AD

pathology both in an early phase and with high sensitivity.

Currently, a definitive diagnosis of AD can be made

only following post-mortem analysis of brain tissue. In

contrast, a clinical diagnosis of AD in patients is based

on cognitive symptoms, cerebrospinal fluid (CSF) bio-

markers and imaging diagnostics [5]. In this context, the

assessment of brain atrophy progression by using volu-

metric magnetic resonance imaging (MRI) has long been

considered the most valuable tool for following AD pro-

gression [6]. However, although volumetric MRI is in-

deed a very robust tool to follow this progression,

atrophy occurs only late during the disease pathology.

As such, volumetric MRI holds little value for transla-

tional treatment studies where atrophy is not present. In

the present study, however, we focused on amyloid-β

(Aβ) plaques, which were previously found to occur

much earlier during disease progression, starting decades

before actual clinical symptoms became apparent [7]. Aβ

originates from amyloid precursor protein and is proc-

essed into soluble forms of amyloid-β (sAβ) of various

lengths. While normally a physiologically relevant bal-

ance exists between sAβ1–40 and sAβ1–42, in patients

with AD, Aβ accumulates in the brain, which eventually

results in the formation of oligomeric forms of sAβ. The

latter are known to be highly toxic to neuronal synapses

and will result in synaptic loss [8]. When left unresolved,

these high concentrations of Aβ will also result in depos-

ition of Aβ plaques, which eventually trigger an inflam-

matory response. Together, all these processes cause

extensive remodelling of the brain tissue in regions

where Aβ pathology occurs.

Diffusion tensor imaging (DTI) and the more recently

developed diffusion kurtosis imaging (DKI) are MRI

techniques that are capable of in vivo visualisation of ex-

tensive tissue remodelling. Therefore, the usefulness of

DTI in the detection of AD pathology is currently being

investigated in multi-centre MRI studies. For example, the

ADNI2 (Alzheimer’s Disease Neuroimaging Initiative 2)

and ADNI-GO (Alzheimer’s Disease Neuroimaging Initia-

tive “Grand Opportunities”) trials included DTI of patients

with AD, and they showed that DTI could be a possible

biomarker for AD [9]. This inclusion of DTI in human

studies is supported by numerous pre-clinical studies con-

ducted in rodents that have shown the ability of DTI to

detect amyloidosis. However, the potential of DKI to visu-

alise amyloidosis has been studied somewhat less. DKI

provides an estimate of both the Gaussian diffusion distri-

bution (DT metrics) and the deviation of this Gaussian

distribution at higher b values (DK metrics). The latter

makes DKI a more sensitive technique than DTI for visua-

lising microstructural changes [10]. We recently provides

proof of principle that DKI is able to detect amyloidosis in

mice. By using the APP/PS1 transgenic mouse (a rapidly

progressing amyloidosis model [11]), we have previously

shown that extensive amyloidosis increases the DK

metrics in the cortex and thalamus of 16-month-old APP/

PS1 mice as compared with age-matched wild-type (WT)

mice [12].

In the present study, we built upon these previous

findings and aimed to investigate (1) if DK metrics allow

for better separation of APP/PS1 mice from WT than

when DT metrics are used, (2) if DKI metrics allow

identification of early Aβ-induced pathology and longitu-

dinal follow-up of Aβ plaque-induced pathology, and (3)

if the observed changes correlate with the histologically

determined pathology.

Methods

Animals and experimental design

In this study, male WT C57BL/6 J mice (n = 52) and

male transgenic APPKM670/671NL/PS1L166P mice were

used (n = 67, referred to as APP/PS1 mice) [11]. Mice

were housed in the animal facility of the University of

Antwerp during the whole experiment. During the study,

mice were kept on a normal 12-h/12-h day-night cycle

with ad libitum access to food and water. Additional file

1 shows the weight evolution of the mice in the longitu-

dinal cohort.

APP/PS1 mice start developing Aβ plaques from the

age of 6 to 8 weeks and show aggressive amyloidosis in

subsequent months [11]. As such, we acquired the first

dataset when mice were 2 months old, when only low

Aβ plaque deposition is present (n = 20 WT mice and

n = 19 APP/PS1 mice). We then longitudinally followed

these mice by acquiring a DKI datasets when they were 4

and 6 months of age (intermediate Aβ plaque load) and

finally at 8 months of age, which corresponds to an exten-

sive Aβ plaque load. After acquisition of this last DKI

dataset at 8 months of age, mice were then sacrificed for

histological analysis. In addition, three further cohorts of
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WT and APP/PS1 mice were scanned once each at

2 months (n = 11 WT mice and n = 16 APP/PS1 mice),

4 months (n = 10 WT mice and n = 16 APP/PS1 mice)

and 6 months (n = 11 WT mice and n = 16 APP/PS1 mice)

of age and killed thereafter for histological analysis. The

complete experimental design is shown in Fig. 1.

MRI scan acquisition

At 2, 4, 6 and 8 months of age, mice were subjected to
1H-MRI scanning using a 7-T PharmaScan MRI scanner

with a 16-cm diameter horizontal bore (Bruker, Bremen,

Germany). This system is equipped with a standard Bru-

ker cross-coil setup using a quadrature volume coil for

excitation and an array mouse surface coil for signal de-

tection. The system was interfaced with a Linux PC run-

ning TopSpin 2.0 and Paravision 5.1 software (Bruker

BioSpin, Ettlingen, Germany). Anaesthesia was induced

using 2% isoflurane (Abbott, Maidenhead, UK) in a gas

mixture of 30% O2 and 70% N2 at a flow rate of 600 ml/

minute. During MR image acquisition, the isoflurane

concentration was initially set at 2% and subsequently

lowered when required to maintain a stable respiration

rate of (110 ± 10) breaths per minute, which was moni-

tored using a pressure-sensitive pad. In addition, body

temperature was monitored via a rectal probe and was

held constant between 37.0 °C and 37.3 °C using warm air

coupled to a feedback unit (SA Instruments, Stony Brook,

NY, USA). PC-sam monitoring software (SA Instruments)

was used to measure respiration rate and to measure and

control body temperature. Following MR image acquisi-

tion, mice were left to recover separately under a heating

lamp before being returned to their respective cages.

To ensure uniform slice positioning, we first acquired

axial, sagittal and horizontal multi-slice 2D rapid acqui-

sition and relaxation enhancement (RARE) images using

the following parameters: repetition time (TR) =

2500 ms, echo time (TE) = 33 ms, matrix size (256 ×

256), field of view (FOV) = (20 × 20) mm2, resolution

= (0.078 × 0.078) mm2, nine slices, slice thickness =

0.8 mm, and RARE factor = 8. Following correct

positioning, we acquired three DKI scans, each with 20

unique diffusion gradient directions and seven b

values (400, 800, 1200, 1600, 2000, 2400 and 2800 s/

mm2). In addition, seven images without diffusion weight-

ing (b0) were included for each DKI scan. This yielded DKI

data comprising 21 b0 images and diffusion weighting for

60 diffusion directions with seven b values. Images were

collected with a multi-slice two-shot spin-echo/echo planar

imaging sequence with the following parameters: TR =

7000 ms, TE = 23.25 ms, δ = 4 ms, Δ = 12 ms, acquisition

matrix = (96 × 96), spatial resolution = (0.214 × 0.214) μm2,

28 horizontal slices, and slice thickness = 0.20 mm. This re-

sulted in a total acquisition time of 1 h, 43 minutes. Next, a

high-resolution 3D anatomical image was acquired using a

T2-weighted 3D RARE sequence in the same horizontal

orientation as the DKI data. The following parameters were

used: TR = 3185 ms, TE = 44 ms, and spectral width =

50 kHz, averages = 1, RARE factor = 8, matrix size = (265 ×

64 × 50), FOV (20.5 × 13.0 × 10.0) mm3, resolution

= (0.080 × 0.203 × 0.200) mm3, and total acquisition time =

21 minutes.

MRI analysis

Prior to the actual image analysis, we performed a visual

inspection for quality of the acquired raw data (e.g., ghost-

ing and/or movement) combined with a semi-automated

quality control to avoid bias in the diffusion parameter

estimation due to MR acquisition artefacts. This semi-

automated data quality control consisted of (1) validating

the signal decay with increasing b values, (2) validating if

signals obtained with high b values did not reach the noise

level, (3) validating the magnitude of the signal-to-noise

ratio, and (4) validating the parametric estimation error

using a chi-square test (see below). Once quality was as-

sured, image pre-processing and analysis were initiated.

The data were corrected for motion and eddy current

artefacts using the Functional Magnetic Resonance

Imaging of the Brain (FMRIB) Software Library (FSL) [13].

The DKI model is shown below:

Fig. 1 Experimental setup of the study. Diffusion kurtosis imaging (DKI) was performed in three cohorts of male wild-type (WT) and APP/PS1 mice

at 2, 4 and 6 months of age, and these mice were sacrificed for histological analysis thereafter. In a fourth, longitudinal cohort of male WT and APP/

PS1 mice, we performed DKI at 2, 4, 6 and 8 months of age and thereafter killed these mice for histological analysis
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with S(0) being the signal intensity without diffusion

weighting, D being the rank 2 diffusion tensor, W being

the rank 4 kurtosis tensor, b being the b value, and g be-

ing the diffusion gradient direction. The DKI model was

voxel-wise fitted to the diffusion-weighted images. The

diffusion tensor and kurtosis tensor quantify the Gauss-

ian diffusion profile and the deviation from a Gaussian

diffusion distribution, respectively [10, 14]. The diffusion

tensor and the diffusion kurtosis tensor were estimated

simultaneously using conditional least squares estima-

tors while imposing positivity on the kurtosis coefficients

[15]. The conditional least squares estimator explicitly

accounts for the Rician MR data distribution, for which

the noise level has been estimated [16]. Rotational in-

variant parameter maps of axial diffusivity, radial diffu-

sivity (RD), mean diffusivity (MD) and fractional

anisotropy (FA) were computed from the diffusion ten-

sor, and further refered to as diffusion tensor (DT) met-

rics, and axial kurtosis (AK), radial kurtosis (RK) and

mean kurtosis (MK) maps were computed from the dif-

fusion kurtosis tensor, and further refered to as diffusion

kurtosis (DK) metrics, using MATLAB software (Math-

works Inc., Natick, MA, USA) [14, 17].

A study-based atlas was constructed with Advanced

Normalization Tools [18] software using 25 randomly

selected 3D T2-weighted MRI datasets across both ge-

notypes and all ages. We delineated 23 grey matter and

white matter regions of interest (ROIs) on this atlas

using AMIRA (version 5.4) (Additional file 2). All indi-

vidual 3D T2-weighted MRI scans were then normalised

to the atlas. The inverse transformation of the normal-

isation was used to map the atlas ROIs onto the native

space of the individual 3D T2-weighted MRI scans.

Afterwards, all individual b0 MR images were co-

registered to their corresponding 3D T2-weighted MRI

scans using FSL software. Using the inverse transform-

ation of the latter, we mapped the individual 3D ROIs to

the individual DT and DK metric maps. On the basis of

optimal contrast of the FA map to differentiate grey

matter and white matter, we finally manually checked

and, if necessary, corrected the contours of the grey mat-

ter and white matter ROIs to limit a possible partial vol-

ume effect. Finally, ROI-averaged DT and DK metrics

(MD, axial diffusivity, RD, FA and MK, AK and RK)

were extracted from the respective metric maps.

Histological analysis

For histological examination, mice were sacrificed by

means of cervical dislocation. The complete brain was

dissected and fixed in Fade4 fixative. Fixed brains were

sent to HistoGeneX (Antwerp, Belgium), where 5-μm-

thick sagittal paraffin-embedded sections were cut from

the left hemisphere. Sectioning was started at the middle

of the brain, and ten sagittal sections were acquired at

150-μm intervals, covering the whole hemisphere. Im-

munohistochemical (IHC) staining for Aβ plaques was

initiated by depigmenting slides using potassium per-

manganate for 3 minutes, followed by oxalic acid for

1 minute. Slides were pre-treated in formic acid for

10 minutes to retrieve epitopes and were then incubated

for 15 minutes at room temperature with a mouse anti-

Aβ (clone 4G8) antibody (1:20,000, SIG-39200; Eurogen-

tec, Angers, France). Next, slides were incubated with a

labelled polymer (Dako EnVision + System-HRP Labeled

Polymer Anti-Mouse, K4001; Dako). Finally, the sub-

strate was visualised using 3,3′-diaminobenzidine (DAB)

chromogen (Dako Liquid DAB+ substrate chromogen

system; Dako) for 5 minutes. All steps were performed

using the automated Lab Vision Autostainer 480S

(Thermo Scientific, Waltham, MA, USA). In every 4G8

staining run, an immunoglobulin G (IgG) control

(mouse IgG2b; Dako) was also included. For myelin

basic protein (MBP) staining, epitope retrieval was per-

formed in Target Retrieval Solution (Dako) for 30 mi-

nutes at 97 °C. After endogenous peroxidase activity was

quenched, the slides were incubated for 30 minutes at

room temperature with a mouse anti-MBP (clone SMI-

94) antibody (1:5000, SMI-94R; Covance Antibody Prod-

ucts, Princeton, NJ, USA). Next, slides were incubated

with a labelled polymer (Dako EnVision + System-HRP

Labeled Polymer Anti-Mouse, K4001). Finally, the sub-

strate was visualised using DAB chromogen for 5 mi-

nutes. All steps were performed on the automated Lab

Vision Autostainer 480S. In every MBP staining run, an

IgG control (mouse IgG1; Abcam, Cambridge, UK) was

included. For microgliosis (ionised calcium-binding

adapter molecule 1 [IBA1]) IHC staining, epitope re-

trieval was performed in citrate buffer (pH 6; Lab Vision)

for 30 minutes at 97 °C. After quenching endogenous

peroxidase activity, the slides were incubated for 30 mi-

nutes at room temperature with a rabbit anti-IBA1 anti-

body (1:5000, 019-19741; Wako Pure Chemical

Industries, Osaka, Japan). Next, slides were incubated

with a labelled polymer (Dako EnVision + System-HRP

Labelled Polymer Anti-Rabbit, K4003). Finally, the sub-

strate was visualised using the DAB chromogen (Dako

Liquid DAB+ substrate chromogen system) for 5 minutes.

All steps were performed using the automated Lab Vision

Autostainer 480S. In every IBA1 staining run, an IgG

control (rabbit IgG; Dako) was included. For astrogliosis

(glial fibrillary acidic protein [GFAP]) IHC staining,

epitope retrieval was performed using cell conditioning

solution (Ventana Medical Systems, Tucson, AZ, USA).

The slides were incubated for 28 minutes at 37 °C with a
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rabbit anti-GFAP antibody (1:7500, Z0334; Dako). Next,

slides were incubated with an OmniMap anti-rabbit HRP

detection system (Ventana Medical Systems). All steps

were performed on the automated Ventana Discovery® XT

platform (Ventana Medical Systems). In every GFAP

staining run, an IgG control (rabbit IgG; Dako) was also

used. For all four staining runs, stained slides were

scanned using the MIRAX digital slide scanner (Carl Zeiss

Microscopy, Göttingen, Germany).

Quantification of histology

Quantification of the stained slides was performed by

DCILabs (Keerbergen, Belgium). In short, the histo-

logical images are colour de-convolved to separate the

colours on the stained slides [19]. This generates a grey

value image of the MBP-, GFAP-, 4G8- and IBA1-

stained slides. Hysteresis thresholds were applied on

these images to determine the percentage of area posi-

tive for the respective staining (percent optical density

[%O.D.]) and for each of these ROIs. To quantify the

amount of 4G8-positive Aβ plaques, a mask based on an

intensity cutoff value to distinguish Aβ plaques from

background signal in the grey value images was com-

piled, which then automatically counted the amount of

objects in the mask. To assess the presence of elongated

structures in the image, an anisotropic measure was

defined as the ratio of the difference and the sum of the

eigenvectors of the local structure tensor [20]. All ana-

lyses were performed with software developed in-house

using OpenSlide C interface (openslide.org) to read the

MIRAX images.

3D stacking of histological images and co-registration to

MRI

Co-registration of all images of the histological staining

was performed, and an overview of the whole co-

registration pipeline is shown in Fig. 2. In short, because

the MBP staining contains considerable anatomical

information, we used the MBP-stained slide of each sec-

tioned interval (150 μm apart) to create a 3D histological

reference space. These MBP-stained slides were stacked

onto a 3D dataset using an algorithm previously described

by Lowe et al. [21] and Ourselin et al. [22]. Next, we co-

registered this 3D histological stack to the 3D T2-

weighted MRI atlas as described by Ourselin et al. [22]

and Modat et al. [23]. Next, a moment-matching algo-

rithm was used to match the 4G8, GFAP and IBA1 stain-

ing with the MBP images in order to propagate all

histological stains to the corresponding MR images. We

then combined all MRI and histological data and created a

relational database which contained the following per

voxel: the MRI atlas coordinates, the ROI information, all

diffusion and diffusion kurtosis metrics, and the

corresponding histological values. On the basis of this

database, we performed the statistical analyses described

below.

Statistical analysis

ROI-based MRI analysis

To evaluate significant differences for each ROI between

the different genotypes (WT and APP/PS1 mice), as well

as over the different ages of the mice that were followed

longitudinally, we used a marginal model with age- and

genotype-specific fixed effects. The latter models the evo-

lution of all DT and DK metrics over time while taking

into account the association between these DTI and DKI

metrics of any given subject at any given age [24–26]. A

Bonferroni correction was applied for the different ages.

Linear discriminant analysis

Given a set of MRI parameters (MK, AK, RK, MD, axial

diffusivity, RD and FA), the linear discriminant analysis

Fig. 2 Schematic overview of the data acquisition and analysis

pipeline used in this study. AD Axial diffusivity, AK Axial kurtosis, DKI

Diffusion kurtosis imaging, FA Fractional anisotropy, 4G8 Anti-amyloid-β

(clone 4G8) antibody, GFAP Glial fibrillary acidic protein, IBA1 Ionised

calcium-binding adapter molecule 1, MBP Myelin basic protein, MD

Mean diffusivity, MK Mean kurtosis, MRI Magnetic resonance imaging,

RD Radial diffusivity, RK Radial kurtosis, ROI Region of interest
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(LDA) algorithm searches for a linear combination of

MRI parameters for which the genotype misclassification

error (MCE; the proportion of incorrectly classified

mice) is minimised. The LDA was done using only the

DT metrics (MD, axial diffusivity, RD and FA), only the

DK metrics (MK, AK and RK) or a combination of both

DT and DK metrics. Two-fold cross-validation was per-

formed by randomly splitting the data into a training

group and a test group. The training group was

composed by randomly selecting ten WT mice and ten

APP/PS1 mice. The test group contained the remaining

ten WT mice and nine APP/PS1 mice. This process was

repeated 1000 times, and the test data MCE was com-

puted for each iteration. The MCE denotes the propor-

tion of mice in the test group assigned to the wrong

genotype [27]. To test whether the MCEs were signifi-

cantly different, we performed a pairwise Kolmogorov-

Smirnov test, and the Bonferroni correction was applied

for the three tests performed (DT vs DK, DK vs DT

+ DK and DT vs DT+ DK).

Least absolute shrinkage and selection operator analysis

To identify which MRI metric contributed the most to

the correct classification of the genotype, we applied

least absolute shrinkage and selection operator (LASSO)

logistic regression [28]. In short, we randomly divided all

mice into ten distinct groups. A classifying model is

trained using MRI metrics from nine of these groups,

and the resulting model is applied to the remaining

group to determine how good the classifying model is at

determining the correct genotypes with different weights

of L1 regularisation. We repeated this ten times, with-

holding a different dataset each time, to achieve a ten-

fold cross validation. The result of LASSO analysis

indicates if an MRI metric was retained as a classifier (1)

or not (0). Moreover, because the 10 distinct groups

were chosen randomly, we repeated this whole proced-

ure 100 times. For each metric, we then calculated the

percentage of the times it was used to classify the geno-

types as an indication of the importance of each metric

to correctly classify the genotype.

ROI-based correlation between MRI and histology

To evaluate the potential of the DT and DK metrics as

possible markers for the histological features of the

motor cortex, we calculated the respective Pearson’s cor-

relation coefficients. A Bonferroni multiplicity correction

was applied for the different parameters investigated,

and a multiplicity-corrected p value < 0.05 was consid-

ered significant.

Voxel-based statistical parametric mapping

To assess voxel-level differences between WT and APP/

PS1 mice, we co-registered every individual 3D T2-

weighted MR image to the 3D T2-weighted MRI atlas

which we had previously constructed. We then trans-

formed all DT and DK metric maps to this 3D T2-

weighted MRI atlas and spatially smoothed these maps

using a Gaussian kernel. Next, statistical analysis was

done for each DT and DK metric separately, using statis-

tical parametric mapping [29]. A false discovery rate cor-

rection for multiple comparisons was performed [30],

and only voxels with p < 0.05 were visualised.

Voxel-based correlation between MRI and histology

We applied a Bayesian multivariate linear regression [31]

to estimate the predictive value of the DT metrics, the

DK metrics, or a combination of the DT and DK metrics

for the histological outcome at a voxel-based level.

Evaluation was done using a leave-one-animal-out meth-

odology. Prediction of the histological values based on

the DT or DK metrics of a test mouse was done using a

model that was trained on the basis of data of all mice

except the test mice. The latter was then validated by

cross-validating the correlation coefficients, and the

average of the correlation coefficients was calculated

after applying a Fisher Z-transformation [32].

Results
ROI-based analysis of diffusion and DKI metrics

We have previously shown that DKI is able to visualise

Aβ plaque-induced pathology in APP/PS1 mice at

16 months of age [12]. In the present study, we first in-

vestigated the ability of DKI to visualise early and pro-

gressive Aβ plaque-induced pathology in APP/PS1 mice

at 2, 4, 6 and 8 months of age. As such, we performed

an ROI-based analysis of the longitudinally acquired

dataset. The most meaningful statistically significant dif-

ferences for different metrics of different ROIs are

shown in Fig. 3.

In the motor cortex, we observed a genotype effect for

axial diffusivity and an age effect for axial diffusivity and

RD. In addition, we observed an increased RD in APP/

PS1 mice as compared with WT mice at 8 months of

age. Compared with these DT metrics, however, greater

significant differences were observed for the DK metrics.

As such, compared with WT mice, APP/PS1 mice

showed (1) higher MK values at 4, 6 and 8 months of

age; (2) higher AK values at 4, 6 and 8 months of age;

(3) higher RK values at 8 months of age; and (4) lower

FA values at 4, 6 and 8 months of age. Additionally, we

observed an age effect and an interaction between age

and genotype for MK, AK and RK. For the retrosplenial

cortex, the MK, AK and RK values showed an age effect,

a genotype effect, and an interaction between age and

genotype. However, the increased AK and decreased FA

values of APP/PS1 mice compared with WT mice were

the only straightforward differences which persisted over
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time and became larger as pathology progressed. Albeit

to a lesser degree, this trend of increased MK and AK

values in APP/PS1 mice compared with WT mice was

also observed in the frontal association cortex. The AK

values of the cingulate cortex did show an age effect, as

well as an interaction between age and genotype, and

were significantly increased at 4, 6 and 8 months of age

in APP/PS1 mice compared with WT mice. In contrast,

in the hippocampus, we did not observe any significant

changes in DK metrics, but we did observe significant

changes in the DT metrics. MD, axial diffusivity and RD

were significantly increased in APP/PS1 mice as com-

pared with WT mice at 6 and 8 months of age, and an

interaction between genotype and age was observed for

all three DT metrics. Next, from 4 months of age on-

wards, the piriform cortex showed significantly reduced

axial diffusivity but increased AK in APP/PS1 mice com-

pared with WT mice. In addition, an age effect and an

interaction between age and genotype were noted for

AK. For both the piriform cortex and the visual cortex, a

significantly decreased FA value in the APP/PS1 mice

was noted as compared with WT mice, respectively from

month 6 and month 4 onwards. Additionally, for the FA

values of the piriform cortex, we observed an age effect,

a genotype effect and an interaction between age and

genotype. In the septal nuclei, we observed decreased

axial diffusivity in APP/PS1 mice as compared with WT

mice, which was significant from month 4 onwards.

More importantly, however, an age effect and an inter-

action between age and phenotype were observed in

addition to a progressive decrease of the FA values in

APP/PS1 mice as compared with WT mice, which were

significant at all ages. Lastly, we observed a decrease in

FA values in APP/PS1 mice compared with WT mice in

all three parts of the corpus callosum: the genu, the body

and the splenium. While this was significant at 2, 4 and

8 months of age in the genu, as well as at 2, 6 and

8 months of age in the body, the splenium showed a trend

only towards decreased FA values in APP/PS1 mice.

LDA and LASSO analysis of the motor cortex

Because the ROI-based analysis showed differences

between APP/PS1 mice and WT mice in multiple ROIs,

we investigated if we could successfully predict the

genotype of the mice on the basis of statistical linear

discriminant modelling of the present data. For this

purpose, we limited our analysis to the motor cortex be-

cause this region showed the most statistically significant

differences in the ROI-based analysis (see above), and

the DK metrics of the motor cortex correlated well with

the histologically determined pathology (see below). In

Fig. 4a, we show the MCE (percentage of animals

assigned to the wrong genotype) of the LDA at 2, 4, 6

and 8 months of age when using only the DT metrics

(top row), the DK metrics (middle row) or the DT and

DK metrics combined (bottom row). At 2 months of age,

the MCE for the DT metrics (0.43), the DK metrics

(0.52) or the DT and DK metrics combined (0.48) indi-

cates the inability of all three metric combinations to

separate APP/PS1 mice from WT mice. However, the

MCE decreases with age for all three metric combinations,

and as such, at 8 months of age, the MCE for the DT

metrics is 0.16, and for the DK metrics, it is 0.20.

However, when we combined DT and DK metrics, the

MCE was 0.09. When comparing the MCE of these three

metric combinations at 8 months of age, we could show

that these are significantly different from each other with

a p value < 0.0001 for any of the three possible compari-

sons (DT vs DK, DT vs DT +DK, and DK vs DT+DK).

Taken together, this clearly indicates the added value of

acquiring DKI data and using all metrics estimated.

Because the combination of both DT and DK metrics

gave the lowest MCE, we performed LASSO analysis to

investigate which of these metrics were the most import-

ant for a correct classification of the genotype. In Fig. 4b,

we show a heat map of all 100 iterations of the LASSO

analysis, which were done on the data of the 8-

month-old mice. On one hand, the MK and FA are the

most important metrics for a correct classification of the

genotype because they were involved in 100% of the itera-

tions. On the other hand, AK, RK and axial diffusivity

were involved in 60%, 59% and 70% of the iterations, re-

spectively. In contrast, MD and RD were involved in just

20% of the iterations. These results clearly indicate that,

despite all seven metrics contributing to a different degree,

a correct genotype classification depended foremost on

the DK metrics and FA.

Correlation between ROI-based DKI parameters and

histology

Following the ROI-based analysis, we wondered if the

changes observed in DKI metrics correlated with the

(See figure on previous page.)

Fig. 3 Region of interest (ROI)-based DKI analysis. The most interesting differences in diffusion tensor and diffusion kurtosis metrics of several

grey and white matter ROIs. We show only data from the longitudinal cohort of wild-type WT (blue bars) and APP/PS1 mice (red bars) at 2, 4, 6

and 8 months of age. Shown are the mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD); the mean kurtosis (MK), axial kurtosis

(AK) and radial kurtosis (RK); and the fractional anisotropy (FA). Significant differences between WT and APP/PS1 mice at any given time point are

shown in black; genotype effect is indicated by green lines; age effect is indicated by orange lines; and interaction between age and genotype is

indicated by blue lines. *p < 0.05, **p < 0.01 and ***p < 0.001
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Aβ-driven pathological changes in the tissue microstruc-

ture. Therefore, we sliced the full left hemisphere and

collected brain tissue slides at a 150-μm intervals, allow-

ing us to create 3D histological stacks of the performed

staining. In Fig. 5, we show a representative close-up of

the motor cortex for both WT and APP/PS1 mice at

each of the four ages. While these images are only quali-

tative, it can already be appreciated that the Aβ-induced

pathology progresses as APP/PS1 mice become older, as

shown by an increased intensity of 4G8, GFAP and IBA1

Fig. 4 Linear discriminant analysis and least absolute shrinkage and selection operator (LASSO) analysis of the motor cortex. a The frequency

distribution histograms of the misclassification error (MCE) of the motor cortex are shown (percentage of animals which were attributed the

wrong genotype). The MCE is calculated at 2, 4, 6 and 8 months of age when using only the diffusion tensor (DT) metrics (top row), the diffusion

kurtosis (DK) metrics (middle row) or a combination of the DT and DK metrics (bottom row). The red lines indicate the average MCE. b LASSO

analysis was done to determine which of the DTI or DKI metrics contribute the most to a correct classification of the genotype. The heat map

shows all 100 iterations of the LASSO analysis for all metrics, where green indicates that the metric was used and red indicates that the metric

was not used. On the right, we show the percentage of times that the metric contributed to a correct genotype classification in all of these 100

iterations (percent prevalence)
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staining (Fig. 5a, c and d, respectively) and a decreased

intensity of the MBP staining (Fig. 5b).

Next, we statistically modelled the ability of all DT and

DK metrics to predict the corresponding histological pa-

rameters in the motor cortex. In Fig. 6a, we show the

correlation graphs of the MK, AK, RK and FA metrics

with the %O.D. 4G8, GFAP, IBA1 and MBP. The graphs

of the correlations of MD, axial diffusivity and RD with

these histological parameters are provided in Additional

file 3, and the r and p values of all these correlations are

shown in Fig. 6b. MK, AK and RK are positively corre-

lated with the %O.D. 4G8, GFAP and IBA1 in a highly

significant manner. MK and RK also correlate with the

%O.D. MBP, albeit to a lesser degree. FA shows a

significant negative correlation with the %O.D 4G8,

GFAP, IBA1 and MBP. In contrast, the MD, axial diffu-

sivity and RD metrics do not correlate with the %O.D.

4G8, GFAP, IBA1 and MBP (with the exception of axial

diffusivity, which correlates negatively with the %O.D.

MBP). This indicates that DK metrics correlated with

the underlying Aβ-induced pathology, whereas

DTmetrics did not correlate with Aβ-induced pathology.

In Fig. 6b, we also show the r and p values of the corre-

lations between MK, AK, RK, FA, MD, axial diffusivity

and RD and the GFAP and IBA1 anisotropy values. The

latter is a readout for the ramification of GFAP-positive

astrocytes and IBA1-positive microglia. MK, AK and RK

were significantly negatively correlated with GFAP

Fig. 5 Representative histological images of the motor cortex of the wild-type (WT) and APP/PS1 mice (left and right columns, respectively) at 2,

4, 6 and 8 months of age (top to bottom rows). The different panels show the anti-amyloid-β (clone 4G8) antibody staining for amyloid-β plaques

(a), the myelin basic protein staining for myelin basic protein (b), the glial fibrillary acidic protein staining for astrogliosis (c) and the ionised

calcium-binding adapter molecule 1staining for microgliosis (d)
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anisotropy, whereas FA and axial diffusivity were signifi-

cantly positively correlated with GFAP anisotropy. In

contrast, MD and RD did not correlate with GFAP and

IBA1 anisotropy. We did not observe any correlations

between DT or DK metrics and IBA1 anisotropy.

Voxel-based statistical parametric mapping of DKI

parameters

To compare the ROI-based analyses with a voxel-based

approach (which is often used in human studies), we per-

formed statistical parametric mapping, and the resulting

images of the mice at 8 months of age are shown in Fig. 7a.

We did not observe differences at 2 and 4 months of age,

and we observed only very limited differences at 6 months

of age (data not shown). Red voxels indicate an increased

value in the APP/PS1 mice as compared with the WT

mice, whilst blue voxels indicate a decreased value in the

APP/PS1 mice as compared with the WT mice. At

8 months of age, mice showed reduced FA in the septal

nuclei (close-up shown in Fig. 7b). We also observed re-

duced FA and an increase in RD in the corpus callosum.

Voxel-based correlation between DKI parameters and

histology

Next, we determined how well DKI metrics predict the

underlying pathology at a voxel-based level. As described

earlier, we created 3D histological stacks of the different

histological stains, which were then co-registered to the

(See figure on previous page.)

Fig. 6 Region of interest-based histological correlation analysis. a Graphs showing the Pearson correlations between mean kurtosis (MK), axial

kurtosis (AK), radial kurtosis (RK) and fractional anisotropy (FA) and percent optical density (%O.D.) of anti-amyloid-β (clone 4G8) antibody (4G8),

glial fibrillary acidic protein (GFAP), ionised calcium-binding adapter molecule 1 (IBA1) and myelin basic protein (MBP). The graph includes data

from the wild-type (WT) mice (triangles) and APP/PS1 mice (circles) at 2 months of age (grey), 4 months of age (green), 6 months of age (blue) and

8 months of age (red). b Pearson correlation values (r) and p values of these correlations between the different diffusion tensor and

diffusion kurtosis metrics and the histological parameters

Fig. 7 Voxel-based statistical parametric mapping. a Statistical parametric maps at two different levels in the brains of mice at 8 months of age.

On these images, for each of the seven metrics (mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD], mean kurtosis [MK], axial kurtosis

[AK], radial kurtosis [RK] and fractional anisotropy [FA]), the voxels with a decreased value in APP/PS1 mice compared with wild-type (WT) mice

are shown in blue, and the voxels with an increased value in APP/PS1 mice compared with WT mice are shown in red. Only voxels with a false

discovery rate-corrected p > 0.05 are shown. b Close-up of the FA statistical parametric map showing reduced FA in APP/PS1 mice in the septal

nuclei at 8 months of age (blue voxels). c Voxel-based correlation values between the percent optical density (%O.D.) anti-amyloid-β (clone 4G8)

antibody (4G8), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP) and ionised calcium-binding adapter molecule 1 (IBA1) and the

diffusion tensor metrics (DT), the diffusion kurtosis metrics (DK), and the DT and DK metrics (DT/DK)
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corresponding 3D T2-weighted MRI image and, via this

intermediate step, thus also to the DKI images. In Fig. 7c,

we show the motor cortex average multivariate cross-

validated correlation values (of all 8-month-old WT and

APP/PS1 mice combined) between the percentage of

area stained of the four different histological stains and

the DKI metrics (combining all DT, all DK, or the DT

and DK metrics together). The cross-validated correl-

ation values at a voxel-based level were low. The best

cross-validated correlations were found between DT and

DK metrics and the %O.D. MBP. Interestingly, combin-

ing DT and DK metrics provided improved prediction of

the %O.D. MBP than either DT or DK metrics separ-

ately. This high cross-validated correlation value be-

tween the DT and DK metrics and the %O.D. MBP

contrasted with the low cross-validated correlation

values between the DT and DK metrics and the per-

centage of 4G8 staining, the %O.D. GFAP, and the

%O.D. IBA1. This indicates inability to predict

amyloid-induced pathology from the DT and DK met-

rics at a voxel-based level.

Discussion

In the first part of this study, we investigated if DKI

metrics were more predictive of in vivo detection of Aβ-

induced pathology than DTI metrics. Of the 23 ROIs

investigated, the motor cortex was observed to be the

ROI with the highest potential to correctly discriminate

APP/PS1 mice from WT mice. From a biological point

of view, the latter makes sense because it is a very large

ROI with a uniform Aβ pathology. Using LDA, we

observed that the accuracy for separate genotypes

increased with age (and thus progressing pathology), as

well as that a combination of DT and DK metrics offers

a better separation of the genotypes than either DT or

DK metrics alone. The LASSO analysis indicated that

MK and FA were the two most important metrics for

this correct classification of the genotype. In addition,

MK, AK, RK and FA were best able to predict the

underlying Aβ-induced pathological processes as deter-

mined by histology. It is noteworthy that we observed

high correlations for DKI metrics and FA with the

histological parameters when we combined the data

from all four time points. However, when we deter-

mined the correlations using data from a given time

point, the correlations were lower (data not shown).

This highlights the need for a longitudinal follow-up

study to be able to reliably predict Aβ-induced path-

ology. Taken together, these results clearly show that,

by using an ROI-based approach, acquisition of DKI

data has improved potential for the in vivo detection

and follow-up of Aβ-induced pathology as compared

with when only DTI data is acquired.

In the second part of this study, we investigated if

voxel-based statistical parametric mapping would allow

us to reliably discriminate APP/PS1 mice from WT

mice. We included this type of analysis because it is

often used in human studies, is observer-independent,

and is less work-intensive than ROI-based analysis. In

addition, we correlated the voxel-based DKI metrics to

voxel-based histological parameters. Surprisingly, a

voxel-based approach was less capable of discriminating

APP/PS1 mice from WT mice (compared with an ROI-

based analysis) and correlated less with the histologically

determined Aβ-induced pathology even when pathology

had progressed severely by 8 months of age. A possible

explanation for this could be that a voxel at a given loca-

tion in one animal might contain Aβ plaques, whereas

the same voxel in another animal might not. This is a

direct result of the biological randomness of where Aβ

plaques form within a defined brain region. Therefore,

when performing statistical parametric mapping in pre-

clinical rodent studies, the latter will cause large

variations in the obtained DKI metrics at a voxel level,

making it more difficult to statistically discriminate the

two genotypes with the statistical models that were used

in this study. This drawback is less apparent in human

studies, because the voxel size is much larger in humans,

and therefore most voxels share the same degree of

pathology. For comparison, we used an isotropic voxel

size of 78 μm (0.00047 mm3), whereas in a study done

in humans, Struyfs et al. used an isotropic voxel size of

2.2 mm (10.64 mm3) [33]. In contrast, when an ROI-

based approach is used, the variation in obtained DKI

metrics will be smaller because the degree of pathology

is averaged across many voxels. In addition, even small

mismatches in the co-registration of the DKI voxels to

the histological voxels will have a profound effect on the

voxel-based analysis. The ROI-based analysis, however,

does not suffer from this drawback. As such, we believe

that currently a voxel-based approach is less suitable in

pre-clinical rodent studies, whereas it is the method of

choice in human studies.

To date, DTI has been used in several human studies to

study disease progression in patients with mild cognitive

impairment (MCI) and patients with AD. When investiga-

tors have looked at the hippocampus in many of these

human studies, they have observed reduced FA and in-

creased MD [9, 34–38]. These changes are often attributed

to increased extracellular space volume, neurodegeneration

and Wallerian degeneration of the white matter. Although

we did not see any changes in FA in the hippocampus of

APP/PS1 mice, we did observe increased MD (and by ex-

tension also axial diffusivity and RD) at 6 and 8 months of

age. However, neurodegeneration and Wallerian degener-

ation are still absent in APP/PS1 mice at 8 months of age

[11]. Therefore, we believe the increased MD to be
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associated primarily with the Aβ induced inflammation

(as seen by GFAP and IBA1), which results in oedema

and thus an increased extracellular space.

Besides these hippocampal changes, DTI has been able

to detect white matter pathology in patients with AD.

The latter was initially thought to occur secondary to

grey matter damage, but it is now considered to occur

separate from grey matter damage, and perhaps even to

precede grey matter pathology [39]. We observed re-

duced FA values in the APP/PS1 mice mainly in the

genu and the body of the corpus callosum. This is in

concordance with a study by Zerbi et al., who observed

this earlier-mentioned increase in DTI metrics in the

hippocampus and decreased FA in the genu and body of

the corpus callosum [40]. They used 12-month-old

APPswe/PS1dE9 mice, an age at which the plaque load is

comparable to what we observe at around 6 months of

age in our APP/PS1 mice [41]. A number of human

studies indicate that patients with MCI and patients with

AD have reduced FA and increased MD in most of the

major white matter structures of the brain, and in par-

ticular in the corpus callosum, where the changes correl-

ate with the degree of cognitive decline [42–49]. White

matter integrity was also found to correlate with CSF

Aβ42 and phosphorylated tau181 [50]. In addition, when

patients were followed longitudinally, a further reduction

in FA and increase in MD was found in both white mat-

ter [51, 52] and grey matter [53] regions. Combined, all

of these results indicate the potential of DTI to follow

disease progression.

The increased DKI metrics observed in the motor cor-

tex (and by extension in most of the cortical ROIs), as

well as the absence of changes in DKI metrics in the

hippocampus, are in line with our earlier proof-of-

concept study in old APP/PS1 mice [12]. Despite the old

age of the APP/PS1 mice in this study (16 months of

age), and thus the presence of severe Aβ-induced path-

ology, the DKI metrics in that study were only modestly

increased. In the present study, however, we observed

many large changes in DK metrics at very early time

points and thus limited Aβ-induced pathology. This in-

creased sensitivity can be ascribed to a further optimisa-

tion of our DKI acquisition protocol. Most importantly,

Vanhoutte et al. [12] used 30 diffusion gradient direc-

tions, whereas in the present study, we used 60 diffusion

directions. The latter allows better estimation of the

microstructural changes occurring in the brain. To the

best of our knowledge, these two studies are the only

pre-clinical studies to date in which the usefulness of

DKI as a potential biomarker for Aβ-induced pathology

has been investigated. Clinically, researchers in only a

few recent human studies have examined the usefulness

of DKI in this context. For example, Struyfs et al. [33]

compared patients with AD with healthy control

subjects and reported reduced FA in many regions,

among which was the splenium of the corpus callosum.

The latter corresponds to our results. However, they also

reported reduced MK [33], which contrasts with our

finding of an increased MK in many of the cortical ROIs.

Reduced MK in the hippocampus of patients with AD

was also observed by Wang et al. [54]. We attribute this

discrepancy in grey matter findings between the human

studies and our pre-clinical work to the fact that our

study was focussed on Aβ-induced pathology only,

whereas in humans, the whole plethora of pathological

events common to AD are present.

One interesting finding was the reduced FA of the sep-

tal nuclei in APP/PS1 mice at all ages investigated (2, 4,

6 and 8 months of age). The septal nuclei contain many

cholinergic neurons which innervate many of the regions

implicated in memory function [55]. Because robust

cholinergic dysfunction occurs during AD pathology,

many of the currently approved drugs for AD are based

on counteracting this loss of cholinergic function in an

attempt to restore memory function [56, 57]. As such,

the ability of DKI to pick up changes in the septal nuclei

even at 2 months of age, when almost no Aβ plaques are

present yet, makes DKI very promising for tracking early

AD pathology.

Conclusions

We have demonstrated that for the motor cortex, a

combination of DT and DK metrics is more capable of

discriminating APP/PS1 mice from WT mice than either

DT or DK metrics alone. The power to separate both ge-

notypes also increases as the mice age and thus as Aβ

pathology advances, and MK and FA are the two most

important metrics for a correct genotype classification.

Using a new developed processing platform which en-

abled co-registration of the in vivo diffusion-weighted

MRI with multiple staining of 3D histological stacks, we

observed that DKI measures (MK, AK and RK) and FA,

but not diffusion measures (MD, axial diffusivity and

RD), correlated well with the histologically determined

underlying Aβ pathology and the Aβ-induced neuroin-

flammation. It is noteworthy that we identified the septal

nuclei as a region where changes can be visualised very

early and thus when Aβ-induced pathology is still largely

absent. Lastly, we have also shown that, at least in our

hands and in mice, ROI-based analysis is superior to

voxel-based analysis. Taken together, our results show

that DKI has potential as an in vivo marker for the

longitudinal follow-up of Aβ-induced pathology in a

transgenic amyloidosis mouse model where atrophy is

absent. As such, these results lay the groundwork for

translational treatment studies and for the clinical

application of DKI to detect early AD pathology in the

absence of atrophy.
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Additional files

Additional file 1: The evolution of the weight of the WT and APP/PS1

mice in the longitudinal study at 2, 4, 6, and 8 months of age. (TIF 87 kb)

Additional file 2: An overview of 5 horizontal T2-weighted MRI scans at

different levels of depth in the mouse brain on which the 23 different

ROIs investigated in this study have been marked. (JPG 1511 kb)

Additional file 3: Graphs showing the Pearson correlations between the

MD, AD, and RD with the %O.D. 4G8, GFAP, IBA1, and MBP. The graph

includes data from the WT mice (triangles) and APP/PS1 mice (circles) at

2 months of age (grey), 4 months of age (green), 6 months of age (blue),

and 8 months of age (red). (JPG 469 kb)
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