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Abstract

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of
dementia in the elderly population. In this study, we used the APP/PST transgenic mouse model to explore the
feasibility of using diffusion kurtosis imaging (DKI) as a tool for the early detection of microstructural changes in the
brain due to amyloid-3 (AR) plaque deposition.

Methods: We longitudinally acquired DKl data of wild-type (WT) and APP/PST mice at 2, 4, 6 and 8 months of age,
after which these mice were sacrificed for histological examination. Three additional cohorts of mice were also
included at 2, 4 and 6 months of age to allow voxel-based co-registration between diffusion tensor and diffusion
kurtosis metrics and immunohistochemistry.

Results: Changes were observed in diffusion tensor (DT) and diffusion kurtosis (DK) metrics in many of the 23
regions of interest that were analysed. Mean and axial kurtosis were greatly increased owing to Af-induced
pathological changes in the motor cortex of APP/PST mice at 4, 6 and 8 months of age. Additionally, fractional
anisotropy (FA) was decreased in APP/PST mice at these respective ages. Linear discriminant analysis of the motor
cortex data indicated that combining diffusion tensor and diffusion kurtosis metrics permits improved separation of
WT from APP/PST mice compared with either diffusion tensor or diffusion kurtosis metrics alone. We observed that
mean kurtosis and FA are the critical metrics for a correct genotype classification. Furthermore, using a newly developed
platform to co-register the in vivo diffusion-weighted magnetic resonance imaging with multiple 3D histological stacks,
we found high correlations between DK metrics and anti-A{3 (clone 4G8) antibody, glial fibrillary acidic protein, ionised
calcium-binding adapter molecule 1 and myelin basic protein immunohistochemistry. Finally, we observed reduced FA
in the septal nuclei of APP/PST mice at all ages investigated. The latter was at least partially also observed by voxel-based
statistical parametric mapping, which showed significantly reduced FA in the septal nuclei, as well as in the corpus
callosum, of 8-month-old APP/PS1 mice compared with WT mice.

Conclusions: Our results indicate that DKI metrics hold tremendous potential for the early detection and longitudinal
follow-up of Ap-induced pathology.
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Background

Alzheimer’s disease (AD) is the most common cause of
dementia and imposes a serious healthcare burden. Cur-
rently, 5.1 million Americans have AD, a number set to
double by 2050 [1]. Whilst a tremendous amount of re-
search has been conducted in an attempt to elucidate
the pathological factors driving the sporadic form of AD,
so far its aetiology remains enigmatic. As a consequence,
no real cure yet exists, and currently used drugs are fo-
cussed on the management and relief of cognitive symp-
toms [2]. It is commonly accepted that accurate and
early treatment helps to better preserve the patient’s
level of function and reduces the societal cost associated
with caregiving for patients with AD [3]. Additionally,
disease-modifying treatments are expected to delay AD
progression optimally when they are administered during
the early stages of AD pathology [4]. Therefore, it is of
utmost importance to develop the means to detect AD
pathology both in an early phase and with high sensitivity.

Currently, a definitive diagnosis of AD can be made
only following post-mortem analysis of brain tissue. In
contrast, a clinical diagnosis of AD in patients is based
on cognitive symptoms, cerebrospinal fluid (CSF) bio-
markers and imaging diagnostics [5]. In this context, the
assessment of brain atrophy progression by using volu-
metric magnetic resonance imaging (MRI) has long been
considered the most valuable tool for following AD pro-
gression [6]. However, although volumetric MRI is in-
deed a very robust tool to follow this progression,
atrophy occurs only late during the disease pathology.
As such, volumetric MRI holds little value for transla-
tional treatment studies where atrophy is not present. In
the present study, however, we focused on amyloid-f3
(AB) plaques, which were previously found to occur
much earlier during disease progression, starting decades
before actual clinical symptoms became apparent [7]. AP
originates from amyloid precursor protein and is proc-
essed into soluble forms of amyloid-p (sAp) of various
lengths. While normally a physiologically relevant bal-
ance exists between sAP;_40 and sAP;_4, in patients
with AD, AP accumulates in the brain, which eventually
results in the formation of oligomeric forms of sAf. The
latter are known to be highly toxic to neuronal synapses
and will result in synaptic loss [8]. When left unresolved,
these high concentrations of A will also result in depos-
ition of AP plaques, which eventually trigger an inflam-
matory response. Together, all these processes cause
extensive remodelling of the brain tissue in regions
where AP pathology occurs.

Diffusion tensor imaging (DTI) and the more recently
developed diffusion kurtosis imaging (DKI) are MRI
techniques that are capable of in vivo visualisation of ex-
tensive tissue remodelling. Therefore, the usefulness of
DTI in the detection of AD pathology is currently being
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investigated in multi-centre MRI studies. For example, the
ADNI2 (Alzheimer’s Disease Neuroimaging Initiative 2)
and ADNI-GO (Alzheimer’s Disease Neuroimaging Initia-
tive “Grand Opportunities”) trials included DTI of patients
with AD, and they showed that DTI could be a possible
biomarker for AD [9]. This inclusion of DTI in human
studies is supported by numerous pre-clinical studies con-
ducted in rodents that have shown the ability of DTI to
detect amyloidosis. However, the potential of DKI to visu-
alise amyloidosis has been studied somewhat less. DKI
provides an estimate of both the Gaussian diffusion distri-
bution (DT metrics) and the deviation of this Gaussian
distribution at higher b values (DK metrics). The latter
makes DKI a more sensitive technique than DTTI for visua-
lising microstructural changes [10]. We recently provides
proof of principle that DKI is able to detect amyloidosis in
mice. By using the APP/PS1 transgenic mouse (a rapidly
progressing amyloidosis model [11]), we have previously
shown that extensive amyloidosis increases the DK
metrics in the cortex and thalamus of 16-month-old APP/
PS1 mice as compared with age-matched wild-type (WT)
mice [12].

In the present study, we built upon these previous
findings and aimed to investigate (1) if DK metrics allow
for better separation of APP/PS1 mice from WT than
when DT metrics are used, (2) if DKI metrics allow
identification of early AB-induced pathology and longitu-
dinal follow-up of AP plaque-induced pathology, and (3)
if the observed changes correlate with the histologically
determined pathology.

Methods

Animals and experimental design

In this study, male WT C57BL/6 ] mice (n=>52) and
male transgenic APPyye70/671NL/PS1L166p Mmice were
used (n =67, referred to as APP/PS1 mice) [11]. Mice
were housed in the animal facility of the University of
Antwerp during the whole experiment. During the study,
mice were kept on a normal 12-h/12-h day-night cycle
with ad libitum access to food and water. Additional file
1 shows the weight evolution of the mice in the longitu-
dinal cohort.

APP/PS1 mice start developing AP plaques from the
age of 6 to 8 weeks and show aggressive amyloidosis in
subsequent months [11]. As such, we acquired the first
dataset when mice were 2 months old, when only low
AP plaque deposition is present (n =20 WT mice and
n=19 APP/PS1 mice). We then longitudinally followed
these mice by acquiring a DKI datasets when they were 4
and 6 months of age (intermediate AP plaque load) and
finally at 8 months of age, which corresponds to an exten-
sive AP plaque load. After acquisition of this last DKI
dataset at 8 months of age, mice were then sacrificed for
histological analysis. In addition, three further cohorts of
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WT and APP/PS1 mice were scanned once each at
2 months (7 =11 WT mice and n =16 APP/PS1 mice),
4 months (7=10 WT mice and n =16 APP/PS1 mice)
and 6 months (z =11 WT mice and n = 16 APP/PS1 mice)
of age and killed thereafter for histological analysis. The
complete experimental design is shown in Fig. 1.

MRI scan acquisition

At 2, 4, 6 and 8 months of age, mice were subjected to
"H-MRI scanning using a 7-T PharmaScan MRI scanner
with a 16-cm diameter horizontal bore (Bruker, Bremen,
Germany). This system is equipped with a standard Bru-
ker cross-coil setup using a quadrature volume coil for
excitation and an array mouse surface coil for signal de-
tection. The system was interfaced with a Linux PC run-
ning TopSpin 2.0 and Paravision 5.1 software (Bruker
BioSpin, Ettlingen, Germany). Anaesthesia was induced
using 2% isoflurane (Abbott, Maidenhead, UK) in a gas
mixture of 30% O, and 70% N, at a flow rate of 600 ml/
minute. During MR image acquisition, the isoflurane
concentration was initially set at 2% and subsequently
lowered when required to maintain a stable respiration
rate of (110 + 10) breaths per minute, which was moni-
tored using a pressure-sensitive pad. In addition, body
temperature was monitored via a rectal probe and was
held constant between 37.0 °C and 37.3 °C using warm air
coupled to a feedback unit (SA Instruments, Stony Brook,
NY, USA). PC-sam monitoring software (SA Instruments)
was used to measure respiration rate and to measure and
control body temperature. Following MR image acquisi-
tion, mice were left to recover separately under a heating
lamp before being returned to their respective cages.

To ensure uniform slice positioning, we first acquired
axial, sagittal and horizontal multi-slice 2D rapid acqui-
sition and relaxation enhancement (RARE) images using
the following parameters: repetition time (TR)=
2500 ms, echo time (TE) =33 ms, matrix size (256 x
256), field of view (FOV)=(20 x 20) mm?, resolution
=(0.078 x0.078) mm® nine slices, slice thickness=
08 mm, and RARE factor=8. Following correct

Page 3 of 16

positioning, we acquired three DKI scans, each with 20
unique diffusion gradient directions and seven b
values (400, 800, 1200, 1600, 2000, 2400 and 2800 s/
mm?). In addition, seven images without diffusion weight-
ing (bo) were included for each DKI scan. This yielded DKI
data comprising 21 b, images and diffusion weighting for
60 diffusion directions with seven b values. Images were
collected with a multi-slice two-shot spin-echo/echo planar
imaging sequence with the following parameters: TR =
7000 ms, TE =23.25 ms, § =4 ms, A =12 ms, acquisition
matrix = (96 x 96), spatial resolution = (0.214 x 0.214) pmz,
28 horizontal slices, and slice thickness = 0.20 mm. This re-
sulted in a total acquisition time of 1 h, 43 minutes. Next, a
high-resolution 3D anatomical image was acquired using a
T2-weighted 3D RARE sequence in the same horizontal
orientation as the DKI data. The following parameters were
used: TR=3185 ms, TE=44 ms, and spectral width =
50 kHz, averages = 1, RARE factor = 8, matrix size = (265 x
64 x50), FOV (205x13.0x100) mm? resolution
= (0.080 x 0.203 x 0.200) mm?, and total acquisition time =
21 minutes.

MRI analysis

Prior to the actual image analysis, we performed a visual
inspection for quality of the acquired raw data (e.g., ghost-
ing and/or movement) combined with a semi-automated
quality control to avoid bias in the diffusion parameter
estimation due to MR acquisition artefacts. This semi-
automated data quality control consisted of (1) validating
the signal decay with increasing b values, (2) validating if
signals obtained with high & values did not reach the noise
level, (3) validating the magnitude of the signal-to-noise
ratio, and (4) validating the parametric estimation error
using a chi-square test (see below). Once quality was as-
sured, image pre-processing and analysis were initiated.
The data were corrected for motion and eddy current
artefacts using the Functional Magnetic Resonance
Imaging of the Brain (FMRIB) Software Library (FSL) [13].

The DKI model is shown below:

WT (n=11 J)
APP/PS1 (n=16 J)
WT (n=107)

DKI + Histology

DKI + Histology

APP/PS1 (n=16 )
WT (n=11 )

APP/PS1 (n=16 J)

WT (n=20 ) DKl

DKI + Histology

DKI DKI + Histology

APP/PS1 (n=19 7)

Fig. 1 Experimental setup of the study. Diffusion kurtosis imaging (DKI) was performed in three cohorts of male wild-type (WT) and APP/PST mice
at 2,4 and 6 months of age, and these mice were sacrificed for histological analysis thereafter. In a fourth, longitudinal cohort of male WT and APP/
PST mice, we performed DKl at 2, 4, 6 and 8 months of age and thereafter killed these mice for histological analysis
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with S(0) being the signal intensity without diffusion
weighting, D being the rank 2 diffusion tensor, W being
the rank 4 kurtosis tensor, b being the b value, and g be-
ing the diffusion gradient direction. The DKI model was
voxel-wise fitted to the diffusion-weighted images. The
diffusion tensor and kurtosis tensor quantify the Gauss-
ian diffusion profile and the deviation from a Gaussian
diffusion distribution, respectively [10, 14]. The diffusion
tensor and the diffusion kurtosis tensor were estimated
simultaneously using conditional least squares estima-
tors while imposing positivity on the kurtosis coefficients
[15]. The conditional least squares estimator explicitly
accounts for the Rician MR data distribution, for which
the noise level has been estimated [16]. Rotational in-
variant parameter maps of axial diffusivity, radial diffu-
sivity (RD), mean diffusivity (MD) and fractional
anisotropy (FA) were computed from the diffusion ten-
sor, and further refered to as diffusion tensor (DT) met-
rics, and axial kurtosis (AK), radial kurtosis (RK) and
mean kurtosis (MK) maps were computed from the dif-
fusion kurtosis tensor, and further refered to as diffusion
kurtosis (DK) metrics, using MATLAB software (Math-
works Inc., Natick, MA, USA) [14, 17].

A study-based atlas was constructed with Advanced
Normalization Tools [18] software using 25 randomly
selected 3D T2-weighted MRI datasets across both ge-
notypes and all ages. We delineated 23 grey matter and
white matter regions of interest (ROIs) on this atlas
using AMIRA (version 5.4) (Additional file 2). All indi-
vidual 3D T2-weighted MRI scans were then normalised
to the atlas. The inverse transformation of the normal-
isation was used to map the atlas ROIs onto the native
space of the individual 3D T2-weighted MRI scans.
Afterwards, all individual by MR images were co-
registered to their corresponding 3D T2-weighted MRI
scans using FSL software. Using the inverse transform-
ation of the latter, we mapped the individual 3D ROIs to
the individual DT and DK metric maps. On the basis of
optimal contrast of the FA map to differentiate grey
matter and white matter, we finally manually checked
and, if necessary, corrected the contours of the grey mat-
ter and white matter ROIs to limit a possible partial vol-
ume effect. Finally, ROI-averaged DT and DK metrics
(MD, axial diffusivity, RD, FA and MK, AK and RK)
were extracted from the respective metric maps.

Histological analysis

For histological examination, mice were sacrificed by
means of cervical dislocation. The complete brain was
dissected and fixed in Fade4 fixative. Fixed brains were
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sent to HistoGeneX (Antwerp, Belgium), where 5-um-
thick sagittal paraffin-embedded sections were cut from
the left hemisphere. Sectioning was started at the middle
of the brain, and ten sagittal sections were acquired at
150-pum intervals, covering the whole hemisphere. Im-
munohistochemical (IHC) staining for AP plaques was
initiated by depigmenting slides using potassium per-
manganate for 3 minutes, followed by oxalic acid for
1 minute. Slides were pre-treated in formic acid for
10 minutes to retrieve epitopes and were then incubated
for 15 minutes at room temperature with a mouse anti-
AP (clone 4G8) antibody (1:20,000, SIG-39200; Eurogen-
tec, Angers, France). Next, slides were incubated with a
labelled polymer (Dako EnVision + System-HRP Labeled
Polymer Anti-Mouse, K4001; Dako). Finally, the sub-
strate was visualised using 3,3"-diaminobenzidine (DAB)
chromogen (Dako Liquid DAB+ substrate chromogen
system; Dako) for 5 minutes. All steps were performed
using the automated Lab Vision Autostainer 480S
(Thermo Scientific, Waltham, MA, USA). In every 4G8
staining run, an immunoglobulin G (IgG) control
(mouse IgG2b; Dako) was also included. For myelin
basic protein (MBP) staining, epitope retrieval was per-
formed in Target Retrieval Solution (Dako) for 30 mi-
nutes at 97 °C. After endogenous peroxidase activity was
quenched, the slides were incubated for 30 minutes at
room temperature with a mouse anti-MBP (clone SMI-
94) antibody (1:5000, SMI-94R; Covance Antibody Prod-
ucts, Princeton, NJ, USA). Next, slides were incubated
with a labelled polymer (Dako EnVision + System-HRP
Labeled Polymer Anti-Mouse, K4001). Finally, the sub-
strate was visualised using DAB chromogen for 5 mi-
nutes. All steps were performed on the automated Lab
Vision Autostainer 480S. In every MBP staining run, an
IgG control (mouse IgG1l; Abcam, Cambridge, UK) was
included. For microgliosis (ionised calcium-binding
adapter molecule 1 [IBA1]) IHC staining, epitope re-
trieval was performed in citrate buffer (pH 6; Lab Vision)
for 30 minutes at 97 °C. After quenching endogenous
peroxidase activity, the slides were incubated for 30 mi-
nutes at room temperature with a rabbit anti-IBA1 anti-
body (1:5000, 019-19741; Wako Pure Chemical
Industries, Osaka, Japan). Next, slides were incubated
with a labelled polymer (Dako EnVision + System-HRP
Labelled Polymer Anti-Rabbit, K4003). Finally, the sub-
strate was visualised using the DAB chromogen (Dako
Liquid DAB+ substrate chromogen system) for 5 minutes.
All steps were performed using the automated Lab Vision
Autostainer 480S. In every IBA1 staining run, an IgG
control (rabbit IgG; Dako) was included. For astrogliosis
(glial fibrillary acidic protein [GFAP]) IHC staining,
epitope retrieval was performed using cell conditioning
solution (Ventana Medical Systems, Tucson, AZ, USA).
The slides were incubated for 28 minutes at 37 °C with a



Praet et al. Alzheimer's Research & Therapy (2018) 10:1

rabbit anti-GFAP antibody (1:7500, Z0334; Dako). Next,
slides were incubated with an OmniMap anti-rabbit HRP
detection system (Ventana Medical Systems). All steps
were performed on the automated Ventana Discovery® XT
platform (Ventana Medical Systems). In every GFAP
staining run, an IgG control (rabbit IgG; Dako) was also
used. For all four staining runs, stained slides were
scanned using the MIRAX digital slide scanner (Carl Zeiss
Microscopy, Gottingen, Germany).

Quantification of histology

Quantification of the stained slides was performed by
DCILabs (Keerbergen, Belgium). In short, the histo-
logical images are colour de-convolved to separate the
colours on the stained slides [19]. This generates a grey
value image of the MBP-, GFAP-, 4G8- and IBAI-
stained slides. Hysteresis thresholds were applied on
these images to determine the percentage of area posi-
tive for the respective staining (percent optical density
[%0O.D.]) and for each of these ROIs. To quantify the
amount of 4G8-positive AP plaques, a mask based on an
intensity cutoff value to distinguish AP plaques from
background signal in the grey value images was com-
piled, which then automatically counted the amount of
objects in the mask. To assess the presence of elongated
structures in the image, an anisotropic measure was
defined as the ratio of the difference and the sum of the
eigenvectors of the local structure tensor [20]. All ana-
lyses were performed with software developed in-house
using OpensSlide C interface (openslide.org) to read the
MIRAX images.

3D stacking of histological images and co-registration to
MRI

Co-registration of all images of the histological staining
was performed, and an overview of the whole co-
registration pipeline is shown in Fig. 2. In short, because
the MBP staining contains considerable anatomical
information, we used the MBP-stained slide of each sec-
tioned interval (150 um apart) to create a 3D histological
reference space. These MBP-stained slides were stacked
onto a 3D dataset using an algorithm previously described
by Lowe et al. [21] and Ourselin et al. [22]. Next, we co-
registered this 3D histological stack to the 3D T2-
weighted MRI atlas as described by Ourselin et al. [22]
and Modat et al. [23]. Next, a moment-matching algo-
rithm was used to match the 4G8, GFAP and IBA1 stain-
ing with the MBP images in order to propagate all
histological stains to the corresponding MR images. We
then combined all MRI and histological data and created a
relational database which contained the following per
voxel: the MRI atlas coordinates, the ROI information, all
diffusion and diffusion kurtosis metrics, and the
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Via this co-registration of the 30D MBP stack to the MR atlas, we are able to
produce a table which lists for each voxel the ROV it belongs to, the x,y and z
codrdinates, the MRI values and the histological quantifications.

l

RO and voxel-based correlation of MR values to histological values.

Fig. 2 Schematic overview of the data acquisition and analysis
pipeline used in this study. AD Axial diffusivity, AK Axial kurtosis, DK/
Diffusion kurtosis imaging, FA Fractional anisotropy, 4G8 Anti-amyloid-3
(clone 4G8) antibody, GFAP Glial fibrillary acidic protein, IBAT lonised
calcium-binding adapter molecule 1, MBP Myelin basic protein, MD
Mean diffusivity, MK Mean kurtosis, MRI Magnetic resonance imaging,

RD Radial diffusivity, RK Radial kurtosis, ROl Region of interest

corresponding histological values. On the basis of this
database, we performed the statistical analyses described
below.

Statistical analysis

ROI-based MRI analysis

To evaluate significant differences for each ROI between
the different genotypes (WT and APP/PS1 mice), as well
as over the different ages of the mice that were followed
longitudinally, we used a marginal model with age- and
genotype-specific fixed effects. The latter models the evo-
lution of all DT and DK metrics over time while taking
into account the association between these DTI and DKI
metrics of any given subject at any given age [24-26]. A
Bonferroni correction was applied for the different ages.

Linear discriminant analysis
Given a set of MRI parameters (MK, AK, RK, MD, axial
diffusivity, RD and FA), the linear discriminant analysis
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(LDA) algorithm searches for a linear combination of
MRI parameters for which the genotype misclassification
error (MCE; the proportion of incorrectly classified
mice) is minimised. The LDA was done using only the
DT metrics (MD, axial diffusivity, RD and FA), only the
DK metrics (MK, AK and RK) or a combination of both
DT and DK metrics. Two-fold cross-validation was per-
formed by randomly splitting the data into a training
group and a test group. The training group was
composed by randomly selecting ten WT mice and ten
APP/PS1 mice. The test group contained the remaining
ten WT mice and nine APP/PS1 mice. This process was
repeated 1000 times, and the test data MCE was com-
puted for each iteration. The MCE denotes the propor-
tion of mice in the test group assigned to the wrong
genotype [27]. To test whether the MCEs were signifi-
cantly different, we performed a pairwise Kolmogorov-
Smirnov test, and the Bonferroni correction was applied
for the three tests performed (DT vs DK, DK vs DT
+ DK and DT vs DT+ DK).

Least absolute shrinkage and selection operator analysis
To identify which MRI metric contributed the most to
the correct classification of the genotype, we applied
least absolute shrinkage and selection operator (LASSO)
logistic regression [28]. In short, we randomly divided all
mice into ten distinct groups. A classifying model is
trained using MRI metrics from nine of these groups,
and the resulting model is applied to the remaining
group to determine how good the classifying model is at
determining the correct genotypes with different weights
of L; regularisation. We repeated this ten times, with-
holding a different dataset each time, to achieve a ten-
fold cross validation. The result of LASSO analysis
indicates if an MRI metric was retained as a classifier (1)
or not (0). Moreover, because the 10 distinct groups
were chosen randomly, we repeated this whole proced-
ure 100 times. For each metric, we then calculated the
percentage of the times it was used to classify the geno-
types as an indication of the importance of each metric
to correctly classify the genotype.

ROI-based correlation between MRI and histology

To evaluate the potential of the DT and DK metrics as
possible markers for the histological features of the
motor cortex, we calculated the respective Pearson’s cor-
relation coefficients. A Bonferroni multiplicity correction
was applied for the different parameters investigated,
and a multiplicity-corrected p value < 0.05 was consid-
ered significant.

Voxel-based statistical parametric mapping
To assess voxel-level differences between WT and APP/
PS1 mice, we co-registered every individual 3D T2-
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weighted MR image to the 3D T2-weighted MRI atlas
which we had previously constructed. We then trans-
formed all DT and DK metric maps to this 3D T2-
weighted MRI atlas and spatially smoothed these maps
using a Gaussian kernel. Next, statistical analysis was
done for each DT and DK metric separately, using statis-
tical parametric mapping [29]. A false discovery rate cor-
rection for multiple comparisons was performed [30],
and only voxels with p < 0.05 were visualised.

Voxel-based correlation between MRI and histology

We applied a Bayesian multivariate linear regression [31]
to estimate the predictive value of the DT metrics, the
DK metrics, or a combination of the DT and DK metrics
for the histological outcome at a voxel-based level
Evaluation was done using a leave-one-animal-out meth-
odology. Prediction of the histological values based on
the DT or DK metrics of a test mouse was done using a
model that was trained on the basis of data of all mice
except the test mice. The latter was then validated by
cross-validating the correlation coefficients, and the
average of the correlation coefficients was calculated
after applying a Fisher Z-transformation [32].

Results

ROI-based analysis of diffusion and DKI metrics

We have previously shown that DKI is able to visualise
AP plaque-induced pathology in APP/PS1 mice at
16 months of age [12]. In the present study, we first in-
vestigated the ability of DKI to visualise early and pro-
gressive AP plaque-induced pathology in APP/PS1 mice
at 2, 4, 6 and 8 months of age. As such, we performed
an ROI-based analysis of the longitudinally acquired
dataset. The most meaningful statistically significant dif-
ferences for different metrics of different ROIs are
shown in Fig. 3.

In the motor cortex, we observed a genotype effect for
axial diffusivity and an age effect for axial diffusivity and
RD. In addition, we observed an increased RD in APP/
PS1 mice as compared with WT mice at 8 months of
age. Compared with these DT metrics, however, greater
significant differences were observed for the DK metrics.
As such, compared with WT mice, APP/PS1 mice
showed (1) higher MK values at 4, 6 and 8 months of
age; (2) higher AK values at 4, 6 and 8 months of age;
(3) higher RK values at 8 months of age; and (4) lower
FA values at 4, 6 and 8 months of age. Additionally, we
observed an age effect and an interaction between age
and genotype for MK, AK and RK. For the retrosplenial
cortex, the MK, AK and RK values showed an age effect,
a genotype effect, and an interaction between age and
genotype. However, the increased AK and decreased FA
values of APP/PS1 mice compared with WT mice were
the only straightforward differences which persisted over
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indicated by blue lines. *p < 0.05, **p < 0.01 and ***p < 0.001

Fig. 3 Region of interest (ROI)-based DKI analysis. The most interesting differences in diffusion tensor and diffusion kurtosis metrics of several
grey and white matter ROIs. We show only data from the longitudinal cohort of wild-type WT (blue bars) and APP/PS1 mice (red bars) at 2, 4, 6
and 8 months of age. Shown are the mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD); the mean kurtosis (MK), axial kurtosis
(AK) and radial kurtosis (RK); and the fractional anisotropy (FA). Significant differences between WT and APP/PST mice at any given time point are
shown in black; genotype effect is indicated by green lines; age effect is indicated by orange lines; and interaction between age and genotype is

time and became larger as pathology progressed. Albeit
to a lesser degree, this trend of increased MK and AK
values in APP/PS1 mice compared with WT mice was
also observed in the frontal association cortex. The AK
values of the cingulate cortex did show an age effect, as
well as an interaction between age and genotype, and
were significantly increased at 4, 6 and 8 months of age
in APP/PS1 mice compared with WT mice. In contrast,
in the hippocampus, we did not observe any significant
changes in DK metrics, but we did observe significant
changes in the DT metrics. MD, axial diffusivity and RD
were significantly increased in APP/PS1 mice as com-
pared with WT mice at 6 and 8 months of age, and an
interaction between genotype and age was observed for
all three DT metrics. Next, from 4 months of age on-
wards, the piriform cortex showed significantly reduced
axial diffusivity but increased AK in APP/PS1 mice com-
pared with WT mice. In addition, an age effect and an
interaction between age and genotype were noted for
AK. For both the piriform cortex and the visual cortex, a
significantly decreased FA value in the APP/PS1 mice
was noted as compared with WT mice, respectively from
month 6 and month 4 onwards. Additionally, for the FA
values of the piriform cortex, we observed an age effect,
a genotype effect and an interaction between age and
genotype. In the septal nuclei, we observed decreased
axial diffusivity in APP/PS1 mice as compared with WT
mice, which was significant from month 4 onwards.
More importantly, however, an age effect and an inter-
action between age and phenotype were observed in
addition to a progressive decrease of the FA values in
APP/PS1 mice as compared with WT mice, which were
significant at all ages. Lastly, we observed a decrease in
FA values in APP/PS1 mice compared with WT mice in
all three parts of the corpus callosum: the genu, the body
and the splenium. While this was significant at 2, 4 and
8 months of age in the genu, as well as at 2, 6 and
8 months of age in the body, the splenium showed a trend
only towards decreased FA values in APP/PS1 mice.

LDA and LASSO analysis of the motor cortex

Because the ROI-based analysis showed differences
between APP/PS1 mice and WT mice in multiple ROIs,
we investigated if we could successfully predict the
genotype of the mice on the basis of statistical linear
discriminant modelling of the present data. For this

purpose, we limited our analysis to the motor cortex be-
cause this region showed the most statistically significant
differences in the ROI-based analysis (see above), and
the DK metrics of the motor cortex correlated well with
the histologically determined pathology (see below). In
Fig. 4a, we show the MCE (percentage of animals
assigned to the wrong genotype) of the LDA at 2, 4, 6
and 8 months of age when using only the DT metrics
(top row), the DK metrics (middle row) or the DT and
DK metrics combined (bottom row). At 2 months of age,
the MCE for the DT metrics (0.43), the DK metrics
(0.52) or the DT and DK metrics combined (0.48) indi-
cates the inability of all three metric combinations to
separate APP/PS1 mice from WT mice. However, the
MCE decreases with age for all three metric combinations,
and as such, at 8 months of age, the MCE for the DT
metrics is 0.16, and for the DK metrics, it is 0.20.
However, when we combined DT and DK metrics, the
MCE was 0.09. When comparing the MCE of these three
metric combinations at 8 months of age, we could show
that these are significantly different from each other with
a p value < 0.0001 for any of the three possible compari-
sons (DT vs DK, DT vs DT + DK, and DK vs DT+ DK).
Taken together, this clearly indicates the added value of
acquiring DKI data and using all metrics estimated.

Because the combination of both DT and DK metrics
gave the lowest MCE, we performed LASSO analysis to
investigate which of these metrics were the most import-
ant for a correct classification of the genotype. In Fig. 4b,
we show a heat map of all 100 iterations of the LASSO
analysis, which were done on the data of the 8-
month-old mice. On one hand, the MK and FA are the
most important metrics for a correct classification of the
genotype because they were involved in 100% of the itera-
tions. On the other hand, AK, RK and axial diffusivity
were involved in 60%, 59% and 70% of the iterations, re-
spectively. In contrast, MD and RD were involved in just
20% of the iterations. These results clearly indicate that,
despite all seven metrics contributing to a different degree,
a correct genotype classification depended foremost on
the DK metrics and FA.

Correlation between ROI-based DKI parameters and
histology

Following the ROI-based analysis, we wondered if the
changes observed in DKI metrics correlated with the
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Fig. 4 Linear discriminant analysis and least absolute shrinkage and selection operator (LASSO) analysis of the motor cortex. a The frequency
distribution histograms of the misclassification error (MCE) of the motor cortex are shown (percentage of animals which were attributed the
wrong genotype). The MCE is calculated at 2, 4, 6 and 8 months of age when using only the diffusion tensor (DT) metrics (top row), the diffusion
kurtosis (DK) metrics (middle row) or a combination of the DT and DK metrics (bottom row). The red lines indicate the average MCE. b LASSO
analysis was done to determine which of the DTI or DKI metrics contribute the most to a correct classification of the genotype. The heat map
shows all 100 iterations of the LASSO analysis for all metrics, where green indicates that the metric was used and red indicates that the metric
was not used. On the right, we show the percentage of times that the metric contributed to a correct genotype classification in all of these 100
iterations (percent prevalence)

Ap-driven pathological changes in the tissue microstruc-  the motor cortex for both WT and APP/PS1 mice at
ture. Therefore, we sliced the full left hemisphere and each of the four ages. While these images are only quali-
collected brain tissue slides at a 150-um intervals, allow- tative, it can already be appreciated that the AB-induced
ing us to create 3D histological stacks of the performed  pathology progresses as APP/PS1 mice become older, as
staining. In Fig. 5, we show a representative close-up of  shown by an increased intensity of 4G8, GFAP and IBA1
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Fig. 5 Representative histological images of the motor cortex of the wild-type (WT) and APP/PS1 mice (left and right columns, respectively) at 2,
4,6 and 8 months of age (top to bottom rows). The different panels show the anti-amyloid-f (clone 4G8) antibody staining for amyloid-3 plaques
(a), the myelin basic protein staining for myelin basic protein (b), the glial fibrillary acidic protein staining for astrogliosis (c) and the ionised
calcium-binding adapter molecule 1staining for microgliosis (d)

staining (Fig. 5a, ¢ and d, respectively) and a decreased
intensity of the MBP staining (Fig. 5b).

Next, we statistically modelled the ability of all DT and
DK metrics to predict the corresponding histological pa-
rameters in the motor cortex. In Fig. 6a, we show the
correlation graphs of the MK, AK, RK and FA metrics
with the %O.D. 4G8, GFAP, IBA1 and MBP. The graphs
of the correlations of MD, axial diffusivity and RD with
these histological parameters are provided in Additional
file 3, and the r and p values of all these correlations are
shown in Fig. 6b. MK, AK and RK are positively corre-
lated with the %O.D. 4G8, GFAP and IBA1 in a highly
significant manner. MK and RK also correlate with the
%0O.D. MBP, albeit to a lesser degree. FA shows a

significant negative correlation with the %O.D 4GS,
GFAPD, IBA1 and MBP. In contrast, the MD, axial diffu-
sivity and RD metrics do not correlate with the %O.D.
4G8, GFAP, IBA1 and MBP (with the exception of axial
diffusivity, which correlates negatively with the %O.D.
MBP). This indicates that DK metrics correlated with
the underlying Ap-induced pathology, whereas
DTmetrics did not correlate with AB-induced pathology.
In Fig. 6b, we also show the r and p values of the corre-
lations between MK, AK, RK, FA, MD, axial diffusivity
and RD and the GFAP and IBA1 anisotropy values. The
latter is a readout for the ramification of GFAP-positive
astrocytes and IBA1-positive microglia. MK, AK and RK
were significantly negatively correlated with GFAP
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Fig. 6 Region of interest-based histological correlation analysis. a Graphs showing the Pearson correlations between mean kurtosis (MK), axial
kurtosis (AK), radial kurtosis (RK) and fractional anisotropy (FA) and percent optical density (%0.D.) of anti-amyloid-B (clone 4G8) antibody (4G8),
glial fibrillary acidic protein (GFAP), ionised calcium-binding adapter molecule 1 (IBA1) and myelin basic protein (MBP). The graph includes data
from the wild-type (WT) mice (triangles) and APP/PS1 mice (circles) at 2 months of age (grey), 4 months of age (green), 6 months of age (blue) and

diffusion kurtosis metrics and the histological parameters

8 months of age (red). b Pearson correlation values (1) and p values of these correlations between the different diffusion tensor and

anisotropy, whereas FA and axial diffusivity were signifi-
cantly positively correlated with GFAP anisotropy. In
contrast, MD and RD did not correlate with GFAP and
IBA1 anisotropy. We did not observe any correlations
between DT or DK metrics and IBA1 anisotropy.

Voxel-based statistical parametric mapping of DKI
parameters

To compare the ROI-based analyses with a voxel-based
approach (which is often used in human studies), we per-
formed statistical parametric mapping, and the resulting
images of the mice at 8 months of age are shown in Fig. 7a.
We did not observe differences at 2 and 4 months of age,
and we observed only very limited differences at 6 months

of age (data not shown). Red voxels indicate an increased
value in the APP/PS1 mice as compared with the WT
mice, whilst blue voxels indicate a decreased value in the
APP/PS1 mice as compared with the WT mice. At
8 months of age, mice showed reduced FA in the septal
nuclei (close-up shown in Fig. 7b). We also observed re-
duced FA and an increase in RD in the corpus callosum.

Voxel-based correlation between DKI parameters and
histology

Next, we determined how well DKI metrics predict the
underlying pathology at a voxel-based level. As described
earlier, we created 3D histological stacks of the different
histological stains, which were then co-registered to the

AD RD MK AK RK FA

[ ] [ ]

IR W

T
@

Fig. 7 Voxel-based statistical parametric mapping. a Statistical parametric maps at two different levels in the brains of mice at 8 months of age.
On these images, for each of the seven metrics (mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD], mean kurtosis [MK], axial kurtosis
[AK], radial kurtosis [RK] and fractional anisotropy [FA]), the voxels with a decreased value in APP/PST mice compared with wild-type (WT) mice
are shown in blue, and the voxels with an increased value in APP/PS1 mice compared with WT mice are shown in red. Only voxels with a false
discovery rate-corrected p > 0.05 are shown. b Close-up of the FA statistical parametric map showing reduced FA in APP/PST mice in the septal
nuclei at 8 months of age (blue voxels). ¢ Voxel-based correlation values between the percent optical density (%0.D.) anti-amyloid-{3 (clone 4G8)

antibody (4G8), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP) and ionised calcium-binding adapter molecule 1 (IBAT) and the
diffusion tensor metrics (DT), the diffusion kurtosis metrics (DK), and the DT and DK metrics (DT/DK)

c DT DK DT /DK
4G8-%O0D. 0,0357 0,0656 0,0707
MBP - % OD. 0,5545 0,4509 00,6374
GFAP-%O0D. 0,2368 0,1532 0,2345
IBA1-% OD. 0,1977 0,1886 00,2359
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corresponding 3D T2-weighted MRI image and, via this
intermediate step, thus also to the DKI images. In Fig. 7c,
we show the motor cortex average multivariate cross-
validated correlation values (of all 8-month-old WT and
APP/PS1 mice combined) between the percentage of
area stained of the four different histological stains and
the DKI metrics (combining all DT, all DK, or the DT
and DK metrics together). The cross-validated correl-
ation values at a voxel-based level were low. The best
cross-validated correlations were found between DT and
DK metrics and the %O.D. MBP. Interestingly, combin-
ing DT and DK metrics provided improved prediction of
the %O.D. MBP than either DT or DK metrics separ-
ately. This high cross-validated correlation value be-
tween the DT and DK metrics and the %O.D. MBP
contrasted with the low cross-validated correlation
values between the DT and DK metrics and the per-
centage of 4G8 staining, the %0O.D. GFAP, and the
%0.D. IBA1l. This indicates inability to predict
amyloid-induced pathology from the DT and DK met-
rics at a voxel-based level.

Discussion

In the first part of this study, we investigated if DKI
metrics were more predictive of in vivo detection of Ap-
induced pathology than DTI metrics. Of the 23 ROIs
investigated, the motor cortex was observed to be the
ROI with the highest potential to correctly discriminate
APP/PS1 mice from WT mice. From a biological point
of view, the latter makes sense because it is a very large
ROI with a uniform A pathology. Using LDA, we
observed that the accuracy for separate genotypes
increased with age (and thus progressing pathology), as
well as that a combination of DT and DK metrics offers
a better separation of the genotypes than either DT or
DK metrics alone. The LASSO analysis indicated that
MK and FA were the two most important metrics for
this correct classification of the genotype. In addition,
MK, AK, RK and FA were best able to predict the
underlying AB-induced pathological processes as deter-
mined by histology. It is noteworthy that we observed
high correlations for DKI metrics and FA with the
histological parameters when we combined the data
from all four time points. However, when we deter-
mined the correlations using data from a given time
point, the correlations were lower (data not shown).
This highlights the need for a longitudinal follow-up
study to be able to reliably predict AB-induced path-
ology. Taken together, these results clearly show that,
by using an ROI-based approach, acquisition of DKI
data has improved potential for the in vivo detection
and follow-up of AB-induced pathology as compared
with when only DTI data is acquired.
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In the second part of this study, we investigated if
voxel-based statistical parametric mapping would allow
us to reliably discriminate APP/PS1 mice from WT
mice. We included this type of analysis because it is
often used in human studies, is observer-independent,
and is less work-intensive than ROI-based analysis. In
addition, we correlated the voxel-based DKI metrics to
voxel-based histological parameters. Surprisingly, a
voxel-based approach was less capable of discriminating
APP/PS1 mice from WT mice (compared with an ROI-
based analysis) and correlated less with the histologically
determined Ap-induced pathology even when pathology
had progressed severely by 8 months of age. A possible
explanation for this could be that a voxel at a given loca-
tion in one animal might contain AB plaques, whereas
the same voxel in another animal might not. This is a
direct result of the biological randomness of where A
plaques form within a defined brain region. Therefore,
when performing statistical parametric mapping in pre-
clinical rodent studies, the latter will cause large
variations in the obtained DKI metrics at a voxel level,
making it more difficult to statistically discriminate the
two genotypes with the statistical models that were used
in this study. This drawback is less apparent in human
studies, because the voxel size is much larger in humans,
and therefore most voxels share the same degree of
pathology. For comparison, we used an isotropic voxel
size of 78 um (0.00047 mm?®), whereas in a study done
in humans, Struyfs et al. used an isotropic voxel size of
2.2 mm (10.64 mm?®) [33]. In contrast, when an ROI-
based approach is used, the variation in obtained DKI
metrics will be smaller because the degree of pathology
is averaged across many voxels. In addition, even small
mismatches in the co-registration of the DKI voxels to
the histological voxels will have a profound effect on the
voxel-based analysis. The ROI-based analysis, however,
does not suffer from this drawback. As such, we believe
that currently a voxel-based approach is less suitable in
pre-clinical rodent studies, whereas it is the method of
choice in human studies.

To date, DTI has been used in several human studies to
study disease progression in patients with mild cognitive
impairment (MCI) and patients with AD. When investiga-
tors have looked at the hippocampus in many of these
human studies, they have observed reduced FA and in-
creased MD [9, 34—38]. These changes are often attributed
to increased extracellular space volume, neurodegeneration
and Wallerian degeneration of the white matter. Although
we did not see any changes in FA in the hippocampus of
APP/PS1 mice, we did observe increased MD (and by ex-
tension also axial diffusivity and RD) at 6 and 8 months of
age. However, neurodegeneration and Wallerian degener-
ation are still absent in APP/PS1 mice at 8 months of age
[11]. Therefore, we believe the increased MD to be
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associated primarily with the A induced inflammation
(as seen by GFAP and IBA1), which results in oedema
and thus an increased extracellular space.

Besides these hippocampal changes, DTI has been able
to detect white matter pathology in patients with AD.
The latter was initially thought to occur secondary to
grey matter damage, but it is now considered to occur
separate from grey matter damage, and perhaps even to
precede grey matter pathology [39]. We observed re-
duced FA values in the APP/PS1 mice mainly in the
genu and the body of the corpus callosum. This is in
concordance with a study by Zerbi et al., who observed
this earlier-mentioned increase in DTI metrics in the
hippocampus and decreased FA in the genu and body of
the corpus callosum [40]. They used 12-month-old
APPq,,./PS14g9 mice, an age at which the plaque load is
comparable to what we observe at around 6 months of
age in our APP/PS1 mice [41]. A number of human
studies indicate that patients with MCI and patients with
AD have reduced FA and increased MD in most of the
major white matter structures of the brain, and in par-
ticular in the corpus callosum, where the changes correl-
ate with the degree of cognitive decline [42-49]. White
matter integrity was also found to correlate with CSF
AB4> and phosphorylated taujg; [50]. In addition, when
patients were followed longitudinally, a further reduction
in FA and increase in MD was found in both white mat-
ter [51, 52] and grey matter [53] regions. Combined, all
of these results indicate the potential of DTI to follow
disease progression.

The increased DKI metrics observed in the motor cor-
tex (and by extension in most of the cortical ROIs), as
well as the absence of changes in DKI metrics in the
hippocampus, are in line with our earlier proof-of-
concept study in old APP/PS1 mice [12]. Despite the old
age of the APP/PS1 mice in this study (16 months of
age), and thus the presence of severe Ap-induced path-
ology, the DKI metrics in that study were only modestly
increased. In the present study, however, we observed
many large changes in DK metrics at very early time
points and thus limited AB-induced pathology. This in-
creased sensitivity can be ascribed to a further optimisa-
tion of our DKI acquisition protocol. Most importantly,
Vanhoutte et al. [12] used 30 diffusion gradient direc-
tions, whereas in the present study, we used 60 diffusion
directions. The latter allows better estimation of the
microstructural changes occurring in the brain. To the
best of our knowledge, these two studies are the only
pre-clinical studies to date in which the usefulness of
DKI as a potential biomarker for AB-induced pathology
has been investigated. Clinically, researchers in only a
few recent human studies have examined the usefulness
of DKI in this context. For example, Struyfs et al. [33]
compared patients with AD with healthy control
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subjects and reported reduced FA in many regions,
among which was the splenium of the corpus callosum.
The latter corresponds to our results. However, they also
reported reduced MK [33], which contrasts with our
finding of an increased MK in many of the cortical ROlIs.
Reduced MK in the hippocampus of patients with AD
was also observed by Wang et al. [54]. We attribute this
discrepancy in grey matter findings between the human
studies and our pre-clinical work to the fact that our
study was focussed on Af-induced pathology only,
whereas in humans, the whole plethora of pathological
events common to AD are present.

One interesting finding was the reduced FA of the sep-
tal nuclei in APP/PS1 mice at all ages investigated (2, 4,
6 and 8 months of age). The septal nuclei contain many
cholinergic neurons which innervate many of the regions
implicated in memory function [55]. Because robust
cholinergic dysfunction occurs during AD pathology,
many of the currently approved drugs for AD are based
on counteracting this loss of cholinergic function in an
attempt to restore memory function [56, 57]. As such,
the ability of DKI to pick up changes in the septal nuclei
even at 2 months of age, when almost no Af plaques are
present yet, makes DKI very promising for tracking early
AD pathology.

Conclusions

We have demonstrated that for the motor cortex, a
combination of DT and DK metrics is more capable of
discriminating APP/PS1 mice from WT mice than either
DT or DK metrics alone. The power to separate both ge-
notypes also increases as the mice age and thus as AP
pathology advances, and MK and FA are the two most
important metrics for a correct genotype classification.
Using a new developed processing platform which en-
abled co-registration of the in vivo diffusion-weighted
MRI with multiple staining of 3D histological stacks, we
observed that DKI measures (MK, AK and RK) and FA,
but not diffusion measures (MD, axial diffusivity and
RD), correlated well with the histologically determined
underlying AP pathology and the AP-induced neuroin-
flammation. It is noteworthy that we identified the septal
nuclei as a region where changes can be visualised very
early and thus when Ap-induced pathology is still largely
absent. Lastly, we have also shown that, at least in our
hands and in mice, ROI-based analysis is superior to
voxel-based analysis. Taken together, our results show
that DKI has potential as an in vivo marker for the
longitudinal follow-up of AP-induced pathology in a
transgenic amyloidosis mouse model where atrophy is
absent. As such, these results lay the groundwork for
translational treatment studies and for the clinical
application of DKI to detect early AD pathology in the
absence of atrophy.
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