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ABSTRACT

Conventional diffusion imaging techniques are not sufficiently accurate for 
evaluating glioma grade and cellular proliferation, which are critical for guiding 
glioma treatment. Diffusion kurtosis imaging (DKI), an advanced non-Gaussian 

diffusion imaging technique, has shown potential in grading glioma; however, its 
applications in this tumor have not been fully elucidated. In this study, DKI and 
diffusion weighted imaging (DWI) were performed on 74 consecutive patients 
with histopathologically confirmed glioma. The kurtosis and conventional diffusion 
metric values of the tumor were semi-automatically obtained. The relationships 
of these metrics with the glioma grade and Ki-67 expression were evaluated. The 
diagnostic efficiency of these metrics in grading was further compared. It was 
demonstrated that compared with the conventional diffusion metrics, the kurtosis 
metrics were more promising imaging markers in distinguishing high-grade from 
low-grade gliomas and distinguishing among grade II, III and IV gliomas; the 
kurtosis metrics also showed great potential in the prediction of Ki-67 expression. 
To our best knowledge, we are the first to reveal the ability of DKI to assess the 
cellular proliferation of gliomas, and to employ the semi-automatic method for the 
accurate measurement of gliomas. These results could have a significant impact on 
the diagnosis and subsequent therapy of glioma.

INTRODUCTION

Gliomas are the most common type of intra-axial 

brain tumors. They have different cellular origins and are 

divided into four grades according to the World Health 

Organization (WHO) criteria [1]. Accurate grading is 

critical for glioma treatment and prognosis. However, 

patients with the same type of tumor and who receive 

equivalent treatment doses might display diverse 

outcomes due to the varying proliferative activities of their 

tumors [2]. Therefore, accurate prediction of proliferation 

is also particularly important in gliomas.

Conventional diffusion weighted imaging (DWI) of 

three orthogonal directions and diffusion tensor imaging 

(DTI) are not sufficiently accurate in evaluating the 

glioma grade [3–6] and Ki-67 expression [7, 8], a nuclear 

antigen expressed in proliferating cells that indicates 

cellular proliferation. This insufficiency is because 
standard DWI and DTI assume that water diffusion has 

a Gaussian distribution. However, due to the complexity 

of the structure of brain tissue and cells, including 

cell membranes, intracellular organelles, and water 

compartments, the diffusion of water molecules tends to 

deviate from a Gaussian distribution [9], thereby limiting 

the effectiveness of conventional DWI and DTI.

Diffusion kurtosis imaging (DKI) is an advanced 

non-Gaussian diffusion imaging technique that can be used 

to account for this deficiency. It provides a more accurate 
model of diffusion for quantifying the deviation from a 

Gaussian distribution, which is known as kurtosis [10]. 
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By acquiring data for at least two nonzero diffusion 

gradient factors (b value) in more than 15 nonlinear 

directions, the kurtosis metrics (including mean kurtosis 

(MK), axial kurtosis (Ka) and radial kurtosis (Kr)) and 

conventional diffusion metrics (including mean diffusivity 

(MD), axial diffusivity (Da), radial diffusivity (Dr) and 

fractional anisotropy (FA)) are obtained simultaneously. 

Ka is parallel to the main direction of diffusion, Kr is 

perpendicular to the main direction of diffusion, and 

MK is the average kurtosis of all diffusion directions 

[11]. Ka might reflect the axonal integrity and density of 
fiber bundles, and Kr might reflect the myelin integrity 
and axonal density [9]. As an extension of DTI, DKI 

can provide additional kurtosis information, which is 

generally assumed to be caused by tissue microstructure, 

and it is believed to be generally proportional to the 

heterogeneity and complexity of the microstructure  

[12–14]. Additionally, DKI can detect changes in gray 

matter and fiber crossing [9, 15]. Thus far, DKI has shown 
utility in ischemia and infarction [16], traumatic brain 

injury [17], neoplasm [9, 14, 15, 18], neurodegenerative 

disease [19, 20], and demyelinating diseases [21]. 

Accordingly, DKI may be more suitable than DWI and 

DTI for the detection of microstructural changes in tissues 

and cells.

Gliomas comprise a heterogeneous group of tumors 

characterized by increased microstructural complexity 

and heterogeneity, especially for higher grade gliomas 

or gliomas with higher cellular proliferation, which 

might impede proton diffusion and lead to higher non-

Gaussianity and increased kurtosis [13, 14]. Although 

DKI has shown potential in grading gliomas [9, 14, 15], 

the sample size was limited in these studies, and no 

comparison of DKI metrics with apparent diffusion 

coefficient (ADC) was reported. Moreover, the 
relationship between DKI and the proliferative activity 

of glioma cells was not evaluated. Therefore, the roles of 

DKI in gliomas still have not been fully elucidated.

In this study, we assessed and compared the 

value of the kurtosis metrics (MK, Ka and Kr) and 

conventional diffusion metrics (MD, FA and ADC) in 

grading gliomas and also evaluated the correlation 

between these metrics and the Ki-67 labeling index 

(Ki-67 LI). Our results demonstrate that the kurtosis 

metrics are more promising imaging markers in grading, 

and also had great potential in the prediction of cellular 

proliferation in gliomas.

RESULTS

Patient groups

DKI and DWI scans were performed on 102 patients 

with suspected glioma between July 2012 and June 2014. 

Of these 102 patients, 23 were excluded because they 

failed to undergo resection or biopsy, and another 5 were 

excluded because their lesions were histopathologically 

confirmed to be non-gliomas. Ultimately, a total of 
74 patients were included in this study, and all of them 

underwent tumor resection. According to WHO criteria, 

3 had grade I glioma, 31 had grade II, 19 had grade III, 

and 21 had grade IV. Other detailed information for the 

patients is shown in Supplementary Table S1 online. 

The tumor characteristics from routine MRI are shown 

in Supplementary Table S2 online. The maximum time 

between MRI and surgery was 25 days. The most common 

symptoms were epilepsy, headache, limb weakness, 

nausea, and vomiting.

Value of the kurtosis and conventional diffusion 

metrics in grading gliomas

The kurtosis and conventional diffusion metric 

values in the solid region of the tumor and contralateral 

normal-appearing white matter (NAWM) are reported 

as the mean and standard deviation in Table 1. The 

inter-observer variability of measurements in 30 

randomly selected patients is reported in Table 2. The 

intra-class correlation coefficients for inter-observer 
were between 0.673 and 0.980, and the reproducibility 

between observers was excellent. The metric values in 

the solid region of the tumor were first normalized to 
eliminate whole-brain variations between individuals. 

The corresponding bar charts of the normalized metrics 

for different grade gliomas are shown in Figure 1. Next, 

differences in each metric between high-grade glioma 

(HGG) and low-grade glioma (LGG) were compared using 

the independent-samples t-test. The results demonstrated 

that the kurtosis metrics were significantly higher in the 
HGGs compared with the LGGs (MK: 0.665 ± 0.106 vs. 

0.459 ± 0.082, Ka: 0.805 ± 0.139 vs. 0.589 ± 0.083, Kr: 

0.542 ± 0.089 vs. 0.366 ± 0.080; P < 0.001 for all). In 

contrast, MD and ADC were significantly lower in the 
HGGs compared with the LGGs (MD: 1.485 ± 0.316 vs. 

2.035 ± 0.474; ADC: 1.470 ± 0.319 vs. 1.907 ± 0.394;  

P < 0.001 for both). However, FA did not differ significantly 
between the two groups (0.420 ± 0.135 vs. 0.360 ± 0.125;  

P = 0.052). Therefore, all metrics except FA were able to 

well distinguish HGGs from LGGs.

In addition to differentiating between HGGs and 

LGGs, the differences among grade II, III and IV gliomas 

were further compared using one-way ANOVA, and 

Student-Newman-Keuls tests were used for the multiple 

comparisons. The kurtosis metrics were significantly 
different among grade II, III and IV gliomas (MK: 0.461 

± 0.086 for grade II, 0.604 ± 0.088 for grade III, 0.721 

± 0.089 for grade IV, P < 0.001; Ka: 0.589 ± 0.087 for 

grade II, 0.725 ± 0.119 for grade III, 0.877 ± 0.115 for 

grade IV, P < 0.001; Kr: 0.367 ± 0.084 for grade II, 

0.491 ± 0.075 for grade III, 0.588 ± 0.077 for grade IV;  
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Table 1: Kurtosis and conventional diffusion metric values in the solid region of the tumor and the 

contralateral NAWM

Region Number MK Ka Kr MD (10–3 

mm2/sec)

FA ADC (10–3 

mm2/sec)

Solid region of the tumor

Overall 74 0.586 ± 0.140 0.569 ± 0.135
0.605 ± 

0.147

1.466 ± 

0.410

0.163 ± 

0.054

1.228 ± 

0.303

LGGs 34 0.484 ± 0.088 0.472 ± 0.078
0.500 ± 

0.102

1.720 ± 

0.412

0.154 ± 

0.050

1.404 ± 

0.293

HGGs 40 0.674 ± 0.113 0.651 ± 0.118
0.695 ± 

0.118

1.251 ± 

0.259

0.170 ± 

0.057

1.078 ± 

0.220

Grade I gliomas 3 0.427 ± 0.022 0.408 ± 0.047
0.447 ± 

0.044

2.071 ± 

0.790

0.156 ± 

0.060

1.529 ± 

0.486

Grade II gliomas 31 0.489 ± 0.091 0.478 ± 0.078
0.505 ± 

0.105

1.686 ± 

0.362

0.154 ± 

0.051

1.392 ± 

0.277

Grade III gliomas 19 0.610 ± 0.095 0.585 ± 0.106
0.632 ± 

0.098

1.349 ± 

0.282

0.177 ± 

0.063

1.178 ± 

0.245

Grade IV gliomas 21 0.732 ± 0.097 0.711 ± 0.096
0.751 ± 

0.107

1.162 ± 

0.203

0.163 ± 

0.052

0.987 ± 

0.148

Contralateral NAWM 74 1.033 ± 0.058 0.806 ± 0.049
1.327 ± 

0.114

0.844 ± 

0.035

0.418 ± 

0.037

0.737 ± 

0.045

Note: Data are presented as the mean and standard deviation. All metrics are dimensionless, except for MD and ADC.

MK: mean kurtosis; Ka: axial kurtosis; Kr: radial kurtosis; MD: mean diffusivity; FA: fractional anisotropy; ADC: apparent 

diffusion coefficient; HGGs: high-grade gliomas; LGGs: low-grade gliomas; NAWM: normal-appearing white matter.

Table 2: Inter-observer variability in measurements of 30 randomly selected patients

Region Metrics Intra-class correlation coefficient, 95% CI for  
Inter-observer

Solid region of the tumor MK 0.903, 0.796–0.954

Ka 0.903, 0.796–0.954

Kr 0.889, 0.768–0.947

MD 0.871, 0.730–0.939

FA 0.673, 0.314–0.845

ADC 0.906, 0.803–0.955

NAWM MK 0.923, 0.838–0.963

Ka 0.980, 0.958–0.991

Kr 0.920, 0.832–0.962

MD 0.962, 0.920–0.982

FA 0.902, 0.795–0.954

ADC 0.972, 0.941–0.987

CI: confidence interval; MK: mean kurtosis; Ka: axial kurtosis; Kr: radial kurtosis; MD: mean diffusivity; FA: fractional 
anisotropy; ADC: apparent diffusion coefficient; NAWM: normal-appearing white matter.
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P < 0.001); the differences between each pair of grades 

were also significant in multiple comparisons (P < 0.05). 

This observation was also the case for MD and ADC among 

grade II, III and IV gliomas (MD: 2.012 ± 0.443 for grade 

II, 1.604 ± 0.337 for grade III, 1.376 ± 0.259 for grade IV, 

P < 0.001; ADC: 1.900 ± 0.396 for grade II, 1.609 ± 0.346 

for grade III, 1.344 ± 0.236 for grade IV, P < 0.001) as well 

as between each pair of grades in multiple comparisons  

(P < 0.05). However, FA did not show significant 
differences among grade II, III and IV gliomas (0.362 

± 0.125 for grade II, 0.433 ± 0.137 for grade III, 0.409 

± 0.136 for grade IV, P = 0.155). As the tumor grade 

increased, the kurtosis metrics showed an increasing trend; 

in contrast, a decreasing trend was demonstrated for MD 

and ADC, whereas no obvious trends were found for FA, 

as shown in Figure 2. Therefore, all metrics except FA 

were able to satisfactorily identify glioma grades II to IV.

Comparisons of the diagnostic efficiency of the 
kurtosis and conventional diffusion metrics in 

differentiating tumor grades

To find the best diagnostic factors for glioma 
grading, the diagnostic efficiency of each metric was 
compared using receiver operating characteristic (ROC) 

curves. The area under the curve (AUC), optimal cut-off 
value, and corresponding sensitivity and specificity for all 
metrics used to differentiate between LGGs and HGGs, 

between grade II and III gliomas, and between grade III 

and IV gliomas are reported in Table 3; the corresponding 

ROC curves are shown in Figure 3. The kurtosis metrics 

exhibited the maximal AUCs and optimal sensitivity and 
specificity for distinguishing between HGGs and LGGs, 
grade II and III gliomas and grade III and IV gliomas. MD 

and ADC had lower ones, followed by FA. The differences 

in the diagnostic efficiency among the kurtosis metrics 
were slight, though MK displayed the optimal sensitivity 

and specificity in all comparisons.
The AUCs of MK, MD, ADC and FA were further 

compared because these four metrics are the representative 

metrics. The results shown in Table 4 demonstrate 

that the AUC of MK was significantly higher than that 
of MD in differentiating between LGGs and HGGs, 

significantly higher than that of ADC in differentiating 
between LGGs and HGGs and between grade II and III 

gliomas, and also significantly higher than that of FA in 
all the differentiations; the AUCs of MD and ADC were 
significantly higher than that of FA in differentiating 
between LGGs and HGGs (P < 0.05 for all).

Furthermore, a stepwise multiple logistic regression 

analysis of MK, MD, ADC and FA was performed to 

find the most significant metric for the differentiations, 
and the results demonstrated that MK was a significant 
predictor positively associated with the glioma grade 

in the differentiations between HGGs and LGGs (when 

MK increases by 0.1, odds ratio = 7.291, 95% confidence 
interval = 3.189–16.667; P < 0.001), between grade 

II and III gliomas (when MK increases by 0.1, odds 

Figure 1: Bar charts of normalized metrics for different grade gliomas. Bar chart of each normalized metric a. in HGG and 

LGG and b. in grade I, grade II, grade III and grade IV glioma. All metrics are dimensionless, except for MD and ADC, with units of 

10–3 mm2/sec.

MK: mean kurtosis; Ka: axial kurtosis; Kr: radial kurtosis; MD: mean diffusivity; FA: fractional anisotropy; ADC: apparent diffusion 

coefficient; HGG: high-grade glioma; LGG: low-grade glioma.
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ratio = 5.423, 95% confidence interval = 2.204–13.344;  
P < 0.001), and between grade III and IV gliomas (when 

MK increases by 0.1, odds ratio = 4.939, 95% confidence 
interval = 1.734–14.067; P < 0.001); whereas the other 

metrics were not included in the stepwise multiple logistic 

regression model in all differentiations.

These data indicated that the kurtosis metrics were 

superior to conventional diffusion metrics for gliomas 

grading. The kurtosis metrics could achieve more accurate 

grading, which may help guide the subsequent treatment 

for glioma patients.

Correlation between Ki-67 and the kurtosis  

and conventional diffusion metrics

The gliomas from 66 patients were subjected to 

additional immunohistochemistry examination to detect 

Ki-67 expression. The Ki-67 LI for different grade 

gliomas are reported as the mean and standard deviation in 

Supplementary Table S3 online. The difference in Ki-67 LI 

between HGGs and LGGs was significant (P < 0.001). The 

difference in Ki-67 LI among grade II, III and IV gliomas 

was also significant (P < 0.001), which was also the case 

for Ki-67 LI between each pair of grades (P < 0.05). The 

Ki-67 LI was higher for higher grade gliomas.

As the prediction of cellular proliferation is valuable 

in the evaluation of tumor behavior, response to therapy 

and prognosis, the correlations between Ki-67 LI and each 

metric were evaluated using Pearson correlation analysis. 

Significant correlations were found between Ki-67 LI 
and the kurtosis metrics (MK: r = 0.623, P < 0.001; Ka: 

r = 0.629, P < 0.001; Kr: r = 0.597, P < 0.001), as well 

as for MD (r = –0.418, P < 0.001) and ADC (r = –0.449, 

P < 0.001). In contrast, FA had no obvious correlation 

with Ki-67 LI (r = 0.065, P = 0.603). Corresponding 

scatter diagrams are shown in Figure 4. The correlation 

coefficient was maximal for the kurtosis metrics, followed 
by ADC and MD, and it was minimal for FA.

These results indicated differences in the cellular 

proliferation levels of different grade gliomas, and this 

proliferation could be noninvasively predicted using the 

kurtosis metrics, MD and ADC. The kurtosis metrics offer 

great potential for providing additional information on the 

cellular proliferation of gliomas.

Figure 2: Correlation of diffusion kurtosis imaging with tumor grade and Ki-67. Rows 1–3 correspond to three patients 

with diffuse astrocytoma (WHO grade II) in the left temporal lobe, anaplastic astrocytoma (WHO grade III) in the left frontal lobe and 

glioblastoma (WHO grade IV) in the right fronto-temporal lobe, respectively. Columns a-e are contrast-enhanced T1-FLAIR, MK, MD, 

FA and Ki-67 images (400 × ), respectively. For grade II gliomas, the intensity was low on MK and FA maps and high on MD maps, and 

the Ki-67 LI value was 2%. For grade III and grade IV gliomas, the intensity was high on MK maps and low on FA and MD maps, and the 

Ki-67 LI values were 30% and 45%, respectively. MK and Ki-67 increased (but MD decreased) as the grade increased, whereas FA showed 

no obvious trend.

T1-FLAIR: T1 fluid-attenuated inversion recovery; MK: mean kurtosis; MD: mean diffusivity; FA: fractional anisotropy; Ki-67 LI: Ki-67 
labeling index.
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Subgroup analysis of astrocytic tumors

From the 74 glioma patients, 66 with astrocytic 

tumors were selected for subgroup analysis, including 

3 with pilocytic astrocytoma (grade I), 25 with diffuse 

astrocytoma (grade II), 16 with anaplastic astrocytoma 

(grade III), 1 with gliomatosis cerebri (grade III) and 21 

with glioblastoma (grade IV). The results obtained from 

subgroup analysis were basically consistent with those 

of the whole glioma group analysis, and these results 

are shown in Supplementary Tables S4 to Tables S8 and 

Supplementary Figures S1 to Figures S3 online.

The kurtosis metrics were significantly higher (but 
MD and ADC were significantly lower) in the HGGs 
compared with the LGGs (P < 0.001 for all). The kurtosis 

metrics, MD and ADC were significantly different 
among grade II, III and IV gliomas (P < 0.001 for all), 

and the differences between each pair of grades were also 

significant in multiple comparisons (P < 0.05 for all) with 

the exception of MD in the differentiation between grade 

III and IV astrocytic tumors. The kurtosis metrics increased 

but MD and ADC decreased as the tumor grade increased. 

However, FA did not show significant differences between 
each pair of glioma grades (P > 0.05 for all).

Of all the ROC curves, the ROC of the kurtosis 

metrics exhibited the maximal AUCs and optimal 
sensitivity and specificity in all differentiations. MD 
and ADC showed lower ones, followed by FA. The 

AUC of MK was significantly higher than that of MD, 

Table 3: Statistical values of all metrics for differentiating between HGGs and LGGs, grade II and 
grade III, and grade III and grade IV gliomas
Metrics AUC P Value Cut-off value Sensitivity Specificity

HGGs-LGGs

MK 0.932 < 0.001* 0.553 90.00% 88.20%

Ka 0.906 < 0.001* 0.655 87.50% 85.30%

Kr 0.921 < 0.001* 0.443 87.50% 88.20%

MD(10–3 mm2/sec) 0.833 < 0.001* 1.573 72.50% 85.30%

FA 0.618 0.081 0.324 80.00% 44.10%

ADC(10–3 mm2/sec) 0.815 < 0.001* 1.627 77.50% 76.50%

Grade II–III

MK 0.874 < 0.001* 0.553 84.20% 87.10%

Ka 0.827 < 0.001* 0.655 78.90% 83.90%

Kr 0.864 < 0.001* 0.436 84.20% 83.90%

MD(10–3 mm2/sec) 0.776 < 0.001* 1.627 73.70% 80.60%

FA 0.640 0.079 0.287 94.70% 32.30%

ADC(10–3 mm2/sec) 0.716 0.004 1.575 63.20% 77.40%

Grade III–IV

MK 0.835 < 0.001* 0.667 85.70% 84.20%

Ka 0.840 < 0.001* 0.825 76.20% 89.50%

Kr 0.845 < 0.001* 0.538 81.00% 84.20%

MD(10–3 mm2/sec) 0.729 0.013* 1.409 66.70% 78.90%

FA 0.551 0.579 0.334 38.10% 78.90%

ADC(10–3 mm2/sec) 0.737 0.003* 1.400 76.20% 68.40%

Note: The cut-off value indicates the optimal threshold in the current study/sample size. All metrics are dimensionless, 

except for MD and ADC.
*P < 0.05.

AUC: area under the curve; HGGs: high-grade gliomas; LGGs: low-grade gliomas; MK: mean kurtosis; Ka: axial kurtosis; 
Kr: radial kurtosis; MD: mean diffusivity; FA: fractional anisotropy; ADC: apparent diffusion coefficient.
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Table 4: Comparisons of AUCs among MK, MD, ADC and FA
Comparison Statistic MK-MD MK-ADC MK-FA MD-ADC MD-FA ADC-FA

LGG-HGG P 0.011* 0.001* < 0.001* 0.450 < 0.001* 0.001*

Z 2.537 3.195 4.839 0.755 3.577 3.227

Grades II–III P 0.077 0.007* 0.003* 0.108 0.111 0.353

Z 1.770 2.683 3.017 1.608 1.594 0.928

Grades III–IV P 0.144 0.150 0.020* 0.836 0.178 0.156

Z 1.462 1.438 2.324 0.207 1.346 1.419

Note:
*P < 0.05.

MK: mean kurtosis; MD: mean diffusivity; ADC: apparent diffusion coefficient; FA: fractional anisotropy; HGG: high-
grade glioma; LGG: low-grade glioma.

Figure 3: ROC curves for all the metrics in differentiating tumor grades. ROC curves and AUCs for all the metrics in the solid 
region of the tumor for the differentiation a. between HGGs and LGGs, b. between grade II and III and c. between grade III and IV gliomas.

ROC curves: receiver operating characteristic curves; AUC: area under the curve; MK: mean kurtosis; Ka: axial kurtosis; Kr: radial 
kurtosis; MD: mean diffusivity; FA: fractional anisotropy; ADC: apparent diffusion coefficient; HGGs: high-grade gliomas; LGGs:  

low-grade gliomas.
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Figure 4: Correlations between Ki-67 and each metric. Scatter diagrams demonstrating the correlations between Ki-67 labeling 

index and a. MK, b. Ka, c. Kr, d. MD, e. FA or f. ADC. All metrics are dimensionless, except for MD and ADC, with units of 10–3 mm2/sec.

MK: mean kurtosis; Ka: axial kurtosis; Kr: radial kurtosis; MD: mean diffusivity; FA: fractional anisotropy; ADC: apparent diffusion 

coefficient.
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ADC and FA in differentiating between LGGs and 

HGGs as well as between grade II and III gliomas; the 

AUCs of MD and ADC were significantly higher than 
that of FA in differentiating between LGGs and HGGs 

(P < 0.05 for all). Moreover, the results of the stepwise 

multiple logistic regression analysis of MK, MD, ADC 

and FA also demonstrated that MK was a significant 
predictor positively associated with the glioma grade in 

all differentiations (P < 0.001 for all), whereas the other 

metrics were not included in the stepwise multiple logistic 

regression model.

Additional immunohistochemistry of Ki-67 

was performed for the gliomas from 58 patients, and 

significant correlations were found between Ki-67 LI 
and each kurtosis metric, MD or ADC (P < 0.001 for all). 

In contrast, FA had no obvious correlation with Ki-67 LI 

(P > 0.05).

DISCUSSION

DKI, an advanced non-Gaussian diffusion imaging 

technique, was used to better evaluate glioma grade and 

cellular proliferation in the current study because this 

approach offers distinct advantages. For example, DKI 

can provide additional information regarding kurtosis, 

which is generally proportional to the heterogeneity and 

complexity of the microstructure [14], and the DKI model 

results in a more accurate quantification of conventional 
DTI metrics compared with the DTI model [22]. In 

addition, DKI is clinically feasible because its acquisition 

time is acceptable in the clinic.

In the present study, the differences in the kurtosis 

and conventional diffusion metrics between each pair of 

glioma grades were first compared, and the corresponding 
diagnostic efficiency of each metric was determined by 
subsequent ROC curves. The kurtosis metrics in the solid 

region of the tumor could effectively distinguish between 

HGGs and LGGs, grade II and grade III as well as grade 

III and grade IV gliomas, and these metrics showed the 

highest AUCs and optimal sensitivity and specificity in all 
the differentiations. MD and ADC also could distinguish 

between each pair of glioma grades (with the exception 

of MD in the differentiation between grade III and 

IV astrocytic tumors), but their AUCs, sensitivity and 
specificity were lower than those of the kurtosis metrics. 
These findings are basically in agreement with those 
of previous researchers except for the results of MD, 

because previous researchers found that MD could not 

be used to distinguish between grade II and III gliomas 

[9, 15]. These comparisons indicate that the kurtosis 

metrics may be more consistently effective metrics for 

grading gliomas, whereas MD is not. In this study, the 

kurtosis metrics increased (but MD and ADC decreased) 

as the grade increased because higher grade gliomas are 

characterized by higher cellularity, more nuclear atypia, 

higher pleomorphism and heterogeneity with vascular 

hyperplasia, necrosis, hemorrhage, and endothelial 

proliferation. In contrast, lower grade gliomas consist of 

more homogeneous nests of well-differentiated cells with 

lower cell density and larger cells; lower grade gliomas 

also contain fewer diffusion barriers. Therefore, higher 

grade gliomas contain greater structural complexity and 

heterogeneity compared with lower grade gliomas [9, 

15, 23], which increases the kurtosis but decreases the 

diffusion range in higher grade gliomas.

By comparing the AUCs of ROC curves of the 
kurtosis and conventional diffusion metrics combined 

with the stepwise multiple logistic regression analysis 

of MK, MD, ADC and FA, the kurtosis metrics were 

shown to be the most promising imaging markers for 

grading gliomas in the present study. These occurred 

because a series of changes caused by higher grade 

gliomas greatly increased the heterogeneity and 

complexity of the microstructure of tissues and cells  

[9, 15, 23]. Kurtosis is more sensitive and accurate for 

the detection of microstructural changes [14], and hence, 

these changes can be detected by the kurtosis metrics at 

the early stages but are not sufficiently evident enough 
for MD or ADC to recognize them. Perhaps this is the 

reason why the kurtosis metrics are more consistently 

effective metrics in grading gliomas, whereas MD is 

not consistently helpful in distinguishing between grade 

II and III or between grade III and IV gliomas. In short, 

the kurtosis metrics have an advantage over conventional 

diffusion metrics and offer greater potential as imaging 

markers in grading gliomas.

In addition, our study assessed the correlations 

between these metrics and the cellular proliferation of 

glioma. Ki-67 was chosen as a proxy for evaluating cellular 

proliferation because Ki-67 detection can be performed 

easily and routinely. Moreover, Ki-67 detection is 

considered one of the most reliable methods for evaluating 

cellular proliferation and for providing information on 

tumor behavior and on response to treatment and prognosis 

[2]. In the current study, significant correlations were 
revealed between Ki-67 LI and the kurtosis metrics, MD 

and ADC. Increased Ki-67 expression indicates enhanced 

cell proliferation and mitosis. During interphase of the 

cell cycle, more proteins, RNA, DNA and other biological 

macromolecules are synthesized, and tumor cells grow 

by producing chromosomes, proteins and cytoplasmic 

organelles [24]. During mitosis, cells round up to a 

near-spherical shape, and the chromosomes condense 

and attach to spindle fibers that pull one copy of each 
chromosome to opposite sides of the cell [25, 26]. In the 

tumor tissue, higher cell numbers, denser tumors, narrower 

intercellular space, enlarged nuclei, a high nucleoplasmic 

ratio and neo-angiogenesis appear [27, 28]. In addition, 

higher Ki-67 expression generally correlates with higher 

grade glioma, which is more heterogeneous due to the 
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cellularity, necrosis, neoangiogenesis, hemorrhage, and 

endothelial proliferation of the tumor [9, 14, 15]. All these 

changes may increase the heterogeneity and complexity of 

the microstructure in the tumor and inhibit water molecule 

movement both inside and outside tumor cells. Because the 

deviation from Gaussian diffusion is generally assumed 

to be caused by the tissue microstructure, and kurtosis is 

believed to be generally proportional to the heterogeneity 

and complexity of the microstructure [12–14], kurtosis 

is likely to increase and diffusion range is likely to 

decrease. Therefore, cellular proliferation of glioma can be 

noninvasively evaluated using DKI. The kurtosis metrics 

offer great potential for providing additional information 

on the cellular proliferation of gliomas.

In contrast, FA was decreased at all grades and also 

all levels of Ki-67, perhaps because diffusion is restricted 

to a similar degree in all directions in the solid region of 

the tumor. A different tumor grade or Ki-67 level only 

changes the sphere size of the diffusion range, but does not 

change its shape. In short, FA is of low value in evaluating 

both glioma grade or cellular proliferation.

Investigating the relationship between glioma 

grade and DKI measurements has been covered in 

multiple previous works [9, 14, 15]. However, unlike 

previous studies, the sample size was relatively larger 

in this study; thus, in addition to a comparison between 

LGG and HGG, comparisons between grade II and III 

gliomas and between grade III and IV gliomas could also 

be well performed. Additionally, a subgroup analysis 

of astrocytic tumors was performed to make the results 

more generalized. Conversely, the differences between 

subtypes, such as the difference between astrocytic tumors 

and oligodendrocyte tumors reported by Tietze et al [14], 

were not evaluated in this study because of the limited 

number of oligodendrocyte tumor cases. The diagnostic 

efficiency of each metric was further compared in the 
present study, and it was demonstrated that the kurtosis 

metrics were the most promising imaging markers for 

grading gliomas. Moreover, this study further assessed the 

correlation between each metric and cellular proliferation 

in glioma. To our best knowledge, this is the first time that 
DKI was used to evaluate cellular proliferation of glioma, 

and the results demonstrated that the kurtosis metrics had 

great potential in the prediction of cellular proliferation 

of gliomas.

In acquiring DKI data, we used 2 b values in 25 

nonlinear directions rather than 5 and 3 b values in more 

than 25 nonlinear directions, as reported in previous 

studies [9, 15]. This is a standard DKI scan method for 

the brain, and it is similar to the method suggested by 

Jensen et al [29]. This method can provide images with 

sufficient quality, and acquisition can be completed 
within a relatively short time, which would produce 

better outcomes in a clinical setting. Meanwhile, a semi-

automated method based on threshold segmentation 

was introduced for delineating the solid region of the 

tumor. This method was more accurate (especially in 

delineating small or thin enhanced tumors), objective, 

and reproducible and was often easier or faster than 

manual delineation due to the flexibility of ImageJ and 
its powerful region of interest (ROI) manager. This semi-

automated method is similar to the methods widely used 

in brain tumors [30–32], acute ischemic stroke [32, 33] 

and brain anatomical structures [34], and most of the 

studies have demonstrated that these methods are valid for 

brain application. To our best knowledge, this is the first 
time that this semi-automatic method was used in glioma 

measurement. In addition, studies [9, 35] have reported 

that MK decreases in the frontal aspects of the brain due 

to aging in elderly humans, and metric values also change 

significantly with age in NAWM, including MK, Kr, MD 
and FA. Therefore, we normalized the DKI and DWI 

metric values in the solid region of the tumor, and used 

only normalized metrics in this study because they can be 

used to eliminate whole-brain interindividual variations, 

and better results were reported for normalized metrics in 

previous studies [9, 15]. These are the uniqueness of this 

study.

In conclusion, normalized kurtosis metrics in the 

solid region of the tumors were better diagnostic factors in 

distinguishing HGGs from LGGs and identifying grade II, 

III and IV gliomas; the kurtosis metrics also offered great 

potential to noninvasively predict the cellular proliferation 

of gliomas in the studied cohort of patients. Compared 

with conventional diffusion metrics, the kurtosis metrics 

show greater potential as imaging markers for the accurate 

demonstration of the microstructural changes caused by 

increasing glioma grade and cellular proliferation, which 

might allow more accurate diagnosis and optimal therapy 

for glioma patients.

MATERIALS AND METHODS

Inclusion and exclusion criteria for patients

This prospective study was approved by the Ethics 

Committee of Tongji Hospital of Huazhong University of 
Science and Technology and abided by the statement of 

ethical standards. Informed consent was obtained from 

every patient prior to inclusion in our study. The following 

inclusion criteria were applied in this study: 1) patients 

who were suspected of having conditions of a) primary 

cerebral glioma and b) recurrent gliomas untreated for 

more than 6 months prior to MRI based on conventional 

radiologic findings; 2) patients who underwent routine 
MRI, DWI and DKI in the same scanner; and 3) patients 

with tumors that were histopathologically confirmed as 
cerebral gliomas by subsequent resection or biopsy. The 

following exclusion criteria were applied: 1) patients who 
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rejected surgery or underwent surgery more than 4 weeks 

after DKI; and 2) patients with motion artifacts.

Data acquisition

All patients underwent magnetic resonance imaging 

(MRI) prior to surgery with a 3.0T GE MR 750 system 

(GE Healthcare, Waukesha, WI).

DKI used a spin-echo echo-planar imaging (SE-

EPI) diffusion sequence for image acquisition (TR, 6,500 

ms; TE, 85 ms; NEX, 1; matrix, 128 × 128; number of 

sections, 43; sections thickness, 3 mm; spacing, 0 mm; and 

FOV, 256 × 256 cm2). Two images of b0 were acquired, 

and b values of 1,250 and 2,500 s/mm2 were applied in 25 

uniformly distributed directions. The acquisition time was 

5 minutes 45 seconds.

DWI images were also acquired using a SE-EPI 

sequence (TR, 3,000 ms; TE, 70 ms; NEX, 4; matrix, 160 

× 160; number of sections, 20; sections thickness, 5 mm; 

spacing, 1.5 mm; and FOV, 240 × 240 cm2). Images with 

and without 3 orthogonal directional motion-probing 

gradients (b = 1,000s/mm2) were obtained simultaneously. 

The acquisition time was 42 seconds.

All patients underwent routine and contrast-enhanced 

MRI. All images served as an anatomic reference for DKI 

and DWI. The routine MR scans included the following 

sequences: transverse T1 fluid-attenuated inversion 
recovery (T1-FLAIR), transverse T2 fast spin echo (T2-

FSE) and transverse T2 fluid-attenuated inversion recovery 
(T2-FLAIR). The following acquisition parameters were 

applied: TR = 2,992 ms, TE = 24 ms, TI = 869 ms, NEX = 

1, matrix = 320 × 320 for T1-FLAIR; TR = 4,599 ms; TE 

= 102 ms; NEX = 2; matrix = 320 × 224 for T2-FSE; TR = 

8,000 ms; TE = 160 ms; TI = 2,100 ms; NEX = 1; matrix 

= 256 × 256 for T2-FLAIR. The section thickness, spacing, 

section number and FOV of all routine sequences were 5 

mm, 1.5 mm, 20 and 240 × 240 cm2, respectively.

All the sequences had the same scan coverage. The 

scan plane paralleled the line combining anterior and 

posterior commissure, and the range covered the entire 

brain.

Data processing and analysis

The DKI data were processed using Diffusional 

Kurtosis Estimator (version 2.5.1, Medical University 
of South Carolina), and the DWI images were processed 

using the image calculator of ImageJ (Version 1.49b, 

NIH). Metric maps were calculated, including MK, Ka, 

Kr, MD, FA and ADC.

Before delineating the ROI, the image resolution, 

number of slices and FOV of enhanced T1-FLAIR, 

T2-FSE and ADC maps should be changed to match 

the DKI metric maps. Although the scan matrix, slice 

thickness, spacing and FOV were different in enhanced 

T1-FLAIR, T2-FSE, DWI and DKI, the image resolutions 

ultimately generated by the scanner was 512 × 512, 512 

× 512, 256 × 256 and 256 × 256, respectively, due to 

interpolation; in addition, these four sequences had 

the same scan coverage. Thus, the image resolution of 

enhanced T1-FLAIR, T2-FSE and ADC was first resized 
to 240 × 240 (pixels were resized to 1 mm × 1 mm to 

match the DKI metric maps); the number of slices was 

changed to 43 without interpolation; and the canvas size 

was adjusted to 256 × 256 due to the difference in FOV. 

All these protocols were finished in ImageJ, as shown in 
Supplementary Figure S4 online.

ROIs over the solid region of the tumor and NAWM 

were semi-automatically delineated using the wand tool 

in ImageJ by an experienced neuroradiologist who was 

blinded to the histological diagnosis. To determine the 

inter-observer reproducibility, another neuroradiologist 

used the same method to delineate the ROIs in 30 

randomly selected patients. Semi-automatic delineation 

was achieved by setting the optimal threshold range and 

proper combination of ROIs, including “AND”, “OR” and 

“XOR”. First, a proper threshold range of signal intensity 

was set for each subject to ensure that the red color 

covered the area of interest as completely as possible but 

did not cover the surrounding structures. Next, the wand 

tool was used to automatically delineate the connective 

pixels as a ROI. If the ROI created covered the entire 

area of interest, then the ROI delineation was finished; 
otherwise, for example, if it only covered a portion of 

the area, additional ROIs covering the residual portions 

were created using another threshold range to perform the 

combination of ROIs using “OR”. In certain cases, “AND” 

(for selecting a common area of two or more ROIs) and 

“XOR” (for selecting different area of two or more ROIs) 

were also applied to flexibly draw the ROIs, depending on 
the situation. Example delineations of the ROIs are shown 

in Figure 5. The ROIs over the solid enhancing tumor were 

delineated according to transverse contrast-enhanced T1-

FLAIR, and the ROIs over the NAWM and non-enhancing 

tumor were delineated according to the transverse T2-FSE. 

Cystic components, necrosis, hemorrhage and calcification 
were avoided in the delineation of the solid region of the 

tumor [9]. The ROIs were copied from transverse contrast-

enhanced T1-FLAIR or T2-FSE to all metric maps.

Average MK, Ka, Kr, MD, FA and ADC values were 

calculated for each ROI. The values in the solid region of 

the tumor were normalized to the corresponding values 

in the contralateral NAWM of each patient to eliminate 

whole-brain variations between individuals [15].

Pathology and immunohistochemistry

To ensure a match of the location between 

histopathology and MR imaging, we first determined the 
area of the solid tumor preoperatively via MR images, and 

then requested the neurosurgeon to obtain the corresponding 
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tissue during surgery for the further histopathological 

analysis. The nature and grade of the tumor were 

determined according to the 2007 WHO classification [1]. 
Immunohistochemical staining for Ki-67 was performed 

using the Envision method (Clone No. UMAB107, dilution 
1:300). The tumor sections were reviewed and quantified 
based on the percentage of positive cells in the highest 

density of the stained areas; all cells with nuclear staining 

of any intensity were considered positive, and the Ki-67 

LI values were defined as the percentage of positive cells 
among the total cells counted [8].

Statistical analysis

The data were analyzed using SPSS software 

(Version 19.0.0, IBM, Armonk, NY) and MedCalc 

software (https://www.medcalc.org/, version 11.4.2.0). 

The inter-observer variability of measurements in 30 

randomly selected patients was evaluated using the intra-

class correlation coefficient. The independent-samples  
t-test was used to compare the differences in metrics in 

the solid region of the tumor and Ki-67 LI between HGGs 

and LGGs. One-way ANOVA was further employed 

to compare the differences among grade II, III and IV 

gliomas, and the Student-Newman-Keuls tests were used 

for multiple comparisons. The ROC curves were applied 

to evaluate the diagnostic efficiency of each metric in 
grading gliomas and to determine the optimal cut-off 

values. The Z test was applied to compare the differences 

in AUCs among MK, MD, ADC and FA. A stepwise 
multiple logistic regression analysis of MK, MD, ADC 

and FA was also performed to find the most significant 

Figure 5: Semi-automated delineation of the ROIs over the solid region of the tumor and the NAWM. a-c. Delineation 

over a solid enhancing tumor on transverse contrast-enhanced T1-FLAIR; d-f. delineation over a non-enhancing tumor on transverse T2-

FSE; and g-i. delineation over a contralateral NAWM on transverse T2-FSE. When a proper threshold range of signal intensity was set, 

the corresponding pixels in the range were colored red, and then the wand tool was used to automatically delineate the connective pixels 

as the ROI (in blue).

ROI: region of interest; NAWM: normal-appearing white matter; T1-FLAIR: T1 fluid-attenuated inversion recovery; T2-FSE: T2 fast 
spin echo.
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metric for differentiating between each pair of glioma 

grades. The Pearson correlation analysis was used to 

evaluate the correlation between Ki-67 expression and 

each metric. A default alpha level of 0.05 was used for all 

tests, and all the tests were two-tailed.
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