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Diffusion Least-Mean Squares With Adaptive
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Abstract—This paper presents an efficient adaptive combination
strategy for the distributed estimation problem over diffusion net-
works in order to improve robustness against the spatial variation
of signal and noise statistics over the network. The concept of min-
imum variance unbiased estimation is used to derive the proposed
adaptive combiner in a systematic way. The mean, mean-square,
and steady-state performance analyses of the diffusion least-mean
squares (LMS) algorithms with adaptive combiners are included
and the stability of convex combination rules is proved. Simulation
results show i) that the diffusion LMS algorithm with the proposed
adaptive combiners outperforms those with existing static com-
biners and the incremental LMS algorithm, and ii) that the the-
oretical analysis provides a good approximation of practical per-
formance.

Index Terms—Adaptive filter, adaptive networks, combination,
diffusion, distributed algorithm, distributed estimation, energy
conservation.

I. INTRODUCTION

D
ISTRIBUTED or cooperative processing over net-

works has been emerging as an efficient data processing

technology for network applications, such as environment mon-

itoring, disaster relief management, source localization, and

other applications [2]–[7]. In contrast to classical centralized

techniques, distributed processing utilizes local computations

at each node and communications among neighboring nodes to

solve problems over the entire network. This useful capability

expands the scalability and flexibility of the network and leads

to a wide range of applications.

In this paper, we consider the problem of distributed estima-

tion over adaptive networks as advanced in [8]–[14]. The objec-

tive of this problem is to estimate adaptively certain parameters
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of interest in a distributed manner. Specifically, each node of

the network is allowed to cooperate with its neighbors in order

to improve the accuracy of its local estimate. Such coopera-

tion enables each node to leverage the spatial diversity obtained

from the geographical distribution of the nodes as well as the

temporal diversity. Evidently, the performance of the resulting

adaptive network depends on the mode of cooperation, for ex-

ample, incremental [9], diffusion [10], or probabilistic diffusion

[11]. Although each mode possesses its own advantages, in this

paper, we focus on the diffusion mode of cooperation because

this mode is more robust to node and link failure [11].

In the diffusion mode of cooperation, the nodes exchange

their estimates with neighbors and fuse the collected estimates

via linear combinations [10]. Several combination rules, such

as the Metropolis [15] and relative-degree [12] rules, have been

proposed that are based solely on the network topology, i.e.,

the combination weights are calculated from the degree of each

node, and hence do not reflect the node profile. Therefore, the

performance of such rules may deteriorate if, for instance, the

signal-to-noise ratio (SNR) at some nodes is appreciably lower

than others; because the noisy estimates of such nodes diffuse

into the entire network by cooperation among the nodes. There-

fore, the design of combination weights plays a key role in the

diffusion mode of cooperation.

In [12] and [14], offline optimization of the combination

weights was proposed based on the steady-state performance

analysis. If the weights are optimized in advance, the per-

formance of algorithms improves. However, such offline

optimization requires the knowledge of network statistics, such

as regressors and noise profile. Moreover, it might be difficult to

solve the optimization problem in a distributed manner because

the problem depends on information of the entire network.

This difficulty can be overcome by resorting to online learning

of the combination weights, say adaptive combiners. Initial

investigations on adaptive combiners for diffusion algorithms

were done in [8] based on the convex combination of two

adaptive filters [16]. However, the structure of this adaptive

combiner limits the degree of freedom of the weights; indeed,

only one scalar coefficient is adaptive.

In this paper, we take a more systematic and more general

approach than [8] and formulate the problem of controlling the

combination weights as a well defined minimum variance unbi-

ased estimation problem. We then use the problem to propose an

adaptive combination rule that learns its combination weights so

that the effect of noisy estimates is reduced. The resulting com-

biner is fully adaptive, i.e., in contrast to the offline optimization

approach in [14], no knowledge of the network statistics is re-

quired. We also analyze the performance of the proposed adap-
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tive combiner. In the mean-transient analysis, we show that sta-

bility in the mean is improved via convex combinations, even if

they are random and time-varying. This analysis is done under

weaker assumptions than those given in our prior work [1]. On

the other hand, in the mean-square performance analysis, we de-

rive the learning behavior and the steady-state performance of

the diffusion LMS algorithm with the proposed adaptive com-

biners. We finally verify via simulations that the theoretical per-

formance curves agree closely with experimental performance

curves.

The paper is organized as follows. In the end of this sec-

tion, we summarize the notation we use throughout the paper. In

Section II, a mathematical model for the distributed estimation

problem and two types of diffusion strategies are introduced.

In Section III, an adaptive combination rule is established by

formulating a minimum variance unbiased estimation problem.

Sections IV and V analyze the performance of the diffusion

LMS algorithm with the proposed adaptive combiners. Also,

stability conditions and explicit performance expressions are de-

rived. Section VI studies the proposed combiner and the results

of the analysis in numerical simulations. We also verify that

the theoretical performance analysis provides a good approxi-

mation of experimental performance. Finally, we conclude the

paper in Section VII.

A. Notation

Let and denote the sets of real and complex numbers, re-

spectively. We use boldface letters to denote random variables

and normal font for deterministic (non-random) quantities, e.g.,

and , respectively. Capital letters are used for matrices and

small letters for vectors and scalars. All vectors are column vec-

tors except for regression vectors, which are denoted by

throughout. The superscript represents the transpose of a

matrix or a vector, while represents the Hermitian (conju-

gate) transpose. The superscript is also used to represent

complex conjugation for scalars. The notation stands

for a vector obtained by stacking the specified vectors. Simi-

larly, we use to denote the (block) diagonal matrix

consisting of the specified vectors or matrices. The trace of a

matrix is denoted by and expectation is denoted by .

We omit the brackets if there is no possibility of confusion.

Other notation will be introduced as necessary.

II. CTA AND ATC DIFFUSION LMS ALGORITHMS

Consider nodes in a predefined network topology; see

Fig. 1. We denote by the neighborhood of node including

itself and by the degree of node , i.e., the cardinality of

. At each time , each node has access to a scalar mea-

surement and a regression row vector

of length that are related via

(1)

where is an unknown column vector we wish to esti-

mate and accounts for noise and modeling errors. The

objective of the distributed estimation problem is to generate an

estimate of at each node and time in a distributed

Fig. 1. A distributed network with � nodes. In this instance, the neighborhood
of node � is � � ��� �� �� �� and the degree of node � is � � �. Each node
� generates an estimate � at each time � in cooperation with its neighbors.

manner; namely, each node is allowed to cooperate only with its

neighbors.

The diffusion strategy we consider is performed in two stages

[10], [13], [14]: combination and adaptation. In this strategy,

each node first computes a linear combination of local esti-

mates collected from its neighbors, i.e.,

where are possibly time-varying combination weights

calculated from information up to time available at node .

Then, the intermediate estimate of node is used by

a local adaptive filter to adapt the local data ob-

served at node . We refer to this strategy as Combine-then-

Adapt (CTA) diffusion [10]; see Fig. 2(a). For example, using

the LMS algorithm as the core adaptive filter leads to the CTA

diffusion LMS algorithm [10]:

(2)

where is the stepsize at node .

It is possible to reverse the order of the two stages, i.e., adapta-

tion followed by combination. We refer to this version as Adapt-

then-Combine (ATC) diffusion ; see Fig. 2(b). Again, using the

LMS algorithm as the core adaptive filter, we get the ATC dif-

fusion LMS algorithm :

(3)

More general diffusion strategies that exchange not only esti-

mates but also data have been studied in [13], [14].

In the CTA and ATC strategies, the combination weights

play an important role. Table I shows examples of

static combination rules, which keep constant; see,

e.g., [15] and [17]–[22]. These rules calculate the weights based

only on the network topology. However, such topology-based

rules are sensitive to the spatial variation of signal and noise

statistics across the network. Suppose, for example, that the

estimates collected from some neighbors are less reliable than

others due to low SNR conditions. In such case, we should give

less weight to the noisy estimates. Conversely, nodes in low

SNR conditions could improve the accuracy of their estimates

by putting more weight on the estimates from neighbors in

higher SNR conditions. Thus, static combination rules are
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Fig. 2. Combine-then-Adapt (CTA) and Adapt-then-Combine (ATC) diffusion strategies. (a) CTA diffusion. (b) ATC diffusion.

TABLE I
STATIC COMBINATION RULES BASED ON NETWORK TOPOLOGY

likely to result in performance deterioration. To improve the

robustness to such cases, we propose an adaptive combination

strategy.

III. ADAPTIVE COMBINERS

We first formulate a problem that determines optimal com-

bination weights. Then, a stochastic gradient type algorithm is

derived to approximate the optimal weights, leading to an adap-

tation rule for the combination weights. In what follows, we re-

strict the weights to real values and focus on the CTA

diffusion. Subsequently, our combiner for the ATC version is

derived in a similar manner.

A. Problem Formulation

To begin with, let us assume that for each the

local estimates are realizations of some random

vector that satisfies the following condition:

(4)

We further introduce the notation

where is an complex random matrix and each

represents the combination weight vector for node to be opti-

mized. Our approach is to minimize the difference between the

linear combination and the unknown vector , i.e.,

where denotes the Euclidean norm on the space and the

constraints must be satisfied because node has no direct access

to realizations of for . Obviously, this problem can

be decoupled into subproblems: for each ,

Unfortunately, each subproblem cannot be solved directly due to

the presence of the unknown quantity . Therefore, we employ

the concept of minimum variance unbiased estimation (or best

linear unbiased estimation, see, e.g., [23]) to reformulate the

problem into a form solvable in a distributed way.

Let us expand the cost function to obtain a bias-vari-

ance decomposition of as follows:

where is an matrix defined as

Moreover, noting that is Hermitian and using (4), we have

where denotes the real part and is the vector of

length whose components are all unity. Therefore, if we

impose the condition , the second term involving the

unknown quantity vanishes and we arrive at the following
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minimum variance unbiased estimation problem: for each

(5)

Note that the nonnegativity of is not imposed in (5). In

what follows, we seek a closed form solution and an adaptive

solution to problem (5).

B. Closed Form Solution

The dimension of problem (5) can be reduced from un-

knowns to by introducing an auxiliary variable. For each

, define the matrix :

(6)

Then, any vector that satisfies the constraints of (5)

can be represented as

(7)

using some satisfying , where

is the vector of length whose components are all

unity. Therefore, substituting (7) into (5), we obtain the fol-

lowing problem:

(8)

where is the submatrix of given by

The constraint of problem (8) is called a hyperplane and

the solution to (8) is well known to be (see, e.g., [23] or the

Appendix):

(9)

provided that is positive definite. (Note that

is at least positive semidefinite.) Then, the so-

lution of (5) can be recovered from (7) as . Since

all the components of are second order moments of the

random vectors , we can approximate from

local information available at node , if we collect a number

of realizations of sufficient to estimate the moment

. However, for the purpose of an adaptive implementation,

we introduce a steepest-descent type solution.

C. Steepest-Descent Solution

In order to apply the standard steepest-descent method to (8),

we need to eliminate the constraint . We apply a similar tech-

nique introduced in [24, Example 5]. Let be the metric pro-

jection from onto , which is defined and given by (see

the Appendix)

(10)

for all . The transformation maps an arbitrary

vector into a vector satisfying .

Using , we therefore introduce a second auxiliary variable.

Since the projection is surjective [25], [26],

every point can be represented as the projection of a

point , i.e.,

(11)

Therefore, substituting (11) into (8), we arrive at the following

unconstrained problem:

(12)

Since this cost function is quadratic because is affine in ,

the gradient of (12) at can be easily calculated as

Hence, applying the standard steepest-descent method to (12)

and then recovering using (11) and (7), we obtain the fol-

lowing algorithm:

(13)

where is a stepsize parameter. This recursion can be

simplified if we choose an initial point from . Indeed,

if lies in , i.e., if , the fact that

for all implies

or for all . Therefore, since is

equivalent to , algorithm (13) is simplified to

the following:

(14)

where must satisfy . For instance,

.

There is a relation between the update direction and

the antigradient of at , say . The direc-

tion is the component of orthogonal to the
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Fig. 3. An interpretation of algorithm (14) from a geometric point of view.

normal vector of ; see Fig. 3. Namely, the descent direc-

tion of is embedded in so that stays in .

D. Adaptive Solution

We now replace by an instantaneous approximation to

derive an adaptive version of (14). Since

where is the random matrix,

we need to approximate . At each time , we replace

this random quantity by its instantaneous variation:

Using this, we consider the following approximation:

(15)

Note that can be calculated from information avail-

able at node . The instantaneous approximation (15) is justified

as follows. Let us now interpret as a random matrix,

i.e., denote by boldface: , where

and . Further-

more, assume that and are uncorrelated and have

the same distribution as . Then, noting that

we have

Thus, removing the expectation in the left-hand side yields the

instantaneous approximation (15). Finally, combining (2), (14),

and (15), we obtain the CTA diffusion LMS algorithm with

adaptive combiners. In a similar fashion, the ATC version of our

Fig. 4. CTA and ATC diffusion LMS algorithms with the proposed adaptive
combiners.

adaptive combiner is derived. Fig. 4 summarizes the proposed

diffusion LMS algorithms, where the scalar constant in (15)

merged with the stepsize .

Remark 3.1: The proposed adaptive combiners can be com-

bined with any adaptive filters and are not limited to the LMS

algorithm.
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E. Normalized Stepsize Rule

As we will see in the next section, the stability of the CTA

diffusion LMS algorithm is ensured in the mean sense if we

use convex combination weights for . Since algo-

rithm (16) (see Fig. 4) guarantees , the weight vector

becomes convex combination if for all

. A possible choice for that enforces

is the following:

(18)

where and are constants, denotes the

maximum norm, and is the th component of . It

is easily verified from (18) and the second line of (14) that the

weight vector enforces a convex combination for all ,

provided that the initial vector is a convex combination.

Hence, is ensured to be a convex combination as

well.

Remark 3.2: As used in [8], [16], another possible way to en-

sure the nonnegativity of each weight is to introduce a param-

eterization of the form , where

is any real number. Such a parameterization is useful to guar-

antee convex combination of two estimates because any weights

of the form

become convex combination. However, if we consider convex

combination of more than two estimates, that parameterization

is not generally useful because it is as difficult to handle the con-

straint . Moreover, the cost func-

tion in (8) becomes nonlinear due to the introduction of

.

IV. MEAN TRANSIENT ANALYSIS

In this section, the mean transient analysis of the CTA dif-

fusion LMS algorithm with any adaptive combiners, including

the proposed combiner in Fig. 4, is presented. The goal of this

section is to find sufficient conditions under which every local

estimate converges in the mean to the unknown parameter by

extending the techniques of [10] to the challenging case where

the combination weights are adaptive (i.e., time-variant) as op-

posed to static. To begin with, let us introduce a mathematical

tool for the analysis.

A. Block Maximum Norm

Given a vector consisting

of blocks , we define the block

maximum norm on by

where denotes the standard Euclidean norm on as

before. We also define the matrix norm induced from the block

maximum norm. Namely, given an matrix , its

induced norm is defined as

This kind of norms is useful for the analysis of diffusion type

algorithms; see for example [27] and [26]. The block maximum

norm inherits the unitary invariance of the Euclidean norm

under block-wise transformation.

Lemma 4.1: Let be an

block unitary matrix with unitary blocks

. Then, the following hold:

a) for all ;

b) for all .

Proof: Property a) immediately follows from the fact that

for every . On the other hand, property b)

immediately follows from a).

B. Mean Convergence Analysis

Let us now interpret the data as random variables. Recall that

random variables are denoted by boldface letters, e.g., . To

construct a data model in terms of global quantities, we intro-

duce the following global quantities across the network:

. . .

Note that is the block diagonal matrix with diag-

onal blocks . Then, data model (1) can

be written as

Here, we assume the following throughout our analysis:

Assumption 4.2 (Data model):

a) The regressors are i.i.d. in time and spatially inde-

pendent, with .

b) The noise is i.i.d. zero-mean in time and spatially

independent, with . In addition, is

independent of the regressors .

Although the independence of regressors might be unrealistic

in practice, such assumptions are employed frequently in the

analysis of adaptive algorithms and lead to a close agreement

between theory and experiments; see, for example, [10], [28],

and references therein.

We next derive the state space model of the CTA diffusion

LMS algorithm with adaptive combiners. Let be

any real random combination weights of node at time that

satisfy for and . We



TAKAHASHI et al.: DIFFUSION LEAST-MEAN SQUARES WITH ADAPTIVE COMBINERS 4801

collect all the weights into an random matrix and

define the random matrix as follows:

...
. . .

...

where represents the Kronecker product. Furthermore, letting

we obtain the state space model for the CTA diffusion LMS

algorithm with adaptive combiners:

(19)

Now, let us rewrite this representation in terms of the following

weight errors:

(20)

Noting that holds because of ,

and subtracting from both sides of (19), we find out that the

global error evolves according to the following recursion:

(21)

In what follows, we evaluate the expectation of both sides. How-

ever, the presence of the matrix makes this evaluation diffi-

cult. Therefore, let us employ the following assumption to over-

come this difficulty:

Assumption 4.3: For each , the weight matrix is

independent both of and of .

Note that, at least for the proposed combiner for the CTA dif-

fusion, the weight matrix is independent of under As-

sumption 4.2. Also, every static combiner satisfies this assump-

tion obviously. Under Assumptions 4.2 and 4.3, we take the ex-

pectation of both sides of (21) to get

where

(22)

Moreover, evaluating the block maximum norm yields the fol-

lowing inequality:

where . Therefore, if

(23)

then we can conclude that . Here, the convergence is

ensured not only in the block maximum norm sense but also in

any norm because all norms are equivalent in a finite dimen-

sional vector space. One sufficient condition for (23) to hold is

and for all . Therefore, let us

find sufficient conditions on the stepsizes and the combination

weights to ensure this condition.

Consider the requirement first. To eval-

uate , let us introduce the eigenvalue decomposition

. This immediately gives the eigenvalue

decomposition of :

(24)

where

Hence, noting that , we get the eigenvalue decom-

position of :

Since is a block diagonal unitary matrix, it follows from

Lemma 4.1b that

where is the th diagonal of . Therefore, we can see

that if, and only if,

(25)

where denotes the largest eigenvalue of . It is

well known that each condition for is a stability condition of

the LMS algorithm in the mean [28].

Let us next consider the requirement for all

. By the definition of the block maximum norm and the

triangle inequality, we have

Therefore, it suffices to find conditions under which

for all . Since

, this condition is equivalent to
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However, since the reverse inequality is always true, the condi-

tion to be satisfied is the following:

Obviously, this holds if and only if every is nonnegative;

otherwise we have

Moreover, is ensured if is a nonnegative

random variable. Hence, combining with ,

we conclude that is ensured if is a

convex combination for all and .

We summarize the above argument in the following:

Theorem 4.4 (Convergence): Under Assumptions 4.2 and

4.3, if every stepsize satisfies

and if all nodes use possibly random, time-varying convex

combinations at every time , then every local estimate

generated by the CTA diffusion LMS algorithm converges in

the mean to the unknown parameter , i.e., as

for all .

C. Stabilizing Effect

We derived from (23) one condition for the stability of the

diffusion LMS algorithm with adaptive combiners. We further

observe from (23) that cooperation via convex combination en-

hances stability in the mean. Since and every

convex combination satisfies , we have

The right hand side, which corresponds to the case of ,

represents the convergence rate of the diffusion LMS algorithm

without cooperation among the nodes. Therefore, every convex

combination has a stabilizing effect. The following is a remark

on our mean-transient analysis.

Remark 4.5: The convexity of the combination weights is a

weaker condition than those given earlier in [1] and [10] to en-

sure the stability in the mean. In the analyses of [1] and [10],

the stability was analyzed using the matrix 2-norm. However,

such an approach does not cover stability analysis for asym-

metric combination weights, such as the relative degree rule in

Table I, for which is not symmetric. In contrast, our current

analysis successfully covers asymmetric combination weights

thanks to the use of the block maximum norm.

V. MEAN-SQUARE TRANSIENT ANALYSIS

In this section, we analyze the mean-square performance

of the CTA diffusion LMS algorithm with adaptive combiners

using the energy conservation approach [9], [10], [23], [28],

[31]. In [10], the CTA diffusion LMS algorithm with static

combiners was analyzed. We generalize this analysis to the

case of adaptive combiners. However, the analysis for adap-

tive combiners is more challenging because of the randomly

evolving combination weights. To begin with, let us introduce

mathematical tools useful for evaluating vectors and matrices

with block structures.

A. Block Operations and Weighted Norm

Given an block matrix

...
. . .

...

with blocks , the block vectorization operator

bvec is defined as follows [29], [30]. After vectorizing each

block via the standard vec operator, say

is obtained by stacking all ’s as follows:

Namely, the bvec operator converts a block matrix into a

column vector of length in this fashion. When

is given, we also write to recover the

original block matrix from the vector .

The block Kronecker product of two block ma-

trices and , denoted by , is defined as the block matrix

whose th block is given by the matrix

...
. . .

...

where denotes the standard Kronecker product. As a result,

becomes an block matrix. There are

useful formulas for these block operations.

Fact 5.1: For any complex matrices , and of appro-

priate sizes, the following hold:

a) ;

b) .

Proof: These properties can be verified in a straightforward

manner; see, e.g., [29] and [30].

Finally, we define the weighted norm in a common way.

Given a vector and an

positive definite matrix , the weighted norm is

defined as

Note that this is a seminorm in general when is positive

semidefinite. For convenience, when is given,

we also write to represent .

B. Performance Measures

We first define the performance measures we analyze. At each

node and time , the mean square deviation (MSD), , and

the excess mean square error (EMSE), , are defined as:

(26)

respectively, where is called the a priori

error and the weight error vector is defined in (20). Av-
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eraging these quantities across the network, we introduce the

network MSD, , and the network EMSE, :

(27)

Tracking the above four performances can be dealt with in a

unified manner by studying the following weighted norm:

for suitably chosen matrices . For example,

choosing leads to the network MSD , while

the network EMSE is obtained by setting

under Assumption 4.2a, where is defined in (22). On the

other hand, the local MSD or the local EMSE can

be obtained by selecting

respectively. Thus, we analyze the behavior of the weighted

error . We first analyze the behavior for arbitrary

random combiners and then derive the performance of the

proposed combiner from Fig. 4.

C. Learning Behavior for General Adaptive Combiners

Let us start by transforming variables as follows. Using the

block unitary matrix given in (24), we introduce the following

change of variables:

Note that tracking is done by tracking the transformed

weighted error for an arbitrary weighting

matrix because . Under this trans-

formation, the matrix becomes the diagonal matrix

given in (24). This will help us calculate moments in what fol-

lows.

Premultiplying (21) by and noting that , we

get

Furthermore, evaluating the weighted norms on both sides with

an arbitrary weighting matrix and then taking expectations

under Assumption 4.2b, we obtain

(28)

where is the random matrix defined as

The second term of (28) can be evaluated as follows. Letting

and noting that is block diagonal, we have

where the last equality follows from the fact that and

are all diagonal. Hence, (28) leads to

In general, this recursion is mathematically intractable due to

the random, time-varying weighting matrix on the right-hand

side. However, using Assumption 4.3 again, becomes inde-

pendent of . Namely, can be replaced by its expectation

, and, hence we have

To proceed further, let us convert into and

rewrite this recursion using the equivalent notation in-

stead of . Using Lemma 5.1 to express and

with , we have

(29)

where

(30)

Fortunately, in the case where the regressors are circular

Gaussian, by the Gaussian factorization theorem [28], the fourth

order moment can be expressed in closed form as follows

[10]:

(31)

where and for complex regressors and

for real regressors. However, in our analysis, we do not
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assume that are circular Gaussian but just assume that

is known.

Now, iterating (29) and using the fact that every node sets the

initial estimate to , we have

...

where . Summing up these equations, we get

Hence, we finally obtain the following recursion for the

weighted error:

,

(32)

This is a generalization of the result in [10]. Using the ma-

trices mentioned in the previous subsection and setting

, we can obtain the performance of any adaptive

combiner, provided that the matrix involving the moment of

the combination matrix is known for every . Unfortunately,

it is impossible to derive without knowing the update rule of

adaptive combiners. Therefore, we continue the analysis for the

proposed adaptive combiner. We first summarize the above ar-

gument for general combiners.

Theorem 5.2 (Learning Curves for Adaptive Com-

biners): Suppose that Assumptions 4.2 and 4.3 hold. Let

and , where is ob-

tained from the eigenvalue decomposition . Then,

the network MSD, , and the network EMSE, , evolve

according to

with initial conditions and

, respectively. Here, is defined in (30),

, and the matrices and are recursively cal-

culated as in (32) using the matrix defined in (30). Similarly,

the local MSD and EMSE at node evolve according to

with initial conditions and

, respectively, and where the vectors and are

given by

Remark: If the regressors are circular Gaussian, the fourth

order moment in (30) can be calculated as in (31).

D. Learning Behavior of the Proposed Combiner

Let us now perform the evaluation of for the proposed

combiner with the normalized stepsize (18). In view of (30),

it suffices to evaluate the time-varying moment .

However, this is challenging because the combination matrix

and the local estimates are mutually dependent. However,

we tackle this problem by utilizing approximations.

To begin with, let us rewrite (16) and (18) as expressions in

terms of by eliminating . By the definition of (see

(6)), it can be verified that

and that , where . Hence,

multiplying (16) from left by and noting that

, we see that evolves according to

(33)

These equations show that the combination weight matrix

depends on the quadratic form of and, hence, the mo-

ment involves fourth order quantities of ,

which is difficult to evaluate. To overcome this difficulty, let us

assume the following:

Assumption 5.3: The mean vector evolves according to

the system that is obtained by replacing the random variables in

(33) with their expectations, that is,

(34)

Moreover, we use .
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Although this assumption is unrealistic, is guaranteed

to satisfy at least the constraints and

for . Since can be calculated by

(35)

the remaining task is to calculate the moment . To calculate

the th component of , which is given by

we employ the following assumption:

Assumption 5.4: For each time , the a priori error

is spatially independent and independent of the re-

gressor . Furthermore, we use the approximation

.

The independence between and is a common as-

sumption in the analysis of adaptive filters [28], [31]. Now, by

using the approximation , it follows from (17)

that

where the second equality follows from the data model

. This gives, under Assumption 5.4,

that

Also, the spatial independence of the regressors yields

for . Therefore, can be approximated by

(36)

Combining this approximation and Theorem 5.2, we can track

the mean-square performance of the CTA diffusion LMS with

the proposed combiners. The following is the summary of the

performance evaluation for the proposed combiner:

Theorem 5.5 (Learning Curves for the Proposed Combiner):

Under Assumptions 4.2, 4.3, 5.3 and 5.4, the mean-square

performance of the CTA diffusion LMS algorithm with the

proposed combiner can be evaluated as follows. For each

, initialize as in Theorem 5.2 and set

, where is the initial combination weight

vector. Then, repeat the following for every :

1) calculate via (36);

2) for each , update via (34);

3) calculate via (35) to approximate in (30) by

4) use to update and in Theorem 5.2 and then update

every local EMSE and the other performances.

E. Steady-State Mean-Square Performance

Let us now evaluate the steady-state MSD and EMSE, which

are defined as the limits of and , respectively. One pos-

sible way is to calculate and iteratively according to

Theorem 5.5 until they converge. However, this may take a long

time and does not clarify the relation between the parameters

and the steady-state performance. Thus, we seek closed form

expressions for the steady-state performance.

Now, let us return to (29). In view of this, if the matrix can

be approximated by some constant matrix , then we would

have

Evaluating this equation at the limit, we get

or

Hence, replacing the free parameter by , we

get

(37)

This provides the steady-state mean-square performance by

choosing as before. Therefore, let us find a good approxima-

tion for .

Recall that the time-dependent factor of is . We

approximate this by using defined in (36). In view of (36),

if every local EMSE is sufficiently small, then by ignoring

we have a reasonable approximation. Namely, we assume that

for sufficiently large . Moreover, comparing (34) with the orig-

inal algorithm (14) and the optimal solution (9), we assume that

converges to

(38)

Finally, letting

and approximating by , we

obtain the following approximation:

(39)

The use of this approximation with (37) leads to the following

result.
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Theorem 5.7 (Steady-State Mean-Square Performance):

Suppose that converges to defined in (38) and the

matrix defined in (39) is such that is nonsingular.

Then, the steady-state network MSD, , and the steady-state

network EMSE, , are approximately given as follows:

where and are defined as in Theorem 5.2. Similarly, the

steady-state MSD, , and the steady-state EMSE, , of node

are approximately given as follows:

where and are also defined as in Theorem 5.2.

Remark 5.7: Although we focused on the analysis of CTA

diffusion, the analysis of ATC version can be done in a similar

way. In [14], performance analysis of more general CTA and

ATC diffusion LMS algorithms equipped with static combiners

has been done.

VI. SIMULATION RESULTS

In this section, we show the performance of the proposed

adaptive combiner and compare our performance analysis with

experiments.

A. Performance Comparison

We consider two simulation scenarios, say Examples 1 and 2,

over different network topologies. In both examples, we com-

pare the CTA and ATC diffusion LMS algorithms with the fol-

lowing combiners: i) the proposed adaptive combiner, ii) the

static combiners shown in Table I, and iii) the adaptive com-

biner based on convex combination of two adaptive filters (see

for details [8]). We also compare these diffusion algorithms with

the incremental LMS algorithm, which cycles estimates along a

predefined cyclic path (see [9] for details).

In Example 1, we consider a network topology with

nodes shown in Fig. 5. The unknown vector is set to

. Both the regressors and the noise are zero-

mean Gaussian, i.i.d. in time and independent in space. Their

statistics are shown in Fig. 5. The stepsize of the LMS algo-

rithm used at each node is set to , except for the in-

cremental LMS algorithm. For the incremental LMS algorithm,

the stepsize is set to because the incremental

LMS algorithm uses the LMS-type iterations times for every

[9]. For the proposed combiner, is set to for

every and the normalized stepsize rule (18) with and

is used.

Fig. 6(a) and (b) shows the learning behavior of each algo-

rithm in terms of the network MSD, which is defined in (27).

The expectation is calculated by averaging 200 independent ex-

periments. We observe that the proposed algorithm outperforms

the other algorithms at the steady-state, although the conver-

gence speed is a little slower than the others. On the other hand,

Fig. 6(c) and (d) shows the steady-state MSD at each node,

which is obtained by averaging the last 100 samples after a suf-

ficient number of iterations. From Fig. 6, we find out that the

ATC diffusion LMS algorithms outperform the CTA versions.

Fig. 5. Network settings for Example 1: topology with � � �� nodes and 35
links (top), regressor statistics (bottom left) and noise variances (bottom right).
In the incremental LMS algorithm, we used the following cyclic path: �� ��

�� �� �� �� ��� ��� ��� ��� ��� 	� 
� ��� ��

�.

Fig. 6. Performance results for Example 1. (a) and (b): Learning curves of net-
work MSD. (c) and (d): Steady-state MSD. (a) CTA; (b) ATC; (c) CTA; and (d)
ATC.

To see why the algorithm is robust, we show in Fig. 7 the

relation between the combination weights of the CTA diffu-

sion algorithms at the steady-state and the SNR for the CTA

diffusion algorithms. The SNR at node was calculated by

. We omit the results for ATC ver-

sions because no significant difference was observed between

the weights of CTA and ATC diffusion algorithms. In our adap-

tive combiner, every neighbor of node 5 successfully puts a

small weight on node 5, at which the SNR is relatively lower

than the others. The reverse situation is observed for node 10,

at which the SNR is relatively high. Such a successful control

leads to the robustness of our combiner.
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Fig. 7. Combination weights � ��� and � ��� of the CTA diffusion algo-
rithms at steady-state in Example 1. The result for the ATC versions is omitted
because almost the same results were observed.

Fig. 8. Network settings for Example 2: topology with � � �� nodes and 16
links (top), regressor statistics (bottom left) and noise variances (bottom right).
In this topology, there exists no cycle graph.

In Example 2, we show results in a topology where the

number of links is less than that of Example 1 (see Fig. 8).

There are 16 links in Example 2, while 35 links in Example

1. Since there exists no cyclic path in this topology, the in-

cremental LMS algorithm is not implementable. However,

assuming that there exists a cyclic path of the same ordering

as Example 1, we show its performance as a benchmark. The

other parameters are the same as Example 1.

Figs. 9 and 10 show the MSD performance and the combi-

nation weights for nodes 3 and 11, respectively. We see that

the performance improvement of the diffusion algorithms ex-

cept for the proposed algorithm is not as significant as those

Fig. 9. Performance results for Example 2. (a) and (b): Learning curves of net-
work MSD. (c) and (d): Steady-state MSD. (a) CTA; (b) ATC; (c) CTA; and (d)
ATC.

Fig. 10. Combination weights � ��� and � ��� of the CTA diffusion algo-
rithms at steady-state in Example 2. The result for the ATC versions is omitted
because almost the same results were observed.

in Example 1. This is because the number of links is less than

that of Example 1, which results in the limitation in cooperation

between the nodes. However, our algorithm still achieves good

performance in this example thanks to the successful control

of the combination weights (see Fig. 10). Therefore, the pro-

posed algorithm is robust against the network topology as well

as against the spatial variation of node profile.

B. Performance Analysis: Theory Versus Experiments

Let us now examine the theoretical performance for the CTA

diffusion LMS algorithm with the proposed adaptive combiners.
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Fig. 11. Learning curves of the CTA diffusion LMS algorithm with the pro-
posed adaptive combiners: theory versus experiments. (a) and (b): Network
MSD and EMSE. (c) and (d): Local MSD. The theoretical curves were gen-
erated by Theorem 5.5. (a) Example 1; (b) Example 2; (c) Example 1; and (d)
Example 2.

We consider the same networks and statistics as Examples 1 and

2 (see Figs. 5 and 8). The unknown vector and the stepsize of

LMS algorithm at each node are again set to and

. For the adaptive combiner, is set to

for every and the normalized stepsize rule (18) with

and is used. All results are obtained by averaging 200

independent experiments.

Fig. 11 compares the learning curves for Examples 1 and 2

obtained by Theorem 5.5 and experiments in terms of the net-

work MSD, network EMSE, and local MSD. We can see a close

agreement between Theorem 5.5 and experiments, although the

theoretical performance curves are slightly lower than the exper-

imental performance curves. Also, we observe a large difference

for node 1 in Example 2.

On the other hand, Fig. 12 compares the steady-state per-

formances of experiments with Theorems 5.5 and 5.6. The

steady-state performance in Theorem 5.5 was calculated as a

limit of its learning curve, while Theorem 5.5 uses the closed

form expressions. We observe that our theory at least captures

a trend of the steady-state performance, although a large dif-

ference is observed at those nodes that achieve low MSD or

EMSE. However, this is because the decibel scale emphasizes

errors in small values. In fact, the numerical errors are not

so different across the nodes. Therefore, after averaging the

performances, we get a close agreement between our theory

and experiments in terms of the network performance. Also,

compared to results for static combiners [10], we observe

larger errors because of the additional assumptions used in

our analysis for adaptive combiners.

Finally, we show the comparison of combination weights.

Fig. 13 shows the combination weights of nodes 3, 6, 10, and

11 at the steady-state for Examples 1 and 2. We can see that

both of Theorems 5.5 and 5.6 agree closely with the results of

experiments.

Fig. 12. Steady-state performance of the CTA diffusion LMS algorithm with
the proposed adaptive combiners: theory versus experiments. The theoretical
values were obtained by Theorems 5.5 and 5.6. Note that difference in small
values is emphasized because of the decibel (logarithmic) scale. (a) Example 1;
(b) Example 2; (c) Example 1; and (d) Example 2.

Fig. 13. Combination weights at steady-state: theory versus experiments. (a)
Example 1 and (b) Example 2.

VII. CONCLUSION

We proposed an efficient adaptive combination rule for dis-

tributed estimation over diffusion networks in a systematic way

by formulating the problem of controlling combination weights

as a minimum variance unbiased estimation problem. We

verified in numerical simulations that the diffusion least-mean

squares (LMS) algorithm with the proposed adaptive combiners

possesses robustness against the spatial variation of statistical

profile across the network. Although we focused on the LMS

algorithm as the adaptive filter module, combinations with

other adaptive filters are possible.

The mean-transient and mean-square performance analyses

of the diffusion LMS algorithm with the proposed combiner

were also done. In particular, we showed that any convex combi-

nation rule is stable in the mean even if the weights are random

and time-varying, which is remarkably useful for the design of

combination strategies.

APPENDIX

METRIC PROJECTION ONTO A HYPERPLANE

The metric projection onto a hyperplane plays an important

role in the derivation of the proposed algorithm; see Section III.

Here, let us derive the projection in a general form. Let be
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Fig. 14. Hyperplane � and the metric projection of � � � onto �.

a real Hilbert space1 with inner product and its induced

norm . Given a nonzero normal vector and a scalar

, a set

is called a hyperplane (see Fig. 14). It is known that for any

there exists a unique point that is closest to

among all points in , i.e.,

This is called the metric projection of onto [25], [26].

Fortunately, has a closed form expression. From Fig. 14, we

can see that is of the form

Using the condition , i.e., , we have

which gives the closed form expression of :

(40)

Equation (10) immediately follows from this formula by set-

ting to the -dimensional Euclidean space (with inner

product ) and .

The projection is also available to derive the optimal

solution in (9). Define the inner product on by

and induce the weighted

norm . Then, problem (8)

is equivalent to the following problem:

Hence, problem (8) is equivalent to finding a point in that

is closest to the origin in the sense of the norm .

Namely, the solution is obviously the projection of the origin

onto with respect to the norm . Indeed, noting

that can be represented in an equivalent form

1A complete inner product space over the real field is called a real Hilbert
space [25].

the solution is obtained from (40) by letting

and

.
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