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ABSTRACT

Recent research works on distributed adaptive networks have inten-

sively studied the case where the nodes estimate a common parame-

ter vector collaboratively. However, there are many applications that

are multitask-oriented in the sense that there are multiple parame-

ter vectors that need to be inferred simultaneously. In this paper,

we employ diffusion strategies to develop distributed algorithms that

address clustered multitask problems by minimizing an appropriate

mean-square error criterion with `2-regularization. Some results on

the mean-square stability and convergence of the algorithm are also

provided. Simulations are conducted to illustrate the theoretical find-

ings.

Index Terms— Multitask learning, distributed optimization,

diffusion strategy, collaborative processing, regularization

1. INTRODUCTION

Distributed adaptive learning is an attractive and challenging sub-

ject within the area of multi-agent networks. It leads to algorithms

that are able to continuously adapt and learn, and that are particu-

larly suitable for tracking concept drifts in the measured data. The

resulting distributed algorithms offer an important alternative to cen-

tralized solutions with advantages resulting from scalability, robust-

ness, and decentralization. Several useful distributed strategies for

online parameter estimation have been proposed in the literature,

including consensus strategies [1–3], incremental strategies [4–7],

and diffusion strategies [8–13]. Incremental techniques require the

determination of a cyclic path that runs across all nodes, which is

generally an NP-hard problem. Besides, incremental solutions are

sensitive to link failures. On the other hand, diffusion strategies

are attractive since they are scalable, robust, and enable continu-

ous adaptation and learning. In addition, for data processing over

adaptive networks, diffusion strategies have been shown to have su-

perior stability and performance ranges [14] than consensus-based

implementations. Accessible overviews of recent results on diffu-

sion adaptation can be found in [8, 9].

An inspection of the literature on distributed algorithms shows

that most existing works focus primarily, though not exclusively [15–

17], on the case where the nodes have to estimate a single param-

eter vector collaboratively. We refer to problems of this type as

single-task problems. However, many problems of interest happen

to be multitask-oriented in the sense that there are multiple param-

eter vectors to be inferred simultaneously and in a collaborative

manner. Multitask learning problems have been studied by the ma-

chine learning community in several contexts, including web page
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categorization [18], web-search ranking [19], disease progression

modeling [20], among other areas. Clearly, this concept is also

relevant in the context of estimation over adaptive networks. Initial

investigations along these lines for the traditional diffusion strategy

appear in [15, 21]. In this article, we consider the situation where

there are connected clusters of nodes, and each cluster has a param-

eter vector to estimate. The estimation still needs to be performed

cooperatively across the network because the data across the clusters

may be correlated and, therefore, cooperation across clusters can be

beneficial. The aim of this paper is to derive a diffusion strategy that

is able to solve the clustered multitask estimation problem, and to

provide analytical results for convergence in terms of mean weight

error and mean-square error.

Notation. Small letters x denote scalars, and boldface small

letters x denote column vectors. Boldface capital letters R represent

matrices, and the operator (·)> denotes matrix transposition. IN

denotes the N ⇥ N identity matrix. Nk denotes the neighbors of

node k, including k, whereas N�

k denotes the neighbors of node k,

excluding k. Ci is the cluster i, i.e., index set of nodes in the i-th
cluster. C(k) denotes the cluster to which node k belongs. Finally,

⌦ denotes the Kronecker product, and vec(·) stacks the columns of

a matrix on top of each other into a vector.

2. NETWORK MODEL AND PROBLEM FORMULATION

2.1. Clustered multitask network

Consider a connected network consisting of N nodes. The problem

is to estimate an L ⇥ 1 unknown vector at each node k from col-

lected data. Node k has access to time sequences {dk(n),xk(n)},

with dk(n) representing the reference signal, and xk(n) denot-

ing an L ⇥ 1 regression vector with covariance matrix Rx,k =
E{xk(n)x

>
k (n)} > 0. The data at node k are assumed to be

related via the linear model:

dk(n) = x
>

k (n)w
?
k + zk(n) (1)

where w?
k is an unknown parameter vector at node k, and zk(n) is

a zero-mean, i.i.d. noise that is independent of every other signal

and has variance �2
z,k. We assume that there are Q clusters and,

therefore, Q tasks to be performed. We also assume that the nodes

in the same cluster perform the same estimation task. The optimum

parameter vectors w?
k are constrained to be equal within each cluster,

but similarities between neighboring clusters are allowed to exist,

namely,

w
?
k = w

?
Cq

for 8k 2 Cq (2)

w
?
Cp

⇠ w
?
Cq

if Cp, Cq are connected (3)

where p and q denote two cluster indexes, and ⇠ represents a simi-

larity relationship in some sense. The reader is referred to Fig. 1(a)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5524



for an illustration showing a network with N = 15 nodes and Q = 3
clusters.

2.2. Problem formulation

Clustered multitask networks require that nodes in the same cluster

estimate the same coefficient vector. We associate a mean-square

error cost function, Jk(wC(k)), with each node k such that

Jk(wC(k)) = E
�

|dk(n)� x
>

k (n)wC(k)|
2 . (4)

In order to promote similarities among adjacent clusters, appropriate

regularization can be used. In this paper, we simply introduce the

squared `2-norm as a possible regularizer, namely,

∆(wC(k),wC(`)) = kwC(k) �wC(`)k
2. (5)

Combining (4) and (5) yields the following regularization problem

at the level of the entire network:

Jglob(wC1 , . . . ,wCQ
) =

N
P

k=1

E
�

|dk(n)� x
>

k (n)wC(k)|
2 

+
⌧

2

N
P

k=1

P

`∈Nk\C(k)

⇢k` kwC(k) �wC(`)k
2

(6)

where the second term on the RHS of expression (6) promotes simi-

larities between neighboring clusters, with non-negative strength pa-

rameter ⌧ and non-negative weights ⇢k`. We seek a distributed solu-

tion to (6). For that purpose, we first associate with the i-th cluster,

the following cost function

JCi
(wCi

) =
P

k∈Ci

E
�

|dk(n)� x
>

k (n)wC(k)|
2 

+
⌧

2

P

k∈Ci

P

`∈Nk\C(k)

(⇢k` + ⇢k`) kwC(k) �wC(`)k
2

(7)

Note that for given wC(`) with ` 2 Nk\C(k), the costs in (6) and (7)

have the same gradient vectors relative to wCi
. In order that each

node can solve the problem autonomously and adaptively using only

local interactions, we shall derive a distributed iterative algorithm

for solving (6) by considering (7) since both cost functions have the

same gradient information.

3. DISTRIBUTED ADAPTIVE ESTIMATION ALGORITHM

3.1. Local cost decomposition and problem relaxation

We first note that a steepest-descent solution that is based on (7)

will require every node in the network to have access to the statis-

tical second-order moments of the data over its cluster. There are

two problems with this scenario. First, nodes can only have access

to information from their immediate neighborhood and the cluster

of every node k may include nodes that are not direct neighbors of

k. Second, nodes rarely have access to the data statistical moments;

instead, they have access to data generated from distributions with

these moments. Therefore, more is needed to enable a distributed

solution that relies solely on local interactions within neighborhoods

and that relies on measured data as opposed to statistical moments.

To derive a distributed algorithm, we follow the approach of [9, 11].

The first step in this approach is to show how to express the cost (7)

in terms of other local costs that only depend on data from neighbor-

hoods.

We start by introducing an N⇥N right stochastic matrix C with

non-negative entries c`k such that

N
P

k=1

c`k = 1, and c`k = 0 if k /2 N` \ C(`). (8)

With these coefficients, we associate a local cost function of the fol-

lowing form with each node k:

J loc
k (wC(k)) =

P

`∈Nk∩C(k)

c`kE
�

|d`(n)� x
>

` (n)wC(k)|
2 

(9)

In (9), note that wC(k) = wC(`) because ` 2 C(k). To make the no-

tation simpler, we shall write wk instead of wC(k), and consequently

wk = w` for all ` 2 C(k). To take interactions among neighbor-

ing clusters into account, we modify (9) by associating a regularized

local cost function with node k of the following form

J loc
k (wk) =

P

`∈Nk∩C(k)

c`k E
�

|d`(n)� x
>

` (n)wk|
2 

+
⌧

2

P

`∈Nk\C(k)

(⇢k` + ⇢`k)kwk �w`k
2.

(10)

Observe that this local cost is now solely defined in terms of infor-

mation that is available to node k from its neighbors. It can then be

verified that the following relation between (10) and (7) holds:

JC(k)(wk) = J loc
k (wk) +

P

`∈C(k)\k

J loc
` (w`) (11)

Let wo
k denote the minimizer of the local cost (10), given w` for all

` 2 Nk\C(k). A completion-of-squares argument shows that, for

any k, the cost J loc
k (wk) can be expressed as

J loc
k (wk) = J loc

k (wo
k) + kwk �w

o
kk

2
Rk

(12)

where

Rk =
P

`∈Nk∩C(k)

c`k Rx,` +
⌧

2

P

`∈Nk\C(k)

(⇢k` + ⇢`k)IL. (13)

Substituting (12) into the second term on the RHS of (11), and dis-

carding the terms depending on wo
k since they are independent of the

optimization variables in the cluster, we can consider the following

equivalent alternative to (11) at node k:

JC(k)(wk) = J loc
k (wk) +

P

`∈C(k)\k

kw` �w
o
`k

2
R`

(14)

where it holds that wk = w` because ` 2 C(k). Therefore, the gra-

dient of (14) with respect to wk is equivalent to that of (7). However,

the second term of (14) still requires multi-hop information passing.

In order to avoid this situation, we relax (14) at node k by consider-

ing only information originating form its neighbors, i.e.,

JC(k)
0
(wk) = J loc

k (wk) +
P

`∈N−

k
∩C(k)

kwk �w
o
`k

2
R`

. (15)

Usually, the weighting matrices R` are unavailable. Following an

argument based on the Rayleigh-Ritz characterization of eigenval-

ues, a useful strategy is to replace each matrix R` by a weighted

multiple of the identity matrix, say, as

kwk �w
o
`k

2
R`

⇡ b`k kwk �w
o
`k

2
(16)

The coefficients b`k will be incorporated into a left stochastic matrix

to be defined and, therefore, the designer does not need to worry

about the selection of these coefficients at this stage [9]. Based on

the arguments presented so far, expression (15) can then be relaxed

to the following form:

JC(k)
00
(wk) =

P

`∈Nk∩C(k)

c`k E
�

|d`(n)� x
>

` (n)wk|
2 

+
⌧

2

P

`∈Nk\C(k)

(⇢k` + ⇢`k) kwk �w`k
2 +

P

`∈N−

k
∩C(k)

b`kkwk �w
o
`k

2.

(17)

We now use (17) to derive distributed strategies.
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3.2. Stochastic approximation algorithm

Let wk(n) denote the estimate for wk at iteration n. Using a con-

stant step-size µ for each node, the update relation with an instan-

taneous approximation for the gradient vector, takes the following

form:

wk(n+ 1) =wk(n)� µ
P

`∈Nk∩C(k)

c`k(x`(n)
>
wk(n)� d`(n))

� µ ⌧
P

`∈Nk\C(k)

⇢k` + ⇢`k

2
(wk(n)�w`(n))

� µ
P

`∈N−

k
∩C(k)

b`k (wk(n)�w
o
`)

(18)

Among other possible forms, expression (18) can be evaluated in

two successive update steps:

ψk(n+ 1) = wk(n)� µ
h

P

`∈Nk∩C(k)

c`k(x`(n)
>
wk(n)� d`(n))

+ ⌧
P

`∈Nk\C(k)

⇢k` + ⇢`k

2
(wk(n)�w`(n))

i

(19)

wk(n+ 1) = ψk(n+ 1) + µ
X

`2N
−

k
\C(k)

b`k (wo
` �wk(n)) (20)

Following the same line of reasoning from [9] in the single-task case,

we use ψ`(n + 1) as a local estimate for wo
` in (20), and replace

wk(n) by ψk(n+ 1). Step (20) then becomes

wk(n+1) =
⇣

1�µ
P

`∈N−

k
∩C(k)

b`k
⌘

ψk(n+1)+µ
X

`2N
−

k
\C(k)

b`k ψ`(n+1).

(21)

The coefficients in the above relation can be redefined as:

akk , 1� µ
P

`∈N−

k
∩C(k)

b`k

a`k , µ b`k, ` 2 N�

k \ C(k)

a`k , 0, ` /2 Nk \ C(k)

(22)

Let A be a left-stochastic matrix with (`, k)-th entry a`k. With this

notation, we arrive at the following adapt-then-combine (ATC) dif-

fusion strategy for solving problem (6):
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ψk(n+ 1)=wk(n)+µ
P

`∈Nk∩C(k)

c`k[d`(n)�x
>

` (n)wk(n)]x`(n)

+ ⌧
P

`∈Nk\C(k)

⇢k` + ⇢`k

2
(w`(n)�wk(n))

wk(n+ 1)=
P

`∈Nk∩C(k)

a`k ψk(n+ 1)

(23)

4. NETWORK PERFORMANCE ANALYSIS

In this section we examine the convergence properties and network

performance of the adaptive diffusion strategy (23). Let us denote

by w(n) and w? the block weight estimate vector and the block

optimum weight vector, respectively, both of size L⇥ 1, i.e.,

w(n) = (w>

1 (n), . . . ,w
>

N (n))> (24)

w
? = (w?>

1 , . . . ,w?>
N )> (25)

with w?
k = w?

C(k). Define the weight error vector by

v(n) = w(n)�w
?

(26)

Introduce the block diagonal matrix H = diag {R1, . . . ,RN} with

Rk =
X

`2Nk\C(k)

c`k Rx,`, (27)

and let P be the matrix with (k, `)-th entry ⇢k`. Introduce also the

block matrix

Q =
1

2

h

diag{(P + P
>)1}� (P + P

>)
i

⌦ IL. (28)

and

B = (A⌦ IL)
> [ILN � µ(H + ⌧Q)] (29)

r = (A⌦ IL)
>
Qw

?
(30)

G = (A⌦IL)
>
C

>

I diag{�2
z,1Rx,1, . . . ,�

2
z,NRx,N}CI(A⌦IL)

(31)

with CI = C ⌦ I . Assume that the step-size µ is sufficiently small

such that higher-order powers of µ can be neglected and let

K = B
> ⌦B

>. (32)

With these matrices and vectors, we have the following results (proofs

are omitted due to space constraints).

Theorem 1 (Stability in the mean) Assume data model (1) and that

the regression data xk(n) is temporally white and independent over

space. Then, for any initial condition, the diffusion multitask strat-

egy (23) asymptotically converges in the mean if the step-size is cho-

sen to satisfy

0 < µ <
2

maxk{�max(Rk)}+ 2⌧ maxk{Qkk}
(33)

where �max(·) denotes the maximum eigenvalue of the matrix argue-

ment. In addition, we have

lim
n!1

E{v(n)} = µ⌧(B � ILN )�1
r. (34)

Theorem 2 (Mean-square stability) Assume conditions in Theo-

rem 1 hold. Then, the diffusion multitask strategy (23) is mean-

square stable if the matrix K is stable, which is guaranteed by

sufficiently small step-sizes that also satisfy (33).

Theorem 3 (Transient MSD) Considering a sufficiently small step-

size µ that ensures mean and mean-square stability, the network

MSD learning curve, defined by ⇣(n) = 1
N
E{kv(n)k}2, evolves

according to the following recursions for n � 0:

⇣(n+ 1) = ⇣(n) +
1

N

⇣

µ2
vec(G>)> K

n
vec(ILN )

� E{kv(0)k2(I
(NL)2

�K)Knvec(ILN )}+ µ2
⌧
2krk2Knvec(ILN )

� 2µ⌧ (Γ(n) +
h

(BE{v(n)})> ⌦ r
>
i

vec(ILN )
⌘

Γ(n+ 1) = Γ(n)K +
h

(BE{v(n)})> ⌦ r
>
i

(K � I(LN)2)

(35)

with initial condition ⇣(0) = 1
N
kv(0)k2 and Γ(0) = 0(LN)2 .

Theorem 4 (Steady-state MSD) If convergence is achieved, then the

steady-state MSD for the diffusion network (23) is given by

⇣
⇤=
h

µ2
vec(G>)>�2µ⌧((BE{v(1)})> ⌦ r

>)
i

�
o+µ2

⌧
2krk2

σ
o

(36)

where �o = 1
N
(I(LN)2 �K)�1vec(ILN ) and E{v(1)} is deter-

mined by expression (34).
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5. SIMULATIONS

5.1. Model validation

In this subsection we provide an illustrative example to show how

the algorithm converges, and to illustrate theoretical models. We

consider a network consisting of 15 nodes with connection and clus-

ter structures shown in Fig. 1(a). The parameter vectors to be es-

timated in each cluster are w?
C1

= (0.5238,�0.4008)>, w?
C2

=

(0.5065,�0.3965)> and w?
C3

= (0.4963,�0.3855)> respectively.

Inputs x(n) were zero-mean 2 ⇥ 1 random vectors governed by a

Gaussian distribution with covariance matrix Rx,k = �2
x,kIL. The

noises zk(n) were i.i.d. zero-mean Gaussian random variables, in-

dependent of any other signal with variances �2
z,k. Variances �2

x,k

and �2
z,k used in this experiment are depicted in Fig. 1(b). Denoting

the set cardinality by | · |, regularization weights ⇢k` were uniformly

chosen as ⇢k` = |Nk\C(k)|
�1 for ` 2 Nk\C(k). We considered

the diffusion algorithm with measurement diffusion governed by an

identity matrix C = IN , and a uniform combination matrix A such

that a`k = |Nk\C(k)|�1 for ` 2 Nk\C(k). The algorithm was run

with different step sizes and regularization parameters (µ, ⌧) such as

(0.01, 0.1), (0.03, 0.1) and (0.01, 1). Simulation results were ob-

tained by averaging 100 Monte-Carlo runs. Transient MSD curves

were obtained by (35). Steady-state MSD values were obtained by

expression (36). Fig. 1(c) shows the evolutions of MSD and confirms

theoretical analysis.

5.2. Multi-target localization

In this subsection we address an application of the problem of multi-

target localization. Existing localization methods based on the diffu-

sion strategy assume point targets [9]. However, in some situations,

several distinct targets should be located. In this simulation, the ob-

jective is to estimate coordinates of three nearby targets as shown in

Fig. 2(a) by a network composed by 120 nodes, with approximately

20 distance units away from targets. Each node randomly selected

a target i 2 {1, 2, 3, 4}. Nodes that selected the same target belong

to the same cluster. The network connectivity and cluster structures

are illustrated in Fig. 2(b). Noise standard deviations were set to

�↵,k = 0.1, ��,k = 0.01 and �v,k = 0.3 (refer to [9] for the inter-

pretation of these parameters). The proposed algorithm was run on

each node with C = IN , a`k = |Nk \ C(k)|�1 for ` 2 Nk \ C(k),
and ⇢k` = |Nk\C(k)|

�1 for ` 2 Nk\C(k). The step size was set to

µ = 0.1. The regularization strength was set to ⌧ = 0.01. If each

node is considered as a cluster, then algorithm (23) becomes a spa-

tially regularized LMS, which was tested with the same parameter

setting as the proposed algorithm. Non-cooperative LMS was also

tested. MSD evolution curves were obtained by averaging over 100

Monte Carlo runs, as shown in Fig. 2(c). The benefit of cooperating

and clustering is evidently illustrated.

6. CONCLUSION AND PERSPECTIVES

In this paper we derived a diffusion adaptation strategy for regular-

ized learning over clustered multitask networks, and provided some

convergence properties of the algorithm. However it can be seen that

due to the summation over all nodes by (6), the problem inevitably

leads to a symmetric regularization between pairs of nodes despite

the fact that ⇢k` 6= ⇢`k. In order to benefit from additional flexi-

bility, we will study the asymmetric regularized learning multitask

problem in future work.
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