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Abstract

Motivation: Single-cell technologies have recently gained popularity in cellular differentiation stud-

ies regarding their ability to resolve potential heterogeneities in cell populations. Analyzing such

high-dimensional single-cell data has its own statistical and computational challenges. Popular multi-

variate approaches are based on data normalization, followed by dimension reduction and clustering

to identify subgroups. However, in the case of cellular differentiation, we would not expect clear clus-

ters to be present but instead expect the cells to follow continuous branching lineages.

Results: Here, we propose the use of diffusion maps to deal with the problem of defining differenti-

ation trajectories. We adapt this method to single-cell data by adequate choice of kernel width and

inclusion of uncertainties or missing measurement values, which enables the establishment of a

pseudotemporal ordering of single cells in a high-dimensional gene expression space. We expect

this output to reflect cell differentiation trajectories, where the data originates from intrinsic

diffusion-like dynamics. Starting from a pluripotent stage, cells move smoothly within the tran-

scriptional landscape towards more differentiated states with some stochasticity along their path.

We demonstrate the robustness of our method with respect to extrinsic noise (e.g. measurement

noise) and sampling density heterogeneities on simulated toy data as well as two single-cell

quantitative polymerase chain reaction datasets (i.e. mouse haematopoietic stem cells and mouse

embryonic stem cells) and an RNA-Seq data of human pre-implantation embryos. We show that

diffusion maps perform considerably better than Principal Component Analysis and are advanta-

geous over other techniques for non-linear dimension reduction such as t-distributed Stochastic

Neighbour Embedding for preserving the global structures and pseudotemporal ordering of cells.

Availability and implementation: The Matlab implementation of diffusion maps for single-cell data

is available at https://www.helmholtz-muenchen.de/icb/single-cell-diffusion-map.

Contact: fbuettner.phys@gmail.com, fabian.theis@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advantages of single-cell measurements to various biological re-

search fields have become obvious in recent years. One example is

the stem cell studies for which population measurements fail to

reveal the properties of the heterogeneous population of cells at vari-

ous stages of development. Purifying for a certain cell type or syn-

chronizing cells is experimentally challenging. Moreover, stem cell

populations that have been functionally characterized often show

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2989

Bioinformatics, 31(18), 2015, 2989–2998

doi: 10.1093/bioinformatics/btv325

Advance Access Publication Date: 21 May 2015

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/18/2989/241305 by guest on 20 August 2022

https://www.helmholtz-muenchen.de/icb/single-cell-diffusion-map
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv325/-/DC1
http://www.oxfordjournals.org/


heterogeneity in their cellular and molecular properties (Dykstra

et al., 2007; Huang, 2009; Stingl et al., 2006). To overcome these

barriers, on the one hand researchers conduct continuous single-cell

observation using time-lapse microscopy (Park et al., 2014; Rieger

et al., 2009; Schroeder, 2011), accompanied by single-cell tracking

and analysis tools. However, this approach is still limited as the ex-

pression of very few genes (typically one to three) could be observed.

On the other hand, with the advent of new technologies, such as sin-

gle-cell qPCR (Wilhelm and Pingoud, 2003) or RNA-Seq (Chu and

Corey, 2012) and flow or mass cytometry (Bandura et al., 2009;

Chattopadhyay et al., 2006), it is now possible to measure hundreds

to thousands of genes from thousands of single cells at different spe-

cific experimental time points (time-course experiments). However,

several single cells measured at the same experimental time point

may be at different developmental stages. Therefore, there is a need

for computational methods which resolve the hidden temporal order

that reflects the ordering of developmental stages of differentiating

cells.

While differentiation has to be regarded as a non-linear continu-

ous process (Bendall et al., 2014; Buettner and Theis, 2012), stand-

ard methods used for the analysis of high-dimensional gene

expression data are either based on linear methods such as principal

component analysis (PCA) and independent components analysis

(ICA) [e.g. used as part of the monocle algorithm (Trapnell et al.,

2014)] or they use clustering techniques that groups cells according

to specific properties. Hierarchical clustering methods as used in

SPADE (Qiu et al., 2011) and t-SNE (Van der Maaten and Hinton,

2008) as used in viSNE (Amir et al., 2013) are examples of cluster-

ing methods. However, as these methods are designed to detect dis-

crete subpopulations, they usually do not preserve the continuous

trajectories of differentiation data. A more recently proposed

algorithm Wanderlust (Bendall et al., 2014) incorporates the non-

linearity and continuity concepts but provides a pseudotemporal

ordering of cells only if the data comprise a single branch.

Furthermore, in gene expression measurement techniques, there is

usually a detection limit at which lower expression levels and non-

expressed genes are all reported at the same value. Buettner et al.

(2014) suggested the use of a censoring noise model for PCA,

whereas for the other methods it is unclear how these uncertain or

missing values are to be treated. A variety of other manifold learning

methods including (Hessian) locally linear embedding (HLLE)

(Donoho and Grimes, 2003) and Isomap (Tenenbaum et al., 2000)

exist in the machine-learning community and are discussed in detail

in the discussion and conclusion section.

Here, we propose diffusion maps (Coifman et al., 2005) as a tool

for analyzing single-cell differentiation data. Diffusion maps use a

distance metric (usually referred to as diffusion distance) conceptu-

ally relevant to how differentiation data is generated biologically, as

cells follow noisy diffusion-like dynamics in the course of taking sev-

eral differentiation lineage paths. Diffusion maps preserve the non-

linear structure of data as a continuum and are robust to noise.

Furthermore, with density normalization, diffusion maps are resist-

ant to sampling density heterogeneities and can capture rare as well

as abundant populations. As a non-linear dimension-reduction tool,

diffusion maps can be applied on single-cell omics data to perform

dimension-reduction and ordering of cells along the differentiation

path in a single step, thus providing insight to the dynamics of differ-

entiation (or any other concept with continuous dynamics). In this

article, we

• propose an adaptation of diffusion maps for the analysis of

single-cell data which is less affected by sampling density

heterogeneities and addresses the issues relating to missing values

and uncertainties of measurement,
• propose a criterion for selecting the scale parameter in a diffusion

map,
• evaluate the performance of the diffusion map and its robustness

to noise and density heterogeneities using a toy model that

mimics the dynamics of differentiation,
• apply the adapted diffusion map algorithm to two typical qPCR

and one RNA-Seq datasets and show that it captures the differ-

entiation dynamics more accurately than other algorithms.

2 Methods

2.1 Diffusion maps
Let n be the number of cells and let G be the number of genes meas-

ured for each cell. Denote the set of all measured cells by X. We

allow each cell x to diffuse around its measured position x 2 RG

through an isotropic Gaussian wave function,

Yxðx0Þ ¼
2

pr2

� �1=4

exp � jjx
0 � xjj2

r2

 !
(1)

The normalization of Yxðx0Þ is such that
Ð1
�1 Y2

x ðx0Þdx0 ¼ 1. The

Gaussian width r2 determines the length scale over which each cell

can randomly diffuse. The transition probability from cell x to cell y

is then defined by the interference of the two wave functions Yx and

Yy. One can easily show that this interference product is another

Gaussian (all prefactors cancel out):

ð1
�1

Yxðx0ÞYyðx0Þdx0 ¼ exp � jjx� yjj2

2r2

 !
(2)

Hence, we can construct the n�n Markovian transition probability

matrix P for all pairs of cells in X as follows:

Pxy ¼
1

ZðxÞ exp � jjx� yjj2

2r2

 !
(3)

ZðxÞ ¼
X
y2X

exp � jjx� yjj2

2r2

 !
(4)

At the position of each cell, ZðxÞ is the partition function which pro-

vides an estimate of the number of neighbours of x in a certain vol-

ume defined by r. Hence, it can be interpreted as the density of cells

at that proximity. Consequently, we redefine the density normalized

transition probability matrix ~P as:

~Pxy ¼
1

~ZðxÞ

exp � jjx�yjj2
2r2

� �
ZðxÞZðyÞ ; ~Pxx ¼ 0 (5)

~ZðxÞ ¼
X

y2X=x

exp � jjx�yjj2
2r2

� �
ZðxÞZðyÞ (6)

Because we are only interested in the transition probabilities be-

tween cells and not the on-cell potentials imposed by local densities,

we set the diagonal of ~P to zero and exclude y ¼ x from the sum in

the partition function ~Z. For a large enough r, the matrix ~P defines

an ergodic Markovian diffusion process on the data and has n

ordered eigenvalues k0 ¼ 1 > k1�:::�kn�1 with corresponding right

eigenvectors w0:::wn�1.

The t-th power of ~P will present the transition probabilities be-

tween cells in a diffusion (random walk) process of length t. Noting
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that ~Pt has the same eigenvectors as ~P, one can show that this transi-

tion probability can be represented as follows:

~Pt
xy ¼

Xn�1

i¼0

kt
iwiðxÞwiðyÞ ~ZðyÞ (7)

Each row of ~Pt can be viewed as a vector, which we represent as

ptðx; �Þ and consider as the feature representation (Shawe-Taylor

and Cristianini, 2004) for each cell x. By computing the weighted L2

distance in the feature space, the diffusion distance D2
t between two

cells x and y is defined as follows:

D2
t ðx; yÞ ¼ jjptðx; �Þ � ptðy; �Þjj21= ~Z ¼

X
z

ð ~Pt
xz � ~Pt

yzÞ
2

~ZðzÞ
(8)

This diffusion distance can be expressed in terms of the eigenvectors

of ~P such that:

D2
t ðx; yÞ ¼

Xn�1

i¼1

k2t
i ðwiðxÞ � wiðyÞÞ

2 (9)

The corresponding eigenvector to the largest eigenvalue k0 is a con-

stant vector w0 ¼ 1. Therefore, it only contributes a zero term to D2
t

and is excluded from the spectral decomposition of D2
t in

Equation (9). That means the Euclidean distance of the cells in the

firstleigenvector space represents an approximation of their diffu-

sion distance D2
t . Moreover, the eigenvalues of ~P determine the dif-

fusion coefficients in the direction of the corresponding eigenvector.

As real data usually lie on a lower dimensional manifold than the en-

tire dimensions of space G, these diffusion coefficients drop to a

noise level other than a few first (l) prominent directions. Therefore,

if there is a significant gap between the l-th and ðl þ 1Þ-th eigen-

value, the sum up to the l-th term usually determines a good ap-

proximation for diffusion distances. Thus, for data visualization we

select these eigenvectors and instead of the mathematical notation

w, we call them diffusion components (DCs).

Figure 1 presents a summary of diffusion map embedding.

Each cell is represented by a Gaussian wave function in the G-

dimensional gene space. On an adequate Gaussian width, the wave

functions of neighbouring cells interfere with each other and form

the diffusion paths along the (non-linear) data manifold in the high-

dimensional space. Hence, we construct the Markovian transition

probability matrix, the elements of which are the transition proba-

bilities between all pairs of cells. The eigenfunctions of the

Markovian transition probability matrix (DC1 and DC2) are then

used for low-dimensional representation and visualization of data.

2.2 Accounting for missing and uncertain values
The data generated from qPCR, RNA-Seq or cytometry experiments

are very often prone to imperfections such as missing values or de-

tection limit thresholds. It is important to properly treat such uncer-

tainties of data (Buettner et al., 2014; McDavid et al., 2013). Our

probabilistic interpretation of diffusion maps allows a straightfor-

ward mechanism of handling missing and uncertain data measure-

ments. First, we have to decompose the kernel into G components.

Then, instead of a Gaussian, we can use any other wave function

that best represents our prior knowledge on the probability distribu-

tion of the missing or uncertain values, which then should be

square-normalized to ensure equal contribution of the G compo-

nents. For example, for missing values and non-detects (measure-

ments below the limit of detection), one might choose a uniform

distribution over the whole range of possible values.

In the following, we describe how to account for the uncertainty

of non-detect measurements in qPCR data. The statistical subtleties

of non-detect values in qPCR experiments have been systematically

studied by McDavid et al. (2013) for univariate models. In addition,

for a multivariate PCA analysis, Buettner et al. (2014) proposed that

different kernels be allowed in each dimension. For the diffusion

map implementation, we assume any value between the detection

limit (M0) and a completely non-expressed (off) state of genes valued

as M1, is equally possible for the non-detect measurements.

Considering the kernel width formulated in the diffusion map wave

functions, we assume an indicator wave function between M0 � r
and M1 þ r normalized by ðM1 �M0 þ 2rÞ�1=2. Thus, we have to

calculate three different kinds of interference of wave functions:

The interference of two cells with definite measured values for

gene g is the standard Gaussian kernel (see Section 2.1):

ð1
�1

Yxðx0gÞYyðx0gÞdx0g ¼ exp �ðxg � ygÞ2

2r2

 !
;

the interference of two cells both with non-detect values for gene g

is 1 (due to the square-normalization constraint):ð1
�1

Yxðx0gÞYyðx0gÞdx0g ¼ 1;

Fig. 1. Schematic overview of diffusion maps embedding. (A) The n � G matrix representation of single-cell data consisting of four different cell types. The last

column on the right side of the matrix (colour band) indicates the cell type for each cell. (B) Representation of each cell by a Gaussian in the G-dimensional gene

space. Diffusion paths (continuous paths with relatively high-probability density) form on the data manifold as a result of interference of the Gaussians. The

Probability density function is shown in the heat map. (C) The n � n Markovian transition probability matrix. (D) Data embedding on the first two eigenvectors of

the Markovian transition matrix (DC1 and DC2) which correspond to the largest diffusion coefficients of the data manifold. The embedding shows the continuous

flow of cells across four cell types; however, it does not suggest the putative time direction
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the interference of a missing (non-detect) value to a definite meas-

ured value xg is:

ð1
�1

Yxðx0gÞYyðx0gÞdx0g ¼

ðM1þr

M0�r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 �M0 þ 2r
p ð 2

pr2
Þ1=4exp �ðx0g � xgÞ2

r2

 !
dx0g

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 �M0 þ 2r
p pr2

8

� �1=4

� erfc
M0 � r� xg

r

� �
� erfc

M1 þ r� xg

r

� �� �
:

For data with missing or uncertain values, we need to check the pair-

wise interference of the wave functions for each gene. The computa-

tion time is thus proportional to the number of genes G for a fixed

number of cells n. Therefore, it might be preferable (especially in the

case of large G) to choose the wave function of the missing (or un-

certain) value also in the form of a Gaussian such that the multipli-

cation of the G components of interference can be expressed as the

sum of the exponents and the exponentiation step can be performed

only once at the end of the algorithm for computation of the transi-

tion matrix. An implementation of this fast version of the censoring

algorithm is also provided in the codes package. Supplementary

Figure S1 provides an illustration of our approach for accounting

for missing and uncertain values.

2.3 Determination of Gaussian kernel width
The parameter r in Equation (1) determines the scale at which we

visualize the data. If r is extremely small, most elements of the tran-

sition probability matrix ~P will tend to be zero and we do not get an

overall view of a connected graph structure. In fact, when r is too

small, the number of degenerate eigenvectors with eigenvalue equal

to one, indicates the number of disconnected segments that ~P defines

on the data. For too large r however, the transition probability sen-

sitivity on the distance between the cells blurs. There is a certain

range of r variations for which ~P defines an ergodic diffusion pro-

cess on the data as a connected graph and still the diffusion distances

between the cells are informative.

The un-normalized density at each cell (ZðxÞ in Equation (3)) is

proportional to the number of cells in a fixed volume in its neigh-

bourhood and depends on r. At scales of r close to zero, cells do not

have any neighbours and their average density is 1 (because of the 1s

on the diagonal of P). By increasing r, the average density gradually

increases as more cells find other cells in their neighbourhood. There

is a density saturation point where r reaches the system size and all

cells form part of one neighbourhood. At this point, for every cell

x 2 X, the density ZðxÞ will be equal to the entire system size n.

Assuming that the density gradient is not extremely sharp along

the data manifold, the number of neighbours of cell x in the neigh-

bourhood r will be proportional to the volume of a hypersphere of

radius r, hence:

ZðxÞ / rdðx;rÞ (10)

where dðx; rÞ is the dimensionality of data manifold at the position

of cell x and at the scale r. By differentiating both sides with respect

to log ðrÞ, we find that the average dimensionality of the manifold

can be estimated by the slope of the log–log plot of the number of

neighbours versus the length scale:

hdðrÞix ¼
@hlog ðZðxÞÞix

@log ðrÞ (11)

where we compute the average of log ðZðxÞÞ with consideration of

density heterogeneities such that:

hlog ðZðxÞÞix ¼

X
x

ðlog ðZðxÞÞ � ð1=ZðxÞÞÞX
x

ð1=ZðxÞÞ
(12)

It is worth noting that this average density underestimates the real

dimensionality of the structure due to the contribution of the cells

lying on the surface of the manifold. However, this does not affect

our heuristic since the variation of hdi is our main interest rather

than hdi itself.

Each time hdi reaches its maximum and starts to decrease, one

can deduce that an intrinsically lower dimensional structure is

emerging from the noise-enriched distributed cells in the original

high-dimensional space. Therefore several characteristic length

scales of the data manifold (i.e. width of its linear parts, radius of its

curves, etc.) give rise to several local maxima in hdi. Such character-

istic scales indeed make our choice for the Gaussian width r since

they indicate the scale at which the Euclidean distances used in the

Gaussian kernel are sensible in an assumed Euclidean tangent space

to the manifold. Although Euclidean distances are also valid for

smaller rs than the characteristic length scale, they are not recom-

mended because smaller kernel width would mean less connectivity

in the cells graph which in turn results in an increased sensitivity to

noise. Supplementary Figures S2 and S3 illustrate the resulting diffu-

sion map on optimal kernel width and several other kernel widths

values for a U-shaped toy data. Also the performance of diffusion

map at the optimal kernel width when there is no distinguishable

pattern in the data (e.g. normally distributed data in all dimensions

or sparse data) is illustrated in the Supplementary Figure S4.

2.4 Toy model for differentiation
As toggle switches are known to play a role in differentiation

branching processes (Orkin and Zon, 2008), we designed a regula-

tory network of three pairs of toggle genes to evaluate the perform-

ance of our method on a toy dataset that mimics a differentiation

tree (Krumsiek et al., 2011). Assuming a genetic regulatory module

as presented in Figure 2A, we simulated the stochastic differenti-

ation process by the Gillespie algorithm (Gillespie, 1977) with the

reactions as shown in Figure 2B and C (Strasser et al., 2012). More

details about the chemical reactions and the reaction rates used in

the Gillespie algorithm model can be found in the supplement

(Supplementary Figs S5A and B). Genes G1 and G2 are antagonistic

to each other through an inhibiting Hill function. Therefore, starting

from an initial undifferentiated state where G1 and G2 are both in a

very low expression level, single samples may end up in either of the

states where G1 or G2 is exclusively expressed. At this stage, the

next pair of toggle genes in the differentiation hierarchy is activated

(through an activating binding Hill function), which are again an-

tagonistic to each other. This model generates four different types of

fully differentiated cells in the six-dimensional space of genes.

To establish a steady state in the cell population, once a cell hits

the end of each branch, we remove it from the population and initi-

ate a new cell at the original undifferentiated state. This approach

maintains the population size of cells. After an extended simulation

run, the steady state of the population is established and resembles

the haemostatic state of (e.g. hematopoietic) stem cells in natural

organisms.

We sampled cells from this toy model in two different sets, a bal-

anced toy dataset, wherein 600 samples serve as a snapshot of the

steady state of the system with no additional extrinsic noise, and an
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imbalanced toy dataset, wherein 1800 sample are derived from a

non-steady-state density distribution with heavier sampling density

on the Gþ1 Gþ3 branch. We also added an extrinsic Gaussian noise

with a variance of 25% maximum expression to each gene. The

gene expression plot for a simulated single cell as it proceeds from

the initial pluripotent state to a fully differentiated state is presented

in the supplement (Supplementary Figs S5C and D).

2.5 Experimental data
2.5.1 qPCR data of mouse haematopoietic stem cells.

We calculated a diffusion map embedding for the haematopoietic

and progenitor stem cells dataset from Moignard et al. (2013). In this

experiment, 597 cells from five different haematopoietic cell types,

namely, haematopoietic stem cell (HSC), lymphoid-primed multipo-

tent progenitor (LMPP), megakaryocyte-erythroid progenitor

(PreMegE), common lymphoid progenitor (CLP) and granulocyte–

monocyte progenitor (GMP) were gated by Fluorescence-activated

cell sorting (FACS) sorting. Single-cell qPCR expression level meas-

urement was then performed for 24 genes. Housekeeping genes were

only used for cell-cycle normalization, where for each cell, all expres-

sion values were divided by the average expression of its housekeep-

ing genes. Furthermore we excluded the five housekeeping genes, as

well as c-Kit, which is a stem-cell receptor factor expressed on the

surface of all analyzed cells, from the diffusion map analysis.

2.5.2 qPCR data of mouse stem cells from zygote to blastocyst

To understand the earliest cell fate decision in a developing mouse

embryo, Guo et al. (2010) conducted a qPCR experiment for

48 genes in seven different developmental time points. The gene ex-

pression levels were normalized to the endogenous controls Actb

and Gapdh. The authors also identified four cell types, namely,

inner cell mass (ICM), trophectoderm (TE), primitive endoderm

(PE) and epiblast (EPI) using characteristic markers. The total num-

ber of single cells used in the diffusion map analysis was 429.

2.5.3 RNA-Seq of human preimplantation embryos

For the dataset published by Yan et al. (2013), RNA-Seq analysis

was performed on 90 individual cells from 20 oocytes and embryos.

The sequenced embryos were picked at seven crucial stages of pre-

implantation: metaphase II oocyte, zygote, 2-cell, 4-cell, 8-cell, mor-

ula and late blastocyst at the hatching stage.

3 Results

In this section, we evaluate the performance of the diffusion map on

each of the datasets described in the Methods section and compare it

to the performance of two other dimension-reduction methods PCA

and t-SNE. Data embeddings with several other methods including

ICA, SPADE, kernel-PCA (Schölkopf et al., 1998), isomap and

Hessian Locally linear embedding (HLLE) are provided in the

Supplementary Figures S16–S20.

3.1 Diffusion maps cope with high noise level and

sampling density heterogeneity for toy data
3.1.1 Gaussian width determination of the toy data

We demonstrate the heuristic determination of r on balanced and

imbalanced toy datasets. The average dimensionality of the structure

of some chosen characteristic length scale can be estimated by

Equation (11). Figure 3 shows the average dimensionality hdi for

balanced toy data (red) and imbalanced toy data (black) as a func-

tion of log ðrÞ. The balanced set exhibits two maxima. The first one

arises at the length scale of the thickness of the differentiation

branches which include only a few cells. At this r several subpopula-

tions form at the more densely populated stages of the steady state.

The second maximum appears at a larger length scale when several

subpopulations become visible to each other and the continuous

branches form. We picked the r at the second maximum for visual-

ization (data visualization at the first maximum is provided in the

Supplementary Fig. S6). For the imbalanced set, however, due to the

high noise level, the first maximum vanished and we only detected

one maximum which we then used for the visualization.

3.1.2 Performance of the diffusion map on the toy data as compared

to the other methods

Definition of diffusion distance (Equation (8)) based on probability

of transition between cells through several paths renders diffusion

maps very robust to noise. Figure 4 presents a comparison between

the performance of the diffusion map and the other two methods

PCA and t-SNE on the balanced toy dataset. The eigenvalues of the

diffusion map (Fig. 4D) suggest that there are four leading dimen-

sions that explain the data structure and the higher dimensions pre-

sent noise rather than the intrinsic structure of the data manifold.

The complete set of two-by-two projections up to the fourth eigen-

vector can be found in the supplementary Figure S7. PCA of this

dataset generated results that were similar to the diffusion map,

where all four branches of the data could be distinguished.

However, standard t-SNE did not preserve the data structure con-

tinuity. Visualization using t-SNE with non-standard perplexity val-

ues are also provided in the Supplementary Figure S8. To determine

how additional extrinsic noise and density heterogeneities affect

each method, we also applied the three methods on imbalanced toy

Fig. 2. (A) Toy model of a differentiation regulatory network consisting of three pairs of antagonistic genes simulated by the Gillespie algorithm. The arrows

show activation or inhibition interactions between genes. The toy model employs two classes of gene regulation: (B) Gi is connected to an inhibitor, its production

rate ai is proportional to a Hill function of the concentration of the inhibitor Proteini 0 (C) Gi is connected to an inhibitor Gi 0 and an activator Gi 00 , its production rate

ai is proportional to product of an inhibiting and an activating Hill function. The degradation rate c is constant for all proteins
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data (Fig. 5). The eigenvalues plot of the diffusion map in this figure

suggests the same order of significance for the third and fourth

eigenvectors as k4 almost equals k3 and that the higher order eigen-

functions mostly present noise. We chose two projections

(DC, DC2, and DC3) and (DC1, DC2, and DC4) for illustration

in Figure 5. The complete set of two-by-two projection can be found

in the Supplementary Figure S9. From Figure 5A, one can infer the

same size for all four branches of differentiation despite different

sampling densities. This figure also suggests that the diffusion map

clearly shows four branches of the imbalanced toy data, whereas

PCA and t-SNE produce noisier visualization and represent the two

rarer branches as smaller. For additional t-SNE visualizations with

non-standard perplexity values for the imbalanced toy data see

Supplementary Figure S10.

3.1.3 Refinement of the transition matrix by density normalization,

zero diagonal and accounting for missing values

In order to adapt the standard diffusion map algorithm to the prop-

erties of single-cell gene expression parameters, we refined the tran-

sition matrix in different ways. First, we set the diagonal of the

transition matrix to zero (Equation (5)) since the (non-zero version)

diagonal carries information about local sampling densities. Unlike

many other applications where the information about local densities

has some value, the sampling density in the context of single-cell

data is somewhat arbitrary (e.g. only specific cell types are moni-

tored, different proliferation rates in several stages of differentiation

alters the sampling density, outlier cells show lower density, etc.).

For a demonstration of how zero diagonal improves the quality of

the diffusion map see Supplementary Figure S11. Second, we refined

the Markovian transition matrix by density normalization

(Equation (5)) since the number of diffusion paths between two cells

depends on the density of cells connecting them and more densely

sampled regions of the data would seem to have smaller diffusion

distance to each other on a diffusion map without density

normalization. Supplementary Figure S12 demonstrates how density

normalization improves the quality of the diffusion map. The third

refinement that we used in our implementation of diffusion maps is

accounting for missing and non-detect values (Section 2.2).

Generally speaking as the proportion of missing and non-detect val-

ues increases, there is a decrease in the quality of the diffusion map.

However the magnitude of this effect depends highly on the archi-

tecture of the gene regulatory network and the role of the corres-

ponding gene in the network. For example, for a toggle switch, low

expression of a gene would always imply high expression of the

other gene. Therefore, increasing the detection threshold (i.e.

increasing number of non-detects) does not have a major influence

on the analysis, as the information is still present in the other gene

with high expression. We evaluate the performance of diffusion map

in several proportions of missing values for the balanced toy data in

Supplementary Figure S13.

3.2 Diffusion map allows identification of differentiation

trajectories on experimental data
3.2.1 Performance on haematopoietic stem cells qPCR data as

compared to the other methods

The diffusion map embedding for the haematopoietic stem cells

(Fig. 6A) indicates a major branching of HSCs to PreMegE and

LMPP cell types and a further branching of LMPPs to CLP and GMP

cells. The branching structures are less clear in the PCA plot (Fig. 6B).

Moreover, PCA produces artificial planes of data in the embedding

because of the non-detect measurements in the qPCR data. The t-SNE

plot (Fig. 6C) almost separated the cell types (except for LMPPs) into

different clusters. However, the notion of temporal progress is less

clear compared to the diffusion map embedding. In addition, since

uncertainties in the values of non-detects were not considered, a wid-

ening within the clusters is observed. Detailed visualization using the

three methods and the Gaussian width determination for diffusion

map embedding are provided in the Supplementary Figure S14. The

ordered eigenvalues plot for the diffusion map and PCA are shown in

Figures 6D and E. The ordered eigenvalues plot of the diffusion map

suggests that there is no clear separation between the eigenvectors of

the diffusion map that captures the intrinsic low-dimensional data

manifold and those characterizing noise for this dataset. However,

what makes the diffusion map embedding of this dataset more plaus-

ible is the concordance between the branching structure as suggested

by the diffusion map and the recently established hierarchy of haem-

atopoietic cell types (Arinobu et al., 2007; Moignard et al., 2013)

illustrated in Figure 6F.

3.2.2 Performance of the diffusion map on mouse embryonic stem

cells qPCR data as compared to the other methods

For the mouse embryonic stem cells, diffusion map visualization

using the first three eigenvectors indicated a branching at the early

Fig. 4. Visualization of the balanced toy data on (A) the first three eigenvectors of the diffusion map, (B) PCA and (C) t-SNE. The colours (heat map of blue to red)

indicate the maximum expression among all genes. Eigenvalues sorted in decreasing order for (D) diffusion map and (E) PCA

Fig. 3. The average dimensionality of the data hdi as a function of log10ðrÞ for

the balanced and imbalanced toy datasets
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16-cell stage to the ICM and TE cell types, and further branching of

the ICM at the late 32-cell stage into the EPI and PE (Fig. 7A). The

branching structure is unclear in the PCA and t-SNE plots (Figs 7B

and C). The ordered eigenvalues plot for the diffusion map and PCA

are shown in Figures 7D and 7E. The branching structure indicated

by the diffusion map is in agreement with the results of previous

studies on this dataset (Buettner and Theis, 2012; Guo et al., 2010),

which suggests a branching into the two cell types, ICM and TE,

after the 8-cell stage and further branching of the ICM into EPI and

PE cells (Fig. 7F). More information on Gaussian width determin-

ation and two-dimensional projections of data on each pair of the

first to fourth eigenvectors of the diffusion map are provided in the

Supplementary Figure S15.

3.2.3 Performance on human pre-implantation embryos RNA-Seq

data compared with other methods

The performance of the diffusion map on this RNA-Seq dataset is

comparable (although slightly sharper with respect to pseudotime

ordering) to the other two methods, PCA and t-SNE (Fig. 8). The

number of single cells measured in RNA-Seq is currently limited due

to high sequencing costs. A low number of sampled cells could not

meaningfully indicate a complex structure. Hence, PCA and t-SNE

performance is almost as good as that of the diffusion map.

However, with the expected development of new and cheaper RNA

sequencing technologies, we propose a diffusion map that could be

used as a powerful dimension-reduction tool the computation time

of which is only linear with respect to the number of genes.

4 Discussion and conclusion

In this manuscript, we have demonstrated the capabilities of diffu-

sion maps for the analysis of continuous dynamic processes, in par-

ticular, differentiation data in a toy dataset and a few experimental

datasets. Using a biologically relevant distance metric (i.e. diffusion

distance), the adapted diffusion map method outperforms other di-

mension-reduction methods in pseudotemporal ordering of cells

along the differentiation paths and could capture the expected dif-

ferentiation structure in all cases. Table 1 provides a general com-

parison of several dimension-reduction methods, detailing

capabilities and limitations in application to single-cell omics data.

Fig. 5. Visualization of the imbalanced toy data on (A) the first three eigenvectors of the diffusion map, (B) the first, second and fourth eigenvectors of the diffusion

map, (C) the first three components of the PCA (D) the first, second and fourth components of PCA and (E) t-SNE. The colours (heat map of blue to red) indicate

the maximum expression among all genes. Eigenvalues sorted in a decreasing order for (F) diffusion map and (G) PCA

Fig. 6. Visualization of haematopoietic stem cells data on the first three eigenvectors of (A) diffusion map, (B) PCA and (C) t-SNE. Eigenvalues sorted in a decreas-

ing order for (D) diffusion map and (E) PCA. (F) The hierarchy of haematopoietic cell types
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Among these methods, isomap and (H)LLE have not been applied

for the analysis of single-cell differentiation data and pseudotime

ordering so far, mainly because they do not meet the specific re-

quirements for the analysis of such data including capability to han-

dle high levels of technical noise, sampling density heterogeneities,

detection limits and missing values. Supplementary Figures S19 and

S20 in the supplement demonstrate the poor performance of these

methods for finding the differentiation manifold in presence of noise

and density heterogeneity for our toy dataset as well as the three ex-

perimental single-cell datasets. For any dataset, it is important to

consider the advantages and disadvantages of each method with re-

spect to the data properties and the purpose of the analysis, in order

to make a suitable choice for applying to that dataset.

In our diffusion maps implementation, by performing density

normalization and setting the diagonal of the transition probability

matrix to zero, we propose a mapping technique wherein the close-

ness of cells in the diffusion metric is unaffected by density heteroge-

neities in data sampling (see Supplementary Figs S9 and S10). This

feature can be crucial for the detection of rare populations, which is

one of the main challenges in the analysis of differentiation data.

By breaking the diffusion kernel (Mohri et al., 2012) to its multi-

plicand wave functions, we also propose a method in accommodat-

ing the uncertainties of measurement and missing values into the

wave function. Consequently, we have successfully addressed uncer-

tainties in the value of non-detects in qPCR data.

Tuning the scale parameter r is also important for generating in-

sights into the structure of the data, for which we proposed a criter-

ion on the basis of the characteristic length scales of the data

manifold. Because of computational limitations, for our criterion we

compute the average intrinsic dimensionality and hence the average

characteristic length scale. However, when density heterogeneities

are extremely large, or the data manifold has many sharp changes

and several scales, a single r may not provide a globally optimal

scale for data embedding. Therefore, implementation of an efficient

and cost-effective method for several locally valid rs determinations,

instead of a single global value is of interest.

It is worth noting that the mathematical ergodicity in diffusion

maps reached by adequate kernel width selection does not necessar-

ily imply biological ergodicity. If there appears a trace of transitory

cells between two clusters, we conclude the two clusters are also bio-

logically connected to each other in an ergodic sense. However this

trace might be not present if the transition is too fast or switch-like

abrupt, so that no transitory cells have been caught in the finite set

of sampled cells of snapshot data. Thus it has to be proven with

dedicated biological experiments (e.g. as used by Buganim et al.

(2012) and Takahashi and Yamanaka (2006)) whether the data is

biologically ergodic or not.

A possible strategy for enhancing the capacity of capturing de-

tails of the structure of rare populations using diffusion maps is to

limit the transition possibility of each cell only to its closest neigh-

bours. In this scenario, we could render the diffusion map more local

by building the transition matrix ~P in Equation (6) for k nearest

neighbours only. This method, however, might end up with several

disconnected sub-graphs of cells when the sampling density along

the intrinsic data manifold is extremely heterogeneous.

Furthermore, ~P (without the row normalization) will not be sym-

metric any more and we cannot ensure real eigenvalues for the tran-

sition probability matrix. However, as long as the graph is

Fig. 7 Visualization of mouse embryonic stem cells on (A) the first three eigenvectors of diffusion map, (B) PCA and (C) t-SNE. Eigenvalues sorted in a decreasing

order for (D) diffusion map and (E) PCA. (F) The hierarchy of cells for mouse embryonic stem cells

Fig. 8. Visualization of human preimplantation embryos data on (A) the first three eigenvectors of the diffusion map, (B) PCA and (C) t-SNE. Eigenvalues sorted in

a decreasing order for (D) the diffusion map and (E) PCA
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connected and eigenvalues are real, we can benefit from a more lo-

cally detailed map.

One caveat in the current version of diffusion map is the n2 �G

computation time which can be prohibitive for large cell numbers

(> 104) as generated from cytometry experiments. Choosing the k

nearest neighbours version of diffusion map can therefore be a solu-

tion to this problem. Diffusion distances are based on a robust con-

nectivity measure between cells which is calculated over all possible

paths of a certain length between the cells. Thus, a diffusion mapping

obtained by accounting for a smaller fraction of all possible paths

(namely those going through each cells’ nearest neighbours) can still

provide a good approximation of the diffusion distance between the

cells and yet avoid computing all n2 elements of the transition prob-

ability matrix. With such modifications, diffusion maps prevail as a

promising method for the analysis of large cell numbers omics data.

Another issue is the number of embedding dimensions. The num-

ber of significant dimensions of the diffusion map is determined

where a remarkable gap occurs in its sorted eigenvalues plot. This is

not intrinsically bound to the conventional visualizable dimensions

two or three. In contrast, for some other methods such as t-SNE,

one can pre-determine the number of visualization dimensions for

the embedding optimization to two or three dimensions.

We conclude that diffusion maps are appropriate and powerful

for the dimension-reduction of single-cell qPCR and RNA-Seq cell dif-

ferentiation data as they are able to handle high noise levels, sampling

density heterogeneities, and missing and uncertain values. As a result

diffusion maps can organize single cells along the non-linear and com-

plex branches of differentiation, maintain the global structure of the

differentiation dynamics and detect rare populations as well.
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