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Abstract.
The concise representation of complex high dimensional stochastic systems via a few reduced

coordinates is an important problem in computational physics, chemistry and biology. In this paper
we use the first few eigenfunctions of the backward Fokker-Planck diffusion operator as a coarse
grained low dimensional representation for the long term evolution of a stochastic system, and show
that they are optimal under a certain mean squared error criterion. We denote the mapping from
physical space to these eigenfunctions as the diffusion map. While in high dimensional systems these
eigenfunctions are difficult to compute numerically by conventional methods such as finite differences
or finite elements, we describe a simple computational data-driven method to approximate them from
a large set of simulated data. Our method is based on defining an appropriately weighted graph on the
set of simulated data, and computing the first few eigenvectors and eigenvalues of the corresponding
random walk matrix on this graph. Thus, our algorithm incorporates the local geometry and density
at each point into a global picture that merges in a natural way data from different simulation runs.
Furthermore, we describe lifting and restriction operators between the diffusion map space and the
original space. These operators facilitate the description of the coarse-grained dynamics, possibly
in the form of a low-dimensional effective free energy surface parameterized by the diffusion map
reduction coordinates. They also enable a systematic exploration of such effective free energy surfaces
through the design of additional “intelligently biased” computational experiments. We conclude by
demonstrating our method on a few examples.
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Planck operator, metastable states, normalized graph Laplacian.
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1. Introduction. Systems of stochastic differential equations (SDE’s) are com-
monly used as models for the time evolution of many chemical, physical and biological
systems of interacting particles [22, 45, 52]. There are two main approaches to the
study of such systems. The first is by detailed Brownian Dynamics (BD) or other
stochastic simulations, which follow the motion of each particle (or more generally
variable) in the system and generate one or more long trajectories. The second is
via analysis of the time evolution of the probability densities of these trajectories us-
ing the numerical solution of the corresponding time dependent Fokker-Planck (FP)
partial differential equation.

For typical high dimensional systems, both approaches suffer from severe limi-
tations, when applied directly. The main limitation of standard BD simulations is
the scale gap between the atomistic time scale of single particle motions, at which
the SDE’s are formulated, and the macroscopic time scales that characterize the long
term evolution and equilibration of these systems. This scale gap puts severe con-
straints on detailed simulations due to the requirement to accurately integrate the
fastest motions and degrees of freedom in the system, such as fast chemical reactions
and particle-particle collisions. Therefore, the time step in detailed simulations is typ-
ically constrained to be orders of magnitude smaller than the characteristic times of
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the phenomena we wish to study. Moreover, for systems with well defined metastable
states and relatively rare transitions between them, direct simulations spend the ma-
jority of computer resources exploring the motion “within” the metastable states and
only an exponentially small part exploring the transitions “between them”, which are
often the quantity of interest.

The main limitation of standard computational methods that solve the FP equa-
tion is the curse of dimensionality. While for dimension n ≤ 3 the FP equation can
typically be solved numerically, in higher dimensional systems the solution of the
relevant partial differential equation is practically impossible by standard methods
such as finite differences or finite elements, since the number of grid points grows like
(1/h)n where h is the grid spacing. We note, however, that for some high dimensional
systems this direct computation is still possible with the construction of sparse grids
[9].

While in both approaches the detailed time evolution of a stochastic system re-
quires a high dimensional description with many degrees of freedom, often its long
term or coarse grained evolution is of a low dimensional nature. The main challenges
in this case are the identification of dynamically meaningful slow variables, or re-
duction coordinates1, and the description of the effective dynamics of the system in
this low dimensional representation. The main requirements for good reduction co-
ordinates is that they are dynamically meaningful, in the sense that we can write an
effective SDE for the long-term dynamics of the system based on these coordinates.
Thus, on a coarse enough time scale, the dynamics of the reduction coordinates is
approximately Markovian, without further dependence on the fine details of the high
dimensional system.

In some systems, either the form of the equations, prior experience, or some under-
lying physical intuition help determine good reduction coordinates. Then appropriate
equations can be formulated in these variables, and in some special cases their exact
form can even be found by rigorous mathematics based on the Mori-Zwanzig pro-
jection approach [24, 55]. In more complex cases where a rigorous derivation of the
dynamics is mathematically intractable, many numerical approaches to solve these
tasks have been suggested in the literature, such as transition path sampling, the
nudged elastic band, the string method, the transfer operator approach, Perron clus-
ter analysis and many others, see [16, 17, 18, 19, 20, 26, 46], and references therein. In
addition, given further knowledge about the system, such as a good dividing surface
between reactant and product regions, several algorithms for the efficient computation
of the transition rates have been developed [44, 37, 53]. Despite these results, still in
many high dimensional systems useful low dimensional representations are far from
obvious.

In this paper we show that there is an intimate connection between the eigenfunc-
tions of the backward FP operator and useful global low dimensional representations,
and hence propose to use the first few of these eigenfunctions as reduction coordi-
nates. We show that the first few eigenfunctions are optimal under a mean square
error criterion for the approximation of probability densities in a suitable Hilbert
space, and denote the mapping from the physical space to the first few eigenfunctions
as a diffusion map. As in the case of the time-dependent FP equation, the compu-

1We make a distinction between reduction coordinates of a general dynamical system, and the
reaction coordinate of chemical physics, which is typically a single variable that quantifies the progress
of a reaction. As we describe in the paper, reduction coordinates may also be introduced in the
absence of a chemical reaction and without well defined reactant and product regions.
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tation of the eigenfunctions of the FP operator is practically impossible by standard
space discretization methods. In this paper we present a different approach, which
approximates these first few eigenfunctions from a large set of simulated data points.
Our algorithm is based on the definition of a weighted graph on the simulated points
and the subsequent computation of the first few eigenvalues and eigenvectors of a ran-
dom walk on this graph. The proposed method does not take into account the time
ordering of the simulated points, and can therefore easily merge data from different
simulation runs (with different initial conditions, different initial seeds of the random
number generator, etc.). As proven theoretically and shown in a few illustrative ex-
amples, in the presence of a spectral gap, the description of the system by the first
few eigenfunctions gives a dynamically meaningful low dimensional representation.

Furthermore, taking a step beyond data analysis and a low dimensional represen-
tation, we describe restriction and lifting operators between the original space and
the diffusion map space. These operators enable efficient extraction of the macro-
scopic dynamics in this lower dimensional representation. Specifically, following the
equation-free coarse molecular dynamics approach [31, 32, 33], we propose to explore
the effective free energy and diffusion coefficients as a function of the diffusion map
coordinates by a series of multiple short simulations appropriately initialized at given
values of these reduction coordinates. This methodology thus outlines a systematic
manner to bridge the scale gap and estimate macroscopic dynamics and quantities of
interest, such as mean exit times, transition probabilities, etc.

The paper is organized as follows. In section 2 we describe our problem and
present a concise review of known results in the theory of stochastic differential equa-
tions, making the paper reasonably self-contained. In section 3 we define the diffusion
distance between different configurations of a stochastic system and its relation to
the eigenfunctions of the FP operator and to a low dimensional representation of
the system. Section 4 describes an algorithm to approximate the diffusion map from
discrete data, as well as restriction and lifting operators that allow communication
between the two spaces. In section 5 we present applications of our method to a few
illustrative examples. We conclude in section 6 with a summary and discussion.

2. Problem Setup.

2.1. The Langevin Equation. Consider a stochastic system with n variables,
confined for simplicity to a finite compact connected region Ω ⊆ Rn with smooth
reflecting boundaries. We assume that the time evolution of the system, described by
its state x(t) at time t (x(t) ∈ Ω), follows a first order stochastic differential equation
(SDE) written in non-dimensional form as

ẋ = −∇U(x) +
√

2/β ẇ(2.1)

where U(x) is the potential energy of a configuration x, β = 1/kBT is a thermal factor,
and w(t) is standard Brownian motion in n dimensions. We assume the potential
U(x) to be smooth and in particular bounded from above and below. However, much
of what follows, with suitable technical modifications, could be derived under more
general conditions, for example for a non-compact region Ω, or a potential U not
necessarily smooth or bounded, as long as the condition

∫

Ω

e−βU(x)dx < ∞(2.2)

is satisfied and under the assumption that the process is ergodic.
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In this paper we focus on systems whose long time evolution is of a low dimen-
sional nature. This is the case, for example, in systems governed by rare events where
the potential U has a few deep wells separated by high barriers, or in systems with
well defined low dimensional manifolds where the potential U contains steep gradients
in all directions normal to the manifold, thus effectively constraining the system to
approximately lie on it. The task at hand is to find good low dimensional repre-
sentations of such systems and the characteristics of their coarse grained dynamics
in this representation. In the context of systems governed by rare events, typical
system level tasks include the identification of the metastable configurations and the
transition pathways and rates between them.

2.2. Forward and Backward Fokker-Planck Equations. Integration of the
SDE (2.1) produces random paths whose ensemble defines time dependent probability
distributions on Ω. To study the dynamics of the system, it is convenient to consider
the time evolution of these probability distributions. Specifically, from the theory of
stochastic processes [22, 45], the transition probability density p(x, t|x0, 0) of finding
the system at location x at time t, given an initial location x0 at time t = 0 satisfies
the forward Fokker-Planck (also known as Smoluchowski) equation

∂p

∂t
= Lp =

1
β

∆p +∇ · (p∇U)(2.3)

defined in (x, t) ∈ Ω× R+, with reflecting (no flux) boundary conditions on ∂Ω.
Under the smoothness assumption on the potential U and the compactness as-

sumption on the domain Ω in which the Fokker-Planck equation (FPE) is defined,
the operator L has a discrete spectrum of non-positive eigenvalues {−λj}∞j=0, with
λ0 = 0 > −λ1 ≥ −λ2 ≥ . . ., with a single accumulation point at −∞ and with
associated eigenfunctions {ϕj}∞j=0 [13]. The solution of (2.3) can be written as

p(x, t|x0, 0) =
∞∑

j=0

aje
−λjtϕj(x)(2.4)

where the coefficients aj depend on the initial conditions at time t = 0. Under fairly
general conditions on the potential U and the region Ω, the eigenfunctions ϕj are
smooth bounded functions, and the sum in (2.4) converges uniformly in x for all
times t > t0 with t0 > 0, see for example [15]. The eigenfunction ϕ0(x) corresponding
to the eigenvalue λ0 = 0 is given by the Boltzmann equilibrium distribution

ϕ0(x) = Cβe−βU(x)(2.5)

where Cβ is a temperature dependent normalization factor.
Since the stochastic process x(t) is ergodic, then regardless of the initial configu-

ration x0 ∈ Ω,

lim
t→∞

p(x, t|x0, 0) = ϕ0(x)(2.6)

which means that a0 = 1. Thus, according to (2.4) the approach to the equilibrium
density ϕ0(x) is governed by the next eigenfunctions {ϕj}j≥1, and their corresponding
eigenvalues λj and coefficients aj .

A different way to study the approach to equilibrium is to consider the time
evolution of averages of functions defined on Ω. Let f : Ω → R be a smooth function
in L2(Ω), and define

g(x, t) = E{f(x(t)) |x(0) = x}.(2.7)
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Then, g satisfies the backward Fokker-Planck equation, also known as the Chapman-
Kolmogorov equation,

∂g

∂t
= L∗g =

1
β

∆g −∇g · ∇U(2.8)

in the domain (x, t) ∈ Ω× R+, with initial conditions

g(x, 0) = f(x).(2.9)

The operator L∗ is the adjoint of L under the standard inner product in L2(Ω),

〈u, v〉 =
∫

Ω

u(x)v(x)dx(2.10)

that is 〈Lu, v〉 = 〈u,L∗v〉. Therefore, L∗ has the same eigenvalues {−λj}j≥0 as L
with corresponding eigenfunctions ψj(x), and the solution to (2.8) can be written as

g(x, t) =
∑

j

bje
−λjtψj(x).(2.11)

The eigenfunction corresponding to λ0 = 0 is the constant function ψ0(x) = 1. Thus

lim
t→∞

g(x, t) = b0(2.12)

with the approach to this equilibrium constant governed by the next eigenfunctions
and eigenvalues {ψj , λj}, for j ≥ 1.

The operators L and L∗ are adjoint and thus the two sets of eigenfunctions ϕj

and ψj can, and from now on will be normalized to be bi-orthonormal

〈ϕi, ψj〉 = δi,j .(2.13)

Under this normalization, the coefficients aj , bj are given by

bj =
∫

Ω

f(x)ϕj(x)dx(2.14)

and

aj =
∫

Ω

p(x, 0)ψj(x)dx = ψj(x0).(2.15)

One last theoretical result of interest is the connection between the eigenfunctions
ϕj and ψj . The transformation p(x) = e−U(x)g(x) gives

Lp = e−UL∗g.(2.16)

Therefore, up to a normalization constant

ψj(x) = ϕj(x)eU(x) = ϕj(x)/ϕ0(x).(2.17)

Furthermore, under the normalization (2.13), the eigenfunctions ϕj of the operator L
are orthonormal in L2(Ω, w(x)), where the inner product is with respect to the weight
function w(x) = 1/ϕ0(x),

〈u, v〉w =
∫

Ω

u(x)v(x)w(x)dx.(2.18)
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3. Diffusion Distances and Diffusion Maps. Eigenfunction expansions of
the forward and backward Fokker-Planck operators as described by eqs. (2.4) and
(2.11) have been used extensively in the theoretical and numerical study of stochastic
differential equations (see for example the books [22, 43] and references therein). In
this section we show how they can be used in a natural way to perform a dynamically
meaningful dimensional reduction for the long term time evolution of high dimensional
stochastic systems.

Reducing the dimension of a stochastic system implies lumping entire sets of
different configurations into a single representative. Therefore, a crucial step in per-
forming dimensional reduction of a stochastic system is to define a meaningful measure
of dynamical proximity between different configurations. We propose a measure for
this proximity using the evolution of probability densities that start from different
configurations. Specifically, for any point y ∈ Ω let p(x, t|y) denote the solution of
(2.3) with initial condition p(x, 0|y) = δ(x − y). We define the diffusion distance at
time t between any two points x0, x1 ∈ Ω as the distance between the corresponding
probability densities at time t, initialized at x0 or at x1. Naturally, we measure this
distance in the Hilbert space L2(Ω, w), with the weight function w(x) = 1/ϕ0(x)

D2
t (x0,x1) = ‖p(x, t|x0)− p(x, t|x1)‖2L2(w).(3.1)

Combining (2.4), (2.15) and (2.17) we obtain that

D2
t (x0, x1) =

∑

j≥1

e−2λjt|ψj(x0)− ψj(x1)|2.(3.2)

Note that summation starts from j = 1 since the term with j = 0 that corresponds
to λ0 = 0 cancels out.

Furthermore, we define the k-dimensional diffusion map at time t as the non-
linear mapping from the original space of configurations to the Euclidean space with
coordinates defined by the values of the first k eigenfunctions,

Ψk,t(x) :=
(
e−λ1tψ1(x), e−λ1tψ2(x), . . . , e−λ1tψk(x)

)
.(3.3)

Eq. (3.2) shows that the diffusion distance, which is a natural measure to assess the
dynamical proximity of two configurations of the system, is equal to the Euclidean
distance between the corresponding diffusion map coordinates (with k = ∞).

In principle, equality in (3.2) holds only for k = ∞. However, in practice, many
stochastic systems exhibit a spectral gap with only a few eigenvalues close to zero, and
the rest converging to infinity. In these cases, to estimate the expected evolution of a
stochastic dynamical system currently located at x, it suffices to know only the first
few eigenvalues and eigenfunctions {(λ1, ψ1(x)), (λ2, ψ2(x)), . . . , (λk, ψk(x))}. Then,
the diffusion map (with a small number k) is a lower dimensional representation of
the system that captures the essential features for its expected long term dynamical
evolution. Note that the number of required coordinates, k, depends on the time
scale relevant to the observer and on the required accuracy of the approximation.
The larger the observer’s time scale, the smaller the number of coordinates needed to
describe the evolution on this time scale.

Moreover, it is possible to show that this mapping is optimal among all possi-
ble k-dimensional mappings, in the following mean squared error sense. Consider a
k-dimensional approximation of the transition probability densities p(x, t|y), which
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measure the approach to equilibrium from the starting point y. A k-dimensional
approximation is a linear expansion of the form

pk(x, t|y) =
k−1∑

j=0

αj(y)vj(x)(3.4)

where the functions vj are orthonormal in L2(Ω, w). Then the following theorem
holds.
Theorem: The optimal k-dimensional approximation of p(x, t|y) that minimizes the
mean squared norm of the approximation error

minEy{‖p(x, t|y)− pk(x, t|y)‖2L2(Ω,w)}(3.5)

where averaging is over all initial points y sampled according to the equilibrium density
ϕ0(y), is given by vj(x) = ϕj(x) and αj(y) = e−λjtψj(y). Therefore, the optimal
k-dimensional approximation is given by the truncated sum

pk(x, t|y) =
k−1∑

j=0

e−λjtψj(y)ϕj(x).(3.6)

The proof, given in the Appendix, is essentially a continuum version of the well
known PCA/SVD decomposition.

3.1. Eigenfunctions and Reduction Coordinates. In typical applications
in physics, chemistry and biology, while the original system under study is high di-
mensional with many fast and coupled degrees of freedom, its long term evolution, or
the evolution of some of its statistical properties are low dimensional. In such cases,
and specifically in systems whose dynamics are governed by rare events, one seeks to
describe the coarse grained evolution of the system by only a few slow variables or
reduction coordinates, which we shall denote by r(x) = (r1(x), . . . , rk(x)).

One criterion for r(x) to be good reduction coordinates is that regardless of their
initial values, the remaining coordinates or their statistics are slaved to r(x) and their
statistics quickly equilibrate to some probability distribution (invariant measure),
which may depend on the values of r(x). In this case, for time scales longer than the
relaxation time of the (remaining) fast variables, the time evolution of these reduction
coordinates is approximately Markovian,

dr

dt
= F (r, w)(3.7)

where F depends only on the reduction coordinates r and on a stochastic noise vector
w(t). The above relation is sometimes denoted in the literature as a closure, in the
sense that the dynamics of r are closed within themselves: no additional information
about the original configuration x is required to describe the time evolution of r. Eq.
(3.7) is obviously an approximation whose interpretation is short memory, or weak
dependence on the past.

In the context of chemical or biological reactions, these reduction coordinates
should in addition provide a meaningful measure of the progress of a reaction [6]. We
also note that if (3.7) is one dimensional with a known F (e.g., only a single reduction
coordinate), it can easily be solved semi-analytically or numerically.

Given a few reduction coordinates r(x), the standard theoretical method to com-
pute their temporal evolution is via the Mori-Zwanzig projection operator approach
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[55, 24]. In some situations, the decomposition into slow reduction coordinates and re-
maining fast variables is assumed known a-priori and/or given explicitly by the forms
of the equations, see for example [24, 51, 28]. In some of these cases, rigorous math-
ematical results regarding the closure properties of the slow variables can be proven
and the specific form of the function F in (3.7) can be derived. In more complicated
problems, where the decomposition into slow and fast variables is not clear and rig-
orous mathematical results are intractable, one typically uses physical or chemical
intuition to suggest good reduction coordinates and simulations to empirically study
their dynamics, see for example [31, 34, 20]. The main practical problem, however, is
that in the majority of cases concerning complex high dimensional systems such an
a-priori intuition is unavailable. Moreover, poor choices of reduction coordinates fail
to satisfy the closure property (3.7), so that their dynamics are non-Markovian with
long memory effects.

The following lemma shows that in the presence of a spectral gap, the first few
eigenfunctions are natural reduction coordinates.

Lemma: Consider the SDE (2.1) with a spectral gap, e.g., with 0 = λ0 < λ1 ≤
λ2 ≤ . . . ≤ λk−1 ¿ λk; then for time scales t À max(1/λk, t0), where t0 is defined
below, the first few diffusion map coordinates (ψ0(x), ψ1(x), ψ2(x), . . . , ψk−1(x)) are
approximately Markovian.

Proof: Let pk(x, t |y) denote the approximation of the transition density using the
first k diffusion map coordinates,

pk(x, t |y) = ϕ0(x) +
k−1∑

j=1

e−λjtψj(y)ϕj(x).(3.8)

These coordinates are approximately Markovian, if regardless of the initial location y,
pk(x, t|y) = f(ψ0(y), . . . ψk−1(y)) is close to p(x, t|y). We now show that this indeed
holds, in the sense of the L1 norm. Rather that proving directly that ‖p − pk‖1 is
small we instead consider the function ϕ0 + p− pk. First we show that for sufficiently
large times this is a probability density. Then, we bound its relative entropy with
respect to ϕ0, which bounds the required L1 norm.

The proof proceeds as follows: First, note that
∫

pk(x, t|y)dx = 1.

Further, since both ϕj and ψj are bounded, then for large enough times the finite sum
in (3.8) is strictly smaller than ϕ0(x) and so pk ≥ 0 is indeed a probability density.
We define t0 as the minimal time for which |p− pk| ≤ ϕ0(x) for all x ∈ Ω.

For times t ≥ t0, ϕ0 + p − pk is a probability density, and we consider its free
energy, also known as its relative entropy with respect to ϕ0 = e−βU ,

H(ϕ0 + p− pk|ϕ0) =
∫

Ω

(ϕ0 + p− pk) log
(

ϕ0 + p− pk

ϕ0

)
dx.(3.9)

The relative entropy (3.9) bounds the L1 distance between the two densities p − pk

in light of the well known Csiszár-Kullback-Pinsker inequality

‖ρ1 − ρ2‖21 ≤ 2H(ρ1|ρ2)(3.10)
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Inserting (2.4) into (3.9) and using the inequality log(1 + x) ≤ x gives

H(ϕ0 + p− pk|ϕ0) ≤
∫

(p− pk)2

ϕ0
dx.

Opening the brackets and applying the orthogonality conditions on the eigenfunctions
ϕj(x) gives

H(ϕ0 + p− pk|ϕ0) ≤
∑

j≥k

e−2λjtψ2
j (y).(3.11)

The sum
∑

j ψ2
j (y) is infinite. However, using the equality

p(y, t|y) = ϕ0(y)


1 +

∑

j≥1

e−λjtψ2
j (y)e




and (3.8), for times t > t0 we can bound the right hand side of (3.11) by

H ≤ p(y, t|y)− pk(y, t|y)
ϕ0(y)

e−λkt ≤ e−λkt.(3.12)

The last equation shows that for t À max(1/λk, t0) the relative entropy is indeed
small. However, note that the decay of H depends also on the initial point y, and so
the quality of the approximation by the first k diffusion map coordinates depends also
on the density at y. For trajectories that start at extremely rare (low density) points y
with ϕ0(y) ¿ 1, the approximation with only k coordinates may not be appropriate.
On the other hand, for computations of various macroscopic quantities, such as mean
exit times, we will mostly be interested in low dimensional approximations at the
“bottom” of the metastable states and near the saddle points connecting them, and
not at other points with much lower densities. Finally, we note that relative entropy
and more general logarithmic Sobolev inequalities have been extensively used both to
bound the heat kernel (Green’s function) of elliptic operators as well as to study the
decay to equilibrium of more general Fokker-Planck type equations, see [15, 35].

3.2. Spectral Gaps in Reversible Diffusions. The eigenfunction expansion
and the lemma above show that for dimensionality reduction using the first k diffu-
sion map coordinates one of the following two conditions is required. Either there
is an explicit spectral gap λk+1 À λk, or the next few diffusion map coordinates
ψk+1, . . . , ψk+m are uniquely determined by the first k diffusion map coordinates and
in addition λk+m+1 À λk, so again there is an effective spectral gap.

Both cases represent a separation of time scales. The most common setting for
the first case (λk+1 À λk) is overdamped diffusion in an energy landscape having k
potential wells. In this case, the k−1 smallest non-zero eigenvalues of L are inversely
proportional to mean exit times from the different wells, and thus very close to zero.
The remaining eigenvalues capture the relaxation times in each of the individual wells,
and are thus significantly larger [36].

The second case can occur for example when there is a slow variable x1 without
any deep well in its effective potential, but the dynamics of the remaining variables
are much faster, so they effectively equilibrate or are slaved to the slow variable. In
this case the first few eigenfunctions are all functions of the slow variable x1, and
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so there is an effective spectral gap till the first eigenfunction that depends on the
remaining fast variables x2, . . . , xn.

There are at least two cases where dimensionality reduction using the first k dif-
fusion map coordinates may fail. The first is when there is a hierarchy of spectral
gaps and the other is when there is no clear separation of time scales. For example,
for diffusion in a multi-well potential, if there is one wide potential well whose internal
relaxation time is significantly larger than the exit times between two other smaller
wells, the first few eigenfunctions may fail to capture the dynamics between the small
wells [40]. In such cases, the reduced dynamics in the first few coordinates may be
strongly misleading.

Example: Consider the simple case of a high dimensional system with two deep
wells centered at x0 and at x1, separated by a high potential barrier with a single
saddle point. This system is governed by rare events which are the transitions between
the two wells. Therefore, there is a single very small positive eigenvalue λ1 > 0 with a
spectral gap to the next eigenvalue λ2 À λ1. The eigenvalue λ1 is intimately connected
to the characteristic equilibration time of the system, and in the asymptotic limit of
small noise or low temperature (as β → ∞) it is given by 1/τ̄ where τ̄ is the mean
first passage time for the system to surmount the highest potential barrier on its way
towards the deepest well [36]. Moreover, it follows from large deviation theory that
in the asymptotic limit of small noise (β →∞), almost all of the transition paths are
concentrated along a smooth curve γ connecting the two wells and passing through the
saddle point [45]. This curve is defined by the characteristics of the eikonal equation,
which in the case of a potential system is the solution of the ordinary differential
equation

dγ(t)
dt

= ∇U(γ(t))(3.13)

with initial condition γ(0) = xs + εn where xs is the location of the saddle, ε is small
and n is the direction corresponding to the negative eigenvalue of the Hessian of U at
xs. These results imply that it is possible to write an effective one dimensional SDE
in any variable s that parameterizes the curve γ (for example, its arclength)

ds(t)
dt

= f(s) +
√

2D(s)ẇ(t).(3.14)

A “natural” reduction coordinate for this system is thus the arclength s.
In our approach for this case we would need only the first non-trivial backward

eigenfunction ψ1. This eigenfunction is a monotonic function of the arclength of γ,
which is approximately equal to a constant c1 in one well, a different constant c2 in
the other well, with a rapid transition between these two values within an internal
boundary layer near the saddle point of the potential energy U(x) [36]. Therefore,
while with the diffusion map approach our reduction coordinate is not the curve
arclength itself, it is a monotonic function of it (see also section 5 for a specific
numerical example).

4. Diffusion Maps from Discrete Data. For simple low dimensional stochas-
tic systems, the eigenfunctions of the FP operator can be computed explicitly by
standard numerical methods. While in higher dimensions this is difficult if not prac-
tically impossible, simulations of sample paths of the corresponding SDE (2.1) are
relatively easily performed, and millions of configurations can be sampled. From this
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set of data, the minima of the potential U(x) as well as the statistics of the transi-
tion times between the metastable states can be approximated. Obviously, since the
system spends most of the time in the deep wells and only an exponentially small frac-
tion in transitions between them, direct simulations require very long runs to obtain
good statistical estimates of the mean exit times and of the transition probabilities
between metastable states. Alternatively, if prior knowledge regarding locations of
metastable states and dividing surfaces are known, sophisticated biasing techniques
can be employed to sample the interesting paths.

In this section, following our earlier work [39, 10] we present a method to cal-
culate a discrete approximation of the first few of these eigenfunctions given enough
simulated data. Given a set S = {xi}N

i=1 of simulated data points from the SDE (2.1),
possibly from many independent simulation runs, the algorithm works as follows:

1. Choose an ε > 0, which is a measure of the local neighborhood of any point
in the dataset; this is an adjustable parameter of the algorithm. Consider the
kernel K(x, y) = exp(−‖x− y‖2/2ε2);

2. For each x ∈ S, compute the quantity pε(x) =
∑

j K(x,xj), and construct
the following matrix

K̃i,j =
K(xi, xj)√
pε(xi)pε(xj)

.(4.1)

3. Define Di =
∑

j K̃i,j and construct a Markov matrix M = D−1K̃, with

Mi,j =
K̃i,j

Di
.

4. Compute the first few eigenvalues and right eigenvectors of M , (Mv = λv).

In [39, 12, 25, 48, 4] (and references therein) it is shown that for points xi randomly
sampled from a probability density ϕ0(x) = Cβe−βU(x), as the number of points
N → ∞, and as ε → 0, the discrete operator (M − I)/ε converges (in probability)
to the backward FP operator (2.8). Thus, the eigenfunctions of the FP operator
can be approximated from large simulated datasets also for high dimensional systems
where standard discretization methods are not feasible. We present some examples
in section 5.
Remarks:
1) The quantity pε(x) is, up to normalization, a density estimation at x. For systems
where the energy of a configuration U(x) is known explicitly, the points {xi} do
not have to be sampled with density proportional to their equilibrium density. For
example, if configurations are sampled by a biased procedure, then formula (4.1) is
replaced by

K̃i,j =
K(xi,xj)√

e−βU(xi)e−βU(xj)
.(4.2)

2) The matrix M is adjoint to a symmetric matrix Ms = D1/2MD−1/2 = D−1/2K̃D−1/2.
Therefore, the numerical computation of the first few eigenvalues and eigenvectors can
be made on Ms, using (typically faster and more robust) algorithms for symmetric
matrices.
3) The first few eigenfunctions of the FP operator are, under general conditions,
smooth functions of x. Therefore, in practice, there is no need to compute the eigen-
vectors of the huge N × N matrix M from all the data. Instead, it is possible to
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sub-sample the dataset, for example retaining only points which are at least a dis-
tance of δ apart (where δ is a meta-parameter). This leads to the computation of
eigenvectors of a much smaller (and sparse) matrix. Moreover, there exist fast multi-
scale algorithms to compute the eigenvectors of such matrices [8, 11].
4) As discussed in [38], there is an interesting connection between the study of dy-
namical systems and data clustering in the machine learning community. The basic
observation is that metastable states in dynamical systems correspond to well defined
clusters. Therefore, machine learning methods to identify clusters from large datasets
whose dynamical equations either are unknown or do not even exist (for example, as
in document clustering), can equally be used to identify metastable states from large
datasets arising from simulations of dynamical systems. Indeed, various variants of
the algorithm described above have been suggested for spectral clustering, see for
example [54, 3, 47]. However, none of these works considered the underlying relation
to the asymptotic computation of the eigenfunctions of a Fokker-Planck operator. As
a side issue, our analysis provides a mathematical explanation for the success and
limitations of these methods in their tasks of identifying clusters [38, 40]. Finally,
we note that similar approaches have also been used for clustering of conformational
states of dynamical systems [18, 19, 29].
5) In our formulation, eq. (2.1) we assumed equal noise strengths in all variables. If
however, the noise strength is different for different coordinates, as in

dxi = −γi
dU

dxi
dt +

√
2γiẇi(4.3)

then in order to consistently approximate the corresponding Fokker-Planck operator,
we simply need to change our local Euclidean metric to a weighted anisotropic one,

‖x‖ =
n∑

i=1

x2
i /γi .(4.4)

Even in the more general case where the diffusion tensor may depend on the config-
uration x, detection of slow variables is possible by using anisotropic diffusion maps
[49].
6) The variable ε is a meta-parameter of the algorithm. The theoretical analysis shows
that in the limit of infinite data, as ε → 0, the finite Markov matrix approximates
the Fokker-Planck operator. However, for a finite simulation dataset ε must remain
finite. It should be small, so that indeed we only consider local nearby points in the
construction of the graph, but not too small due to the finite size of the dataset. The
work [48] presents a possible criterion for the choice of ε.

4.1. Dynamics on the Diffusion Map Coordinates. Beyond the benefits of
dimensional reduction, the projection of the system onto the diffusion map coordinates
also allows systematic design of computational experiments, where biased simulations
are initialized at chosen values of the diffusion map coordinates, thus allowing effi-
cient exploration of the dynamics of the system in these coordinates. Specifically, we
propose to study the dynamics of the system projected onto these few coordinates by
the “lift-run-restrict” scheme, as shown in figure 4.1.

This scheme requires three operators. The first is a lifting operator which, given
values for the diffusion map coordinates, produces random configurations consistent
with these coordinates. The second is a black-box simulator which runs the dynamics
of the system from such an initial configuration, and the third is a restriction operator,
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Fig. 4.1. The lift-run-restrict scheme on the diffusion map coordinates.

which computes values of the diffusion map coordinates for new points not contained
in the original dataset.

Given these operators, the lift-run-restrict approach works as follows: First, we
create a large dataset of simulated configurations and compute the diffusion map.
Suppose, for simplicity, that the system can be projected into the first diffusion map
coordinate ψ1. That is, we assume there exists an effective drift f(ψ1) and an effective
diffusion coefficient D(ψ1), such that the time evolution of ψ1(x(t)) approximately
satisfies the Îto SDE

ψ̇1 = f(ψ1) +
√

2D(ψ1)ẇ.(4.5)

To estimate these drift and diffusion coefficients, we discretize the possible values
of ψ1 into m bins centered at a1 < a2 < . . . < am. For each value aj , using the
lifting operator we create k random initial configurations x such that ψ1(x) = aj .
For each such configuration we simulate the full system dynamics for a time τ , which
is long in comparison to the fast modes of the system, but still much shorter than
the global equilibration time (the MFPT, for example). At the end of each such
run, using the restriction operator we compute the value of ψ1(x(τ)). The drift and
diffusion coefficients are now estimated from the statistics of ψ1(x(τ)), for example
by maximum likelihood methods [1].

Given a reduction coordinate, this scheme was suggested in [31] and applied to
many problems, where identification of a reduced coordinate was relatively easy. Sim-
ilar approaches are also described by Brandt [7] and by Vanden-Eijnden [51]. The
novelty of our approach is that we apply this method on the (non-linear) diffusion map
coordinates which are themselves computed from the data, whereas other approaches
require a-priori knowledge of the reduction coordinates which are typically chosen to
be a single phase space variable, or, possibly, a linear combination of several of them.

According to our approach, instead of the original high dimensional process x(t),
we study the low dimensional process {ψ1(x(t)), . . . , ψk(x(t))}. According to Ito’s
formula, each component of this diffusion map satisfies the following SDE

dψj(x(t)) = −λjψj(x(t))dt +
√

2
β
‖∇xψj(x(t))‖dwj .(4.6)
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Therefore, the condition for the first diffusion map coordinate to be approximately
Markovian, is that ‖∇xψ1(x)‖ is approximately some function of only ψ1.

4.2. Lifting and Restriction Operators. Our approach can be viewed as a
non-linear principal component analysis (PCA). For linear PCA, the translation be-
tween the original high dimensional space and the low dimensional space spanned by
the first few eigenvectors of the covariance matrix is simple, since it amounts to the
computation of linear dot products. In our case, since our mapping is non-linear,
more complicated operators that translate between the two spaces are needed (e.g.,
see also [42]).

Restriction Operator: Let x be a new point, not necessarily in the original set
S. Our aim is to compute ψ1(x), ψ2(x), . . . , ψk(x), without re-computation of the
eigenvalues and eigenvectors of the matrix M with the point x added to it. To this
end we note that by definition, for any point xk ∈ S,

λjψj(xk) =
∑

y ∈ S
M(xk,y)ψj(y).(4.7)

For a new point x the same formula should hold. However, while the left hand side is
unknown, the right hand side can be approximated, which gives the following formula
for the extension of the diffusion map values to new points,

ψj(x) =
1
λj

∑

y ∈ S
M(x, y)ψj(y).(4.8)

This formula is known as the Nyström extension and has been widely used in many
contexts, see for example [5, 2]. In machine learning this formula plays an important
role, as it enables learning the classification of new test points, not present in the
training set.

Lifting Operator: For simplicity we describe a lifting operator based only on the
first diffusion map coordinate. Similar operators can be constructed for higher dimen-
sional versions. Let θ be a value for the first diffusion map coordinate, and let pθ(x)
denote the marginal probability density of the equilibrium density p(x) under the
constraint ψ(x) = θ. Our aim is to construct a lifting operator that outputs random
configurations x, according to pθ.

Given the restriction operator above, there is a simple method to approximately
sample from this density, by running constrained stochastic dynamics as in (2.1), but
with a modified potential

Uκ(x) = U(x) + κ(ψ1(x)− θ)2.(4.9)

The equilibrium density corresponding to this potential is given by Cβ,κe−βUκ(x).
where Cβ,κ is a normalization factor. For large enough values of κ this density is
sharply peaked at points x satisfying the required constraint ψ1(x) = θ. Starting
from any point x, as time t → ∞ the simulated points approach this equilibrium
density. By restricting to those points with ψ1(x) = θ up to a specified precision,
we effectively sample from the density pθ as required. Moreover, since ψ1 is a slow
coordinate, the equilibration time of the modified system is still of the same order
of magnitude as the fast relaxation time τR. Therefore, to sample from pθ it is not
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Fig. 5.1. (Left) Eigenvalues of the diffusion map and (right) projection of simulated data onto
the first two diffusion map coordinates for the three well system.

required to run long simulations with the above constrained dynamics. We remark
that simulating the SDE (2.1) with the modified potential (4.9) can be viewed as a
specific realization of biased umbrella sampling.

4.3. Active Phase Space Exploration. As described above, the diffusion map
coordinates are approximated using currently available simulation data. If the inter-
esting parts of the phase space have been appropriately sampled, then the computed
diffusion maps will provide a reasonable reduction coordinate. There are, however,
two possible scenarios that deserve special treatment. The first is a case where the
state space has been only partly explored, for example only some of the metastable
states have been sampled. The second is when the transition regions have been ex-
plored only sparsely. These two cases can be handled with the aid of lifting and
restriction operators.

In the first case, where only part of the phase space has been explored, the current
computation of the diffusion map coordinates can be used to bias the simulation and
initialize new simulations near the boundaries of the currently explored phase space.
This can lead to faster discovery of new metastable states. In the second case, once a
rough estimate of the diffusion map and thus of the transition region is known, it can
be used to bias simulations and sample many more points near the transition region,
leading to an improved recomputation of the diffusion map coordinates. We illustrate
both scenarios in example 5.1 below. We would like to remark, however, that this
purely data-driven approach has its limitations. For example, due to the curse of
dimensionality, it may fail if there are too many potential directions to explore that
are orthogonal to the directions spanned by the first few diffusion map coordinates.
These issues require further study.

5. Examples.

5.1. A Three Well Potential. Consider the following three well potential in
two dimensions

U(x, y) = 3e−x2−(y−1/3)2 − 3e−x2−(y−5/3)2 − 5e−(x−1)2−y2 − 5e−(x+1)2−y2
(5.1)

constrained to the domain (x, y) ∈ Ω = [−4, 4]× [−4, 4]. This potential has two deep
wells at xL = (−1.113,−0.03685), xR = (1.113,−0.03685), and another shallow well
at xC = (0, 1.7566). Therefore, there are two possible paths to move from xL to xR: A
direct path, and one that passes through the central well xC . Properties of (2.1) with
this potential were studied by various authors (see [41, 17] and references therein).

In figure 5.1 we present simulation results for this potential with temperature
parameter β = 4.0. On the left we plot the eigenvalues of the Markov matrix M
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with parameter ε = 0.30. As expected, besides the trivial eigenvalue λ = 1 there
are exactly two additional eigenvalues very close to 1 with a spectral gap between
λ2 and λ3. On the right we plot the projection of the simulated data onto the first
two eigenfunctions ψ1 and ψ2. As seen from this figure, other than at the bottom
of the wells where the dynamics are two dimensional, this projection reduces the
dimensionality of the system from 2-D to 1-D.

As seen from this figure, there are not many points along the direct path between
xL and xR. With the aid of the lifting and restriction operators we produce many
more points there. As a result we obtain a more uniform covering of the triangle of
pathways on the diffusion map space, as shown in figure 5.2 (left). In addition, we
can also numerically find the location of the saddle point and the most probable path
as follows: For each point (ψ1, ψ2) on the 1-D curve connecting two metastable wells
in the diffusion map space, we look for the point (x, y) in physical space with the
minimum potential energy. This is a numerical scheme to approximate the minimum
energy path (MEP), and its comparison to the theoretical Eikonal equation is shown
in figure 5.2 (right).

Finally, another task we can perform with the diffusion map coordinates is a
“clever” exploration of phase space, or “climbing out from a potential well”. To il-
lustrate, consider the same system but at a very low temperature (β = 10), and with
an initial knowledge of only a single metastable state, the one at xL. In this case,
starting from xL a direct simulation would require an extremely long time to exit this
well and find the other metastable states. However, using the diffusion map approach,
we simulate many short paths inside the well, subsample them, compute the diffusion
map, and then restart paths at locations whose diffusion distance is the largest from
the initial point at the center of the well. This procedure allows a systematic explo-
ration of points further and further away from the left well, leading to a discovery of
the central well orders of magnitude faster than by a standard simulation. A snapshot
of this process for the first 6 iterations is shown in figure 5.3. As seen from the figure,
after only 6 iterations, in which we ran our stochastic simulator for a short time of only
τ = 0.15, we discover the central well. For comparison purposes, for β = 10 the mean
exit time from the left well is approximately τ̄ = O(1010). Finally, we remark that
this approach can also be easily used in conjunction with other acceleration methods,
such as the parallel replica method and temperature-accelerated dynamics [53]. In
principle one can even accelerate this type of computation by smoothly projecting
backward in time (reverse coarse projective integration) [23, 34].
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5.2. An Attracting Manifold Example. Consider the SDE (2.1) with the
following potential in 2-D,

U(x, y) =
(

x− 3
2

)4

+ µ

(
y −

(
1− 1

1 + x

))2

(5.2)

with β = 1, defined in Ω = {(x, y)|x > 0} with reflecting boundary conditions at
x = 0.

When µ is large, for example µ = 40, most points lie close to the manifold (1-D
curve in our example) defined by

y = 1− 1
1 + x

.(5.3)

Since µ is large, a trajectory initialized at a large distance away from this manifold
will first quickly approach the manifold and then perform random dynamics on it.
Therefore, the effective dynamics are essentially one-dimensional, constrained to the
interval x ∈ [0, 6] by the first term in (5.2). In this specific example the first variable
x which parameterizes the manifold, is also a “slow” variable, in the sense that an
approximate equation can be written for the evolution of x(t), which does not involve
knowledge of y(t). However, not every single variable that parameterizes the manifold
is a slow variable. Suppose for example that instead of observing points (x, y), we
observe points (w, z) in a rotated coordinate system with θ = 45o,

(
w
z

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
.(5.4)

Even though w also parameterizes the manifold, it is not a slow variable. The evolution
of w(t) depends not only on w(0) but also on the initial value z(0). In figure 5.4 we
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plot the two different observables x and w vs. the reduction coordinate ψ1 computed
using points sampled from simulated paths of the SDE. As shown in the figure, x is
almost 1-to-1 with ψ1, whereas w is not (notice the fatness of the plot), indicating
that indeed w is not a good reduction coordinate.

Suppose we observed points in the (w, z) coordinate system. Can we still find the
slow variable x ? By computing the diffusion map, this simply amounts to searching
for a rotation angle θ which makes the variable w cos(θ) + z sin(θ) as closest to one-
to-one with ψ1 as possible.

As an example, consider the potential

U(x, y) =
(

x− 3
2

)4

+ µ
(
y − 2

√
x
)2

.(5.5)

In this case, for large µ the attracting manifold is y = 2
√

x. However, even though
both x as well as y parameterize the manifold, neither of them are slow variables. By
assuming that some linear combination of x and y is a slow variable, we can optimize
a 1-1 measure between ψ1 and a rotated version of (x, y) and find that at an angle
θ = 27o, the variable w = x cos θ +y sin θ is approximately 1-to-1 with ψ1, and is thus
approximately a slow variable. In figure 5.5 we plot both x and w vs. ψ1. Notice the
fatness in the x− ψ1 plot vs. the almost perfect one-to-one correspondence between
w and ψ1.

5.3. The Seven Lennard-Jones Sphere System. Consider the system of
seven Lennard-Jones spheres in the plane, with a potential given by all pair-wise
interactions

U(x1, . . . , x7) =
∑

i<j

ULJ (xi − xj)(5.6)
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where ULJ is the standard 6-12 Lennard-Jones potential. This system is 14 dimen-
sional (or 12 dimensional after mean centering each configuration), and has a few
metastable states with rare transitions between them [16, 20]. In figure 5.6 we present
the first three diffusion map coordinates computed using data from a deterministic
molecular dynamics simulation of this system at constant energy. The computa-
tions were based on more than 1 million configurations which were subsampled and
reweighted (according to their empirical density) to about 3600 representative config-
urations. The similarity between configurations is based on a Gaussian kernel with
width ε = 0.2. The distance between configurations was computed as follows, to be
invariant under translations and rotations, but not reflections (hence the symmetry
in the figure). Let C1 and C2 denote two configurations, mean centered and aligned
along their principal axes of inertia. We denote by C1(i) the location of the i-th
particle in that configuration. For a distance between configurations we considered
the Hausdorff distance between the two sets,

d(C1, C2) = max{max
1≤i≤7

min
1≤j≤7

‖C1(i)− C2(j)‖, max
1≤i≤7

min
1≤j≤7

‖C2(i)− C1(j)‖}

Given a large set of configurations, the complexity of the computation is of the order
of |Ssub| × |S| ×Wdist where Ssub is the size of the subsampled set, |S| is the size of
the original set of configurations and Wdist is the complexity of distance calculation
between a pair of configurations, plus the complexity of eigenvalue and eigenvector
computations for the |Ssub| × |Ssub| matrix.

The projection of the system onto the first three diffusion map coordinates clearly
shows the different metastable states and the approximately one-dimensional path-
ways between some of them. For example, it clearly shows that there are essentially
no direct transitions between the state C0 and the state C3. A detailed diffusion map
study of the dynamics of this system will be described in a separate publication.

6. Summary and Discussion. The problem of finding good low dimensional
descriptions for high dimensional dynamical systems is an important and active area
of research. In this paper we presented a rational and principled approach to this
problem for the case of reversible diffusions, suggesting the eigenfunctions of the
backward FP operator as good reduction coordinates. We then presented algorithms
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to approximate the first few of these eigenfunctions from the exploration of the long-
term dynamics using a given large set of simulated data. We also presented lifting and
restriction operators that enable to study the effective dynamics on these coordinates
by a multiple series of appropriately initialized short simulation runs. An essential
requirement for this approach is the presence of a spectral gap between the eigenvalues
so that the time scales of the coarse variables are well separated from the ones on
the molecular/atomic motion. This is also the standard assumption for many other
reduction methods. Further research is required to study more complex multi-scale
systems, characterized by either a hierarchy of spectral gaps or by many different
mixed time and length scales.

We note that while these eigenfunctions are optimal under a mean squared error
criterion, other criteria for good reduction coordinates are obviously possible. For
example, within the context of chemical reactions between a well defined reactant and
product region, the optimal reaction coordinate is the set of isocommittor surfaces,
with each surface defined as all points with the same probability q to reach the product
region before reaching the reactant region. This reaction coordinate is the solution
of the backward FP equation with boundary conditions of zero in the reactant region
and one in the product region. As with the eigenfunctions of the FP operator, it is
difficult if not impossible to compute in high dimensions. Yet, many works propose
optimizing surfaces and finding a good reaction coordinate based on this principle,
see for example [6, 21] and references therein.

Our computational approach is closely related to the transfer operator approach
[46], which also computes an approximation to the eigenfunctions of the FP operator
[27], and to Perron cluster analysis [18, 19]. We remark that these methods are
applicable to other dynamical systems, not necessarily described microscopically by
diffusion in a potential field. Results analogous to those of Section 3 may obviously be
more difficult to prove in such cases. We also note that [27] in fact considered the more
general case of non-reversible diffusions and proved that the backward eigenfunctions
can be used to partition the space into metastable states in this case as well. In
comparison, there are two distinct features of our approach. The first is that our
approximation scheme merges all simulated data points into account without using
their time indexing. The second difference is that we propose to use the eigenfunctions
as new low dimensional coordinates, on which it is possible to study the long term
evolution of the system via the lift-run-restrict scheme. Our work is also related to
the application of other dimensionality reduction techniques to data from molecular
dynamics simulations, such as [14]. The main differences in our work is that the
proposed dimensionality reduction is intrinsically related to the dynamics, and has
provably good properties in approximating long-term behavior of the system.

In many chemical systems the transitions between metastable states reflect some
underlying mechanism. In our approach we find a parametrization of the transition
pathways and of the saddle points on them in the diffusion map space. Further work
is needed to understand the corresponding mechanism in the physical configuration
space (for example, if the transition is due to an infrequent flip in a given bond). This
may be achieved via the restriction and lifting operators between the two spaces, for
example, by computing the minimum energy path (MEP) between two metastable
states.

Finally, in this paper we did not discuss issues of complexity and convergence
rates, nor did we analyze the approximation errors and the number of points and
iterations needed to achieve a given accuracy. These important mathematical issues
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will be considered in future work.

Acknowledgments. The authors would like to thank Achi Brandt, Raz Kupfer-
man, Gerhard Hummer, Thomas Frewen and Zeev Schuss for interesting discussions.
We also thank the anonymous referees for their helpful comments. The research of BN
was supported in part by ISF grant 432/06 and by the William Z. and Eda Bess Young
Scientist Fund. MM is grateful for partial support from NSF DMS grant 0650413 and
DOD/ONR N00014-07-1-0625, 313-4224. IGK was partially supported by DARPA,
DOE(CMPD) and the US-Israel Binational Foundation.

Appendix. Proof of Theorem 1: By induction. First consider the zeroth order
approximation p0 = α0(y)v0(x). Since p0 must be a probability density function, it
follows that α0(y) = 1. Using the orthonormality conditions of ϕj and ψj , we obtain
that v0(x) = ϕ0(x).

Now consider p1 = ϕ0(x) + α1(y)v1(x). We decompose v1 in the basis ϕj and α1

in the basis ψk,

v1(x) =
∑

j≥1

e−λjtajϕj(x)

α1(y) =
∑

k≥1

bkψk(y)

where aj and bk are yet undetermined. Inserting these expressions into (3.2) gives
that

Ey{‖p− p̂‖L2(Ω,w)} =
∑

j

e−2λjt(1− 2ajbj) +
∑

j

e−2λjta2
j

∑

k

b2
k.(6.1)

Differentiation with respect to aj gives that

aj = bj/B(6.2)

where B =
∑

b2
j . Plugging this back into the equation gives minimization of the

following quantity

min
bj

∑

j≥1

e−2λjt

(
1− b2

j

B

)
.(6.3)

Since λj is an increasing sequence, minimization is obtained with b1 = 1 and bj = 0
for all j > 1.
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