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Abstract 1 

Several previous studies reported relationships between speed of information processing as 2 

measured with the drift parameter of the diffusion model (Ratcliff, 1978) and general 3 

intelligence. Most of these studies utilized only few tasks and none of them used more 4 

complex tasks. In contrast, our study (N = 125) was based on a large battery of 18 different 5 

response time tasks that varied both in content (numeric, figural, and verbal) and complexity 6 

(fast tasks with mean RTs of ca. 600 ms vs. more complex tasks with mean RTs of ca. 3000 7 

ms). Structural equation models indicated a strong relationship between a domain-general 8 

drift factor and general intelligence. Beyond that, domain-specific speed of information 9 

processing factors were closely related to the respective domain scores of the intelligence 10 

test. Furthermore, speed of information processing in the more complex tasks explained 11 

additional variance in general intelligence. In addition to these theoretically relevant findings, 12 

our study also makes methodological contributions showing that there are meaningful 13 

interindividual differences in content specific drift rates and that not only fast tasks, but also 14 

more complex tasks can be modeled with the diffusion model. 15 

 16 

Keywords: intelligence, diffusion model, mathematical models, reaction time methods, fast-17 

dm  18 
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Diffusion Modeling and Intelligence:  1 

Drift rates show both domain-general and domain-specific relations with intelligence 2 

One of the processes that has often been discussed as basis of individual differences in 3 

intelligence is speed of information processing (Jensen, 2006). This notion is supported by 4 

consistent empirical results showing moderate relationships between general intelligence1 and 5 

response times (RTs) from a broad range of cognitive tasks (Sheppard & Vernon, 2008). 6 

Regarding these relationships between intelligence and RTs, (at least) two important 7 

observations have been made in the last decades: (1) The relationship between RT and 8 

intelligence does not seem to be specific to content domains (verbal, figural, numeric; Levine, 9 

Preddy, & Thorndike, 1987; Neubauer & Bucik, 1996). (2) The slower responses within one 10 

task are more highly related to intelligence than the faster responses, resulting in the 11 

formulation of the worst performance rule (Larson & Alderton, 1990; for a review, see 12 

Coyle, 2003; for methodological considerations, see Frischkorn, Schubert, Neubauer, & 13 

Hagemann, 2016; for a meta-analysis, see Schubert, 2019). Thus, in brief, the relationship 14 

between intelligence and speed of information processing seems to depend on the speed of 15 

trials, but not or only to a small degree on the specific task content. 16 

However, there are some methodological limitations of previous studies that 17 

examined the relationship between intelligence and speed of information processing. One of 18 

these limitations has been pointed out by Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann 19 

(2007): Regarding the worst performance rule, they noted that previous studies employed 20 

different RT bands resulting in only restricted numbers of trials per band, thereby limiting the 21 

reliability of estimates. Instead of employing RT bands, Schmiedek et al. (2007) used a 22 

mathematical model that takes into account information about RT distributions, and thus has 23 

                                                 
1 In this paper, we use the term general intelligence to denote a general factor that statistically emerges in 

intelligence tests (in the sense of sampling theories, e.g., Kovacs & Conway, 2016). Our use of the term general 

intelligence does not imply that we assume this factor to be a causal factor. In fact, our study does not have the 

aim of providing any inferences regarding the question of causality. 
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a considerably higher information usage—the diffusion model (Ratcliff, 1978; see Voss, 1 

Nagler, & Lerche, 2013, for a review). 2 

The diffusion model is a stochastic model that is applicable to binary response time 3 

tasks and allows the separation of different, otherwise confounded, processes. One parameter 4 

of this model—drift rate—is supposed to provide a pure measure of speed of information 5 

processing, with other processes (such as speed of motoric response execution, or speed-6 

accuracy settings) “partialled out”. It is a known property of the diffusion model that changes 7 

in drift rate have a larger influence on the tail than on the leading edge of RT distributions. 8 

More specifically, Ratcliff and McKoon (2008) report that changes in the .9 quantile of RT 9 

distributions are typically four times as large as changes in the .1 quantile. Changes in other 10 

parameters of the diffusion model—which measure processes such as speed-accuracy settings 11 

(threshold separation parameter) or the duration of encoding and motoric processes (non-12 

decision time parameter)—on the other hand, do not have this asymmetric influence on fast 13 

vs. slow RTs. In line with this reasoning, Schmiedek et al. (2007) found the drift rate (but not 14 

other diffusion model parameters) to be related to intelligence. In the following years, other 15 

studies also supported the notion that intelligence as measured by classical intelligence tests 16 

is associated with the drift rate (e.g., Ratcliff, Thapar, & McKoon, 2011; Schmiedek et al., 17 

2007; Schmitz & Wilhelm, 2016; Schubert, Hagemann, Voss, Schankin, & Bergmann, 2015). 18 

In contrast to drift rate, mean RTs are influenced by a number of different processes 19 

(e.g., how cautious individuals are and how fast they execute the motoric response). In fact, 20 

for these other processes, for which the diffusion model provides distinct measures, no 21 

consistent correlations with intelligence have been found. The only relationship that has been 22 

reported several times is a small negative correlation of intelligence with non-decision time, 23 

indicating that more intelligent people are faster in non-decisional processes, that is, in 24 

encoding and/or motoric processes (McKoon & Ratcliff, 2012; Schubert et al., 2015; Schulz-25 
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Zhecheva, Voelkle, Beauducel, Biscaldi, & Klein, 2016). In several other studies, however, 1 

this relationship between intelligence and non-decision time has not been found (e.g., 2 

Schmiedek et al., 2007; Schmitz & Wilhelm, 2016). Critically, previous studies that 3 

examined relationships between diffusion model parameters and intelligence are based on 4 

only limited numbers of tasks and they used different estimation approaches, which might 5 

account for inconsistencies in the findings. 6 

To sum up, according to the literature distinct effects of speed of information 7 

processing on RT distributions account for the worst performance rule. Furthermore, whereas 8 

drift rate seems to be consistently related to intelligence, for the other diffusion model 9 

parameters the current state of research is inconsistent. We will now come back to the 10 

question of domain-specificity of mental speed. The diffusion model, which has proved 11 

useful for the examination of the worst performance rule, might also help to gain further 12 

insights into this finding. 13 

Interestingly, previous studies did not find clear support for a three-factor structure 14 

(numeric, figural, verbal) in RT tasks, suggesting that there are no substantial domain-15 

specific factors of speeds of information processing (Levine et al., 1987; Neubauer & Bucik, 16 

1996). This observation is in contrast to findings from intelligence tests that assume a 17 

hierarchical structure of intelligence with both a general factor and domain-specific factors 18 

(e.g., verbal, numeric, figural; Jäger, Süß, & Beauducel, 1997). However, it might be difficult 19 

to draw definite conclusions from the mental speed studies by Levine et al. (1987) and 20 

Neubauer and Bucik (1996) as they did not explicitly disentangle processing speed from 21 

other processes. The mental speed measures used in these studies might, thus, have been 22 

distorted and may therefore have been no valid indicators of actual speed of information 23 

processing. Notably, the studies did find a tendency for domain-specific correlations (i.e., 24 

higher correlations between intelligence and mental speed in the respective domains) 25 



DIFFUSION MODELING AND INTELLIGENCE  5 

  

although their data did not contain compelling evidence for a hierarchical factor structure of 1 

mental speed. Moreover, effects were not consistent and very small. Thus, we hypothesize 2 

that the measures of processing speed used might not have been pure enough to find clear 3 

support for domain-specificity. Using drift rate as a purer measure of cognitive speed 4 

provides a more powerful and fairer test for the question, whether cognitive speed has stable 5 

domain-specific components. The diffusion model literature, though, so far only reports one 6 

general drift rate factor, and Schmiedek et al. (2007) see their results as suggesting that 7 

“underlying mechanisms could be relatively task-independent” (p. 425). Notably, however, 8 

previous diffusion model studies only used a very restricted number of tasks per domain. 9 

Accordingly, the existing literature does not allow to draw clear inferences as to whether 10 

there is only one common speed of information processing or whether there are domain-11 

specific speeds. It is further unclear whether domain-specific processing speeds (if they exist) 12 

are related to the respective intelligence test scores or just to general intelligence. 13 

To sum up, we see two important research gaps that have not been addressed by 14 

previous studies analyzing the association of cognitive speed and intelligence with the 15 

diffusion model framework. These gaps originate from restrictions in the number and breadth 16 

of the employed tasks. First, whereas previous studies found clear evidence for an association 17 

of drift rate and general intelligence, results regarding the other diffusion model parameters 18 

are less clear-cut. Second, previous diffusion model studies did not vary task content 19 

systematically, so it remains an open question whether there are also domain-specific factors 20 

of cognitive speed, and whether such domain-specific speeds are related to the respective 21 

intelligence test scores. 22 

Another perspective on the research aims listed above relates to the diffusion model as 23 

a diagnostic tool: Whereas, in the past, the diffusion model was mainly employed for the 24 

analysis of differences between groups or conditions, in recent years it has been proposed to 25 
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use this methodology also for the analysis of interindividual differences in cognitive 1 

processes (e.g., Frischkorn & Schubert, 2018; Ratcliff & Childers, 2015; White, Curl, & 2 

Sloane, 2016). Our study allows for an examination of whether there are in fact meaningful 3 

content-domain specific interindividual differences in the processing of information. 4 

One further important goal of the present study is the comparison of easy (perceptual) 5 

tasks vs. complex tasks (requiring more complex mental operations). In the past, it was often 6 

recommended to apply the diffusion model only to tasks with mean trial RTs of up to 1.5 7 

seconds (e.g., Ratcliff & Frank, 2012; Ratcliff & McKoon, 2008; Ratcliff, Thapar, Gomez, & 8 

McKoon, 2004). Following this rule of thumb, the previous studies that examined links 9 

between intelligence and drift rate used easy tasks that required no complex mental 10 

operations and thus allowed for very rapid responding. Interestingly, first studies indicate that 11 

the diffusion model might also be applicable to more complex tasks, requiring several 12 

seconds for response selection (Aschenbrenner, Balota, Gordon, Ratcliff, & Morris, 2016; 13 

Lerche, Christmann, & Voss, 2018; Lerche & Voss, 2017a). These studies, however, only 14 

examined single tasks (e.g., a complex figural task in the studies by Lerche & Voss, 2017a) 15 

and did not compare easy with more complex tasks. In the present study, we use a large 16 

number of both easy and more complex tasks and examine whether the goodness-of-fit of the 17 

diffusion model differs between data from easy vs. complex tasks. 18 

Furthermore, we test the criterion validity of drift rate in the more complex tasks, 19 

analyzing whether drift rate is related to intelligence not only in the fast, but also in the more 20 

complex tasks. In fact, for more complex conditions stronger associations of intelligence and 21 

mental speed have been reported (Sheppard & Vernon, 2008; see also Coyle, 2017; 22 

Marshalek, Lohman, & Snow, 1983). More precisely, the relationship between intelligence 23 

and mental speed increases from very simple tasks (RTs of about 300 ms) to moderately 24 

complex tasks (RTs around 500-900 ms), but decreases again if tasks get even more complex 25 
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(RTs of more than 1200 ms; Jensen, 2005; see also Lindley, Wilson, Smith, & Bathurst, 1 

1995). Thus, there seems to be an inverted-U-shaped relationship between task complexity 2 

and the correlation between intelligence and mental speed. In our study, we examine “easy” 3 

tasks (around 600 ms; i.e., moderately complex tasks according to the definition by Jensen) 4 

and “complex” tasks (around 3000 ms). Jensen states the hypothesis that one reason for the 5 

decrease from moderately complex to complex tasks is that individual differences in 6 

performance strategies play a more important role in complex tasks. Furthermore, Lindley et 7 

al. (1995) point out that in their complex task participants had to repeatedly scan between 8 

different task elements resulting in supplemental motor time so that RT became a less 9 

accurate measure of processing speed. Notably, drift rate is a more specific measure of 10 

processing speed with some strategies (different speed-accuracy settings) or the duration of 11 

encoding processes partialled out. Jensen also mentions that complex tasks show more task-12 

specific factors that can weaken the correlation between RT and g. As we use a large number 13 

of tasks, we can use a structural equation modeling (SEM) approach, which helps us to 14 

control for task specificities. Thus, the use of diffusion modeling and SEM provides us with 15 

more specific measures of mental speed and the relationship between mental speed and 16 

intelligence. Accordingly, in our study we assume a substantial relationship between drift rate 17 

and intelligence also for the more complex tasks.  18 

In the following paragraphs, we first give a brief introduction to the diffusion model 19 

(for more detailed information, see Ratcliff, Smith, Brown, & McKoon, 2016; Voss, Nagler, 20 

et al., 2013; Wagenmakers, 2009). Next, we present a review of previous studies that 21 

examined relationships between intelligence and diffusion model parameters. In the 22 

subsequent section, we present theoretical underpinnings of the relationship between drift rate 23 

and intelligence. After that, we examine the question of whether the diffusion model is also 24 
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applicable to more complex RT tasks. Finally, we present the method and results of our 1 

study. 2 

Introduction to the Diffusion Model 3 

The diffusion model (Ratcliff, 1978) is a mathematical model that is applicable to 4 

decision tasks with two response options. When a participant works on a trial of such a binary 5 

task (e.g., color discrimination task, see Voss, Rothermund, & Voss, 2004) she is assumed to 6 

accumulate information continuously until she reaches one of two thresholds (see Figure 1). 7 

The two thresholds represent either the two response options (response coding) or the 8 

response accuracy (accuracy coding; e.g., Figure 1). The distance between the thresholds, the 9 

so-called threshold separation (a) reflects how much information needs to be accumulated to 10 

reach a decision. If individuals are more cautious, they will accumulate more information 11 

before they decide for one option. In this case, a larger threshold separation will cause longer 12 

RTs and—at the same time—higher accuracy because the decision processes will terminate at 13 

the wrong threshold more rarely. 14 

Speed of information processing is denoted as drift (ν) and is illustrated by the arrows 15 

in Figure 1, with steeper arrows indicating faster accumulation of information. During 16 

information sampling, Gaussian noise is added constantly to the drift, reflecting random 17 

fluctuations in the decision process. Due to this noise, the accumulation process does not 18 

terminate after the same time and not always at the same threshold, even if the available 19 

information (i.e., the stimulus) is identical. The two panels of Figure 1 illustrate the influence 20 

of differences in drift on the RT distributions. It can be seen that if the drift is higher (Panel 21 

B) fewer errors are made resulting in a smaller distribution at the error threshold and a larger 22 

distribution at the correct response threshold. In addition, RT distributions for lower drift 23 

rates (Panel A) are more spread out than those for higher drift rates. Another diffusion model 24 

parameter is non-decision time (t0) which subsumes the duration of all non-decision 25 
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processes, such as encoding of information (preceding the decision process) and motoric 1 

response execution (succeeding the decision process). The last parameter of the basic 2 

diffusion model is starting point, which maps whether a decision is biased for one of the two 3 

response options. 4 

Next to these four main model parameters, often three more parameters mapping 5 

intertrial variability of drift sν, starting point szr (Ratcliff & Rouder, 1998) and of non-6 

decision time st0 (Ratcliff & Tuerlinckx, 2002) are estimated. However, the intertrial 7 

variability of drift and starting point cannot be estimated reliably and fixation of these 8 

parameters to zero can improve estimation of the main diffusion model parameters (Lerche & 9 

Voss, 2016; see also van Ravenzwaaij, Donkin, & Vandekerckhove, 2017). 10 

Intelligence and Diffusion Modeling 11 

It is well-known that intelligence shows a high stability over long time periods (e.g., 12 

Carroll, 1993; Larsen, Hartmann, & Nyborg, 2008). Accordingly, the rank-order stability of a 13 

diffusion model parameter is a prerequisite for it to be related to intelligence. Test-retest 14 

studies by Lerche and Voss (2017b) provide first evidence that drift rates are rather time 15 

stable. More specifically, in Study 1, a lexical decision task and a recognition memory task 16 

were completed at two sessions, separated by a one-week interval. In a second study, 17 

participants worked on an associative priming task (again with a test-retest interval of one 18 

week). In all three tasks, drift showed acceptable test-retest correlations. The authors further 19 

conducted simulation studies based on the parameters estimated for the empirical data. 20 

Specifically, they simulated two data sets (reflecting the two sessions) based on identical 21 

parameter values. Interestingly, test-retest correlations of drift rates estimated from the real 22 

data were very similar to correlations based on simulated data. This suggests that the speed of 23 

information processing was very stable across measurements, and situation influences on drift 24 

rate are rather small. 25 
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 A study by Schubert, Frischkorn, Hagemann, and Voss (2016) corroborates this idea. 1 

The authors conducted a test-retest study with a time interval of eight months. They then used 2 

latent state-trait analyses to disentangle trait influences and situation influences. The most 3 

important finding was that drift rates had the highest consistencies, indicating that they were 4 

the most trait-like parameters. Accordingly, drift rate might be a good candidate for 5 

associations with intelligence, which is characterized by high temporal stability and great 6 

consistency (Danner, Hagemann, Schankin, Hager, & Funke, 2011). 7 

In support of this hypothesis, in several studies relationships between general 8 

intelligence and drift rate have been reported (McKoon & Ratcliff, 2012; Ratcliff, Thapar, & 9 

McKoon, 2010; Ratcliff et al., 2011; Schmiedek et al., 2007; Schmitz & Wilhelm, 2016; 10 

Schubert et al., 2015; Schulz-Zhecheva et al., 2016). These studies measured drift rates from 11 

performance in different types of binary tasks. For example, Ratcliff et al. (2010) used a 12 

numerosity discrimination task, a recognition memory task, and a lexical decision task. 13 

Intelligence was assessed by means of the Vocabulary and Matrix Reasoning subtests of the 14 

Wechsler Adult Intelligence Scale. The authors observed substantial correlations between IQ 15 

(mean over the two scales) and drift rate as measured in the lexical decision (r = .53) and 16 

recognition memory task (r = .55). The correlation was smaller for the numerosity task (r = 17 

.24). As also alluded to by the authors this is not astonishing, as the subscales of the 18 

intelligence test that were administered did not address the numeric domain, but the verbal 19 

(vocabulary subtest) and figural domain (matrix reasoning subtest). Only small-to-moderate 20 

values were observed for the correlation of intelligence with threshold separation and non-21 

decision time (|r|max = .33). 22 

In a subsequent paper, Ratcliff et al. (2011) reported correlations between IQ and 23 

diffusion model parameters from an item recognition memory task and an associative 24 

recognition memory task. Again, there were substantial correlations between the IQ scales 25 
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and drift rate with r = .36-.68 for college age participants and r = .47-.67 for participants aged 1 

60-74 years. For the oldest group (75-90 years old), correlations were smaller (r = .18-.34), 2 

which was seen as partly attributable to floor effects and lower reliability of the vocabulary 3 

subtest. For threshold separation and non-decision time, an inconsistent pattern of mostly 4 

small correlations with IQ emerged across tasks and age groups. McKoon and Ratcliff 5 

(2012), who assessed participants of the same three age groups with the same two subtests of 6 

the Wechsler Intelligence Scale, also found IQ to be correlated with drift rates for associative 7 

recognition (rs between .24 and .68) and item recognition (rs between .49 and .68). In 8 

addition, non-decision times were negatively related to IQ, suggesting faster encoding and/or 9 

response execution of more intelligent participants. 10 

Schubert et al. (2015) report results from three elementary cognitive tasks (Hick task, 11 

Sternberg memory scanning task, and Posner letter matching task). Intelligence was assessed 12 

in this study with Raven’s Advanced Progressive Matrices and with a shortened version of 13 

the knowledge test of the German Intelligenz-Struktur-Test 2000-R. In line with the results of 14 

the previously reported studies, the authors observed a correlation of r = .50 between the 15 

component score of drift rates from the different tasks (extracted from principal component 16 

analyses) and general intelligence. In addition, like in the study by McKoon and Ratcliff 17 

(2012), a negative relationship between intelligence and non-decision time emerged (r = -18 

.42). Thus, the more intelligent individuals not only showed higher drift rates but also shorter 19 

non-decision times. 20 

Schmiedek et al. (2007) used a larger number of different tasks: two lexical tasks, two 21 

numeric tasks, and four spatial tasks. For the assessment of intelligence, the authors 22 

employed tasks of the Berlin Structure of Intelligence Test (BIS; Jäger et al., 1997). More 23 

specifically, three numeric, figural, and verbal tasks from the reasoning and psychometric 24 

speed operation scales were used. Based on structural equation modeling (SEM), the authors 25 
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found that the latent factor of psychometric speed correlated highest with latent drift rate 1 

(r = .59), whereas the correlations were smaller for threshold separation (r = -.42) and non-2 

decision time (r = -.04). Similarly, for reasoning the highest correlation emerged for drift rate 3 

(r = .79; threshold separation: r = -.48; non-decision time: r = .25). 4 

Schmitz and Wilhelm (2016) also reported relationships of drift with intelligence. 5 

Using two different cognitive tasks and also employing SEM to link the drift rates to a 6 

measure of fluid intelligence (a figural sequence reasoning test from the BEFKI; Wilhelm, 7 

Schroeders, & Schipolowski, 2014) they found correlations with drift of r = .15 (non-8 

significant) for visual search and of r = .29 for visual comparison. The authors did not report 9 

any significant correlations between fluid intelligence and the other diffusion model 10 

parameters. 11 

Schulz-Zhecheva et al. (2016) tested a sample of participants aged 8 to 18 years with 12 

Cattell’s Culture Fair Intelligence Test (CFT 20-R; Cattell & Cattell, 1960; Weiss, 2006) of 13 

fluid intelligence and measured diffusion model drift rates across four simple decision tasks. 14 

The latter consisted of deciding whether a number was odd or even, whether a number was 15 

smaller or larger than 50, whether an arrow pointed upward or downward and whether a line 16 

was shown in the upper or lower half of the screen. Once more, drift rate was by far the 17 

strongest correlate of fluid intelligence (gf; r =.41; non-decision time: r = -.20; threshold 18 

separation: r = -.13). The total gf factor variance explained by the diffusion model parameters 19 

was 19%. 20 

In sum, drift rate seems to have a trait-like characteristic, showing moderate 21 

consistency across different tasks and temporal stability. Moreover, robust relationships 22 

between drift rates and intelligence have been reported across different studies and 23 

experimental tasks. In contrast, correlations of the other diffusion model parameters with 24 

intelligence are smaller and the pattern is less consistent. Apart from the relationship with 25 
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drift rate, the finding that has been most often reported is a negative correlation between 1 

intelligence and non-decision time. However, this relationship only showed up in some of the 2 

studies. 3 

From the previous diffusion model literature, no clear conclusions can be drawn 4 

regarding the existence of domain-specific drift rates. Whereas the findings by Schmiedek et 5 

al. (2007) speak in favor of task-independence of speed of information processing, other 6 

studies lend first support to the hypothesis that speed of information processing might differ 7 

between domains. For example, Ratcliff et al. (2010) who measured intelligence with a verbal 8 

and a figural test found a smaller correlation of intelligence with drift in a numeric task than 9 

in a verbal or a figural task. Furthermore, in the study by Schubert et al. (2016) drift rates 10 

showed smaller consistencies than typically observed in intelligence tests, suggesting that 11 

individual differences in drift rates also reflect task- and content-specific properties to a 12 

substantial degree. Importantly, a study that combines domain-specific intelligence 13 

assessment with a battery of various RT tasks that tackle these domains is still missing. It is 14 

an open question whether a domain-specific structure of speed of information processing can 15 

be found and if so, if such domain-specific drift rates correlate with the respective domain 16 

scores of an established intelligence measure. To address these questions, in our study, we 17 

put together a battery of 18 different binary RT tasks that address the three different domains 18 

of intelligence. 19 

Relationship between Drift Rate and Intelligence: Theoretical Considerations 20 

As we described in the last section, empirical findings support the view that speed of 21 

information processing as measured by the drift rate of the diffusion model is related to 22 

intelligence. Next, we will outline why this relationship is theoretically plausible and why we 23 

assume that in more complex tasks relationships between drift rate and intelligence might be 24 

even stronger than in less complex tasks. 25 
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For illustration, let us consider the two mechanisms proposed by Salthouse (1996) to 1 

describe the assumed effect of age-related slowing on cognition, the limited time mechanism 2 

and the simultaneity mechanism. The limited time mechanism is supposed to be in effect 3 

when the time for solving a problem is limited and only little time is available for the higher-4 

order integration of information, because earlier stages of information processing occupied 5 

too much time. The simultaneity mechanism assumes that, over time, information becomes 6 

less available in working memory. If older individuals need more time to process 7 

information, a greater amount of information will then be lost or at least fragmented by the 8 

time they start to integrate all processed information. Accordingly, we assume that 9 

individuals who have a reduced speed of information processing (i.e., a smaller drift rate) will 10 

suffer more from time constraints, as they have less time available for higher-order 11 

processing. Furthermore, for these individuals (in contrast to individuals with higher drift 12 

rates) more information will get lost during the accumulation process. The importance of 13 

temporal aspects in information-processing has also been stressed, for example, by the Time-14 

Based Resource-Sharing (TBRS) model (Barrouillet, Bernardin, & Camos, 2004; Camos & 15 

Barrouillet, 2014). The model supports the view of a time-related decay of memory traces 16 

and regards the number of necessary memory retrievals and the time given to perform them 17 

as important factors influencing performance. More complex tasks will often require more 18 

memory retrievals than simple RT tasks (e.g., perceptual or recognition memory tasks), with 19 

time pressure kept constant between task types. Accordingly, more complex RT tasks might 20 

be more vulnerable to deficits in speed of accumulation of information. In other words, task-21 

related differences in working memory demands might underlie higher relationships between 22 

more complex tasks and intelligence. 23 

A similar idea is part of the process overlap theory (Conway & Kovacs, 2015; Kovacs 24 

& Conway, 2016, see also Kan, van der Maas, & Kievit, 2016), a recently proposed 25 
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intelligence theory. According to this theory “executive/attentional processes” play an 1 

important role, underlying—amongst other—both the worst performance rule and the finding 2 

of higher relationships with intelligence for more complex tasks. Process overlap theory is 3 

considered a modern version of Thomson`s sampling theory (Thomson, 1916). According to 4 

Thomson (1916), each mental test addresses a number of what has later often been called 5 

“bonds” (see Deary, Lawn, & Bartholomew, 2008, for a historical analysis). This account 6 

explains correlations of performance across tasks by an overlap of required psychological 7 

processes (in the intelligence literature also often referred to as positive manifold). Rather 8 

than assuming a causal general factor of intelligence, process overlap theory regards the g 9 

factor—that undoubtedly shows up in any factor analysis of cognitive ability test data—as an 10 

“emergent property” (p. 162, Kovacs & Conway, 2016). 11 

In contrast to Thomson`s theory, process overlap theory does not postulate an additive 12 

overlap of processes but assumes a bottleneck in form of multiplicatively linked 13 

“executive/attentional processes” (Kovacs & Conway, 2016; see Schubert & Rey-Mermet, 14 

2019, for a critical discussion of the empirical testability of this hypothesis). Kovacs and 15 

Conway (2016) state that “g loadings depend on the involvement of executive processes 16 

seated primarily in the prefrontal cortex rather than on the number of processes measured” (p. 17 

170) and define complexity as “the extent to which a test taps executive/attentional processes” 18 

(p. 164). Accordingly, they suppose the relationship between more complex tasks and 19 

intelligence is driven by the engagement of executive processes. Similarly, it is assumed that 20 

the slower trials in a task are more highly related to intelligence because they are indicators of 21 

failures in executive processes. We support this view of a common explanation of both these 22 

empirical observations. More specifically, we assume that the drift rate of the diffusion model 23 

might provide a methodological account for both observations. It has already been 24 

demonstrated that the drift rate provides an explanation for the worst performance rule (e.g., 25 
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Schmiedek et al., 2007). So far, however, no study has examined relationships between 1 

intelligence and drift rate in more complex tasks. In our study, we examine complex tasks 2 

with RTs of about 3000 ms, thus tasks for which according to Jensen (2005) relationships 3 

between mental speed and intelligence should be small because of higher influences of 4 

individual differences in strategies. As the diffusion model provides a more specific measure 5 

of mental speed (e.g., partialling out speed-accuracy settings), we assume that also for more 6 

complex tasks there should be a substantial relationship between mental speed (measured by 7 

means of the drift rate) and intelligence. This relationship might even be larger than for less 8 

complex tasks because of higher memory demands. 9 

In short, we suppose that a higher speed of information processing helps to counteract 10 

time-related decay of memory. This might be particularly relevant for tasks with higher 11 

memory demands. In our study, we examine both fast tasks with little memory demands and 12 

more complex tasks with higher memory demands. As we will outline in the next section, we 13 

assume that the diffusion model is also applicable to such more complex tasks. 14 

Diffusion Modeling for Fast vs. More Complex Tasks 15 

In the past, the diffusion model has almost exclusively been applied to fast tasks. By 16 

this term, we refer here to tasks with a mean trial duration of below 1.5 seconds. The claim 17 

that the diffusion model is only applicable to such fast tasks has been repeatedly put forth 18 

(e.g., Ratcliff & Frank, 2012; Ratcliff & McKoon, 2008; Ratcliff, Thapar, et al., 2004) and 19 

has strongly influenced the choice of tasks for diffusion modeling for a long time. The 20 

reasoning underlying this restriction is that tasks with longer RTs were seen as more likely to 21 

violate basic assumptions of the diffusion model (such as the assumption that decisions are 22 

based on a single processing stage and that parameters remain constant over time within one 23 

trial). However, we question the idea that data from more complex tasks are more likely to 24 

violate assumptions of the diffusion model. 25 
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Let us first consider response time tasks that fulfill the 1.5 second rule, that is, typical 1 

RT tasks to which the diffusion model has been applied frequently, such as a color 2 

discrimination task. In this task, participants have to decide whether, for example, the color 3 

orange or blue prevails in a square filled with pixels of these two colors (e.g., Germar, 4 

Schlemmer, Krug, Voss, & Mojzisch, 2014; Voss et al., 2004). Participants are assumed to 5 

sample evidence from the perceptual dimension (here, color). In such perceptual tasks, it is 6 

plausible that participants continuously sample information (i.e., perceptions of color), until 7 

they are reasonable sure that one color prevails. However, the diffusion model has also often 8 

been applied to tasks in which a continuous sampling of information is less plausible. 9 

Imagine, for example, the lexical decision task (Ratcliff, Gomez, & McKoon, 2004). Here it 10 

is unclear, whether—during decision making—information of “wordiness” of a stimulus is 11 

accumulated with constant drift. Rather, different pre-lexical (e.g., bigram frequencies) and 12 

post-lexical (e.g., similarity to existing words) processes could inform the decision with 13 

different impact, thus resulting in separate decision stages with different drift rates. 14 

Since there is no way to assess the assumptions of the diffusion model analytically, 15 

the model has to be validated empirically, both regarding its general ability to fit empirical 16 

data and regarding the external validity of all model parameters. Such validation studies are 17 

essential for any cognitive model and any new type of task. One important tool in this regard 18 

are so-called selective influence studies that demonstrate that specific experimental 19 

manipulations with high face validity take impact on specific model parameters in a specific 20 

way. Importantly, such selective influence studies have shown comparably good validity of 21 

the diffusion model parameters for color discrimination (Voss et al., 2004) and recognition 22 

memory (Arnold, Bröder, & Bayen, 2015). Accordingly, even in the recognition memory task 23 

the model assumptions are apparently not seriously violated. 24 
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Imagine now a more complex task, for example, the complex figural task used in our 1 

study (see Figure 2, for an example stimulus). In each trial of this task, participants see 2 

several rectangles. Half of the rectangles are surrounded by a blue border and half of them by 3 

a red border. Participants have to estimate the total area of the blue-bordered rectangles and 4 

compare it to the total area of the red-bordered rectangles in order to assess which of these 5 

summed areas is larger. In studies by Lerche and Voss (2017a), the variant of the complex 6 

figural task employed led to mean RTs of about 7 seconds per trial. Answers of participants 7 

to an open-framed question about their use of strategies revealed that a typical strategy is to 8 

sequentially pick pairs of rectangles and compare the two rectangles within one pair to each 9 

other (i.e., one red- and one blue-bordered rectangle). Apart from the high perceptual and 10 

spatial affordances (e.g., considering color of borders, and both width and height of 11 

rectangles at different positions on the screen), also memory processes are relevant. 12 

Participants need to remember which of the rectangles they have already compared and how 13 

large the differences were. Thus, this task can be partitioned into several sub-tasks. For 14 

example, each pair of rectangles could be seen as one sub-task (with each of these sub-tasks 15 

consisting of further sub-tasks). Each sub-task might be conceived of as having its own speed 16 

of information processing. Following the concept of the law of large numbers, with an 17 

increase in the number of sub-tasks, extreme values of drift rate in single sub-tasks might 18 

become less influential, allowing for an even better measurement of overall mental speed. 19 

Thus, we assume that the data of tasks such as the complex figural task can be modelled 20 

adequately by a constant drift (i.e., on average, information accrues towards the correct 21 

boundary) with Gaussian noise (reflecting non-systematic influences). 22 

Importantly, in selective influence studies based on the complex figural task, 23 

convergent and discriminant validity of the diffusion model parameters were comparable to 24 

what has been observed in the validation studies based on faster tasks (Lerche & Voss, 25 



DIFFUSION MODELING AND INTELLIGENCE  19 

  

2017a). Furthermore, in another study, data from a complex verbal task were entered into a 1 

diffusion model analysis (Lerche et al., 2018). In this task, participants had to assess the 2 

meaningfulness of sentences, which took 2.2 seconds on average. Results again demonstrated 3 

an excellent fit of the diffusion model. Thus, these first empirical findings support our claim 4 

that the diffusion model can also be applied to tasks with mean response times above 1.5 5 

seconds. In the present study, we build upon these promising results and employ both fast and 6 

more complex tasks. We compare the model fit between these two types of tasks and examine 7 

the external validity (analyzing the relationship of drift rate with intelligence). 8 

The Present Study 9 

In the present study, an intelligence test battery and a battery of 18 binary RT tasks 10 

were administered to a sample of 125 participants. The RT tasks included both simple and 11 

complex tasks addressing three content domains (numeric, figural, and verbal). With our 12 

study, we pursued three main objectives: First, we aimed to replicate findings from previous 13 

studies showing that general intelligence correlates with drift rate measured across a variety 14 

of different tasks. That is, we expected a substantial relationship between general intelligence 15 

and the drift rates across tasks. Second, we wanted to examine whether there are domain-16 

specific aspects of cognitive speed as measured by drift rates and—if so—whether these are 17 

related to the respective numeric, verbal, and figural aspects of intelligence, as measured by 18 

an intelligence test. Third, we aimed at further investigating the applicability of the diffusion 19 

model to more complex RT tasks, which require more time for response selection. 20 

Specifically, we compare model fit from nine fast and nine more complex tasks. We also 21 

examine how drift rates estimated from the more complex tasks specifically predict general 22 

intelligence. 23 
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Method 1 

Participants 2 

We determined the required minimum sample size for structural equation analyses 3 

with a power analysis following the procedure described by Kim (2005). According to this 4 

procedure, the proposed minimum sample size for a test of close model fit according to the 5 

Root Mean Squared Error of Approximation (RMSEA) is 113 (df = 350, α =.05, β = .05). We 6 

recruited 125 participants for the study to ensure adequate power.2 7 

We used different recruitment methods. The largest part of participants was recruited 8 

via a newspaper article. Others were hired via the participants’ pool of the Psychological 9 

Institute of Heidelberg University in Germany using the software hroot (Bock, Baetge, & 10 

Nicklisch, 2014) or by means of fliers that were distributed at public places. We obtained 11 

informed consent from all participants. Participants were remunerated with 35€ after data 12 

collection was completed. In addition, all participants received feedback about their 13 

performance. Participants were between 18 and 65 years old (M = 36.0, SD = 14.3). Sixty-14 

three percent were females. The percentage of students amounted to 50%. 15 

Design and Procedure 16 

The study consisted of three sessions. In the first session, participants had to work on 17 

an intelligence test3. In the second and third session, all RT tasks were administered (with 18 

nine of these tasks in each session). The order of tasks was identical for all participants and is 19 

provided in Table 1. Tasks of the three different domains and fast and slow tasks were 20 

presented alternatingly. After the third and the sixth task within each session, participants 21 

took a break of three minutes. 22 

Each of the 18 tasks started with four practice trials. In these trials, participants 23 

                                                 
2 Following suggestions of our reviewers, we kept the structural equation models simpler than in our original analysis plan. Most 

importantly, for the intelligence data, we used scale means rather than the single task scores, leading to a lower number of dfs in our models. 
3 N = 11 participants had already participated in a previous study in which the same intelligence test was administered. These participants, 
therefore, only took part in the two PC assessments and received 25€. 
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received feedback about the correctness of their response (green checkmark vs. red cross for 1 

correct vs. erroneous responses, respectively; presentation duration: 1500 ms). After the 2 

practice trials, 100 test trials (preceded by one warm-up trial) were administered. All tasks 3 

had a binary response format, with both responses correct in half of the trials. Simulation 4 

studies have shown that the diffusion model can provide reliable parameter estimates for 5 

about 100 or even fewer trials (Lerche, Voss, & Nagler, 2017). The practice and warm-up 6 

trials were discarded from subsequent analyses. The order of trials was determined randomly 7 

and was held constant for all participants. In each trial, participants had to press one of two 8 

keys (“A” or “L”). The key assignment was identical for all participants. Each trial started 9 

with the presentation of a fixation cross for 500 ms. Subsequently, the target was shown and 10 

remained on the screen until the participant responded. Participants were instructed always to 11 

respond as fast and accurately as possible. The next trial started after an inter-trial-interval of 12 

500 ms. 13 

The fast tasks took between 528 and 810 ms on average per trial (M = 655 ms) and the 14 

slow tasks took between 2469 and 4314 ms (M = 3319 ms). The mean duration of assessment 15 

sessions was 71 minutes for session 2 and 69 minutes for session 3.  16 

Intelligence Assessment 17 

For the assessment of intelligence we used the Berlin Intelligence Structure Test (BIS; 18 

Jäger et al., 1997) which relies on the bimodal Berlin intelligence structure model (Jäger, 19 

1982). This model comprises operation-related and content-related components of general 20 

intelligence. Of interest to our study were the content-related components (numeric, figural, 21 

and verbal). The intelligence assessment was run in sessions of six participants at maximum 22 

and took on average 50 minutes. 23 

Whereas Schmiedek et al. (2007) selected only nine tasks that were all taken from the 24 

reasoning and psychometric speed operations, we also used the memory tasks of the short 25 
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scale BIS (BIS; Jäger et al., 1997), which resulted in a total of 12 tasks originating from three 1 

of the four operations tapped in the test (reasoning, psychometric speed, memory, and idea 2 

fluency). We excluded the tasks on idea fluency because they are more related to creativity 3 

than to the construct of intelligence (cf. Schmitz & Wilhelm, 2016). Consequently, verbal, 4 

numeric, and figural domains were represented by four tasks each. To keep the structural 5 

equation models as simple as possible, we used scale means as manifest variables for each of 6 

the three content domains. 7 

Response-time Tasks 8 

The study consisted of 3 (domain: numeric vs. verbal vs. figural) × 2 (speed: fast vs. 9 

slow) × 3 (number of tasks) = 18 different RT tasks (Table 1). In the following, we briefly 10 

describe the different tasks and materials. 11 

Numeric Tasks 12 

The fast numeric tasks were the number discrimination task, the odd-even task, and 13 

the simple inequation task. In the number discrimination task, participants saw a number in 14 

each trial and had to assess whether this number was smaller or larger than 500. The numbers 15 

were randomly drawn from a uniform distribution ranging from 100 to 900 (excluding 500), 16 

with the restriction that half of the numbers were larger than 500 and that the mean deviation 17 

from 500 was identical for the numbers smaller and the numbers larger than 500. In the odd-18 

even task, participants had to assess whether a presented number was odd or even. The 19 

numbers were randomly drawn from a uniform distribution ranging from 100 to 899 (i.e., a 20 

vector including 400 odd and 400 even numbers). In the simple inequation task, participants 21 

had to decide which of two numbers displayed left and right of the center of the screen was 22 

larger. The two simultaneously presented numbers were randomly drawn from a uniform 23 

distribution ranging from 1 to 20, with the restrictions that numbers were never identical and 24 

that the difference between the numbers did not exceed 3. 25 
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The slow numeric tasks were the mean value computation task, the equation task and 1 

the complex inequation task. In the mean value computation task, 16 numbers were presented 2 

on the screen. Participants had to assess whether the mean of these numbers was smaller or 3 

larger than 500. The mean of the 16 simultaneously presented numbers of each trial was 4 

either 400 or 600, and the numbers were presented at random positions on the screen 5 

(overlapping of numbers was prevented). In the equation task, in each trial an equation was 6 

shown and participants had to assess whether the equation was correct or wrong. In half of 7 

the trials, a multiplication or division had to be performed, respectively. The erroneous 8 

equations were generated using several different principles. Specifically, for erroneous 9 

equations either the tens digit or the ones digit of the solution were set to incorrect values 10 

(e.g., 5 ⋅ 7 = 25 or 4 ⋅ 12 = 40, respectively), the operator was wrong (e.g., 11/3 = 33), or 11 

the order of numerator and denominator was reversed (e.g., 8/64 = 8). In the complex 12 

inequation task, participants had to decide which solution of two equations displayed on the 13 

left and right side of the screen was larger. The equations were sums and differences of two 14 

numbers (e.g., “9 – 6” vs. “19 – 17”). The two numbers were drawn randomly from a uniform 15 

distribution between 1 and 20, and the solutions of the sums and differences were in that 16 

range as well. The operations for the two equations were randomly determined and could be 17 

the same or different for the two equations. Furthermore, the difference between the solutions 18 

of the two equations was restricted to a maximum of 3. 19 

Verbal Tasks 20 

The fast verbal tasks were the word category task, the lexical decision task, and the 21 

animacy task. In the word category task, in each trial a word was presented and participants 22 

had to assess whether the word was an adjective or a noun. All words comprised of six letters 23 

and had one or two syllables. The words had frequency classes of 12 or above (according to 24 

the online dictionary project of the university of Leipzig, retrieved in May 2017, see 25 
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http://wortschatz.uni-leipzig.de/de), which indicates that the German word “der” (“the”) is 1 

used at least 212 times as often as the selected stimuli. The mean frequency class of adjectives 2 

and nouns was identical (M = 15). Thus, all words had a low frequency in German language. 3 

In the lexical decision task, letter combinations were presented and participants had to assess 4 

whether or not these were German words. The stimuli were selected from a lexical decision 5 

study by Lerche and Voss (2017b). The words were nouns consisting of one or two syllables 6 

and four to six letters. The words had a frequency class of 14 or 15 (retrieved in November 7 

2014). The non-words had been generated by replacement of vowels from valid word. Thus, 8 

all non-words were pronounceable and had plausible bigram frequencies. In the animacy task, 9 

nouns were presented and participants had to classify these as living vs. nonliving. The 10 

"living" stimuli could refer to humans, animals or plants. Two of the authors and two further 11 

independent raters classified the words unambiguously as living vs. nonliving. The words 12 

consisted of one to three syllables, four to eight letters, and had frequency classes between 11 13 

and 16 (retrieved in June 2017). The mean frequency class was identical for words classified 14 

as living or nonliving (M = 13). 15 

The slow verbal tasks were the grammar task, the statement task, and the semantic 16 

category task. In the grammar task, participants read German sentences with grammatical 17 

errors and had to indicate whether the error was located in the possessive pronoun or in the 18 

noun. All sentences consisted of five words and had a very similar structure: They always 19 

started with a personal pronoun and further contained a predicate and an object with a 20 

possessive pronoun (e.g., “Er widerspricht seine Chef oft.” = “He often contradicts his boss.”; 21 

the error in the German statement is in the possessive pronoun that should read “seinem” 22 

instead of “seine”). In each trial, by changing one word—either the possessive pronoun or the 23 

object—the sentence could be corrected. The errors were generated using the wrong case 24 



DIFFUSION MODELING AND INTELLIGENCE  25 

  

(e.g., accusative instead of dative), the wrong gender, the wrong declension, or the wrong 1 

number. 2 

In the statement task, four to six words were presented at different positions of the 3 

screen. The participants had to assess whether or not it was possible to create a true statement 4 

using all of the presented words. The words were distributed randomly across the screen. 5 

From each set of words one grammatically correct sentence could be composed. An example 6 

for a true statement is “ein Lastwagen ist sehr schwer” (“A truck is very heavy”) and for a 7 

wrong statement is “reiche Menschen haben kein Geld” (“Rich people have no money”). 8 

In the semantic category task, five nouns were presented one above the other. There 9 

was one superordinate category to which most of the words (that is, three or four words) 10 

belonged. Either one or two words did not belong to this category. Participants had to 11 

indicate whether one or two words did not belong to this superordinate category. The selected 12 

words were members of the superordinate categories planets, seating furniture, fruit, tools, 13 

baking ingredients, medical specialists, geometric figures, grain, craftsmen, or organs 14 

reported by Scheithe and Bäuml (1995). Either three or four words belonged to the same 15 

category and one or two belonged to another superordinate category. For example, in one trial 16 

the words “Stuhl” (= chair), “Sonne” (= sun), “Sessel” (= armchair), “Sofa” (= sofa), and 17 

“Bank” (= bench) were shown. Here, the correct response was 1 because all words except one 18 

("sun") belong to the same superordinate category “seating furniture”. In another example, 19 

“Weizen” (= wheat), “Mond” (= Moon), “Jupiter” (= Jupiter), “Merkur” (= Mercury), and 20 

“Hirse” (= sorghum) were presented. In this case, the correct response was 2, because two 21 

nouns (“wheat” and “sorghum”) do not belong to the dominant category (planets). There are 22 

10 different possibilities for the positioning of two minority category members among the 23 

five words and five possibilities for the positioning of one minority category member. Each 24 

possible positioning was used equally often. 25 
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Figural Tasks 1 

Example illustrations of the figural tasks are depicted in Figure 2. The fast figural 2 

tasks were the dot-rectangle task, the simple area task, and the polygon task. In the dot-3 

rectangle task, a rectangle and a dot were shown. Participants had to indicate whether the dot 4 

was located within or outside of the rectangle. The rectangles varied in size while the dot was 5 

always of the same size. The form of the rectangle and the exact positioning of the dot were 6 

determined randomly. In the simple area task, two rectangles were shown side by side. 7 

Participants had to assess which of the two rectangles was larger. The edge lengths of the 8 

rectangles were determined randomly, with the area of the smaller rectangle always 9 

comprising 70% of the area of the larger rectangle. In the polygon task, polygons were shown 10 

and participants had to indicate whether the stimulus was a triangle or a quadrangle. The 11 

shapes of polygons were generated randomly. 12 

The slow figural tasks were the maze task, the complex area task, and the pie task. In 13 

the maze task, mazes were presented with a dot positioned inside the maze. Participants had 14 

to assess whether or not it was possible to leave the labyrinth (starting from the position of 15 

the dot). The mazes were drawn manually with a graphics program. In the complex area task 16 

(cf. Lerche & Voss, 2017a), in each trial six rectangles were shown. Three of them had a red 17 

border and three of them had a blue border. Participants had to compare the total area of all 18 

red-bordered rectangles with the total area of all blue-bordered rectangles and decide which 19 

area was larger. The larger area was always 1.3 times larger than the smaller area. The 20 

rectangles were generated randomly based on some restrictions (most importantly, the largest 21 

or smallest area was not indicative of the correct answer so that participants really had to 22 

assess the total area, see Lerche & Voss, 2017a, for details). In the pie task, three pie slices 23 

were shown in each trial. Participants had to judge whether the three slices—if put together—24 

add up to more or less than a full circle. Between trials, the slices summed up to either 95% 25 
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or 105%, and each slice comprised between 5% and 95% of a full circle each. The 1 

combinations of slices were generated randomly with the restriction that from the summing 2 

of only two slices it was not possible to derive a correct answer. 3 

Data preparation 4 

For all RT tasks, we discarded all responses faster than 300 ms. Furthermore, for each 5 

task, trials lying more than three interquartile ranges beneath the first or above the third 6 

quartile of the intra-individual logarithmized RT distributions were excluded (see also Tukey, 7 

1977). The percentage of excluded trials was on average 1.3% per task and participant. 8 

One participant interrupted accidentally the experimental program at the beginning of 9 

the penultimate task of the session, so that data from two tasks (mean value computation task 10 

and dot-rectangle task) are missing for this participant. Furthermore, separately for the 11 

different RT tasks, we removed the diffusion model parameter estimates of participants with 12 

inadequate model fit (i.e., fit < 1% quantile of the simulated data, see below for details on the 13 

assessment of model fit; this resulted in an exclusion of 0.93% of the diffusion model 14 

parameter estimates). Next, we also excluded the diffusion model parameter estimates, mean 15 

RT and accuracy for a specific person and task if the accuracy rate or mean RT for this 16 

specific task and person exceeded the Tukey criterion (i.e., distance from first or third 17 

quartile larger than three times the interquartile range; Tukey, 1977)4. Finally, based on the 18 

estimated diffusion model parameters (v, a, t0), accuracy rates, mean RTs and intelligence 19 

scale scores, we computed the Mahalanobis distances to detect multivariate outliers. Two of 20 

our participants exceeded the critical value of χ² = 140.89 (df = 93, p = .001) and thus had to 21 

be excluded. 22 

                                                 
4 To test the robustness of our main findings, in additional analyses we excluded univariate outliers in the 

diffusion model parameters (because we had obtained some extreme estimates, e.g., � ≈ 0, � ≈ 10, � > 10). 

The pattern of results remained unchanged when we excluded these values. 
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Parameter Estimation 1 

We estimated the diffusion model parameters using the maximum likelihood 2 

optimization criterion implemented in fast-dm-30 (Voss & Voss, 2007; Voss & Voss, 2008; 3 

Voss, Voss, & Lerche, 2015). Parameters were estimated separately for each participant and 4 

each task. Thresholds were associated with correct (upper threshold) and erroneous (lower 5 

threshold) responses. Accordingly, the starting point was centered between thresholds (�� =6 

0.5). In addition, we fixed the intertrial variabilities of drift rate and starting point to zero. 7 

These two parameters cannot be estimated reliably from low trial numbers and the fixation of 8 

these parameters can even improve the estimation of the other model parameters (Lerche & 9 

Voss, 2016; see also van Ravenzwaaij, Donkin, & Vandekerckhove, 2016). In sum, for each 10 

participant and each task we obtained estimates for threshold separation, drift rate, non-11 

decision time, and the intertrial variability of non-decision time. 12 

In order to examine the robustness of our results, we also conducted three additional 13 

types of parameter estimation. In the first, we associated the thresholds with the two response 14 

categories of the respective task (instead of correct and erroneous responses) and freely 15 

estimated the starting point. This way, we could check if accounting for a possible bias in 16 

starting point alters our results. With this estimation approach, we obtained two different drift 17 

rate estimates per task, one for each response category, and—after multiplying the drift rate 18 

for the category associated with the lower threshold by -1—computed the mean of the two 19 

drift rates as an overall estimate of drift per task. In our second additional estimation 20 

procedure, we examined whether practice effects might influence our pattern of results. 21 

Therefore, prior to parameter estimation, we excluded not only the four practice trials and the 22 

warm-up trial of each task, but also the subsequent 20 trials. Finally, we combined the two 23 

alternative estimation approaches obtaining parameter estimates with a freely estimated 24 

starting point while also excluding the 20 additional practice trials. 25 
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Some of the tasks employed in our study were similar to tasks that have already been 1 

used for diffusion model analyses: Specifically, lexical decision tasks (e.g., Dutilh, 2 

Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Wagenmakers, Ratcliff, Gomez, & 3 

McKoon, 2008; Yap, Balota, Sibley, & Ratcliff, 2012), number discrimination (Ratcliff, 4 

2014; Ratcliff, Thompson, & McKoon, 2015), odd-even tasks (Schmiedek et al., 2007; 5 

Schmitz & Voss, 2012), animacy discrimination tasks (Aschenbrenner et al., 2016; Spaniol, 6 

Madden, & Voss, 2006; Voss, Rothermund, Gast, & Wentura, 2013), and the complex area 7 

task (Lerche & Voss, 2017a) have been analyzed with the diffusion model before. However, 8 

most tasks, in particular the slow RT tasks (with the exception of the complex area task), 9 

have not yet been examined by means of diffusion modeling. Thus, we were particularly 10 

interested in whether the model can fit data from all tasks (and especially from the slow 11 

tasks) reasonably well. Accordingly, we examined the model fit for all tasks (our procedure is 12 

reported in the Results section). 13 

Structural Equation Modeling 14 

Our structural equation modeling approach consisted of two main steps. First, we 15 

established a measurement model for drift rates and a model of the intelligence test scales, 16 

separately. Then, we combined these two models into one complete model. We used the R 17 

package lavaan (Rosseel, 2012) for the structural equation analyses. To deal with missing 18 

data we employed the full information maximum likelihood (FIML) estimator included in 19 

lavaan, which utilizes all available information. 20 

We standardized all observed variables before they were entered into the structural 21 

equations to avoid estimation problems resulting from differing variances between the drift 22 

rates and the intelligence scale scores. As we were not interested in absolute values, fixing all 23 

means to zero is unproblematic. However, the analysis of correlations instead of covariances 24 

can lead to biased standard errors and fit indices (Cudeck, 1989). We accounted for this by 25 
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fixing the model implied indicator variances to one, equal to the manifest indicator variances, 1 

as proposed by Cudeck. For examination of model fit we used several fit indices: the χ2 2 

statistic, the Comparative Fit Index (CFI), the Root Mean Square Error of Approximation 3 

(RMSEA), and the Tucker-Lewis Index (TLI). We used the cut-off criteria proposed by Hu 4 

and Bentler (1999) for evaluation of fit. Please note that due to the use of the FIML estimator, 5 

a mean structure was also estimated. We fixed all estimated indicator means to zero (as the 6 

variables were standardized), a fact that informs the degrees of freedom for all reported 7 

models. 8 

We compared four different measurement models of drift rate. Because it was 9 

essential to keep the models as parsimonious as possible, we assumed parallel measurement 10 

of all factors by fixing all factor loadings to one and setting all residual variances of items 11 

loading onto the same factor equal (see Lord & Novick, 1968, Equations 3.3.1a and 3.3.1b, 12 

for the outline of a model of parallel measurement). The four models are shown in Figure 3. 13 

The first model (Model 1) assumed a general (g) factor of drift rate. This equals the 14 

assumption that the common variance in speed of information processing can be explained by 15 

a single, general factor contributing to all tasks. Model 2 did not include a g factor, but three 16 

uncorrelated domain factors. The idea behind this model is that there are different types of 17 

speed of information processing for figural, verbal and numeric tasks, and that these are 18 

unrelated to one another. In Model 3, we assumed a hierarchical structure of the factors: g 19 

was modeled as a higher-order factor and the domain factors as lower part of the factor 20 

hierarchy. The general factor is here interpreted as the common variance of the domain 21 

factors, which—in contrast to Model 2—are thought to be correlated. Thus, Model 3 assumes 22 

that speed of information processing has both a general component and domain-specific 23 
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components5. Finally, in Model 4, we fit an extended version of Model 3 adding a factor that 1 

captures the specific variance of the slow tasks (M-1 approach; Eid, Lischetzke, Nussbeck, & 2 

Trierweiler, 2003). Here, the idea is that speed of information processing in the slower, more 3 

complex tasks shares specific common variance. This way, the interpretation of the g factor 4 

changes: It now comprises the domain-general shared variance of speed of information 5 

processing except for the variance solely shared by the slow tasks. As not all of the models 6 

are nested, we compare model fit based on AIC and BIC values. 7 

For the BIS intelligence scales, we used a hierarchical model of domains and a 8 

superordinate g factor (Intelligence Model, see Figure 4). We employed scale means (instead 9 

of single item values) as single indicators for each domain (figural, numerical, verbal) to keep 10 

the model as simple as possible, fixing residual indicator (not: domain) variances to zero.6 11 

Domain factor variances were set equal for the three domains. We also fixed the 12 

unstandardized loadings of the indicators on g and on the domain factors to 1. While this 13 

assumption of perfect measurement and parallel structure is certainly an oversimplification, 14 

we made this decision because the BIS is an established instrument and the focus of this 15 

study is less on the structure of intelligence, but on the structure of speed of information 16 

processing and its relationship to intelligence. In the last step, we combined the best fitting 17 

model of drift rates and the BIS model (Combined Drift-Intelligence Model). 18 

Although the focus of this work is on drift rate, we also fit the same model structures 19 

(Models 1 to 4, see Figure 3) to estimates of threshold separation (a), non-decision time (t0) 20 

                                                 
5 In the literature on the structure of mental abilities, there is an ongoing debate on how hierarchical models compare to so-called bifactor 

models (see, e.g., Morgan, Hodge, Wells, & Watkins, 2015). The latter assume a structure of both uncorrelated domain factors and a g 

factor, also orthogonal to the other factors. Thus, bifactor models do not make the presumption that the common variance shared by all tasks 
is due to the variance shared between the domain factors. Empirically, bifactor models often tend to fit better, while at the same time being 

less understood from a substantive, theoretical perspective (Kan, van der Maas, & Levine, 2019). Bifactor models fit better because with all 

loadings estimated freely hierarchical models are more constrained: The hierarchical models assume that the proportions of indicator 
variance accounted for by the domain (residual) factors and the proportions accounted for by g are the same for all indicators within a 

domain (Gignac, 2016). In our modeling approach, we fixed all factor loadings to be equal within each factor, which leads to a case were 

hierarchical and bifactor models are mathematically equivalent, yielding identical fit indices and estimates of the corresponding variances. 
We decided to use a hierarchical model instead of a bifactor model because it can be interpreted more intuitively and because it is also the 

more common model of cognitive abilities found in the literature. 
6 Fixing the indicator variances to zero and using the domain factors as de-facto residuals was necessary to estimate the covariances between 
the drift domain residuals and the respective intelligence test components. 
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and mean logarithmized response times of correct responses. If a measurement model with 1 

acceptable fit emerged, we further tested the combined model (i.e., including the intelligence 2 

model). In the tables and plots, models are labeled accordingly (e.g., Drift Model 1 or RT 3 

Model 1). The data of our study is available on the Open Science Framework project page: 4 

https://osf.io/xpbwe/?view_only=2dbdd4d3d0cf4a5aa7229c6410593c0f. 5 

Results 6 

Tables A1 to A6 in the Appendix report descriptive statistics of response times, 7 

accuracy rates, drift rates, threshold separations, non-decision times, and intelligence scores. 8 

Figures A1 (fast tasks) and A2 (slow tasks) in the Appendix show boxplots of the response 9 

times for all 18 tasks.  10 

Fit of the diffusion model 11 

Our analyses of model fit comprise two different approaches: First, we examined the 12 

fit values of the maximum likelihood optimization. For better interpretation of these values, 13 

we conducted simulation studies based on the estimated parameters to infer a criterion for the 14 

assessment of model fit (Voss, Nagler, et al., 2013). Second, we analyzed model fit by means 15 

of graphical illustrations comparing observed and estimated descriptive statistics. 16 

In the maximum likelihood approach, parameter estimation is based on the 17 

maximization of the sum of logarithmized densities over all responses. Boxplots illustrating 18 

log-likelihood values for all tasks are given in Figure B1 (fast tasks) and Figure B2 (slow 19 

tasks) in the Appendix. Higher likelihood values indicate a better fit of data to the model. One 20 

problem with the interpretation of the log-likelihood values is that they depend on the 21 

parameter ranges of the specific task. For example, the RT distributions of slower tasks are 22 

more spread so that the sum of logarithmized densities is smaller (for an example illustration, 23 

see Fig. 4 in Lerche & Voss, 2017a). This makes it difficult to compare the performance of 24 

tasks with different parameter ranges. 25 
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To account for this, we conducted simulation studies. More specifically, for each task, 1 

we generated 1,000 random parameter sets from multivariate normal distributions, with 2 

means, variances, and covariances based on the distribution of estimated parameters. Thus, 3 

simulated parameter sets were similar to observed parameters. From each parameter set, we 4 

simulated one random data set (using construct-samples, which is part of the program fast-5 

dm). Therefore, simulated data reflects the assumption that data is based on a diffusion 6 

process. Next, we re-estimated parameters from simulated data using the same fast-dm 7 

settings as for the analyses of observed data (i.e., same number of estimated and fixed 8 

parameters, same optimization criterion). If the fit values for the real data are worse than 9 

those of the simulated data, the observed data probably do not result from a diffusion process 10 

only, and consequently, results from the diffusion model analyses might be invalid. 11 

Importantly, the distributions of log-likelihood values did not differ systematically between 12 

observed data and simulated data, suggesting an excellent model fit (see Figures B1 and B2). 13 

We further defined a criterion to quantify the percentage of observed data sets with 14 

poor fit. Specifically, we computed the 1% quantile of the distribution of fit values from 15 

simulated data. Maximum likelihood values below this criterion are assumed to indicate poor 16 

model fit. This criterion is depicted as horizontal line in each plot. In addition, the plots give 17 

the percentage of data sets with fit values below this criterion. The percentages of suspicious 18 

fits are very low (at maximum 3.2%) and they are equal for the slow and fast tasks (M = 19 

1.1%). This suggests that the diffusion model fits equally well for the fast and slow RT tasks 20 

of our study. 21 

We also examined the model fit graphically, in terms of the precision of predictions 22 

for accuracy rates and RT quartiles. Specifically, we constructed scatter plots for each type of 23 

task (domain × speed) that show the correspondence of different statistics (RT quantiles and 24 

accuracy rates) of observed data (x-axis) with the respective values predicted from the 25 
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diffusion model results (y-axis; see Figures B3 and B4 in the Appendix for the fast and slow 1 

tasks, respectively). In these figures, each point represents one participant in one task. The 2 

figures illustrate that the diffusion model fit the data very well as for all tasks the points are 3 

close to the diagonals (all correlations between the empiric and the respective estimated 4 

quartiles were larger than .97). Interestingly, the model fits at least as well for slow as for fast 5 

RT tasks. Thus, the graphical fit analyses are in accordance with the simulation-based 6 

analyses of maximum likelihood values. 7 

The simulation studies and graphical analyses of model fit for the three alternative 8 

types of estimation (including estimates of starting point, excluding additional practice trials, 9 

and doing both) yielded similar results. The according plots are in the supplementary online 10 

material. 11 

Structural Equation Modeling7 12 

We started by fitting the measurement models described above (Models 1 to 4, see 13 

Figure 3) to the drift rate estimates: Model 1, a g factor model; Model 2, a model of 14 

uncorrelated domains; Model 3, a hierarchical model of domains and a g factor; and Model 4, 15 

a model that further added a method factor for all slow decision tasks. Table 2 shows the fit 16 

indices for all drift rate models. Figures C1 to C4 in the Appendix show the results for Drift 17 

Models 1 to 4 and Tables C1 to C4 in the Appendix report the parameter estimates for each of 18 

the four structural equation models, including the unstandardized solution, the corresponding 19 

standard errors and p values, and completely standardized estimates. 20 

Model 4, the model containing a hierarchical structure of three content domain 21 

factors, a superordinate g factor, and a method factor for the slow tasks had the best fit in 22 

terms of AIC and BIC values (see Table 2) and also regarding the measures of absolute 23 

model fit (χ² [df = 184] = 254.40, CFI = .88; TLI = 0.90; RMSEA = 0.06). Accordingly, we 24 

                                                 
7 All the structural equation modeling analyses can be examined and replicated by executing the R Markdown file that we provide on the 
OSF project page. 
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decided to retain this model. It should be noted that the estimated residual variance of the 1 

figural drift factor did not differ significantly from zero und should therefore be interpreted 2 

accordingly. We kept it in the model in order to a) refrain from post hoc model adjustments 3 

and b) make possible replications easier to compare. 4 

The Intelligence Model is illustrated in Figure C5 in the Appendix, Table 2 shows the 5 

fit, and Table C5 in the Appendix the parameter estimates. As the fit was good (χ² [df = 8] = 6 

0.18, CFI = 1.00; TLI = 1.03; RMSEA = 0.00), we used this model for the combined 7 

analyses. 8 

Finally, we combined the best measurement model of drift rates (i.e., Model 4) and 9 

the Intelligence Model into a Combined Drift-Intelligence Model. We allowed freely 10 

estimated covariances between residual figural drift rate and residual figural BIS intelligence, 11 

residual numeric drift rate and residual numeric BIS intelligence, residual verbal drift rate and 12 

residual verbal BIS intelligence, and the superordinate g factor for drift rate and g BIS 13 

intelligence.8 In addition, the covariance between the slow decision task factor and the g BIS 14 

intelligence factor was freely estimated, reflecting our hypothesis that speed of information 15 

processing in slow tasks might be especially closely related to general intelligence. Figure 5 16 

shows the resulting model. Model fit was acceptable (χ² [df = 241] = 406.49; CFI = .82; TLI 17 

= 0.84; RMSEA = 0.07; see Table 2). Table 3 shows the parameter estimates. All latent 18 

factors except the figural drift factor had variances significantly different from zero; the same 19 

was true for the covariances between them. The relative parts of the variances of the manifest 20 

indicators explained by the latent factors are reported in Table 4. Across all tasks, 20% of the 21 

variance of drift rates could be attributed to the g Drift factor, while 3-16% were based on the 22 

                                                 
8 We also fitted a Combined Drift-Intelligence Model freely estimating the covariances between all domain 

residuals. Only the theoretically implied covariances (Figural Drift <-> Figural IQ, Numeric Drift <-> Numeric 

IQ, Verbal Drift <-> Verbal IQ) reached statistical significance, except for a negative correlation between verbal 

drift and figural intelligence (r = -.34, p = .048). 
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domain-specific factors. For the complex tasks, an additional 10% of the variance was 1 

explained by the slow factor. Overall, the mean task specific and error variance was 63%. 2 

The estimated correlation between figural intelligence and figural drift rate was .90. 3 

However, this value should not be over-interpreted because of the very low residual variance 4 

of figural drift rate, which did not differ significantly from zero. Numeric intelligence and 5 

numeric drift rate correlated with .74. The correlation between verbal intelligence and verbal 6 

drift rate was .50, while the correlation between domain general drift rate and general 7 

intelligence as measured by the BIS was .45. Finally, the method factor for slow decision 8 

tasks and the BIS g factor were also strongly correlated (r = .68). If the links of the g drift and 9 

slow drift factors to g BIS intelligence were modeled as a regression, the R² value of g BIS 10 

was .67. Thus, the domain general drift factor and the slow drift factor jointly explained two 11 

thirds of the variance in general intelligence. 12 

We conducted several robustness checks to ensure our main findings would hold. 13 

First, we fit models with completely freely estimated factor loadings and residual indicator 14 

variances for both the best measurement model (Drift Model 4, freely estimated, see Figure 15 

C6 and Table C6 in the Appendix; see Table 2 for fit indices) and the Combined Drift-16 

Intelligence Model (freely estimated, see Figure C7 and Table C7 in the Appendix; see Table 17 

2 for fit indices). In terms of AIC and BIC values, the constrained Drift Model 4 was 18 

preferred to the freely estimated version. For the Combined Drift-Intelligence Model, AIC 19 

was lower for the free model, but the constrained model had the lower BIC value (i.e., better 20 

fit). Please note that the number of estimated parameters in the freely estimated models is 21 

very large for our sample size and the results should thus be interpreted with caution. In 22 

addition, estimation of the Combined Drift-Intelligence Model (freely estimated) yielded a 23 
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non-positive definite estimated covariance matrix.9 Still, while the estimated unstandardized 1 

factor loadings in the freed models sometimes differed widely from unity and standard errors 2 

were much higher than in the constrained model, leading to statistically insignificant 3 

estimates, the main resulting covariances remained much the same. Namely, the estimated 4 

correlations between the factors in the freely estimated Combined Drift-Intelligence Model 5 

(compared to the constrained Combined Drift-Intelligence Model) were: .56 (.90) for the 6 

figural, .90 (.74) for the numeric, and .52 (.50) for verbal drift residual factors and their 7 

respective intelligence counter-parts. A correlation of .42 (.45) was now found for the relation 8 

of g Drift and g BIS and a correlation of .74 (.68) for the association of the slow factor and g 9 

BIS. 10 

Further evidence for the robustness of our results was provided by additional analyses 11 

based on different specifications of the diffusion models: Similar results emerged for the 12 

structural equation models when drift was estimated using the alternative diffusion model 13 

architectures that a) also estimated the starting point, b) excluded 20 additional practice trials, 14 

or c) did both. Fit indices and parameter estimates for these models are given in the 15 

supplementary online material. 16 

Table 5 shows the fit values for the measurement models of threshold separation, non-17 

decision time, and mean logarithmized response times. Parameter estimates for all these 18 

models can be found in the supplementary online material. Of all the measurement models, 19 

only t0 Models 1, 3, and 4 showed somewhat acceptable model fit (RMSEA < 0.08, CFI and 20 

TLI at least > 0.82), with Model 4 showing the lowest values in AIC and BIC. Thus, for non-21 

decision time, a hierarchical model of domain factors, a superordinate g t0 factor and a 22 

method factor for slow tasks provided the best fit. However, the residual variances for the 23 

                                                 
9 This problem could be overcome by fixing the residual variance of the Figural Drift factor, that did not differ 

significantly from zero, to zero.  



DIFFUSION MODELING AND INTELLIGENCE  38 

  

figural and numerical domain factors did not reach statistical significance. Table C8 shows 1 

the complete parameter estimates for this model. We also fit a combined model of non-2 

decision time and the BIS intelligence scales (Combined t0-Intelligence Model, see Table 5 3 

for the fit measures). The model structure was identical to the Combined Drift-Intelligence 4 

Model. Table 6 shows the resulting estimates. The non-decision time domain factors were 5 

negatively correlated to the respective intelligence factor residuals, as were the gt0 factor and 6 

the slowt0 factor to general intelligence. 7 

Notably, none of our predefined models showed acceptable fit to the mean 8 

logarithmized response times. However, the relationship between response times and 9 

intelligence is of particular theoretical interest because response times are the measures of 10 

mental speed used in most previous studies. Therefore, we additionally conducted an 11 

exploratory principal components analysis to explore the covariance structure of response 12 

times in our sample. A parallel analysis (Horn, 1965) suggested the extraction of one general 13 

component that explained 57 % of variance in response time variables. When added to the 14 

Intelligence (structural equation) Model as a manifest variable, the component scores 15 

explained 60 % of the variance in gIQ (β = .78, p < .001; RMSEA = 0.00, CFI and TLI = 16 

1.00 for this model). 17 

Discussion 18 

Our study focused on the relationship between intelligence and drift rate—a measure 19 

of speed of information processing estimated in diffusion model analyses (Ratcliff, 1978). In 20 

contrast to previous studies that examined such relationships (e.g., Ratcliff et al., 2011; 21 

Schmiedek et al., 2007; Schmitz & Wilhelm, 2016; Schubert et al., 2015), we used a much 22 

larger set of RT tasks, and these tasks systematically addressed three content domains 23 

(verbal, numeric, and figural). More specifically, we employed six tasks for each of the three 24 

domains with half of the tasks of each domain being typical fast diffusion model tasks (mean 25 
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RT of 660 ms), and the other half being more complex, slower tasks (mean RT of 3320 ms). 1 

Thereby, our study is the first diffusion model study on intelligence that includes not only fast 2 

but also more complex RT tasks and uses a large number of tasks per content domain. This 3 

allowed us to examine three main substantial questions: First, we tested whether we can 4 

replicate the relationship between general intelligence and drift rate that has been found in 5 

previous diffusion model studies (e.g., Ratcliff et al., 2011; Schmiedek et al., 2007; Schmitz 6 

& Wilhelm, 2016; Schubert et al., 2015). Additionally, we also examined relationships of 7 

intelligence with mean RT and other diffusion model parameters. Second, we analyzed 8 

whether there are domain-specific aspects of speed of information processing and—if so—9 

whether these domain-specific drift rate factors are related to the respective domains of the 10 

intelligence test BIS (Berlin Intelligence Structure Test; Jäger et al., 1997). 11 

In addition to these substantial questions, our study also allows the examination of 12 

two methodological issues. First, in the last years it has been proposed to use the diffusion 13 

model not only for the analysis of differences between groups or conditions (the typical 14 

application in most previous studies), but also for the examination of interindividual 15 

differences (e.g., Frischkorn & Schubert, 2018; Ratcliff & Childers, 2015; White et al., 16 

2016). Our study is the first to allow a profound analysis of whether there are meaningful 17 

interindividual differences in the content-domain specific aspects of drift rates. Second, in the 18 

past, the diffusion model was typically only applied to fast RT tasks. Our study allows 19 

inferences about whether the diffusion model fits slower, more complex RT tasks similarly 20 

well as typical fast RT tasks. Furthermore, we could examine the external validity of drift rate 21 

in more complex tasks, analyzing the relationship with intelligence. 22 

Summary of Results 23 

The presented structural equation analyses replicated findings of previous diffusion 24 

model studies in that we found a strong relationship between a general drift rate factor and 25 
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general intelligence as measured by the BIS. As the general latent factor of drift rates in our 1 

study captured the shared variance of 18 different tasks, this provides strong support for the 2 

hypothesis that speed of information processing is closely linked to general intelligence. 3 

Furthermore, for two out of three content domains (verbal and numeric), we found significant 4 

domain-specific drift factors, indicating that there are domain-specific interindividual 5 

differences in mental speed that can be assessed with a diffusion model analysis. Strikingly, 6 

the three domain-specific latent factors accounted for roughly one third of the shared variance 7 

between tasks. Moreover, the domain-specific drift factors were closely related to the 8 

respective components of the standard intelligence test. Finally, fit of diffusion models was 9 

equally good for fast and more complex RT tasks and speed of information processing in the 10 

more complex tasks explained additional variance in general intelligence. 11 

Domain-specific speeds of information processing 12 

Our study is the first to reveal domain-specific drift factors, which we further found to 13 

be related to the respective domain scores of the intelligence test. The variance proportions 14 

explained by the domain-specific drift factors for numeric and verbal drift are substantial 15 

(15% and 16%), challenging the view of only one general mental speed factor. Thereby, our 16 

study helps to reconcile research on mental speed with the literature that is based on standard 17 

intelligence testing. In the latter, a hierarchical structure with both a g factor and domain-18 

specific factors is a very common assumption. Previous mental speed studies might have 19 

failed to reveal domain-specific factors due to measurement issues. Specifically, studies that 20 

did not employ the diffusion model might have examined a measure of mental speed that is 21 

confounded by other processes such as encoding speed, motoric speed, or speed-accuracy 22 

settings. The diffusion model has the great advantage of providing a more process-pure 23 

measure of mental speed. Furthermore, previous studies employing the diffusion model might 24 
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have failed to find domain-specific drift rates because the number of tasks that had been used 1 

for each domain might have been too low. 2 

Diffusion modeling for slower, more complex RT tasks? 3 

In the past, it was assumed that the diffusion model is only applicable to fast RT tasks 4 

with mean trial RTs below 1.5 seconds (e.g., Ratcliff, Thapar, et al., 2004). However, first 5 

studies support the notion that the model might also be utilized for more complex tasks. 6 

Lerche and Voss (2017a) conducted experimental validation studies (also often called 7 

“selective influence studies”) based on a complex figural RT task, and Lerche et al. (2018) 8 

examined model fit of a complex verbal task. The present study offers a unique possibility to 9 

compare model fit between easy and more complex tasks, because participants completed 10 

both nine complex tasks and nine fast tasks, which were—beside the differences in cognitive 11 

demands—very similar. Thus, we could compare model fit (in statistical terms and 12 

graphically) between fast and slow tasks and examine correlations with intelligence. 13 

Interestingly, the fit of the diffusion model was as good for the more complex as for the 14 

simpler tasks.  15 

Furthermore, in our structural equation modeling analyses, a model that included an 16 

additional “slow drift factor” (i.e., a factor on which the drift rates of all slow tasks loaded) 17 

fitted data better than models without this factor. Furthermore, this slow drift factor was 18 

closely linked to general intelligence (r = .68). The explained variance (R²) for drift rates 19 

from slow tasks was slightly higher than for drift from fast tasks, due to the latent slow factor 20 

that explained 10% of their variance. Thus, drift rates in the more complex tasks are closely 21 

related to intelligence, which provides evidence for a good criterion validity of drift rates in 22 

this kind of tasks. 23 

The complex tasks that we employed in our study apparently differed in their 24 

demands in terms of, for example, memory (e.g., high demands in the “complex area task”) 25 
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or reasoning (e.g., high demands in the “word category task”). We did not manipulate or 1 

measure the specific demands in our study. However, it is notable that the diffusion model fit 2 

all of our complex tasks very well, thus, fit was independent of the specific task demands. In 3 

line with this finding are other recent studies that successfully applied sequential sampling 4 

models to tasks with high demands on memory or reasoning. One of them applied the 5 

diffusion model to a difficult recognition memory task (Aschenbrenner et al., 2016) and 6 

another one applied the linear ballistic accumulator model (Brown & Heathcote, 2008) to an 7 

inductive reasoning task (Hawkins, Hayes, & Heit, 2016). 8 

Advantages of the diffusion model 9 

Notably, the slow drift factor and the general drift factor together accounted for an 10 

impressive 67% of the variance of general intelligence assessed by the BIS. It is striking that 11 

drift rate has such a close relation to intelligence in the present study. In our view, this strong 12 

relation—and the advantage of drift rate over mean RT—can be explained by two advantages 13 

of the diffusion model. 14 

 First, unlike mean RT, the drift provides a common metric that combines both RT and 15 

accuracy (Spaniol et al., 2006). Thus, when effects of cognitive ability spread over response 16 

latencies and accuracy (i.e., higher ability is negatively related to RT and positively related to 17 

accuracy of a task), a common metric is required that captures both effects. This is of special 18 

importance, when the main impact of cognitive ability is for one group of participants on 19 

speed and for others on accuracy. 20 

 Second, the diffusion model makes it possible to disentangle different processes of 21 

information processing. Most important, different—and conceptually independent—22 

parameters map speed of information processing, speed-accuracy settings, and non-decision 23 

times. For example, participants might be faster or slower, because they are less or more 24 

cautious (i.e., error avoiding), respectively. Participants might also differ in the time needed 25 
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for encoding or motoric responses (i.e., non-decision time parameter). For example, it has 1 

been consistently found that older participants are more cautious (i.e., higher threshold 2 

separations) and that they have higher non-decision times than younger participants (see 3 

Theisen, Lerche, von Krause, & Voss, 2019, for a meta-analysis). This example shows that 4 

the validity of pure RT as a measure for mental speed might be problematic (see Coyle, 2017, 5 

for a similar argument). In diffusion modeling, the response style (threshold separation) and 6 

non-decision time are removed analytically from the index for mental speed (drift). 7 

Therefore, drift rate is a more process-pure measure of mental speed than is mean RT, and is 8 

thus a better predictor for intelligence. 9 

Are relationships with intelligence specific for drift rate? 10 

Importantly, in our structural equation analyses drift rates showed a clear pattern of 11 

correlations with intelligence, distinguishing between domain-general and domain-specific 12 

aspects, whereas the structural equation models of mean RT did not have a satisfactory fit. 13 

Similarly, previous studies that used chronometric tasks and varied the type of material 14 

(numeric, verbal, figural) failed to find clear support for domain-specific factors (Levine et 15 

al., 1987; Neubauer & Bucik, 1996). These studies examined behavioral variables which—as 16 

outlined in more detail in the previous section—are confounded with other processes 17 

involved in task execution such as speed-accuracy settings. 18 

Apart from drift rate, for non-decision time, we also observed relationships with 19 

intelligence (fitting the same models as for drift rate resulted in a worse, but still acceptable, 20 

model fit). Higher scores in the intelligence test were associated with shorter non-decision 21 

times. Also in some previous studies, negative relationships between non-decision time and 22 

intelligence have been reported (McKoon & Ratcliff, 2012; Schubert et al., 2015; Schulz-23 

Zhecheva et al., 2016), whereas in other studies no such relationship was found (e.g., 24 

Schmiedek et al., 2007; Schmitz & Wilhelm, 2016). Our study—which is based on a large 25 
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number of RT tasks and might thus allow more solid inferences than previous studies—1 

supports the view that there is also a relationship between non-decision time and intelligence 2 

(even though this relationship is smaller than for drift rate). 3 

What does this relationship between intelligence and non-decision time indicate? It 4 

suggests that “intelligence” as measured by classical paper-and-pencil based intelligence tests 5 

is more than speed of information processing. In fact, as already mentioned previously, not 6 

only mean RTs in response time tasks, but also performance in paper-and-pencil-based 7 

intelligence tests like the BIS can be influenced by different processes. In intelligence tests, it 8 

is difficult to distinguish between the different processes that are involved in task completion, 9 

such as decision settings (i.e., whether individuals prefer speed or accuracy), motoric 10 

elements (e.g., how fast individuals write down their answers), encoding processes, and speed 11 

of information processing.10 Thus, we suppose that non-decision time is related to the BIS 12 

because also the paper-and-pencil-based test measures to a certain extent non-decisional 13 

components. The non-decision time parameter of the diffusion model includes time needed 14 

for encoding and motoric processes. We hypothesize that the correlations with intelligence 15 

are probably mainly based on encoding processes rather than on motoric processes. It seems 16 

implausible that for motoric components a model with not only a general factor, but also 17 

domain-specific factors and a complex task factor emerges. In line with this argument, when 18 

the Jensen box is used—which allows a separation of the time needed for decision making 19 

(termed RT) from the time needed for finger movement (movement time)—RTs clearly 20 

increase with increasing task complexity, whereas movement times do not (Jensen, 1987; 21 

2006; see also the Differential–Developmental Model by Coyle, 2017). It is, however, highly 22 

plausible that encoding processes differ between domains. Furthermore, the complex task 23 

                                                 
10 One notable exception is the explanatory model for performance in the Raven matrices by Carpenter, Just, and Shell (1990), in which 

different processes (incremental encoding, rule induction, goal management) were identified that contributed to the solution of the matrices. 
However, its application remains limited and its focus on Raven matrices forbids the generalization to other types of intelligence tests. 
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factor could be attributed to the fact that the stimuli in the more complex tasks consisted of 1 

more elements than the stimuli in the fast tasks (e.g., several numbers distributed over the 2 

screen in the mean value computation task in contrast to a single number presented in the 3 

center of the screen in the number discrimination task). Accordingly, more complex tasks 4 

pose higher demands on encoding than easier tasks. Importantly, by means of diffusion 5 

modeling, we get a purer measure of speed of information processing with the time needed 6 

for encoding and motoric components partialled out. 7 

Limitations and directions for future research 8 

We want to make clear that we do not claim that mental speed is causally related to 9 

intelligence. In fact, a recent study based on an experimental approach did not find support 10 

for a causal link between mental speed (as measured by the drift rate of the diffusion model) 11 

and intelligence (Schubert, Hagemann, Frischkorn, & Herpertz, 2018). Rather, the authors 12 

suggest that structural properties of the brain may give rise to the association between mental 13 

speed and intelligence. The aim of our project was not to make any inferences regarding the 14 

question of causality. 15 

Diffusion modeling allows for an examination of interesting research questions 16 

surrounding the g factor and other intelligence-related phenomena. One of these questions, 17 

which we addressed in our study, is the examination of whether there are domain-specific 18 

mental speeds. However, there are certainly further interesting research questions that could 19 

be examined by means of diffusion modeling in the future, for example the factor 20 

differentiation finding (e.g., Detterman & Daniel, 1989), which is regarded as one main 21 

feature of g (Kovacs & Conway, 2016). 22 

Apart from the examination of further intelligence-related phenomena, it would also 23 

be important to explore relationships between drift rate and external criteria (e.g., grades at 24 

school/university, or job performance). Presently, we have no data on the predictive validity 25 
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of drift rates for success in life; however, we think that future studies investigating this issue 1 

are important. Because our analyses revealed that in particular drift rate in more complex RT 2 

tasks showed strong relationships with intelligence, future research might focus on these 3 

more complex tasks. 4 

In future studies, one might also examine whether the results that we observed in our 5 

study are moderated by the number of trials used in the RT tasks. Several diffusion model 6 

studies found that drift rate grows over time (Dutilh et al., 2009; Lerche & Voss, 2017b; 7 

Petrov, Van Horn, & Ratcliff, 2011). Possibly, the 100 trials per task used in our study still 8 

give room for learning effects and relationships with intelligence might be even stronger or 9 

possibly smaller if higher trial numbers were employed, so that more trials could be discarded 10 

as practice trials.11 A higher trial number would also increase reliability of estimates for drift 11 

(Lerche & Voss, 2017b; Lerche et al., 2017). 12 

One aspect that is common to both the assessment of intelligence with the BIS and our 13 

computerized RT tasks (both “fast” and “slow” tasks) is the focus on speed. Chuderski (2013) 14 

showed that this focus on speed can have an important impact. He found that working 15 

memory capacity and fluid intelligence are isomorphic constructs when both are measured 16 

under time pressure. If, on the other hand, fluid intelligence is measured with no real time 17 

pressure, the relationship with working memory capacity decreases. The findings from the 18 

study by Chuderski (2013) suggest that relationships between drift rate in speeded RT tasks 19 

and intelligence measured under unspeeded conditions will probably be lower than the 20 

relationships we observed in our study which focused on speed. However, the difference in 21 

relationships between drift rate and speeded vs. unspeeded intelligence tests would possibly 22 

be smaller than the differences between working memory capacity and speeded vs. 23 

                                                 
11 Notably, our additional analyses in which we estimated parameters after exclusion of a larger number of 

practice trials did not result in a different pattern of results.  
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unspeeded fluid intelligence as measured by Chuderski, because the isomorphic relation 1 

between working memory and fluid intelligence both assessed under speeded conditions 2 

might be partly attributable to non-decision time (e.g., speed of encoding). If the diffusion 3 

model is used, such influences can be “partialled out” so that we expect more similar 4 

relationships between speeded vs. unspeeded intelligence testing and our performance 5 

measure (drift rate). It would be interesting to examine the size of the relationship between 6 

drift rate and unspeeded vs. speeded intelligence testing in future research and compare it to 7 

the effect sizes found by Chuderski. 8 

One final aspect that we want to point out is that our findings do not lend support to 9 

an application of the diffusion model to all kinds of more complex, slower RT task. In tasks 10 

that require significantly more time than the approximately three seconds observed in our 11 

study, it becomes more likely that central assumptions of the diffusion model are seriously 12 

violated. In future studies it would be interesting to analyze tasks with substantially longer 13 

RTs (e.g., a matrices task with a mean RT of more than a minute; Partchev & De Boeck, 14 

2012). Probably more important than the mean RT of a task are characteristics of the specific 15 

task. Even fast tasks can be poor candidates for diffusion modeling (e.g., because no 16 

continuous information uptake takes place). At the same time, even highly complex tasks that 17 

consist of many sub-tasks might be compatible with the diffusion model. In our study, the 18 

diffusion model provided a good fit for all employed tasks, and the relationships with 19 

intelligence speak in favor of the validity of the parameter drift rate. These tasks are 20 

interesting candidates for future diffusion model studies. If, however, researchers are 21 

interested in applying the diffusion model to any new tasks, these tasks (whether fast or slow) 22 

need to be carefully tested in terms of model fit and—even better—additionally with 23 

validation studies. 24 



DIFFUSION MODELING AND INTELLIGENCE  48 

  

Conclusions 1 

Prior research revealed relationships between general intelligence and the drift 2 

parameter of the diffusion model. This pattern proved to be robust in our structural equation 3 

modeling of a set of 18 binary RT tasks. Additionally, we expanded this research showing 4 

that there are content-domain specific (verbal, numeric, figural) aspects of cognitive speed, 5 

which are related to the respective components of a standard intelligence test. Moreover, 6 

slower, more complex tasks also proved to be closely linked to intelligence. Finally, we 7 

supply several more complex binary RT tasks that were fit well by the diffusion model and 8 

could thus be employed in future research projects.  9 
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Table 1 1 

Overview of the 3 (domain: numeric vs. verbal vs. figural) × 2 (speed: fast vs. slow) × 3 2 

(number of tasks) = 18 RT tasks 3 

 fast Slow 

n
u

m
er

ic
 

− FN1: number discrimination task (2.2) 

number is greater vs. smaller than 500 

− SN1: mean value computation task (1.8) 

16 numbers with mean greater vs. smaller 

than 500 

− FN2: odd-even task (1.5) 

number is odd vs. even 

− SN2: equation task (2.5) 

equation is correct vs. wrong 

− FN3: simple inequation task (2.8) 

inequation is correct vs. wrong 

− SN3: complex inequation task (1.2) 

equation on left or right side is larger 

   

v
er

b
a

l 

− FV1: word category task (2.6) 

word is adjective vs. noun 

− SV1: grammar task (1.4) 

sentence with grammatical error in 

possessive pronoun vs. noun 

− FV2: lexical decision task (1.1) 

letter combination is word vs. non-word 

− SV2: statement task (2.3) 

statement is correct vs. wrong 

− FV3: animacy task (1.7) 

noun is living vs. nonliving 

− SV3: semantic category task (2.9) 

several nouns with one vs. two nouns not 

belonging to the superordinate category 

   

fi
g

u
ra

l 

− FF1: dot-rectangle task (1.9) 

dot within vs. outside of rectangle 

− SF1: maze task (2.1) 

maze solvable vs. insolvable 

− FF2: simple area task (2.4) 

rectangles with larger area on the left 

vs. right side 

− SF2: complex area task (1.6) 

six rectangles with larger total area of red vs. 

blue bordered rectangles 

− FF3: polygon task (1.3) 

polygon is triangle vs. rectangle 

 

− SF3: pie task (2.7) 

three pie slices making more vs. less of a 

total pie 
Note. The first letter indicates the task complexity (F = fast, S = slow); the second letter denotes the domain (N = numeric, V 4 
= verbal, F = figural). The numbers in parentheses indicate the time point of assessment (session and number in sequence).5 
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Table 2 1 

Fit indices of Drift Rate Models, Intelligence Model, and Combined Drift-Intelligence Model 2 

Model AIC BIC χ² df CFI TLI RMSEA 

Drift Model 1 5,773.69 5,776.50 350.71 188 .73 0.78 0.08 

Drift Model 2 5,795.32 5,803.75 368.34 186 .69 0.75 0.09 

Drift Model 3 5,711.05 5,722.30 282.07 185 .84 0.86 0.07 

Drift Model 4 5,685.38 5,699.44 254.40 184 .88 0.90 0.06 

Drift Model 4, freely 

estimated 5,688.59 5,772.96 207.61 159 .92 0.92 0.05 

Intelligence Model 945.39 948.21 0.18 8 1.00 1.03 0.00 

Combined Drift-Intelligence 

Model 6,507.19 6,538.12 406.49 241 .82 0.84 0.07 

Combined Drift-Intelligence 

Model, freely estimated 
6,496.67 6,603.53 341.97 214 .86 0.86 0.07 

Note. Model 1: g factor model; Model 2: model of uncorrelated domains; Model 3: hierarchical model of domains and a g 3 
factor; Model 4: Model 3 with additional method factor for all slow decision tasks. AIC = Akaike’s Information Criterion. 4 
BIC = Bayesian Information Criterion. CFI = Comparative Fit Index. TLI = Tucker-Lewis Index. RMSEA = Root Mean 5 
Squared Error Of Approximation. The best-fitting drift rate model among the four alternative models (Models 1 to 4) is 6 
highlighted. In the freely estimated models, all loadings and residual variances were unconstrained. 7 
  8 
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Table 3 1 

Combined Drift-Intelligence Model 2 

Parameter Estimate SE 95% CI p Std. Est. 

 Loadings 

Fν on ν (each figural task) 1 0   0.487 

Nν on ν (each numeric 

task) 
1 0   0.603 

Vν on ν (each verbal task) 1 0   0.591 

sν on ν (each slow task) 1 0   0.322 

gν on Fν 1 0   0.919 

gν on Nν 1 0   0.742 

gν on Vν 1 0   0.758 

gIQ on F_Mean/on 

N_Mean/V_Mean 
1 0   0.734 

FIQ on F_Mean/NIQ on 

N_Mean/VIQ on V_Mean 
1 0   0.679 

 Covariances 

gν with gIQ 0.148 0.035 [0.080; 0.216] <.001 0.450 

sν with gIQ 0.162 0.030 [0.102; 0.222] <.001 0.684 

Fν with FIQ 0.117 0.031 [0.057; 0.177] <.001 0.899 

Nν with NIQ 0.202 0.035 [0.134; 0.269] <.001 0.736 

Vν with VIQ 0.130 0.034 [0.063; 0.197] <.001 0.497 

 Latent (Residual) Variances 

gν 0.200 0.025 [0.152; 0.248] <.001 1 

gIQ 0.539 0.039 [0.462; 0.617] <.001 1 

sν 0.104 0.023 [0.059; 0.149] <.001 1 

Fν 0.037 0.028 [-0.017; 0.091] .182 0.156 

Nν 0.163 0.032 [0.100; 0.227] <.001 0.449 

Vν 0.149 0.031 [0.089; 0.209] <.001 0.426 

FIQ/NIQ/VIQ 0.461 0.039 [0.383; 0.538] <.001 0.461 

 Residual Indicator Variances 

ν (each fast figural task) 0.763 0.033 [0.698; 0.827] <.001 0.763 

ν (each fast numeric task) 0.637 0.031 [0.576; 0.697] <.001 0.637 

ν (each fast verbal task) 0.651 0.032 [0.589; 0.713] <.001 0.651 

ν (each slow figural task) 0.659 0.034 [0.593; 0.725] <.001 0.659 

ν (each slow numeric task) 0.533 0.034 [0.467; 0.599] <.001 0.533 

ν (each slow verbal task) 0.547 0.032 [0.486; 0.609] <.001 0.547 

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 3 

  4 
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Table 4 1 

Percentage of variance explained by latent variables in manifest indicators in Combined 2 

Drift-Intelligence Model 3 

Task type g Factor Slow factor Domain Factor Residual 

Fast Figural 20.03  3.70 76.27 

Slow Figural 20.03 10.37 3.70 65.90 

Fast Numeric 20.03  16.30 63.67 

Slow Numeric 20.03 10.37 16.30 53.29 

Fast Verbal 20.03  14.85 65.12 

Slow Verbal 20.03 10.37 14.85 54.75 

  4 
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Table 5 1 

Fit indices of threshold separation (a), non-decision time (t0) and RT models 2 

Model AIC BIC χ² df CFI TLI RMSEA 

a Model 1 5,594.45 5,597.26 485.09 188 .67 0.73 0.11 

a Model 2 5,813.55 5,821.99 700.20 186 .43 0.53 0.15 

a Model 3 5,597.19 5,608.44 481.84 185 .67 0.73 0.11 

a Model 4 5,502.78 5,516.84 385.42 184 .78 0.82 0.09 

t0 Model 1 5,610.96 5,613.77 316.75 188 .82 0.86 0.07 

t0 Model 2 5,791.36 5,799.80 493.15 186 .58 0.65 0.12 

t0 Model 3 5,607.52 5,618.77 307.31 185 .83 0.86 0.07 

t0 Model 4 5,587.65 5,601.71 285.44 184 .86 0.88 0.07 

Combined t0-Intelligence 

Model 
6,457.09 6,488.03 390.73 241 .84 0.86 0.07 

RT Model 1 4,924.20 4,927.01 796.82 188 .68 0.74 0.16 

RT Model 2 5,105.80 5,114.23 974.41 186 .59 0.66 0.19 

RT Model 3 4,834.62 4,845.87 701.24 185 .73 0.78 0.15 

RT Model 4 4,802.50 4,816.56 667.12 184 .75 0.79 0.15 

Note. Model 1: g factor model; Model 2: model of uncorrelated domains; Model 3: hierarchical model of domains and a g 3 
factor; Model 4: Model 3 with additional method factor for all slow decision tasks. AIC = Akaike’s Information Criterion. 4 
BIC = Bayesian Information Criterion. CFI = Comparative Fit Index. TLI = Tucker-Lewis Index. RMSEA = Root Mean 5 
Squared Error Of Approximation. The best-fitting model among the four alternative models (Models 1 to 4) is always 6 
highlighted. 7 
  8 
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Table 6 1 

Combined t0-Intelligence Model 2 

Parameter Estimate SE 95% CI p 
Std. 

Est. 

 Loadings 

Ft0 on t0 (each figural task) 1 0   0.540 

Nt0 on t0 (each numeric task) 1 0   0.579 

Vt0 on t0 (each verbal task) 1 0   0.614 

st0 on t0 (each slow task) 1 0   0.275 

gt0 on Ft0 1 0   1.016 

gt0 on Nt0 1 0   0.948 

gt0 on Vt0 1 0   0.894 

gIQ on 

F_Mean/N_Mean/V_Mean 
1 0   0.731 

VIQ on V_Mean/NIQ on 

N_Mean/FIQ on F_Mean 
1 0   0.682 

 Covariances 

gt0 with gIQ -0.266 0.031 [-0.327; -0.206] <.001 -0.663 

st0 with gIQ -0.023 0.025 [-0.071; 0.026] .358 -0.112 

Ft0 with FIQ -0.047 0.027 [-0.101; 0.007] .086 -0.709 

Nt0 with NIQ -0.103 0.030 [-0.161; -0.045] .001 -0.819 

Vt0 with VIQ -0.113 0.032 [-0.176; -0.051] <.001 -0.604 

 Latent (Residual) Variances 

gt0 0.301 0.021 [0.260; 0.343] <.001 1 

gIQ 0.535 0.041 [0.455; 0.615] <.001 1 

st0 0.076 0.019 [0.039; 0.113] <.001 1 

Ft0 -0.010 0.022 [-0.052; 0.033] .657 -0.033 

Nt0 0.034 0.023 [-0.012; 0.080] .146 0.101 

Vt0 0.076 0.026 [0.025; 0.127] .003 0.201 

FIQ/NIQ/VIQ 0.465 0.041 [0.385; 0.545] <.001 1 

 Residual Indicator Variances 

t0 (each fast figural task) 0.708 0.029 [0.651; 0.765] <.001 0.708 

t0 (each fast numeric task) 0.665 0.029 [0.609; 0.721] <.001 0.665 

t0 (each fast verbal task) 0.623 0.028 [0.567; 0.678] <.001 0.623 

t0 (each slow figural task) 0.633 0.030 [0.574; 0.691] <.001 0.633 

t0 (each slow numeric task) 0.589 0.030 [0.529; 0.649] <.001 0.589 

t0 (each slow verbal task) 0.547 0.031 [0.486; 0.608] <.001 0.547 

F_Mean/N_Mean/V_Mean 0 0    

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 3 
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Figure 1. Illustration of the diffusion model. The most important model parameters are threshold separation (a), starting 

point z (here situated at the center between the two thresholds), non-decision time (t0, not depicted in the figure) and drift 

rate ν. In Panel B, drift (ν = 3.5) is higher than in Panel A (ν = 2.0), which results in more accurate and faster responses. 
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dot-rectangle task 

 

maze task 

 
simple area task

 

complex area task

 
polygon task

 

pie task 

 

Figure 2. Example for stimuli from the fast figural tasks (left) and the slow figural tasks (right). 
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Figure 3. Drift Rate Models 1 to 4. The first letter of the task indices denotes the type of task (F = fast, S = slow); the second 

letter indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. gν = 

general drift rate factor, Vν = verbal drift rate factor, Nν = numeric drift rate factor, Fν = figural drift rate factor, sν = method 

factor for drift rate in slow tasks. All unstandardized factor loadings are fixed to 1. Residuals are omitted from the plot for 

simplicity. We used the same model structures also for threshold separation, non-decision time and mean logarithmized 

response times.  
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Figure 4. Intelligence Model. Scale means are used as indicators for verbal (VIQ), numeric (NIQ) and figural (FIQ) 

intelligence. gIQ = general intelligence. Indicator residuals are fixed to zero, domain factors serve as quasi-residuals, see 

Methods. 
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Figure 5. Combined Drift-Intelligence Model. The first letter of the task indices denotes the type of task (F = fast, S = slow); 

the second letter indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. 

Completely standardized loadings are reported. Residuals are omitted from the plot for simplicity. The latent correlations 

between the drift domains and intelligence domains are between the drift domain residuals and the (quasi-residual) 

intelligence domain factors (see Methods). gν = general drift rate factor. Vν = verbal drift rate factor. Nν = numeric drift rate 

factor. Fν = figural drift rate factor. sν = method factor for drift rate in slow tasks. Scale means are used as indicators for 

verbal (VIQ), numeric (NIQ) and figural (FIQ) intelligence. gIQ = general intelligence. As the loadings of the drift domain 

factors are standardized on the different freely estimated variances of the domain factors, their standardized values differ 

although the unstandardized loadings are all fixed to 1. 

  



DIFFUSION MODELING AND INTELLIGENCE  60 

  

References 

Arnold, N. R., Bröder, A., & Bayen, U. J. (2015). Empirical validation of the diffusion model for recognition memory and a 

comparison of parameter-estimation methods. Psychological Research, 79(5), 882-898. doi: 10.1007/s00426-014-

0608-y 

Aschenbrenner, A. J., Balota, D. A., Gordon, B. A., Ratcliff, R., & Morris, J. C. (2016). A diffusion model analysis of episodic 

recognition in preclinical individuals with a family history for Alzheimer’s disease: The adult children study. 

Neuropsychology, 30(2), 225-238. doi: 10.1037/neu0000222 

Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time Constraints and Resource Sharing in Adults' Working Memory Spans. 

Journal of Experimental Psychology: General, 133(1), 83-100. doi: 10.1037/0096-3445.133.1.83 

Bock, O., Baetge, I., & Nicklisch, A. (2014). hroot: Hamburg registration and organization online tool. European Economic 

Review, 71, 117-120.  

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. 

Cognitive Psychology, 57(3), 153-178. doi: 10.1016/j.cogpsych.2007.12.002 

Camos, V., & Barrouillet, P. (2014). Attentional and non-attentional systems in the maintenance of verbal information in 

working memory: The executive and phonological loops. Frontiers in Human Neuroscience, 8. doi: 

10.3389/fnhum.2014.00900 

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the 

processing in the Raven Progressive Matrices Test. Psychological Review, 97(3), 404-431. doi: 10.1037/0033-

295X.97.3.404 

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY, US: Cambridge University 

Press. 

Cattell, R. B., & Cattell, A. (1960). Measuring intelligence with the culture fair tests. Champaign, IL, USA: Institute for 

Personality and Ability Testing. 

Chuderski, A. (2013). When are fluid intelligence and working memory isomorphic and when are they not? Intelligence, 

41(4), 244-262. doi: 10.1016/j.intell.2013.04.003 

Conway, A. R. A., & Kovacs, K. (2015). New and emerging models of human intelligence. WIREs Cognitive Science, 6(5), 419-

426. doi: 10.1002/wcs.1356 

Coyle, T. R. (2003). A review of the worst performance rule: Evidence, theory, and alternative hypotheses. Intelligence, 

31(6), 567-587. doi: 10.1016/S0160-2896(03)00054-0 

Coyle, T. R. (2017). A Differential–Developmental Model (DDM): Mental Speed, Attention Lapses, and General Intelligence 

(g). Journal of Intelligence, 5(2), 25.  

Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological bulletin, 105(2), 317-

327. doi: 10.1037/0033-2909.105.2.317 

Deary, I. J., Lawn, M., & Bartholomew, D. J. (2008). A conversation between Charles Spearman, Godfrey Thomson, and 

Edward L Thorndike: The International Examinations Inquiry Meetings 1931-1938. History of Psychology, 11(2), 

122-142. doi: 10.1037/1093-4510.11.2.122 

Detterman, D. K., & Daniel, M. H. (1989). Correlations of mental tests with each other and with cognitive variables are 

highest for low IQ groups. Intelligence, 13(4), 349-359. doi: https://doi.org/10.1016/S0160-2896(89)80007-8 

Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2009). A diffusion model decomposition of the 

practice effect. Psychonomic Bulletin & Review, 16(6), 1026-1036. doi: 10.3758/16.6.1026 

Eid, M., Lischetzke, T., Nussbeck, F. W., & Trierweiler, L. I. (2003). Separating trait effects from trait-specific method effects 

in multitrait-multimethod models: A multiple-indicator CT-C(M-1) model. Psychological Methods, 8(1), 38-60. doi: 

10.1037/1082-989X.8.1.38 

Frischkorn, G. T., & Schubert, A.-L. (2018). Cognitive Models in Intelligence Research: Advantages and Recommendations 

for Their Application. Journal of Intelligence, 6(3), 34.  

Frischkorn, G. T., Schubert, A.-L., Neubauer, A. B., & Hagemann, D. (2016). The Worst Performance Rule as Moderation: 

New Methods for Worst Performance Analysis. Journal of Intelligence, 4(3), 9.  

Germar, M., Schlemmer, A., Krug, K., Voss, A., & Mojzisch, A. (2014). Social influence and perceptual decision making: A 

diffusion model analysis. Personality and Social Psychology Bulletin, 40(2), 217-231. doi: 

10.1177/0146167213508985  

Gignac, G. E. (2016). The higher-order model imposes a proportionality constraint: That is why the bifactor model tends to 

fit better. Intelligence, 55, 57-68. doi: 10.1016/j.intell.2016.01.006 

Hawkins, G. E., Hayes, B. K., & Heit, E. (2016). A dynamic model of reasoning and memory. Journal of Experimental 

Psychology: General, 145(2), 155-180. doi: 10.1037/xge0000113 

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. psychometrika, 30(2), 179-185. doi: 

10.1007/bf02289447 

Hu, L.-t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus 

new alternatives. Structural Equation Modeling, 6(1), 1-55. doi: 10.1080/10705519909540118 

Jäger, A. O. (1982). Mehrmodale Klassifikation von Intelligenzleistungen: Experimentell kontrollierte Weiterenwicklung 

eines deskriptiven Intelligenzstrukturmodells. = Multimodal classification of intelligence achievement: 

Experimentally controlled, further development of a descriptive intelligence structure model. Diagnostica, 28(3), 

195-225.  



DIFFUSION MODELING AND INTELLIGENCE  61 

  

Jäger, A. O., Süß, H.-M., & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test : BIS-Test, Form 4. Göttingen [u.a.]: 

Hogrefe. 

Jensen, A. R. (1987). Process differences and individual differences in some cognitive tasks. Intelligence, 11(2), 107-136. 

doi: 10.1016/0160-2896(87)90001-8 

Jensen, A. R. (2005). Mental chronometry and the unification of differential psychology. In R. J. Sternberg & J. E. Pretz 

(Eds.), Cognition and intelligence: Identifying the mechanisms of the mind. (pp. 26-50). New York, NY: Cambridge 

University Press. 

Jensen, A. R. (2006). Clocking the Mind: Mental Chronometry and Individual Differences. Amsterdam: Elsevier. 

Kan, K.-J., van der Maas, H. L. J., & Kievit, R. A. (2016). Process overlap theory: Strengths, limitations, and challenges. 

Psychological inquiry, 27(3), 220-228. doi: 10.1080/1047840X.2016.1182000 

Kan, K.-J., van der Maas, H. L. J., & Levine, S. Z. (2019). Extending psychometric network analysis: Empirical evidence 

against g in favor of mutualism? Intelligence, 73, 52-62. doi: 10.1016/j.intell.2018.12.004 

Kim, K. H. (2005). The Relation Among Fit Indexes, Power, and Sample Size in Structural Equation Modeling. Structural 

Equation Modeling, 12(3), 368-390. doi: 10.1207/s15328007sem1203_2 

Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. 

Psychological inquiry, 27(3), 151-177. doi: 10.1080/1047840X.2016.1153946 

Larsen, L., Hartmann, P., & Nyborg, H. (2008). The stability of general intelligence from early adulthood to middle-age. 

Intelligence, 36(1), 29-34. doi: 10.1016/j.intell.2007.01.001 

Larson, G. E., & Alderton, D. L. (1990). Reaction time variability and intelligence: A “worst performance” analysis of 

individual differences. Intelligence, 14(3), 309-325. doi: https://doi.org/10.1016/0160-2896(90)90021-K 

Lerche, V., Christmann, U., & Voss, A. (2018). Impact of context information on metaphor elaboration: A diffusion model 

study. Experimental Psychology, 65(6), 370-384. doi: 10.1027/1618-3169/a000422 

Lerche, V., & Voss, A. (2016). Model complexity in diffusion modeling: Benefits of making the model more parsimonious. 

Frontiers in Psychology, 7(1324). doi: 10.3389/fpsyg.2016.01324 

Lerche, V., & Voss, A. (2017a). Experimental Validation of the Diffusion Model based on a Slow Response Time Paradigm. 

Psychological Research. doi: 10.1007/s00426-017-0945-8 

Lerche, V., & Voss, A. (2017b). Retest reliability of the parameters of the Ratcliff diffusion model. Psychological Research, 

81(3), 629-652. doi: 10.1007/s00426-016-0770-5 

Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter estimation in diffusion modeling? A 

comparison of different optimization criteria. Behavior Research Methods, 49(2), 513-537. doi: 10.3758/s13428-

016-0740-2 

Levine, G., Preddy, D., & Thorndike, R. L. (1987). Speed of information processing and level of cognitive ability. Personality 

and individual differences, 8(5), 599-607. doi: 10.1016/0191-8869(87)90057-2 

Lindley, R. H., Wilson, S. M., Smith, W. R., & Bathurst, K. (1995). Reaction time (RT) and IQ: Shape of the task complexity 

function. Personality and individual differences, 18(3), 339-345. doi: 10.1016/0191-8869(94)00154-K 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading MA: Addison-Wesley. 

Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of 

intelligence. Intelligence, 7(2), 107-127. doi: 10.1016/0160-2896(83)90023-5 

McKoon, G., & Ratcliff, R. (2012). Aging and IQ effects on associative recognition and priming in item recognition. Journal of 

Memory and Language, 66(3), 416-437. doi: 10.1016/j.jml.2011.12.001 

Morgan, G. B., Hodge, K. J., Wells, K. E., & Watkins, M. W. (2015). Are Fit Indices Biased in Favor of Bi-Factor Models in 

Cognitive Ability Research?: A Comparison of Fit in Correlated Factors, Higher-Order, and Bi-Factor Models via 

Monte Carlo Simulations. Journal of Intelligence, 3(1), 2-20.  

Neubauer, A. C., & Bucik, V. (1996). The mental speed—IQ relationship: unitary or modular? Intelligence, 22(1), 23-48. doi: 

https://doi.org/10.1016/S0160-2896(96)90019-7 

Partchev, I., & De Boeck, P. (2012). Can fast and slow intelligence be differentiated? Intelligence, 40(1), 23-32. doi: 

10.1016/j.intell.2011.11.002 

Petrov, A. A., Van Horn, N. M., & Ratcliff, R. (2011). Dissociable perceptual-learning mechanisms revealed by diffusion-

model analysis. Psychonomic Bulletin & Review, 18(3), 490-497. doi: 10.3758/s13423-011-0079-8 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. doi: 10.1037/0033-295x.85.2.59 

Ratcliff, R. (2014). Measuring psychometric functions with the diffusion model. Journal of Experimental Psychology: Human 

Perception and Performance, 40(2), 870-888. doi: 10.1037/a0034954 

Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the two-choice diffusion model of decision 

making. Decision, 2(4), 237-279. doi: 10.1037/dec0000030 

Ratcliff, R., & Frank, M. J. (2012). Reinforcement-Based Decision Making in Corticostriatal Circuits: Mutual Constraints by 

Neurocomputational and Diffusion Models. Neural Computation, 24(5), 1186-1229. doi: 10.1162/NECO_a_00270  

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A Diffusion Model Account of the Lexical Decision Task. Psychological Review, 

111(1), 159-182. doi: 10.1037/0033-295x.111.1.159 

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural 

Computation, 20(4), 873-922. doi: 10.1162/neco.2008.12-06-420 

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347-356. 

doi: 10.1111/1467-9280.00067 



DIFFUSION MODELING AND INTELLIGENCE  62 

  

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in 

cognitive sciences, 20(4), 260-281. doi: 10.1016/j.tics.2016.01.007 

Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in the lexical-

decision task. Psychology and Aging, 19(2), 278. doi: 10.1037/0882-7974.19.2.278 

Ratcliff, R., Thapar, A., & McKoon, G. (2010). Individual differences, aging, and IQ in two-choice tasks. Cognitive Psychology, 

60(3), 127-157. doi: 10.1016/j.cogpsych.2009.09.001 

Ratcliff, R., Thapar, A., & McKoon, G. (2011). Effects of aging and IQ on item and associative memory. Journal of 

Experimental Psychology: General, 140(3), 464-487. doi: 10.1037/a0023810 

Ratcliff, R., Thompson, C. A., & McKoon, G. (2015). Modeling individual differences in response time and accuracy in 

numeracy. Cognition, 137, 115-136. doi: 10.1016/j.cognition.2014.12.004 

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant 

reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438-481. doi: 

10.3758/bf03196302 

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. 2012, 48(2), 36. doi: 10.18637/jss.v048.i02 

Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 

403-428. doi: 10.1037/0033-295X.103.3.403 

Scheithe, K., & Bäuml, K.-H. (1995). Deutschsprachige Normen für Vertreter von 48 Kategorien. = German-language norms 

for representatives of 48 conceptual categories. Sprache & Kognition, 14(1), 39-43.  

Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of 

reaction time distributions and their relations to working memory and intelligence. Journal of Experimental 

Psychology - General, 136(3), 414-429. doi: 10.1037/0096-3445.136.3.414 

Schmitz, F., & Voss, A. (2012). Decomposing task-switching costs with the diffusion model. Journal of Experimental 

Psychology: Human Perception and Performance, 38(1), 222-250. doi: 10.1037/a0026003 

Schmitz, F., & Wilhelm, O. (2016). Modeling Mental Speed: Decomposing Response Time Distributions in Elementary 

Cognitive Tasks and Correlations with Working Memory Capacity and Fluid Intelligence. Journal of Intelligence, 

4(4), 13.  

Schubert, A.-L. (2019). A meta-analysis of the worst performance rule. Intelligence, 73, 88-100. doi: 

10.1016/j.intell.2019.02.003 

Schubert, A.-L., Frischkorn, G. T., Hagemann, D., & Voss, A. (2016). Trait Characteristics of Diffusion Model Parameters. 

Journal of Intelligence, 4(3), 7. doi: 10.3390/jintelligence4030007 

Schubert, A.-L., Hagemann, D., Frischkorn, G. T., & Herpertz, S. C. (2018). Faster, but not smarter: An experimental analysis 

of the relationship between mental speed and mental abilities. Intelligence, 71, 66-75. doi: 

https://doi.org/10.1016/j.intell.2018.10.005 

Schubert, A.-L., Hagemann, D., Voss, A., Schankin, A., & Bergmann, K. (2015). Decomposing the relationship between 

mental speed and mental abilities. Intelligence, 51, 28-46. doi: 10.1016/j.intell.2015.05.002 

Schubert, A.-L., & Rey-Mermet, A. (2019). Does Process Overlap Theory Replace the Issues of General Intelligence with the 

Issues of Attentional Control? Journal of Applied Research in Memory and Cognition, 8(3), 277-283. doi: 

https://doi.org/10.1016/j.jarmac.2019.06.004 

Schulz-Zhecheva, Y., Voelkle, M., Beauducel, A., Biscaldi, M., & Klein, C. (2016). Predicting Fluid Intelligence by Components 

of Reaction Time Distributions from Simple Choice Reaction Time Tasks. Journal of Intelligence, 4(3), 8. doi: 

10.3390/jintelligence4030008 

Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. 

Personality and individual differences, 44(3), 535-551. doi: 10.1016/j.paid.2007.09.015 

Spaniol, J., Madden, D. J., & Voss, A. (2006). A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic 

Long-Term Memory Retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 101-

117. doi: 10.1037/0278-7393.32.1.101 

Theisen, M., Lerche, V., von Krause, M., & Voss, A. (2019). Age differences in diffusion model parameters: A meta-analysis. 

Manuscript submitted for publication.  

Thomson, G. H. (1916). A Hierarchy without a General Factor. British Journal of Psychology, 8(3), 271.  

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley. 

van Ravenzwaaij, D., Donkin, C., & Vandekerckhove, J. (2016). The EZ diffusion model provides a powerful test of simple 

empirical effects. Psychonomic Bulletin & Review, 1-10. doi: 10.3758/s13423-016-1081-y 

van Ravenzwaaij, D., Donkin, C., & Vandekerckhove, J. (2017). The EZ diffusion model provides a powerful test of simple 

empirical effects. Psychonomic Bulletin & Review, 24(2), 547-556. doi: 10.3758/s13423-016-1081-y 

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A practical introduction. 

Experimental Psychology, 60(6), 385-402. doi: 10.1027/1618-3169/a000218 

Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013). Cognitive processes in associative and categorical priming: a 

diffusion model analysis. J Exp Psychol Gen, 142(2), 536-559. doi: 10.1037/a0029459 

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. 

Memory & Cognition, 32(7), 1206-1220. doi: 10.3758/BF03196893 

Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 

39(4), 767-775. doi: 10.3758/bf03192967 



DIFFUSION MODELING AND INTELLIGENCE  63 

  

Voss, A., & Voss, J. (2008). A fast numerical algorithm for the estimation of diffusion model parameters. Journal of 

Mathematical Psychology, 52(1), 1-9. doi: 10.1016/j.jmp.2007.09.005 

Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-

dm-30. Frontiers in Psychology, 6(336). doi: 10.3389/fpsyg.2015.00336 

Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times 

and accuracy. European Journal of Cognitive Psychology, 21(5), 641-671. doi: 10.1080/09541440802205067 

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A diffusion model account of criterion shifts in the lexical 

decision task. Journal of Memory and Language, 58(1), 140-159. doi: 10.1016/j.jml.2007.04.006 

Weiss, R. H. (2006). Grundintelligenztest Skala 2-Revidierte Fassung (CFT 20-R)[GeneralIntelligence Test Scale 2-Revised]. 

Goettingen: Hogrefe. 

White, C. N., Curl, R. A., & Sloane, J. F. (2016). Using Decision Models to Enhance Investigations of Individual Differences in 

Cognitive Neuroscience. Frontiers in Psychology, 7(81). doi: 10.3389/fpsyg.2016.00081 

Wilhelm, O., Schroeders, U., & Schipolowski, S. (2014). Berliner Test zur Erfassung fluider und kristalliner Intelligenz für die 

8. bis 10. Jahrgangsstufe (BEFKI 8-10). Göttingen: Hogrefe. 

Yap, M. J., Balota, D. A., Sibley, D. E., & Ratcliff, R. (2012). Individual differences in visual word recognition: Insights from 

the English Lexicon Project. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 53-

79. doi: 10.1037/a0024177 

 

  



DIFFUSION MODELING AND INTELLIGENCE  64 

  

Appendix A: Task Descriptives 

Table A1 

Descriptives of RT (in ms) 

Task Mean SD Minimum Maximum 

FF1 560 96 398 846 

FF2 620 176 372 1,278 

FF3 551 96 393 877 

FN1 527 78 395 758 

FN2 590 107 409 947 

FN3 670 135 467 1,168 

FV1 792 164 542 1,350 

FV2 781 162 513 1,397 

FV3 737 124 530 1,161 

SF1 3,234 1,091 1,517 7,354 

SF2 4,189 2,009 1,355 10,366 

SF3 2,856 906 1,021 5,171 

SN1 4,168 1,904 1,004 11,074 

SN2 2,761 1,098 1,014 6,670 

SN3 2,805 885 1,571 5,780 

SV1 2,380 709 1,145 4,516 

SV2 3,030 1,002 1,654 6,599 

SV3 3,600 895 1,935 6,808 

Note. The first letter indicates the task complexity (F = fast, S = slow); the second letter denotes the domain (N = numeric, V 

= verbal, F = figural). See Table 1 for a brief description of all tasks. SD = standard deviation. 
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Table A2 

Descriptives of Accuracy Rate (in %) 

Task Mean SD Minimum Maximum 

FF1 93.65 2.88 84.54 97.00 

FF2 98.68 1.60 93.00 100.00 

FF3 97.71 1.90 91.58 100.00 

FN1 98.03 2.26 89.00 100.00 

FN2 97.68 2.03 91.00 100.00 

FN3 97.17 2.74 88.00 100.00 

FV1 96.22 3.76 79.55 100.00 

FV2 95.11 3.97 78.35 100.00 

FV3 97.18 2.41 87.00 100.00 

SF1 95.53 2.91 87.00 100.00 

SF2 86.69 6.50 69.00 100.00 

SF3 80.47 9.10 53.06 97.00 

SN1 90.76 8.11 61.00 100.00 

SN2 91.16 5.48 72.00 98.00 

SN3 93.51 3.71 82.00 100.00 

SV1 96.36 2.39 88.00 100.00 

SV2 95.11 2.61 85.86 99.00 

SV3 94.24 4.77 80.21 100.00 

Note. The first letter indicates the task complexity (F = fast, S = slow); the second letter denotes the domain (N = numeric, V 

= verbal, F = figural). See Table 1 for a brief description of all tasks. SD = standard deviation. 
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Table A3 

Descriptives of drift rate 

Task Mean SD Minimum Maximum 

FF1 3.16 0.73 1.79 6.42 

FF2 3.26 1.02 1.43 7.16 

FF3 4.27 0.96 2.38 8.01 

FN1 4.97 1.82 2.41 16.50 

FN2 3.95 0.97 2.12 8.52 

FN3 3.97 1.39 2.00 12.23 

FV1 2.81 0.88 1.37 6.25 

FV2 2.68 0.78 1.12 4.83 

FV3 3.21 0.89 1.54 6.61 

SF1 0.94 0.20 0.52 1.61 

SF2 0.58 0.17 0.17 0.97 

SF3 0.50 0.18 0.09 1.02 

SN1 0.70 0.22 0.15 1.30 

SN2 0.80 0.25 0.39 1.48 

SN3 1.08 0.33 0.57 2.15 

SV1 1.17 0.20 0.64 1.79 

SV2 1.03 0.29 0.54 1.99 

SV3 0.90 0.23 0.39 1.63 

Note. The first letter indicates the task complexity (F = fast, S = slow); the second letter denotes the domain (N = numeric, V 

= verbal, F = figural). See Table 1 for a brief description of all tasks. SD = standard deviation. 
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Table A4 

Descriptives of threshold separation 

Task Mean SD Minimum Maximum 

FF1 0.91 0.21 0.46 1.71 

FF2 1.53 0.53 0.66 3.61 

FF3 1.16 0.61 0.63 5.52 

FN1 1.47 1.31 0.44 10.00 

FN2 1.20 0.51 0.62 3.90 

FN3 1.36 1.03 0.50 10.00 

FV1 1.52 0.73 0.53 5.76 

FV2 1.33 0.44 0.55 2.62 

FV3 1.35 0.55 0.66 5.61 

SF1 3.75 1.44 1.73 10.00 

SF2 3.71 1.37 1.45 8.05 

SF3 3.06 0.81 1.36 5.10 

SN1 4.00 1.53 1.21 10.00 

SN2 3.25 0.92 1.13 6.35 

SN3 2.85 0.92 1.52 6.79 

SV1 3.08 0.84 1.71 7.07 

SV2 3.19 0.87 1.35 5.14 

SV3 3.69 1.23 1.75 10.00 

Note. The first letter indicates the task complexity (F = fast, S = slow); the second letter denotes the domain (N = numeric, V 

= verbal, F = figural). See Table 1 for a brief description of all tasks. SD = standard deviation. 
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Table A5 

Descriptives of non-decision time (in ms) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note. The first letter indicates the task complexity (F = fast, S = slow); the second letter denotes the domain (N = numeric, V 

= verbal, F = figural). See Table 1 for a brief description of all tasks. SD = standard deviation. 

  

Task Mean SD Minimum Maximum 

FF1 423 65 273 587 

FF2 359 66 242 592 

FF3 411 56 236 555 

FN1 388 67 135 539 

FN2 427 57 313 678 

FN3 499 96 192 789 

FV1 513 76 226 850 

FV2 527 74 367 749 

FV3 520 65 333 732 

SF1 1,286 495 137 2,969 

SF2 1,480 918 63 5,874 

SF3 913 397 230 2,657 

SN1 1,628 1,207 0 5,794 

SN2 844 309 36 2,097 

SN3 1,501 422 628 2,983 

SV1 1,092 348 366 2,525 

SV2 1,448 420 910 3,746 

SV3 1,635 413 68 3,280 
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Table A6 

Descriptives of BIS domain scale scores 

 Mean SD Minimum Maximum 

F_Mean 96.35 7.74 76.50 114.25 

N_Mean 99.94 8.38 80.50 120.75 

V_Mean 102.78 7.83 79.75 121.50 

Note. V = Verbal, N = Numeric, F = Figural. SD = standard deviation. 
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Figure A1. Boxplots of mean response times for all fast tasks. The first letter indicates the task complexity (F = fast); the 

second letter denotes the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. The 

boxplots display the first, second and third quartile. Outliers are values greater than 1.5 times the interquartile range from 

either end of the box. 
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Figure A2. Boxplots of mean response times for all slow tasks. The first letter indicates the task complexity (S = slow); the 

second letter denotes the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. The 

boxplots display the first, second and third quartile. Outliers are values greater than 1.5 times the interquartile range from 

either end of the box. 
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Appendix B: Diffusion Model Fit 

 

 
Figure B1. Model fit of all fast RT tasks. The boxplots show the maximum likelihood statistic (sum of logarithmized 

densities). Lower values indicate worse model fit. The horizontal line is the 1% percentile of fit values from 1000 simulated 

data sets. For observed data, the percentage of fits that are worse than this critical value is also given.  
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Figure B2. Model fit of all slow RT tasks. The boxplots show the maximum likelihood statistic (sum of logarithmized 

densities). Lower values indicate worse model fit. The horizontal line is the 1% percentile of fit values from 1000 simulated 

data sets. For observed data, the percentage of fits that are worse than this critical value is also given.  



DIFFUSION MODELING AND INTELLIGENCE  74 

  

 
Figure B3. Model fit of the fast RT tasks based on the comparison of statistics (accuracy rate, first, second and third RT 

quartile) of observed data and models' predictions. Each point represents one participant in one task. The diagonals indicate 

perfect model fit. One data point exceeding the scales of the third RT quartile plot was omitted.  
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Figure B4. Model fit of the slow RT tasks based on the comparison of statistics (accuracy rate, first, second and third RT 

quartile) of observed data and models' predictions. Each point represents one participant in one task. The diagonals indicate 

perfect model fit. Two data points exceeding the scales of the third RT quartile plot were omitted. 
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Appendix C: Structural Equation Models 

Table C1 

Drift Model 1 (g factor) 

Parameter Estimate SE 95% CI p Std. Est. 

 Loadings 

gν on ν (each task) 1 0   0.509 

 Latent (Residual) Variances 

gν 0.259 0.020 [0.219; 0.298] <.001 1 

 Residual Indicator Variances 

ν (each task) 0.741 0.020 [0.702; 0.781] <.001 0.741 

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 
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Table C2 

Drift Model 2 (uncorrelated domains) 

Parameter Estimate SE 95% CI p 
Std. 

Est. 

 Loadings 

Fν on ν (each figural 

task) 
1 0   0.506 

Nν on ν (each numeric 

task) 
1 0   0.610 

Vν on ν (each verbal 

task) 
1 0   0.615 

 Latent (Residual) Variances 

Fν 0.256 0.035 [0.188; 0.325] <.001 1 

Nν 0.371 0.033 [0.308; 0.435] <.001 1 

Vν 0.378 0.033 [0.314; 0.442] <.001 1 

 Residual Indicator Variances 

ν (each figural task) 0.744 0.035 [0.675; 0.812] <.001 0.744 

ν (each numeric task) 0.629 0.033 [0.565; 0.692] <.001 0.629 

ν (each verbal task) 0.622 0.033 [0.558; 0.686] <.001 0.622 

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 
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Table C3 

Drift Model 3 (hierarchical model of domains & g factor) 

Parameter Estimate SE 95% CI p Std. Est. 

 Loadings 

Fν on ν (each figural 

task) 
1 0   0.514 

Nν on ν (each 

numeric task) 
1 0   0.605 

Vν on ν (each verbal 

task) 
1 0   0.617 

gν on Fν 1 0   0.922 

gν on Nν 1 0   0.784 

gν on Vν 1 0   0.769 

 Latent (Residual) Variances 

gν 0.225 0.024 [0.178; 0.271] <.001 1 

Fν 0.039 0.029 [-0.017; 0.096] .171 0.149 

Nν 0.141 0.033 [0.077; 0.206] <.001 0.386 

Vν 0.156 0.032 [0.092; 0.219] <.001 0.409 

 Residual Indicator Variances 

ν (each figural task) 0.736 0.032 [0.672; 0.800] <.001 0.736 

ν (each numeric 

task) 
0.634 0.031 [0.573; 0.696] <.001 0.634 

ν (each verbal task) 0.620 0.031 [0.559; 0.680] <.001 0.620 

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 
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Table C4 

Drift Model 4 (hierarchical model of domains & g factor & slow method factor) 

Parameter Estimate SE 95% CI p Std. Est. 

 Loadings 

sν on ν (each slow task) 1 0   0.308 

Fν on ν (each figural task) 1 0   0.486 

Nν on ν (each numeric task) 1 0   0.600 

Vν on ν (each verbal task) 1 0   0.598 

gν on Fν 1 0   0.926 

gν on Nν 1 0   0.750 

gν on Vν 1 0   0.751 

 Latent (Residual) Variances 

gν 0.202 0.025 [0.154; 0.251] <.001 1 

sν 0.095 0.022 [0.051; 0.138] <.001 1 

Fν 0.034 0.028 [-0.022; 0.089] .235 0.142 

Nν 0.158 0.033 [0.094; 0.222] <.001 0.438 

Vν 0.156 0.031 [0.095; 0.217] <.001 0.435 

 Residual Indicator Variances 

ν (each fast figural task) 0.764 0.034 [0.698; 0.830] <.001 0.764 

ν (each fast numeric task) 0.640 0.031 [0.579; 0.701] <.001 0.640 

ν (each fast verbal task) 0.642 0.032 [0.580; 0.704] <.001 0.642 

ν (each slow figural task) 0.670 0.034 [0.602; 0.737] <.001 0.670 

ν (each slow numeric task) 0.545 0.034 [0.479; 0.612] <.001 0.545 

ν (each slow verbal task) 0.547 0.032 [0.485; 0.610] <.001 0.547 

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 
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Table C5 

Intelligence Model 

Parameter Estimate SE 95% CI p Std. Est. 

 Loadings 

gIQ on 

F_Mean/N_Mean/V_Mean 
1 0   0.736 

VIQ on V_Mean/NIQ on  

N_Mean/FIQ on F_Mean 
1 0   0.677 

 Latent (Residual) Variances 

gIQ 0.542 0.040 [0.465; 0.620] <.001 1 

FIQ/NIQ/VIQ 0.458 0.040 [0.380; 0.535] <.001 1 

V_Mean/N_Mean/F_Mean 0 0    

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 
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Table C6 

Drift Model 4 (hierarchical model of domains & g factor & slow method factor), freely 

estimated 

Parameter Estimate SE 95% CI p  Std. Est. 

  Loadings 

Fν on v.FF1 1 0    0.365 

on ν.FF2 1.213 0.685 [-0.128; 2.555] .076  0.443 

on ν.FF3 1.996 1.266 [-0.486; 4.477] .115  0.729 

on ν.SF1 0.793 0.624 [-0.430; 2.017] .204  0.290 

on ν.SF2 0.974 0.532 [-0.067; 2.016] .067  0.356 

on ν.SF3 1.364 0.802 [-0.207; 2.935] .089  0.498 

Nν on ν.FN1 1 0    0.610 

on ν.FN2 1.035 0.144 [0.753; 1.318] <.001  0.632 

on ν.FN3 0.802 0.158 [0.492; 1.112] <.001  0.489 

on ν.SN1 0.673 0.188 [0.304; 1.042] <.001  0.411 

on ν.SN2 1.172 0.203 [0.774; 1.570] <.001  0.715 

on ν.SN3 1.206 0.217 [0.780; 1.632] <.001  0.736 

Vν on ν.FV1 1 0    0.690 

on ν.FV2 1.045 0.126 [0.799; 1.291] <.001  0.721 

on ν.FV3 0.942 0.135 [0.678; 1.207] <.001  0.650 

on ν.SV1 0.828 0.123 [0.586; 1.070] <.001  0.571 

on ν.SV2 0.628 0.130 [0.372; 0.883] <.001  0.433 

on ν.SV3 0.741 0.136 [0.474; 1.008] <.001  0.511 

sν on ν.SF1 1 0    0.378 

on ν.SF2 1.339 1.182 [-0.978; 3.656] .257  0.507 

on ν.SF3 1.080 0.997 [-0.875; 3.034] .279  0.408 

on ν.SN1 1.543 1.299 [-1.002; 4.088] .235  0.584 

on ν.SN2 0.587 0.673 [-0.733; 1.907] .383  0.222 

on ν.SN3 0.579 0.744 [-0.879; 2.038] .436  0.219 

on ν.SV1 0.749 0.501 [-0.233; 1.731] .135  0.283 

on ν.SV2 0.895 0.653 [-0.385; 2.175] .170  0.339 

on ν.SV3 1.099 0.654 [-0.182; 2.381] .093  0.416 

gν on Fν 1 0    0.748 

gν on Nν 1.860 1.370 [-0.825; 4.545] .175  0.833 

gν on Vν 1.768 1.188 [-0.560; 4.096] .137  0.700 

  Latent (Residual) Variances 

gν 0.075 0.100 [-0.121; 0.270] .455  1 

sν 0.143 0.214 [-0.276; 0.562] .503  1 

Fν 0.059 0.050 [-0.038; 0.156] .235  0.441 

Nν 0.114 0.071 [-0.026; 0.254] .110  0.307 

Vν 0.243 0.082 [0.081; 0.404] .003  0.510 

  Residual Indicator Variances 

ν.FF1 0.867 0.142 [0.589; 1.144] <.001  0.867 

ν.FF2 0.804 0.085 [0.637; 0.970] <.001  0.804 

ν.FF3 0.469 0.170 [0.136; 0.802] .006  0.469 

ν.FN1 0.628 0.090 [0.451; 0.804] <.001  0.628 

ν.FN2 0.601 0.094 [0.418; 0.784] <.001  0.601 

ν.FN3 0.760 0.074 [0.615; 0.906] <.001  0.760 
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ν.FV1 0.524 0.083 [0.361; 0.687] <.001  0.524 

ν.FV2 0.480 0.086 [0.312; 0.648] <.001  0.480 

ν.FV3 0.577 0.082 [0.416; 0.738] <.001  0.577 

ν.SF1 0.773 0.158 [0.463; 1.083] <.001  0.773 

ν.SF2 0.617 0.096 [0.428; 0.806] <.001  0.617 

ν.SF3 0.585 0.090 [0.408; 0.762] <.001  0.585 

ν.SN1 0.491 0.098 [0.298; 0.684] <.001  0.491 

ν.SN2 0.439 0.071 [0.300; 0.578] <.001  0.439 

ν.SN3 0.411 0.073 [0.268; 0.553] <.001  0.411 

ν.SV1 0.594 0.079 [0.440; 0.748] <.001  0.594 

ν.SV2 0.698 0.082 [0.538; 0.858] <.001  0.698 

ν.SV3 0.566 0.094 [0.381; 0.750] <.001  0.566 

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 
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Table C7 

Combined Drift-Intelligence Model, freely estimated 

Parameter Estimate SE 95% CI  p Std. Est. 

  Loadings 

Fν on ν.FF1 1 0    0.392 

on ν.FF2 1.180     0.463 

on ν.FF3 1.630     0.639 

on ν.SF1 0.758     0.297 

on ν.SF2 1.215     0.477 

on ν.SF3 1.554     0.610 

Nν on ν.FN1 1 0    0.526 

on ν.FN2 1.011 0.187 [0.645; 1.377]  <.001 0.532 

on ν.FN3 0.756 0.181 [0.401; 1.112]  <.001 0.398 

on ν.SN1 0.860 0.202 [0.464; 1.257]  <.001 0.453 

on ν.SN2 1.472 0.261 [0.960; 1.985]  <.001 0.775 

on ν.SN3 1.572 0.252 [1.078; 2.066]  <.001 0.827 

Vν on ν.FV1 1 0    0.679 

on ν.FV2 1.043 0.123 [0.803; 1.284]  <.001 0.709 

on ν.FV3 0.970 0.131 [0.714; 1.226]  <.001 0.659 

on ν.SV1 0.846 0.118 [0.615; 1.076]  <.001 0.575 

on ν.SV2 0.679 0.117 [0.450; 0.907]  <.001 0.461 

on ν.SV3 0.740 0.120 [0.505; 0.976]  <.001 0.503 

sν on ν.SF1 1 0    0.564 

on ν.SF2 0.537 0.230 [0.087; 0.988]  .019 0.303 

on ν.SF3 0.399 0.191 [0.025; 0.773]  .036 0.225 

on ν.SN1 0.641 0.219 [0.212; 1.070]  .003 0.362 

on ν.SN2 0.469 0.236 [0.008; 0.931]  .046 0.265 

on ν.SN3 0.151 0.188 
[-0.218; 

0.520] 
 .421 0.085 

on ν.SV1 0.392 0.168 [0.063; 0.721]  .020 0.221 

on ν.SV2 0.717 0.214 [0.297; 1.137]  .001 0.404 

on ν.SV3 0.747 0.182 [0.391; 1.104]  <.001 0.421 

gν on Fν 1 0    0.885 

gν on Nν 1.091     0.720 

gν on Vν 1.191     0.608 

gIQ on F_Mean 1 0    0.808 

gIQ on N_Mean 0.858 0.033 [0.794; 0.923]  <.001 0.693 

gIQ on V_Mean 0.833     0.673 

FIQ on F_Mean 1 0    0.590 

NIQ on N_Mean 1 0    0.721 

VIQ on V_Mean 1 0    0.740 

  Covariances 

gν with gIQ 0.117     0.418 

sν with gIQ 0.336 0.062 [0.214; 0.458]  <.001 0.739 

Fν with FIQ 0.060 0.035 
[-0.008; 

0.128] 
 .082 0.561 

Nν with NIQ 0.237 0.038 [0.162; 0.312]  <.001 0.899 

Vν with VIQ 0.208 0.046 [0.119; 0.298]  <.001 0.522 



DIFFUSION MODELING AND INTELLIGENCE  84 

  

  Latent (Residual) Variances 

gν 0.121     1 

gIQ 0.652 0.038 [0.578; 0.727]  <.001 1 

sν 0.318 0.127 [0.068; 0.567]  .013 1 

Fν 0.033 0.017 [0.000; 0.067]  .053 0.217 

Nν 0.134 0.036 [0.000; 0.067]  <.001 0.482 

Vν 0.291 0.080 [0.134; 0.448]  <.001 0.630 

FIQ 0.348 0.038 [0.273; 0.422]  <.001 1 

NIQ 0.519 0.059 [0.404; 0.634]  <.001 1 

VIQ 0.548 0.052 [0.446; 0.649]  <.001 1 

  Residual Indicator Variances 

ν.FF1 0.846     0.846 

ν.FF2 0.786 0.067 [0.655; 0.916]  <.001 0.786 

ν.FF3 0.591 0.097 [0.402; 0.780]  <.001 0.591 

ν.FN1 0.723 0.085 [0.557; 0.890]  <.001 0.723 

ν.FN2 0.717 0.075 [0.571; 0.863]  <.001 0.717 

ν.FN3 0.842 0.064 [0.716; 0.967]  <.001 0.842 

ν.FV1 0.538 0.080 [0.382; 0.695]  <.001 0.538 

ν.FV2 0.497 0.077 [0.346; 0.649]  <.001 0.497 

ν.FV3 0.566 0.079 [0.412; 0.720]  <.001 0.566 

ν.SF1 0.594 0.102 [0.393; 0.794]  <.001 0.594 

ν.SF2 0.681 0.076 [0.531; 0.831]  <.001 0.681 

ν.SF3 0.578 0.061 [0.458; 0.697]  <.001 0.578 

ν.SN1 0.664 0.078 [0.512; 0.817]  <.001 0.664 

ν.SN2 0.330 0.054 [0.225; 0.435]  <.001 0.330 

ν.SN3 0.309 0.051 [0.209; 0.409]  <.001 0.309 

ν.SV1 0.621 0.076 [0.471; 0.771]  <.001 0.621 

ν.SV2 0.624 0.080 [0.466; 0.782]  <.001 0.624 

ν.SV3 0.570 0.082 [0.409; 0.731]  <.001 0.570 

F_Mean/N_Mean/V_Mean 0 0     
Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. Caveat: unreliable 

estimates with some missing standard errors.
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Table C8 

Non-Decision Time Model 4 (hierarchical model of domains & g factor & slow method 

factor) 

Parameter Estimate SE 95% CI p Std. Est. 

 Loadings 

Ft0 on t0 (each figural 

task) 
1 0   0.539 

Nt0 on t0 (each numeric 

task) 
1 0   0.582 

Vt0 on t0 (each verbal 

task) 
1 0   0.613 

st0 on t0 (each slow 

task) 
1 0   0.273 

gt0 on Ft0 1 0   1.020 

gt0 on Nt0 1 0   0.944 

gt0 on Vt0 1 0   0.897 

 Latent (Residual) Variances 

gt0 0.302 0.021 [0.261; 0.344] <.001 1 

st0 0.075 0.019 [0.038; 0.112] <.001 1 

Ft0 -0.012 0.021 [-0.054; 0.031] .592 -0.040 

Nt0 0.037 0.023 [-0.009; 0.083] .117 0.108 

Vt0 0.074 0.026 [0.023; 0.124] .004 0.196 

 Residual Indicator Variances 

t0 (each fast figural 

task) 
0.709 0.029 [0.652; 0.767] <.001 0.709 

t0 (each fast numeric 

task) 
0.661 0.029 [0.605; 0.717] <.001 0.661 

t0 (each fast verbal task) 0.624 0.028 [0.568; 0.680] <.001 0.624 

t0 (each slow figural 

task) 
0.635 0.030 [0.575; 0.694] <.001 0.635 

t0 (each slow numeric 

task) 
0.587 0.030 [0.527; 0.646] <.001 0.587 

t0 (each slow verbal 

task) 
0.550 0.031 [0.488; 0.611] <.001 0.550 

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized. 
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Figure C1. Drift Model 1. The first letter of the task indices denotes the type of task (F = fast, S = slow); the second letter 

indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. Standardized 

loadings reported. Residuals are omitted from the plot for simplicity. gν = general drift rate factor. 
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Figure C2. Drift Model 2. The first letter of the task indices denotes the type of task (F = fast, S = slow); the second letter 

indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. Standardized 

loadings reported. Residuals are omitted from the plot for simplicity. Vν = verbal drift rate factor. Nν = numeric drift rate 

factor. Fν = figural drift rate factor. 
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Figure C3. Drift Model 3. The first letter of the task indices denotes the type of task (F = fast, S = slow); the second letter 

indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. Standardized 

loadings reported. Residuals are omitted from the plot for simplicity. gν = general drift rate factor. Vν = verbal drift rate 

factor. Nν = numeric drift rate factor. Fv = figural drift rate factor. As the loadings of the drift domain factors are 

standardized on the different freely estimated variances of the domain factors, their standardized values differ although the 

unstandardized loadings are all fixed to 1. 
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Figure C4. Drift Model 4. The first letter of the task indices denotes the type of task (F = fast, S = slow); the second letter 

indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. Standardized 

loadings reported. Residuals are omitted from the plot for simplicity. gν = general drift rate factor. Vν = verbal drift rate 

factor. Nν = numeric drift rate factor. Fν = figural drift rate factor. sν = method factor for drift rate in slow tasks. 
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Figure C5. Intelligence Model. Scale means are used as indicators for verbal (VIQ), numeric (NIQ) and figural (FIQ) 

intelligence. gIQ = general intelligence. Completely standardized loadings are reported. Indicator residuals are fixed to zero, 

domain factors serve as quasi-residuals, see Methods. 
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Figure C6. Drift Model 4 (freely estimated). The first letter of the task indices denotes the type of task (F = fast, S = slow); 

the second letter indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief description of all tasks. 
Standardized loadings reported. Residuals are omitted from the plot for simplicity. gν = general drift rate factor. Vν = verbal 

drift rate factor. Nν = numeric drift rate factor. Fν = figural drift rate factor. sν = method factor for drift rate in slow tasks. 
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Figure C7. Combined Drift-Intelligence Model (freely estimated). The first letter of the task indices denotes the type of task 

(F = fast, S = slow); the second letter indicates the domain (N = numeric, V = verbal, F = figural). See Table 1 for a brief 

description of all tasks. Standardized loadings reported. Residuals are omitted from the plot for simplicity. The latent 

correlations between the drift domains and intelligence domains are between the drift domain residuals and the (quasi-

residual) intelligence domain factors (see Methods).gν = general drift rate factor. Vν = verbal drift rate factor. Nν = numeric 

drift rate factor. Fν = figural drift rate factor. sν = method factor for drift rate in slow tasks. Scale means are used as single 

indicators for verbal (VIQ), numeric (NIQ) and figural (FIQ) intelligence). gIQ = general intelligence. 
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Context of the Research 

This research project is a cooperation of researchers from the departments of Quantitative 

Research Methods (VL, MVK, and AV) and Personality Research (GTF, ALS, and DH) of 

the Psychological Institute of Ruprecht-Karls-Universität Heidelberg. In this project, we 

could nicely combine the main expertise of the two labs, that is, diffusion modeling and 

intelligence research. In the preceding years, VL and AV have been contacted repeatedly by 

researchers who asked whether they could use the diffusion model also for more complex RT 

tasks. VL and AV conducted studies that provide first support for an extension to more 

complex tasks. Thereby arose the idea for a larger project, which includes numerous both fast 

and more complex RT tasks. GTF, ALS, and DH were always wondering whether there are 

domain-specific speeds of information processing but—because they usually additionally 

collect EEG data—they so far had refrained from running a study with such a large number 

of different RT tasks (N = 18). MVK is a PhD student who joined the team at the beginning 

of the recruitment for the study and has taken over an important role in the running of the 

study and the data analyses. He is currently examining the data further, focusing on age 

effects. One future research project will be the examination of relationships between drift rate 

in more complex tasks and external measures of performance (e.g., job performance). 

 




