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Abstract

Purpose—To estimate the spatially varying noise map using a redundant magnitude MR series.

Methods—We exploit redundancy in non-Gaussian multi-directional diffusion MRI data by 

identifying its noise-only principal components, based on the theory of noisy covariance matrices. 

The bulk of PCA eigenvalues, arising due to noise, is described by the universal Marchenko-Pastur 

distribution, parameterized by the noise level. This allows us to estimate noise level in a local 

neighborhood based on the singular value decomposition of a matrix combining neighborhood 

voxels and diffusion directions.

Results—We present a model-independent local noise mapping method capable of estimating 

noise level down to about 1% error. In contrast to current state-of-the art techniques, the resultant 

noise maps do not show artifactual anatomical features that often reflect physiological noise, the 

presence of sharp edges, or a lack of adequate a priori knowledge of the expected form of MR 

signal.

Conclusions—Simulations and experiments show that typical diffusion MRI data exhibit 

sufficient redundancy that enables accurate, precise, and robust estimation of the local noise level 

by interpreting the PCA eigenspectrum in terms of the Marchenko-Pastur distribution.
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INTRODUCTION

The transition from “weighted” MR images to full-scale microstructural modeling is setting 

a much higher bar on estimating signal parameters in an unbiased way. This is especially 

relevant for diffusion MRI (dMRI) (1, 2), which holds unrivaled promise for non-invasive 

quantification of microstructural parameters. Unfortunately, the non-Gaussian nature of 

noise in magnitude MR data generally biases the diffusion parameters of interest (3). The 

correction for this noise-induced bias relies on an independent unbiased estimate for the 

noise map (4).
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Accurate, precise, and robust noise estimation has remained a challenging problem. The 

overarching reason is the non-Gaussian, typically non-central χ (nc-χ) noise statistics, that 

couples an unknown noise-free signal nonlinearly with the noise in the original complex-

valued data from each coil element. This coupling is especially important at low signal-to-

noise ratio (SNR), typical of dMRI acquisitions. Further complications arise from low 

spatial resolution, involuntary motion, and generally spatially varying noise pattern due to 

the use of parallel imaging (5).

So far, only a few noise estimation methods are able to deal with the spatially varying nature 

of noise (4, 6–11). The existing techniques depend on (i) the assumption of homogeneous 

signal intensities in a local neighborhood (10, 11); (ii) diffusion model assumptions (9); (iii) 

repeated measurements that are often not available (6–8); or (iv) some way of decomposing 

images into “low frequency” (signal) and “high frequency” (noise), e.g. using wavelets (4, 

12, 13), which tends to overestimate the noise level, since sharp edges contribute to the high 

frequency sub-band. Physiological noise, image misalignment and model inaccuracies, all 

tend to bias the diffusion model and repetition-based methods (4, 6). The obvious 

manifestation of this bias is the artifactual anatomical structure visible in the estimated noise 

maps.

Here we present a model-independent local noise estimation method based on the random 

matrix theory (RMT) results for noisy covariance matrices. RMT was pioneered by Eugene 

Wigner and Freeman Dyson in the 1950s-1960s (14, 15) to describe statistics of energy 

levels in large nuclei and further applied in a wide range of fields. Our method is free of the 

above limitations and artifacts. Simulations and experiments show it outperforms existing 

methods in terms of precision and accuracy by an order of magnitude, reducing error in local 

noise estimation down to about 1% in routine dMRI acquisitions.

Technically, we employ principal component analysis (PCA) coupled with RMT, to exploit 

the redundancy in multi-directional dMRI data. In the limit of a large covariance matrix size, 

the noise contribution to the histogram of PCA eigenvalues becomes deterministic, and is 

given by the universal Marchenko-Pastur (MP) distribution (16) parametrized by the non-

Gaussian noise variance σ2. This universality allows us to determine the noise level. 

Hereafter, we will refer to the proposed method as MP-PCA.

Noise level estimation using RMT has previously been explored in the context of finance 

(17), wireless communication systems (18), cardiac MRI (19), DCE-MRI (20), and fMRI 

(21). Here we demonstrate for the first time the applicability of this approach in the context 

of dMRI. In particular, we show with simulations and experiments that typical dMRI data 

exhibit sufficient redundancy in order to identify the noise bulk from the PCA 

eigenspectrum using RMT. Next, we make the necessary step from Gaussian to nc-χ 
distributions in order to resolve noise bias in quantitive MR modalities. For that, we study 

the manifestation of the nc-χ bias in the PCA eigenspectrum. We demonstrate that by 

applying the inversion technique (22), the underlying Gaussian noise level σc (i.e. the noise 

standard deviation in the coils) that parameterizes the non-central χ distribution can 

accurately be determined from σ and the reconstructed signal obtained by nullifying the 

noise bulk.
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THEORY

Noise in magnitude MR data

Phased array coil technology has seen significant developments in the last decades. The 

introduction of coil systems with a large number of channels, along with new parallel 

imaging techniques has resulted in significant improvements in scan times or SNR. The 

resulting magnitude MR data distribution, however, depends on the reconstruction method 

that is used to combine the complex signals from all independent channels. In general, 

magnitude MR data is approximately nc-χ distributed with 2L degrees of freedom (23). 

Here, L corresponds to the effective number of coils and depends on both the hardware and 

the applied reconstruction technique (24, 25).

The nc-χ distributed magnitude signal m is described by following probability density 

function:

[1]

with ν the noise-free magnitude signal and IL−1 the (L − 1)th-order modified Bessel function 

of the first kind (26). For L = 1, the distribution reduces to the Rice distribution. The 

expectation value μ of the nc-χ distributed variable m is

[2]

with θ = ν/σc the SNR, 1F1 the confluent hypergeometric function, and

[3]

The variance of m equals

[4]

Since the noise bias of the measured signal increases with L, it is beneficial to choose the 

image reconstruction of the complex coil images that minimizes that parameter. Indeed, 

reconstructions algorithms such as SENSE, adaptive combine (27) or the recently proposed 

SENSE1 (28) algorithm always result in L = 1, i.e. a Rician data distribution, even if parallel 

imaging has been applied, and therefore, they are superior to sum-of-squares reconstructions 

from a statistical point-of-view.

Veraart et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Principal component analysis (PCA)

Let X be an M × N real-valued measurement matrix, with rows representing M voxels within 

a sliding window, and columns representing N weighted magnitude MR measurements in 

each voxel. In what follows, we will take voxels from a square or a cubic patch of a dMRI 

data set; however, one could also group voxels based on other principles, e.g. within a 

particular region of interest or tissue type. What will be important is that the matrix X is 

sufficiently large, i.e. R ≡ min{M, N } ≫ 1.

We expect (as confirmed a posteriori), that the dMRI data is redundant. Namely, due to 

correlations between many diffusion weighted (DW) signals brought by a generally 

unknown underlying diffusion process, and/or because the dMRI signal can be efficiently 

represented by a small number of parameters, X can be approximately viewed as a linear 

combination of a few, P << R, linearly independent sources, or principal components. In 

other words, the high-dimensional measurement is effectively reduced to a P-dimensional 

hyperplane. PCA (29, 30) finds the basis of this hyperplane, the principal components, as 

eigenvectors of the M × M sample covariance matrix

[5]

In Equation [5], U is an orthonormal matrix whose columns are the principal components, 

and Λ2 is an M × M diagonal matrix of eigenvalues λ1 · · · λM. For numerical precision, U 

and Λ are generally computed via the singular value decomposition of .

We will focus on the eigenvalues, which we sort in the descending order, λ1 ≥ λ2 ≥ … . In 

the noise-free population case, corresponding to fixed M and N → ∞, Σ will have exactly P 

nonzero eigenvalues.

In reality, we are faced with a sample covariance matrix with N ~ M , built from noisy data. 

Noise propagates through PCA to the eigenvalues and eigenvectors, making all R 

eigenvalues nonzero, so that rank Σ = R. Remarkably, while noise in each measurement is 

random, its contribution to the histogram of covariance matrix eigenvalues becomes 

deterministic in the limit R ≫ P (16).

PCA of a completely random covariance matrix

To understand the role played by noise, we first consider the spectrum of Equation [5] when 

the measurement is pure white noise, P = 0. If X has uncorrelated independent identically 

distributed (iid) Gaussian entries with variance σ2 and zero mean, the nonzero eigenvalues 

of Σ are distributed according to the following universal “quarter-circle” law (Figure 1):

[6]
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and p(λ) ≡ 0 otherwise, where  with γ = M/N the matrix size ratio. 

Equation [6] has been derived by Vladimir Marchenko and Leonid Pastur in 1967 (16), and 

is analogous to the celebrated Wigner’s semicircle law for the eigenvalue distribution of 

random Hamiltonians. For γ < 1, p(λ) is normalized to , whereas, for γ > 1, p(λ) 

is normalized to 1/γ, with the (1 − 1/γ)δ(λ) density at zero. The corrections to Equation [6] 

for finite R decrease fast with R, as ~ 1/R.

We will use the fact that the spectrum resulting from Equation [6] has lower and upper 

bounds λ± that depend on the noise level σ and matrix size ratio γ. Physically, the MP 

distribution arises due to eigenvalue repulsion around the population density δ(λ − σ2) 

(Equation [6] for γ → 0). The repulsion between levels λi,j with the force ~ 1/|λi − λj | 

maps finding p(λ) onto an equilibrium profile in an electrostatic problem (15), fixing the 

bounds λ± and the spectral shape with square root singularities resulting in Equation [6].

PCA of noisy redundant data

The universality of the MP distribution for the noisy part of PCA still applies if the data X 

includes P signal sources (significant components), as long as P << R (31). Intuitively, this is 

guaranteed by the electrostatic analogy (15) — a few charges, representing the significant 

eigenvalues, cannot noticeably distort the bulk charge density. Figure 1 shows a diffusion 

tensor based example for P = 7 (1 non-DW signal + 6 DTI elements), N = 256, M = 512, 

where the shape of the MP “sea” of eigenvalues is very well described by Equation [6].

Depending on the noise level, some of the significant eigenvalues can fall into the MP bulk 

(31) and become invisible (indistinguishable from noise). Hence, from now on we denote P 

the number of eigenvalues above the MP edge λ+. We will develop an iterative noise 

mapping procedure based on identifying the MP bulk of  eigenvalues.

METHODS

Noise level estimation

The combination of local PCA with RMT can now be used to estimate the noise level 

locally. Distribution fitting, that is, minimizing the error between , i.e. the MP 

distribution of nonzero eigenvalues, and the histogram of the lowest  eigenvalues of Σ by 

varying the noise level σ and matrix size ratio , yields an estimate of the 

parameters of interest.

An heuristic search algorithm is used to solve this estimation problem. The general idea is to 

estimate σ and  simultaneously by changing  and estimating the corresponding σ 
iteratively until  equals the number of eigenvalues ranged by λ− and λ+, which are 

determined by both  and σ. More specifically, the algorithm is as follows (a schematic 

overview of the algorithm is shown in Figure 2): (i) At the ith iteration, we have the number 

 of MP (noise-only) eigenvalues, i.e. . Its initial guess 

 is related to the physically expected number P1 of “observable” model 

parameters; we take P1 = 6 for b ≤ 1 ms/μm2 DW data and P1 = 15 for higher b, cf. the 
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number of spherical harmonic coefficients in a 2nd and 4th order basis, respectively. Overall, 

we found the dependency of the algorithm to the initial P1 to be negligible. (ii) The 

histogram of the smallest nonzero  eigenvalues is created by binning  into 

nb bins with center locations  and corresponding bin counts .

The computation of the number of bins of the histogram, nb, is data-driven:

[7]

with  being the bin width. Here, 

 the mean and biased variance of the bin 

counts, respectively (32).

(iii) A rough estimate of the noise level is computed as  with 

 and λR the lowest nonzero eigenvalue and a proxy for λ−. Note that we prefer to 

approximate σi by means of an estimate of λ− instead of λ+ as its dependency on  is 

expected to be weaker. Indeed, conceptually λPi+1 can serve as an estimation for λ+. 

However, λPi , λPi+1, and λPi−1 might practically differ by an order of magnitude (the right 

edge of the MP “sea” fluctuates according to the Tracy-Widom distribution (31)), whereas 

λR is nearly independent of the search variable Pi.

(iv) An extensive grid search, center around , is done to determine the optimal σi. We 

minimize the weighted squared error between the histogram of  eigenvalues and the 

distribution (Equation [6]) with given :

[8]

with  a scaling factor to convert probabilities into counts. The inverse of 

those predicted counts are chosen as weights, i.e. , to compensate 

for the strong non-uniformity of the distribution when , due to the λ−1/2 divergency 

of  as λ → 0.

(v) We then compute the right MP edge  and compute the number Pi+1 of 

observable parameters, as the number of eigenvalues exceeding λ+,i.

(vi) We iterate (i) to (v) until Pi+1 = Pi.
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The universality of MP law requires both M, the number of voxels, and , the number of 

noiseonly components, to largely exceed 1. Obviously,  depends on the chosen diffusion 

protocol and the degree of redundancy (which depends both on M and on the strength of 

diffusion weighting). The freedom to choose M ≫ 1 enables finding a compromise between 

spatial resolution and the redundancy. The use of a sliding window (e.g. M = [11 × 11] or M 

= [5 × 5 × 5]) will yield the 2d or 3d noise map, respectively. We hereby assume the true 

noise map can be considered to be fairly constant within those local neighborhoods. Because 

of that assumption, we here opt to analyze the native diffusion-weighted measurement 

matrix X instead of log(X) to avoid strong signal dependency of the noise level induced by 

the log transform.

Correction for non-central χ statistics

The standard deviation

[9]

of a nc-χ distributed variable with L degrees of freedom is always smaller than the standard 

deviation σc of the Gaussian noise in the individual complex-valued coil images (22). The 

factor

[10]

is a function of SNR θ. Because the SNR is not known a priori, the correction ξ(θ) needs to 

be estimated iteratively until convergence, initiated by both the mean, μ(θ), and variance, 

σ2(θ), of the magnitude signal, cf. Koay’s inversion (22).

We use P significant eigenvalues (i.e. the ones exceeding the right MP edge λ+) to estimate 

the signal mean in each voxel and diffusion gradient direction, , where  is 

obtained from the SVD-derived Λ by nullifying all but the first P eigenvalues. The 

remaining eigenvalues can further be corrected, cf. (31). We then use Koay’s inversion for 

each element  separately.

Overall, we expect the noise map to be slightly underestimated because some of the noise 

corrupts the P significant eigenvalues and is not accounted in the distribution fitting. We 

estimate this bias at the level of 1/R.

Aja-Fernández et al. showed that in case of of parallel imaging, the actual magnitude of MR 

signal may deviate from a pure nc-χ distribution to an unknown degree (23, 25). This 

happens if the individual coil images are combined using the sum-of-squares while noise 

correlations exist between the different coil images. Obviously, if an accurate analytical 

expression for the actual data distribution is lacking, accurate bias correction cannot be 

performed. However, this potential source of bias roots in noise modeling and the unknown 

propagation of the coil correlations into the data distribution, and is not inherent to the use of 
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MP-PCA. For more information regarding this related, though independent problem, we 

refer to (4, 23, 25).

Previous noise mapping approaches

We will compare our method with following state-of-the-art techniques for noise estimation:

Repetitions—In the simplest case, σ is computed as the standard deviation of a set of 

repeated measurements. If the mean is calculated as well, Koay’s inversion can be applied to 

correct for nc-χ bias. Physiological noise may interfere with the estimation of the noise 

level. To overcome that potential source of inaccuracy, one can replace the mean and the 

standard deviation by their robust counterparts, i.e. median and median absolute deviation 

(MAD) estimators, respectively (6).

Residuals—Weighted least squares fitting of an adequately chosen signal representation, 

e.g. DTI, to the data will result in residuals with statistics directly related to the noise 

variance σ2 (33). An estimate of the expectation value of the directional DW signals is found 

by reconstructing the signal based on the estimated noise parameters, employing Koay’s 

inversion. Note that this approach is equally accurate as the simultaneous estimation of 

signal and noise parameters by means of log-likelihood functions (34, 35) if the data is 

Rician distributed with a minimal SNR of 2 (33, 36).

Wavelets—The wavelet decomposition provides a means to separate low from high 

frequency information. Assuming the high frequency components contains residual signal 

that originated in high image gradients in addition to noise, Coupé et al suggested the MAD 

of the absolute value of the high frequency components as a global estimate of σ (12). 

Correction for nc-χ statistics is again possible. A local dMRI-specific variant of their 

approach was presented by Veraart et al (4).

Data

As the overarching issue with noise mapping is our inherent lack of noise-free ground truth, 

below we employ both the simulated data based on an atlas (37), and a human dMRI 

measurement with large oversampling for a range of diffusion weightings.

Simulated dMRI data—We simulated whole brain DW data, derived from a hybrid 

diffusion atlas that was created with 10 healthy subjects (37). The choice for that atlas roots 

in its high precision and a high order parameterization of the underlying diffusion signal by 

spherical harmonics, allowing us to employ it as a noise-free “ground truth”. We resampled 

the b = 1 ms/μm2-shell of the atlas data on 90 isotropically distributed gradient directions (g) 

to serve as gold standard for the antipodal symmetric signal 

 with  the real harmonic series coefficients and  an 

orthonormal basis for real functions of the unit sphere with order l and phase factor m (38). 

After adding complex Gaussian noise with standard deviation σc, the magnitude images 

were computed to generate Rician distributed DW data. In total, 4 noise realizations were 
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made: spatially uniform noise level with average SNRb=0 = 20 and 40 within a brain mask, 

and spatially varying noise level with average SNRb=0 = 20 and 40.

We applied our proposed MP-PCA method and the wavelet-based method to estimate the 

noise map on each complete simulated data set, i.e. N = 90 gradient directions, as well as on 

subsets of N = 30 and 60 gradient directions. Subsets were chosen in such a way that each 

subset was composed out of isotropically distributed directions. For MP-PCA, we 

additionally varied the sliding window size (M = [n × n × n] with n = {5, 7, 9}). For a 

quantitative comparison of the different techniques, we use the relative error, i.e. a voxelwise 

measure that is calculated as the difference between a measurement and the local ground 

truth value, divided by the ground truth value. The performance of the residual-based 

method would be misleadingly high due to the lack of physiological noise and motion in the 

simulation set-up and, as such, not shown here.

Experiment—A 30 year-old healthy volunteer underwent imaging on a Siemens Skyra 

(3T) MR scanner (Siemens AG, Siemens Medical Solutions, Erlangen, Germany) after 

obtaining informed consent, using a 20-channel receiver head coil. The body coil was used 

for transmission. An EPI-DW sequence was used to acquire the dMRI data. Diffusion 

weighting was applied along 90 isotropically distributed gradient directions with b = 1, 2, 

and 3 ms/μm2. Same gradient direction were applied for each b. Additionally, 4 × 23 

additional images were acquired: 23 images without diffusion sensitization and 3 × 23 DW 

images with diffusion sensitization (b = 1, 2, and 3 ms/μm2) along a single gradient 

direction. Other imaging parameters were kept constant throughout the data acquisition 

sequences: TR/TE : 5000/106, ms, matrix: 88 × 88, slice thickness: 2.5 mm, slices: 50, 

parallel imaging factor: GRAPPA with acceleration factor 2, reconstructed using the 

adaptive combine algorithm (L = 1), multiband acceleration with factor 2.

Noise maps were estimated from b-value dependent subsets of the measured data, by 

employing (i) robust noise map estimator using repeated measurements; 23 × {b = 0, 1, 2, 3} 

ms/μm2 (6), (ii) statistics of the residuals after a diffusion tensor imaging (DTI) fit using the 

weighted linear least squares estimator; subsets were 5 × {b = 0} + 90 × {b = 0, 1, 2, 3} ms/

μm2 (33, 36), (iii) the local wavelet-based approach; subsets were 90 × {b = 1, 2, 3} ms/μm2 

(4), and (iv) our proposed MP-PCA with a [7 × 7 × 7] sliding window; 90 × {b = 1, 2, 3} 

ms/μm2. Additionally, we applied our proposed MP-PCA method on subsets of bi consisting 

of 30 and 60 isotropically distributed gradient directions, respectively.

RESULTS

nc-χ distributed random matrices

Figure 3 shows the average noise level estimated using MP-PCA from 500 independent 

realization of a 125 × 90 matrix X of which each entry Xij is a sample for a nc-χ distribution 

with ν = SNR and σc = 1. The noise level is shown as function of the SNR for L=1, 8, 16, 

and 32, before ( ; red) and after ( ; green) correction for the nc-χ bias, respectively. The 

standard deviation of the respective nc-χ distributed variables, σ, are shown to demonstrate 

that in case of nc-χ distributed data, the proposed framework returns an accurate estimate of 

σ instead of σc. As shown in Figure 3, the signal  reconstructed from the principal 
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components after nullifying all but the first P eigenvalues matches the expectation value μ 

instead of the respective noise-free underlying signal ν. In this simulation, P was always 

determined to be 1 by our algorithm, even in case of SNR=0, which indicates that the nc-χ 
signal bias leaks out of the noise bulk and contributes to signal component(s). The 

observation that we can estimate both σ and μ justifies the use of Koay’s inversion technique 

(22) to compute estimates of the Gaussian noise level σc regardless of L. Hence, without loss 

of generality, we limit rest of the manuscript to L = 1. It can be observed in Figure 3 that for 

very low SNR,  is slightly underestimated. However, the underestimation is inherent to the 

inversion technique, not to the MP-PCA estimation of σ or μ, which is shown to be accurate.

Simulation data

Figure 4 and Figure 5 show the noise maps estimated from Rician distributed simulated data 

with spatially uniform and spatially varying noise levels, respectively, using (i) our proposed 

local MP-PCA technique and (ii) the local wavelet-based noise map estimator (4). The 

spatially varying noise map is shown in Figure 5 (labeled REF) for reference. A visual 

inspection of the maps shows us that the wavelet approach tends to overestimate the noise, 

especially near sharp edges in the DW images. As a result, the underlying image is reflected 

in the estimated noise maps, e.g. CSF. However, this bias depends on the SNR. The lower 

the SNR, the better the decoupling of noise and high frequency edge information by a 

wavelet decomposition. Nonetheless, regardless the SNR, our proposed technique, MP-PCA, 

shows about 99% accuracy and precision in the local estimation of the noise level, even for 

low N.

In Figure 6 we show the histograms of the relative errors in the estimated noise levels within 

the brain mask. These quantitative comparison includes the results for the global noise 

estimator based on the wavelet decomposition, proposed by Coupé et al. (12) in case of the 

spatially uniform noise map. For the global wavelet estimator, a 12.3% overestimation of the 

noise level is observed for SNR=40, whereas, for SNR=20, the bias reduces to 3.7%.

In Table I, we listed the mean relative error (MRE) and the standard deviation of the relative 

errors (SRE), both calculated within the brain mask. The global wavelet approach resulted in 

a single noise level for each DW image. The corresponding MRE and SRE were computed 

from that set of values. The MRE indicates the high accuracy of MP-PCA, regardless of the 

SNR. In the worst case, we observed a MRE of 2.9%, but in most cases the absolute value of 

the MRE < 1%. For the local wavelet based approaches, the performance in terms of MRE 

ranged between 5% and 20%. Similarly, MP-PCA is better in terms of SRE, which probes 

the precision. In general, SRE decreases with increasing M and N.

Increasing the window size might lower the performance in case of spatially varying noise. 

Indeed, the selection of the sliding window size is influenced by two opposing effects. First, 

the histograms for the spatially uniform noise suggest that increasing the window size 

increases the precision of the estimator due to increase in the random matrix size. However, 

for the spatially varying noise case, we observed a slight bias in the local noise estimation 

due to the reduced resolution of large window sizes. This is visible in both the maps and 

histograms. We find [7×7×7] the better trade-off in between precision and accuracy in our 

experiments.

Veraart et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experiment

Figure 7 shows the noise maps estimated from b-value dependent subsets of the measured 

data for the different estimators. The following qualitative observations can be made. First, 

despite the use of robust statistics, noise map estimation based on repeated measurements 

are prone to artifacts related to physiological noise, CSF pulsation in particular. The use of 

high b-value largely minimized that effect. Hence, the map estimated from the 23 repetitions 

with b = 3 ms/μm2, i.e. the highest b-value in our study, serves as the most reliable proxy for 

the ground truth, hereafter termed bronze standard. Second, the noise maps based on 

residuals after a diffusion model fit are only as accurate as the diffusion model. 

Unsurprisingly, the accuracy decreases with the increase in b-value, especially noticeable in 

the major white matter structures. Moreover, although not overly represented in this data set, 

this technique might suffer from subject motion and physiological noise. Fig. 8 in ref. (4) 

shows for example how bad it can get in clinical data. Third, wavelet-based approaches 

suffer from an incomplete separation of noise and signal by a wavelet transformation at high 

SNR. Therefore, at low b-value, anatomical structure can be observed in the estimated noise 

maps. Although the effect reduces with b, it does not disappear in our data. Finally, MP-

PCA shows a smooth, artifact-free noise map that is more consistent with the bronze 

standard than other methods for all b-values.

Figure 7 shows scatter plots in which the best result of (ii), (iii), and (iv) are shown voxel-

by-voxel against our bronze standard (i.e. b = 3 ms/μm2). It can be observed that MP-PCA 

shows the highest correspondence. Moreover, that technique has the least b-value 

dependency and, as such, is the most generally applicable one. The high correspondence can 

also be quantified by the correlation coefficient. All MP-PCA maps correlate well with the 

bronze standard, correlation coefficients are all 0.90, whereas for the residual-based method, 

the coefficients range between 1.81 and 0.83, and for the wavelet-based technique, they 

range between 0.41 and 0.88.

Figure 8 shows the dependence of MP-PCA on the number N of DW images by selecting 

isotropically distributed subets with N = 30, 60, and 90. Furthermore, the performance of 

MP-PCA is evaluated as function of the sliding window size. In line with previous 

experiments, MP-PCA results are very consistent, regardless of N and sliding window size. 

In general, the precision tends to increase with N and the window size. However, 

theoretically, the performance is eventually expected to decrease with (a) increasing the 

window size (potential heteroscedasticity of the underlying noise level) or (b) reducing N 

(redundancy loss when N approaches P).

A final demonstration of the high accuracy of MP-PCA in comparison to other approaches is 

given in Figure 9. The DW signals in the CSF voxels are suppressed down to e−3×3 ≈ 10−4 

level at b = 3 ms/μm2 and, as such, can be assumed to be noise-only. Hence, the average of 

those signals equals the noise floor, i.e. the minimally measurable signal. Since our data is 

Rician distributed, the noise floor is given by . After normalization of the DW 

images with the spatially varying noise maps of σc, obtained from the different approaches, 

we averaged the signals within the CSF. The mean and standard deviation over all the DW 

images present for each b-value are shown in Figure 9. One can readily observe that the MP-
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PCA normalized DW signals yield the best correspondence to the normalized noise floor, 

. Normalization of the DW signals was needed to cope with the 

spatially varying nature of the noise maps.

DISCUSSION

We presented an accurate, precise and robust method for the local noise estimation. The 

method exploits the redundancy in multi-directional diffusion MRI data by identifying the 

noise-only principal components using the knowledge that the corresponding eigenvalues are 

described by the universal Marchenko-Pastur distribution, parameterized by the noise level.

Previous noise mapping methods all come with serious limitations. Repeated measurements 

are often not available due to scan time constraints. Misalignment of data limits the accuracy 

of all methods other than the wavelet-based approaches. Model inaccuracies due to 

physiological effects such as CSF pulsation will distort the statistics of the residuals or the 

accuracy of likelihood functions, and the accuracy of wavelet-based approaches strongly 

depends on the presence of residual signal in the high frequency sub-band. We demonstrated 

all those limitations in clinically representative experiments while showing that our MP-

PCA technique is much less sensitive to the above complications inherent to a dMRI data 

set.

Here, we further elaborate on the strengths, limitations, and potential applications of the 

method.

Redundancy requirement

The Marchenko-Pastur distribution is an asymptotic universal law that holds in the large 

matrix size limit. In this regard, one must consider the size of the  noise-only 

matrix that we obtain by decomposing the [M × N ] measurement matrix in its principal 

components. Hence, the noise part  will only be large if the measurements are 

highly redundant, P << N. First, small P can be achieved by limiting the diffusion-weighting. 

Indeed, the complexity of the underlying, generally non-Gaussian diffusion process, and as 

such P, tends to increase with the bvalue. Second, P increases with the size M of the sliding 

window due to the potential heterogeneity in noise level within the set of voxels. 

Simulations showed that the performance of our approach might become lower for large M 

(see Figure 6). Hence, the beauty of our proposed technique is that it performs best when 

applied locally. However, one rather chooses M > N to avoid the situation when M becomes 

the dominating factor in the deviation from the Marchenko-Pastur law, which is of order 

O(1/ min{M, N }).

Using the above guidelines, we demonstrated high accuracy of the noise estimator even for 

DW data sets limited to 30 gradient directions. Therefore we showcased the wide 

applicability of this theoretical framework.

We would like to emphasize that redundancy is not tied to dMRI, the modality of our interest 

throughout this work. Indeed, the proposed technique can be applied in other modalities 
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including, but not limited to, redundant time series, such as DCE-MRI (20) and fMRI. 

Neither is application of this technique limited to a single DW shell in q-space.

Ground truth

The main limitation of our study is the lack of ground truth in our experimental part. Due to 

obvious reasons one cannot measure noise-free signal. Regarding the ground truth for the 

noise, unfortunately, one cannot measure exactly such a reference map either. On the one 

hand, the thermal noise level depends on the load of the scanner (39). Hence, an air-only 

acquisition will not provide the required information. On the other hand, although switching 

off the excitation pulses might mimic such an acquisition, image reconstructions often 

require the signal, i.e. autocalibration signal (ACS) lines, for accurate calculation of the coil 

sensitivity maps that determine the spatially varying nature of the noise map (40).

Given all these limitations, we assessed the accuracy of the proposed technique. First, we 

tried to create the most reliable proxy (“bronze standard”) for the ground truth by acquiring 

multiple repetitions of the same DW image. Despite the use of a robust estimator (6), we 

observed that physiological noise and misalignments between repeated measurements tend 

to bias the noise estimation. The effect was significantly lower for higher b-values. Second, 

we used the knowledge that CSF is fully suppressed at b = 3 ms/μm2, to evaluate the 

accuracy of the methods. Indeed, within the CSF the average signal should match the noise 

floor, which is parameterized by the noise level. As shown in Figure 9, the best 

correspondence was achieved for MP-PCA.

Applications

Noise bias—To remedy the systematic bias of diffusion parameters that is inherent to the 

use of least squares estimators in case of nc-χ distributed data, one may prefer using more 

advanced estimators that explicitly account for the actual MR data distribution (4, 35). Those 

distributions are parameterized by the noise level. Hence, prior knowledge of that parameter 

enables an improved precision and accuracy of diffusion model parameter estimators.

Outlier detection—Signal variability in DW images roots in both thermal noise and 

spatially and temporally varying artifacts such as subject motion and cardiac pulsation. 

Those spatially and temporally varying artifacts, which are referred to as physiological 

noise, generally cannot be modeled. Robust parameter estimation techniques such as 

RESTORE (41, 42) have been introduced to identify the signal outliers and minimize their 

effect on the the diffusion model parameters. However, the thermal noise level is required in 

most of the robust estimators in order to identify those outliers with some user-defined 

probability.

Gibbs ringing—Gibbs ringing has recently been recognized as a confound in diffusion 

MR analyses (43–45). Moreover, we analytically derived its significant quantitative impact 

on the diffusion signal and model parameters (45). To remedy the strong bias on diffusion 

metrics due to the Gibbs ringing artifact, we suggested to extrapolate the k-space beyond the 

measured part (46) by means of second order total generalized variation minimization (45, 

47). These types of regularized optimization problems generally come with a regularization 

Veraart et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



term that controls the data fidelity. Optimal choice of this regularization term is based on the 

thermal noise level (48).

Denoising

By applying PCA to redundant data and preserving only the significant principal 

components, the noise can be strongly reduced. Manjon et al. (49) recently proposed image 

denoising in the context of dMRI by using a sliding window wherein the local PCA 

transformation matrix was estimated. Denoising is then achieved by canceling all principal 

components with eigenvalues below some threshold; the key uncertainty in this approach is 

choosing this threshold. The authors rely on empirically defined thresholds, e.g. 5.29σ2 for 

their particular M and N . Here, we suggest using an objective threshold 

based on the right edge of the Marchenko-Pastur distribution [6]. Hence we foresee that 

considering λ+ as a threshold value will further improve and generalize PCA based 

denoising methods. However, this is beyond the scope of this work.

Nonetheless, the term denoising must be put in right perspective. Noise is not only 

represented in a limited number of principal components that can be canceled upon request. 

Indeed, in practice, all principal components, the eigenvalues and eigenvectors, are corrupted 

by noise to some degree. Some (or all) significant eigenvalues might be indistinguishable 

from the noise spectrum in case of low SNR and large γ. Hence, denoising techniques can 

remove some of the principal components describing the noise-free signal. Next, eigenvalues 

distinct from the noise bulk are biased by a coherent repulsion of the significant eigenvalues 

by all the pure noise eigenvalues (31). Additionally, the corruption of the eigenvectors by the 

noise cannot be undone. These elements explain the negative MREs in Table I and put the 

term denoising in perspective. Consequently, the standard deviation of the reconstruction of 

the noise-only signal has systematically lower variance than the estimated noise variance 

(results not shown). Hence, data variability due to noise is only partially canceled by MP-

PCA denoising.

CONCLUSION

We used the universal Marchenko-Pastur distribution to identify the noise-only eigenvalues 

obtained by a local PCA of nc-χ distributed dMRI data. Typical dMRI data has shown to 

exhibit sufficient redundancy which allows to distinguish between the noise and signal 

components in a model-independent way, and without the need to empirically set the PCA 

threshold value. Our proposed local noise estimator outperforms known spatially varying 

noise estimation methods in terms of accuracy (~ 99%) and precision, and does not require 

acquisition of repeated measurements, instead utilizing data redundancy.
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Figure 1. 

Eigenvalue spectrum of sample covariance matrix of simulated DW data. MP distribution is 

superimposed. The P significant eigenvalues are separated from the MP “sea”.
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Figure 2. 

Schematic overview of the MP-PCA algorithm described in section ”Noise level 

estimation”.
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Figure 3. 

The bias correction framework relies on the accurate estimation of the expectation value (top 

row) and standard deviation (bottom row) of the distribution. The theoretical (μ) and the 

estimated  expectation values are shown in the top row in dashed blue and red curves, 

respectively. The magnitude noise standard deviation  and underlying Gaussian noise level 

, estimated from a 125 × 90 matrix X of which each entry Xij is a sample for a nc-χ 
distribution with noise free signal ν = SNR and σc = 1, are shown as function of the SNR for 

L=1, 8, 16, and 32, before and after correction for the nc-χ bias, respectively (bottom row). 

The solid lines (red and green) are the average over 500 independent noise realizations, 

whereas the shaded colored areas show the confidence interval bounded by the standard 

deviation.
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Figure 4. 

Noise maps estimated from Rician distributed simulated data with spatially uniform noise 

level. Our proposed method, MP-PCA, was evaluated as function of SNR, number of DW 

acquisitions N , and 3d sliding window size M. Comparison with a local wavelet-based noise 

estimator (4) demonstrates the superior performance of MP-PCA, in terms of both accuracy 

and precision, regardless the underlying signals and noise-uniformity. The advantages of 

MP-PCA are obvious already by having no artifactual anatomical features, that are present 

in the wavelet-based method.
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Figure 5. 

Noise maps estimated from Rician distributed simulated data with spatially varying noise 

level. Our proposed method, MP-PCA, was evaluated as function of SNR, number of DW 

acquisitions N , and 3d sliding window size M. Comparison with a local wavelet-based noise 

estimator (4) demonstrates the superior performance of MP-PCA, in terms of both accuracy 

and precision, regardless the underlying signals and noise-uniformity. The advantages of 

MP-PCA are obvious already by having no artifactual anatomical features, that are present 

in the wavelet-based method.
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Figure 6. 

Histograms of the relative error of the noise maps estimated from Rician distributed 

simulated data with spatially uniform (left) and varying noise levels (right). The proposed 

MP-PCA outperforms local and global wavelet-based noise estimators, both in terms of 

accuracy and precision. The precision of MP-PCA tend to increase with the size of the 

sliding window. However, the resolution of the largest window becomes insufficient to 

capture local variability in noise level in case of spatially varying noise, thereby biasing the 

results (red curve). This points at the existence of an optimal sliding window size M for a 

given coil array.
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Figure 7. 

Experiments show qualitatively and quantitatively (see Table I) that our proposed method 

(MP-PCA) outperforms the residual and wavelet-based methods if compared to the most 

reliable proxy for the ground truth. This map was computed from 23 repetitions at the 

highest b-value to suppress CSF-related physiological noise and is referred to as the bronze 

standard. In the scatter plots, the best estimated noise maps (gray boxes) of the 

corresponding row are shown voxel-by-voxel against our bronze standard (gray dots). The 

black line of unity and the dashed lines (offset of ±10% of window range to unit line) are 

shown for reference.The highest correspondence is observed for the MP-PCA method. 

Indeed all MP-PCA maps correlate well with the bronze standard, correlation coefficients 

are all 0.90, whereas for the residual-based method, the coefficients range between 0.81 and 

0.83, and for the wavelet-based technique, they range between 0.41 and 0.88. The images 

are ranged by [0 50].
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Figure 8. 

Weak dependence of MP-PCA noise maps on N and sliding window size is shown by 

evaluation of subets of b = 1 ms/μm2-shell. The images are ranged by [0 20].
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Figure 9. 

Average CSF signal as function of the b-value [ms/μm2]. The DW data was first normalized 

by the noise maps estimated with the different techniques. The error bars indicate the 

standard deviation over the different DW images present for each b-value. The black line 

shows the noise floor, i.e.  for the normalized data. The CSF signal is suppressed by > 

99.99% at b = 3 ms/μm2 and can therefore be assumed to be noise-only.
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