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Abstract

Following its success in early detection of cerebral ischemia, diffusion-weighted imaging (DWI) 

has been increasingly used in cancer diagnosis and treatment evaluation. These applications are 

propelled by the rapid development of novel diffusion models to extract biologically valuable 

information from diffusion-weighted MR signals, and significant advance in MR hardware that 

has enabled image acquisition with high b-values. This article reviews recent technical 

developments and clinical applications in cancer imaging using DWI, with a special emphasis on 

high b-value diffusion models. The article is organized in four sections. First, we provide an 

overview of diffusion models that are relevant to cancer imaging. The model parameters are 

discussed in relation to three tissue properties – cellularly, vascularity, and microstructures. An 

emphasis is placed on characterization of microstructural heterogeneity, given its novelty and close 

relevance to cancer. Second, we illustrate diffusion MR clinical applications in each of the 

following three categories: (a) cancer detection and diagnosis; (b) cancer grading, staging, and 

classification; and (c) cancer treatment response prediction and evaluation. Third, we discuss 

several practical issues, including selection of image acquisition parameters, reproducibility and 

reliability, motion management, image distortion, etc., that are commonly encountered when 

applying DWI to cancer in clinical settings. Lastly, we highlight a few ongoing challenges and 

provide some possible future directions, particularly in the area of establishing standards via well-

organized multi-center clinical trials to accelerate clinical translation of advanced DWI techniques 

to improving cancer care on a large scale.
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Introduction

Diffusion-weighted imaging (DWI) was introduced to MRI in the mid-1980s1. Following its 

immense success in early detection of cerebral ischemia2,3, which has significantly impacted 
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stroke patient management, considerable efforts in DWI have been directed towards cancer4. 

Over the past two decades, such efforts have been accelerating. This is largely stimulated by 

the promise that DWI can probe tissue cellularity, microstructures, and microvasculature at a 

sub-voxel level, all of which are of great importance to cancer. The exciting DWI 

applications to cancer are enabled by the rapid development of novel diffusion models5 to 

extract biologically valuable information from diffusion-weighted MR signals, and 

significant advances in MRI hardware6 and image acquisition technologies to facilitate 

translation of advanced DWI techniques to clinical practice.

Undoubtedly, DWI for cancer applications has benefited immensely from the rich experience 

gained from stroke imaging. However, applying DWI to cancer is not a simple extension of 

prior success with ischemic stroke. First, cancer is a disease with a much broader scope than 

stroke, affecting many organ systems beyond the brain. As such, new diffusion imaging 

strategies must be developed and a number of new challenges, such as respiratory motion 

and drastic magnetic susceptibility variations in the body, must be addressed. Second, 

compared to cerebral ischemia, cancer is a more complex disease that involves many 

biological processes spanning from genetics, metabolism, microenvironment, 

microstructures, to angiogenesis. This complexity presents new challenges for DWI to probe 

some of these biological processes. Third, DWI of cancer places a stronger emphasis on 

quantitative markers with biological significance. Hence, developing various diffusion 

models and understanding the associated model parameters become critical. Lastly, 

applications of DWI to cancer are not limited to detection and diagnosis, but extend into 

areas such as cancer staging, grading, treatment evaluation, and even prediction.

The differences outlined above represent enormous opportunities for developing advanced 

DWI techniques with a focus on cancer applications. Up to date, DWI for the vast majority 

of cancer applications has been relying on the simplest diffusion model based on mono-

exponential signal decay that yields a single diffusion parameter – the apparent diffusion 

coefficient (ADC). Despite its simplicity, this mono-exponential model has worked 

remarkably well in a broad range of cancer applications. Many studies have provided 

compelling evidence relating ADC to tissue cellularity7,8, an important cellular measure 

during cancer progression and treatment-induced regression. More recently, using an 

established model based on intravoxel incoherent motion (IVIM)9,10, an increasing number 

of studies have suggested that measurement of the “fast diffusion” component in tissues can 

be related to perfusion, providing an indirect measure of tissue vascularity11and the 

associated tumor angiogenesis. Very recently, with the development of a wealth of advanced 

diffusion models, diffusion MRI has been shown capable of probing tissue microstructures 

at a sub-voxel level5. Although the majority of tissue microstructural studies are performed 

on the brain, applications to the non-CNS systems have emerged, including but not limited 

to prostate cancer12, breast cancer13, and gastrointestinal stromal tumor (GIST)14. In this 

review, we will focus on the three aforementioned aspects – cellularity, vascularity, and 

microstructures – that diffusion MRI can offer for cancer detection, characterization, and 

therapy evaluation. A special emphasis will be placed on microstructural characterization at 

high b-values, given its novelty and lack of systematic review in this rapidly growing area 

with immense potential.
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This review is organized in four sections. First, we will provide an overview of diffusion 

models that are particularly relevant to cancer imaging. The model parameters will be 

discussed in relation to the three tissue properties – cellularly, vascularity, and 

microstructures. Second, we will review selected diffusion MRI clinical applications in each 

of the following three areas: (a) cancer detection and diagnosis; (b) cancer grading, staging, 

and classification; and (c) cancer treatment evaluation and prediction. We recognize that 

organ-specific cancer types have varying pathological characteristics and clinical context, 

leading to differences in the use and interpretation of DWI. As such, the review of the 

clinical literature will focus on illustration of general principles without delving into the 

specific cancer types. In addition, pre-clinical studies using animal models will not be 

covered in our review. Third, we will discuss several practical issues, including selection of 

image acquisition parameters, reproducibility and reliability, motion management, image 

distortion, etc., that are commonly encountered when applying DWI to cancer in clinical 

settings. Lastly, we will highlight a few ongoing challenges and provide some possible 

future directions.

1. Diffusion Models and Their Biophysical Bases

1.1 Diffusion-Weighted MR Signals

It is well known that the MRI signal is attenuated by diffusion. For water diffusion in a 

homogeneous medium where the diffusion displacement follows a Gaussian distribution 

(e.g., in the cerebrospinal fluid), a simple mono-exponential decay function can well 

describe the diffusion-induced signal attenuation S:

S = S0exp −bD , [1]

where D is the diffusion coefficient, S0 is the signal in the absence of diffusion, and b is 

known as b-value which determines the degree of diffusion weighting in the signal. 

Although Eq. [1] is extensively referenced in the literature, it is rarely valid in biological 

tissues because heterogeneous cellular and sub-cellular microstructures can substantially 

perturb the Gaussian distribution of diffusion displacement, leading to non-Gaussian 

diffusion. This non-Gaussianity provides us with a valuable window through which tissue 

cellularity, vascularity, microstructures, and heterogeneity can be visualized.

1.2 b-Value “Spectrum”

The b-value in Eq. [1], a critical parameter in DWI, not only controls the degree of 

diffusion-weighting in the image, but also encodes different tissue properties into the DWI 

signals. Irrespective of the degree of deviation from Gaussian diffusion, MR signals always 

decrease as b-value increases (Figure 1). The rate of signal decrease, however, depends on 

the b-values. At a relatively low b-value (e.g., b < 200 s/mm2), the signal decays rapidly 

because fast water movement in capillary vessels can cause substantial signal loss in 

addition to diffusion-induced signal attenuation. This effect makes the low b-value region 

particularly sensitive to tissue vascularity, as further described below in the IVIM model. As 

b-value increases, signal loss from the capillary vasculature is complete, making the 
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diffusion process a dominant contributor to the signal attenuation. In this intermediate b-

value range (e.g., 500 – 1500 s/mm2), the signal attenuation is sensitive to spatial scale of a 

cellular size and hence strongly correlates to cellularity as illustrated in Figure 1. When the 

b-value increases further, the signal attenuation enters the “high b-value” regime where the 

sensitivity to smaller spatial scale increases, making diffusion MRI suitable for probing 

tissue microstructural complexity and heterogeneity. A consensus for a high b-value 

threshold has not been established in the literature. Typically, high b-value refers to b>2000 

s/mm2 for neuro applications and >1000 s/mm2 for body applications. The varying signal 

attenuation behavior as a function of b-value is analogous to a spectrum where information 

content depends on frequency. Hence, the schematic diagram shown in Figure 1 can be 

referred to as a “b-value spectrum” to facilitate discussion within the scope of this review.

1.3 Mono-exponential Model and Cellularity

Mono-exponential diffusion model is the original model that remains to be the most 

prevalent for cancer imaging applications. Given the relatively low spatial resolution in DWI 

(e.g., 2–5 mm in a linear dimension of a voxel), the intra-voxel structural variability and 

heterogeneity can be substantial. Despite this structural complexity, the mono-exponential 

model uses a single diffusion coefficient – ADC – to approximate the average diffusion 

process within a voxel. The mathematical expression can be derived by replacing D in Eq. 

[1] with ADC which can be measured by acquiring two images with different b-values4.

It was observed that DWI signal in biological tissues decays bi-exponentially as shown in Eq 

[2a]15, particularly at high b-values (e.g., > 1500 s/mm2 for brain tissues). One of the 

explanations is that the faster diffusion coefficient (Df) is associated with the diffusion 

process in the extra-cellular space, whereas the slower one (Ds) in the intra-cellular space 

because of increased restrictions caused by sub-cellular structures (Figure 2). The voxel-

based ADC, therefore, represents the volume-weighted average of the fast and slow 

diffusion coefficients shown in Eq. [2b]:

S = S0 V f exp −bD f + Vsexp −bDs [2a]

ADC =  
V f D f + VsDs

V f + Vs

, [2b]

where Vf and Vs are the volume fractions of the fast and slow diffusion component, 

respectively. Equation [2b] is important because it links ADC to cell volume fraction or 

cellularity of a voxel, provided that Vf and Vs correspond to extra- and intra-cellular 

volumes, respectively. Although such correspondence has been challenged by several 

experimental observations which indicate that cell membrane likely plays an important role 

in diffusion compartmentalization16, a large number of studies on many types of cancer have 

indicated strongly that ADC is negatively correlated with cell density or cellularity (average 
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correlation coefficient r = −0.61)7,17. These studies have established ADC as a quantitative 

surrogate for tissue cellularity.

1.4 IVIM Model and Vascularity

In addition to the intra- and extra-cellular spaces, microvasculature can also be a significant 

component in an image voxel (Figure 2), particularly in cancerous tissues due to 

angiogenesis. By including the vascular contribution to the signal, the IVIM model extends 

the mono-exponential diffusion model into the following form9,10:

S = S0 f exp −bD* + 1 − f exp −bD , [3]

where f is the volume fraction of the vasculature in a voxel and D* is a pseudo-diffusion 

coefficient that corresponds to water movement in the microvasculature, or the perfusion 

process. The first term in Eq. [3] represents the vascular contribution, whereas the second 

term accounts for the diffusion contribution. To capture both contributions, a minimum of 

three b-values are requires, for example, b = 0, 50, and 800 s/mm2, as typically used for liver 

imaging. Since water movement in perfusion is much faster than that in diffusion, a 

relatively small b-value (50–200 s/mm2) is used to sensitize perfusion without causing 

excessive signal attenuation. The corresponding D* can be obtained by using the two lower 

b-value images (e.g., b = 0 and 50 s/mm2), while ADC can be calculated from the higher b-

value images (e.g., b = 50 and 800 s/mm2).

Either f or D* can be used to approximate tissue perfusion. The combinations of these two 

parameters (fD*) has also been used for improved performance11,18. It should be noted that 

the IVIM model provides only an approximation of tissue perfusion. As such, D* or f may 

not replace tissue perfusion measurement. Nonetheless, the IVIM model described by Eq. 

[3] offers a means to access to tissue vascularity via a simple diffusion measurement. The 

reproducibility and reliability of the measurement on tissue vascularity can be substantially 

improved by increasing the number of b-values (e.g., 6) in the range of 0–200 s/mm2 19.

1.5 Non-Gaussian Models and Microstructures

Although non-Gaussian diffusion behaviors exist irrespective of b-value, they become most 

evident at high b-values, e.g., > 2000 s/mm2. A large number of non-Gaussian diffusion 

models have been developed with a common goal to relate diffusion model parameters to 

biologically relevant tissue microstructures at the sub-voxel level. The non-Gaussian 

diffusion models can be classified into two categories: compartmentalized and non-

compartmentalized models.

Compartmentalized models divide each voxel into multiple compartments based on tissue 

structural or diffusion properties. Examples of compartmentalized models include bi-

exponential model (Eq. [2a]15, AxCaliber20, NODDI (neurite orientation dispersion and 

density imaging)21, CHARMED (composite hindered and restricted model of diffusion)22, 

VERDICT (vascular, extracellular, and restricted diffusion for cytometry in tumors)12, RSI 

(restriction spectrum imaging)23, etc. The vast majority of these models have been 
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developed for the brain without a specific focus on cancer imaging. One of these models – 

VERDICT, however, has been developed for cancer applications and successfully applied to 

colorectal and prostate cancers12. VERDICT divides each voxel into three compartments to 

capture the main tumorous tissue features that influence the DWI signal. These three 

compartments include (a) water trapped in cells, (b) water in the vascular network, and (c) 

interstitial water. The signal in DWI can, therefore, be expressed as the summation of these 

three compartments: S = ∑i = 1
3

f
i
S

i
, where fi is the volume fraction of each compartment 

whose signal intensity is Si. Unlike the mono-exponential or IVIM model, VERDICT 

provides estimates of specific tissue properties such as the size and packing density of the 

cells, as well as the vascular and extracellular-extravascular volume fractions.

Another compartmentalized model is RSI initially developed for the brain23, but recently 

extended to the prostate24. In RSI, the diffusion signal is modeled as a mixture of up to eight 

components with varying degrees of diffusion restriction or hinderance. Each component 

describes the signal dependence on a specific tissue property (e.g., cell size, density, 

orientation, etc.). The overall signal thus becomes the weighted sum of these components. 

By determining the individual weights using a generalized linear estimation technique, the 

underlying tissue parameters (e.g., size and shape/orientation of hindered and restricted 

water compartments) can be obtained.

Unlike the compartmentalized models, non-compartmentalized models do not assume a 

specific number of tissue compartments. Instead, the possible tissue compartmentalization is 

embedded in the model parameters such as diffusion heterogeneity index, distributions of 

diffusion coefficients, or kurtosis. Examples of non-compartmentalized models include 

diffusion kurtosis imaging (DKI)25, stretched exponential model26, fractional order calculus 

(FROC) model27, continuous-time random walk (CTRW) model28,29, fractional motion 

(FM) models30,31, etc. Among these models, diffusion kurtosis imaging (DKI) has been used 

extensively in cancer imaging.

The diffusion kurtosis model, expressed in Eq. [4], generalizes the mono-exponential 

Gaussian model to the non-Gaussian regime. It offers two parameters: diffusion coefficient 

(similar to ADC) and dimensionless kurtosis K which describes the deviation of water 

molecular displacement from a Gaussian distribution.

S = S0exp −bD +
1
6

K(bD)2 . [4]

Mathematically, the kurtosis model incorporates a second-order term to account for 

deviations from Gaussian diffusion behavior. Its biophysical basis has been discussed in a 

number of recent studies aimed at establishing a link between K and specific aspects of 

tissue microstructures32–34. It is worth noting that the DKI model has been more commonly 

used to study diffusion anisotropy as an extension of diffusion tensor imaging (DTI), which 

involves image acquisitions with multiple b-values and multiple diffusion gradient 

directions. For clinical applications in cancer imaging where the imaging times are an 
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important consideration, DKI can be used by acquiring trace-weighted images to save time 

and remove the sensitivity to diffusion anisotropy3.

Another non-compartmentalized model is the stretched exponential model (Eq. [5]) where 

diffusion non-Gaussianity is accounted for by introducing an empirical parameter α. In this 

model, the diffusion coefficient D is referred to as distributed diffusion coefficient (DDC) 

because a single diffusion coefficient is no longer sufficient to describe diffusion process in a 

complex and heterogeneous tissue.

S = S0exp −bD
α . [5]

The empirical nature of the stretched exponential model was mitigated by the development 

of the FROC and CTRW models27–29,35. Both models recognize the presence of intra-voxel 

diffusion heterogeneity in space and time. Water molecules can produce a variable spatial 

displacement in each move (i.e., spatial heterogeneity), or can take a variable temporal 

interval to make a move (i.e., temporal heterogeneity). The spatial heterogeneity is a direct 

reflection of the underlying tissue structural complexity, while the temporal heterogeneity 

reflects the likelihood of the water molecule to be “trapped” or “released” while it diffuses 

through the complex tissue structures. Hence, both spatial and temporal diffusion 

heterogeneities originate from the underlying tissue structural heterogeneity. In the CTRW 

model, the temporal and spatial diffusion heterogeneities are described by two model 

parameters, α and β, respectively:

S = S0   Eα − bD
β , [6]

where Eα is a Mittag-Leffler function28,29 of the α order, β corresponds to spatial diffusion 

heterogeneity, and both α and β are bounded in the range of 0 and 1. In a homogeneous 

medium, both α and β are equal to 1 and Eq [6] reduces to the monoexponential decay 

function in Eq. [1]29. As the degree of tissue heterogeneity increases, these parameters 

become progressively less than 1.

The FROC model is a simplification of the CTRW model by considering the spatial 

heterogeneity only (i.e., assigning α =1). For a Stejskal-Tanner diffusion gradient Gd with a 

duration δ and gradient separation ⊗, the diffusion-induced signal loss is expressed as27:

S = S0exp −Dμ
2 β − 1

γGdδ
2β Δ −

2β − 1
2β + 1

δ , [7]

where μ is a spatial constant to preserve the nominal units of diffusion coefficient D in 

mm2/s. Both CTRW and FROC models have been increasingly used for cancer imaging, as 

detailed later. To use either model, a relatively high b-value (e.g., ≥3000 s/mm2) is required.
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To apply high b-value DWI to studying tissue microstructures, it is important to recognize 

that the ability of probing tissue microstructures depends heavily on the diffusion time – a 

parameter which is typically fixed on commercial MRI scanners. The diffusion time controls 

the spatial scale of the tissue structures under investigation36. For a spin echo sequence, the 

shortest diffusion time is determined by the available gradient strength, while the longest by 

the maximal TE to retain a minimally required signal-to-noise ratio (SNR). These limits can 

be overcome by using alternative pulse sequences36.

In addition to the specific diffusion models outlined above, other diffusion models have also 

been used for cancer imaging. Table 1 summarizes a set of selected diffusion models, the 

key model parameters, the typical b-value ranges, and the biological significance of these 

models in relation to cancer-relevant tissue properties.

2. Clinical Applications

2.1 Detection and Diagnosis

Despite its relatively low spatial resolution, DWI plays an important role in cancer detection 

because it can offer advantages in tumor-to-normal tissue contrast. Because water diffusion 

in highly cellular tumor is more restricted than in the normal tissues, a higher b-value can 

more effectively suppress signals from the normal tissue, enhancing tumor-to-normal tissue 

contrast and leading to hyperintense signals in the tumor (Figure 3). Such enhanced contrast 

can considerably improve the conspicuity of small lesions (Figure 4)37, tumors on hollow 

organs38, and tumors obscured by strong background from normal tissues39.

While the majority of the reported studies have used a low to moderate b-values (e.g., ~800 

s/mm2 for the liver, and 1000 s/mm2 for the brain) because of the SNR considerations, the 

benefits of using a higher b-value beyond the conventional have been increasingly 

demonstrated in recent studies. Ichikawa et al. employed a b-value of 1000 s/mm2 to detect 

colorectal adenocarcinoma in a cohort of 33 patients with colonoscopically proven 

colorectal cancers40. They achieved a high sensitivity of ~90% and a specificity of ~100%. 

Over the years, the threshold for high b-value is evolving. Kim et al.41 compared the 

performance between b-values of 1000 and 2000 s/mm2 for detection of prostate cancer at 3 

Tesla and concluded that DWI performed using a b-value of 1,000 s/mm2 was more sensitive 

and more accurate in predicting localized prostate cancer than b-value of 2,000 s/mm2. 

However, Wetter et al. reported that the contrast ratios of diffusion-weighted images were 

significantly higher at b-values of 1500 and 2000 s/mm2 in comparison to b-values of 800 

and 1000 s/mm2, illustrating the benefits of high b-values for detecting prostate cancer42. 

The potential value of high b-values for cancer detection has also been investigated in 

several other cancers43,44. Despite some conflicting reports, the general consensus is that 

higher b-values can provide better conspicuity for tumor detection, provided that an 

adequate SNR (e.g., 5–10) can be maintained45,46. This has led to recent adoption of high b-

value (1400–2000 s/mm2) DWI in Prostate Imaging Reporting and Data System (PI-RADS) 

Version 247. Achieving an adequate SNR at high b-values can be challenging. A possible 

solution is to synthesize high b-value images from acquired low b-value images (which have 

high SNR) using a specific diffusion model – commonly a mono-exponential model. As 
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such, the synthetic images cannot be used with advanced diffusion models other than the 

model from which they are synthesized.

The use of quantitative information from DWI can further aid in differential diagnosis of 

tumors. Because the effect of non-Gaussian diffusion increases with the b-value, it is widely 

reported that the ADC value depends on b-value selections, particularly in the high b-value 

range (e.g., b> 1000 s/mm2)48.

With the ability to offer multiple parameters, non-Gaussian diffusion models can be helpful 

in cancer characterization and/or detection. For example, diffusion parameter maps can be 

used individually or conjointly to create or enhance the tumor-to- tissue contrast. Figure 5 

illustrates how the individual α, β and D maps from a CTRW model are used to highlight a 

high-grade medulloblastoma in an 18-month old girl. The multiparametric contrasts provide 

complementary information to conventional T1-, T2, and FLAIR contrasts, improving 

cancer detection and/or characterization. Using a DKI model with 11 b-values up to 1500 

s/mm2, Tamura et al. have observed the differences in DKI parameters between prostate 

cancer, benign prostatic hyperplasia (BPH), and benign peripheral zone (PZ)32. In particular, 

K is significantly higher in prostate cancer than in nonstromal BPH and healthy PZ. Other 

non-Gaussian models, such as stretched exponential49,50, VERDICT12, and RSI24, have also 

been successfully used for prostate cancer detection. Although the majority of the studies 

have demonstrated the advantages of non-Gaussian models with high b-values, one study 

has shown that the DDC ratio between the breast cancer and glandular tissue, estimated from 

a stretched exponential model, did not show significant differences from the ADC ratio51. In 

addition, another study did not find that the FROC model parameters outperformed ADC for 

differentiating between malignant and benign breast lesions, likely because of the intrinsic 

high degrees of heterogeneity within the breast tissue and/or a moderate maximal b-value 

employed in the study13.

At the other end of the b-value spectrum, the IVIM model has been increasingly applied to 

cancer diagnosis and detection, as reviewed by Koh et al.11 Improved performance of IVIM 

parameters (D*, D, and f) over ADC has been reported for diagnosing focal liver lesions52, 

and differentiating between benign and malignant breast lesions53. The IVIM model has also 

been shown useful in discriminating lung cancer from obstructive pulmonary 

consolidation39. Very recently, Qi et al. showed that the combination of two IVIM 

parameters. f and D, can improve differentiation of malignant versus benign mediastinal 

lymph nodes19, which is of great value for determining lymph node involvement in lung 

cancer and other neoplasms.

In addition to detecting primary tumors, DWI with high b-values has also been used to 

facilitate the detection and diagnosis of residual or recurrent tumors after surgical or non-

surgical local treatments (stereotactic body radiation therapy or SBRT, transcatheter arterial 

chemoembolization, radiofrequency ablation or RFA, stereotactic radiotherapy/radiosurgery 

or SRT/SRS, etc.) and palliative therapy54,55. Figure 6 shows images from an HCC patient 

who received RFA. No obvious enhancement was seen near the post-RFA area in the T1-

weighted image (Figure 6a). However, recurrent lesions were detected as dot-like high 
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signals in DWI (Figure 6c). These lesions progressed rapidly after another month (Figures 

6b and 6d).

2.2 Classification, Grading, and Staging

Recent initiatives in predictive, personalized, preemptive, and participatory medicine are 

shifting the roles of radiology from conventional diagnosis to disease classification, grading, 

staging, and prognostic assessments56. Oncologists are increasingly expecting radiologists to 

provide pretherapy information, such as tumor classification and grading, to guide their 

treatment plans in order to achieve an optimal outcome for cancer patients. Unfortunately, 

conventional MRI based on morphological features is inadequate to meet this challenge. 

With its sensitivity to tissue microstructures at a sub-voxel level, high b-value DWI can 

contribute immensely to addressing this unmet need.

Intra-tumoral heterogeneity is an important consideration in glioma grading57, breast cancer 

staging58, Gleason scoring for prostate cancer59, and predicting biological aggressiveness of 

premalignant esophageal lesions60. Previous imaging studies on intra-tumoral heterogeneity 

were limited by the achievable voxel size. The advent of high b-value DWI has shown great 

potential in breaking this barrier and peeking into the voxels. Using a stretched exponential 

model with a maximal b-value of 4000 s/mm2, Kwee et al. observed a substantially lower α 
value in high-grade gliomas than in the normal brain tissues and attributed this difference to 

elevated intra-voxel heterogeneity in the tumor61. The intra-voxel heterogeneity was more 

rigorously investigated by relating tissue structural heterogeneity to spatiotemporal diffusion 

heterogeneities in the FROC and CTRW models27–29,62. Using a FROC model with a 

maximal b-value of 4000 s/mm2, Sui et al. observed a significant difference in β (i.e., intra-

voxel diffusion spatial heterogeneity) not only between pediatric brain tumors and normal 

brain tissues, but also between low-grade and high-grade tumors62. The combination of β 
and D from the FROC model produced a diagnostic accuracy of 92.5% for differentiating 

low- and high-grade pediatric brain tumors, considerably outperforming that of ADC 

(accuracy = 80.6%). Similar results were also obtained for differentiating low- and high-

grade gliomas in adults using a FROC model63 (Figure 7), and for differentiating low- and 

high-grade brain tumors in children using a CTRW model where both spatial and temporal 

diffusion heterogeneities are considered29. Diffusion-based tumor heterogeneity studies are 

not limited to the brain tumors and has been extended to breast cancer13, prostate cancer64, 

gastric cancer14, and others. In addition, diffusion-based tumor heterogeneity studies are not 

limited to the aforementioned models. For example, by investigating diffusional variance 

caused by microscopic anisotropy and isotropic heterogeneity, Szczepankiewicz et al. 

demonstrated that a high b-value DWI technique, known as density by diffusional variance 

decomposition (DIVIDE), is also sensitive to brain tumor heterogeneity65.

Other aspects of tissue microstructures can also be probed through non-Gaussian diffusion 

parameters for tumor characterization. Zhu et al. found kurtosis derived from DKI 

demonstrated a stronger correlation with histologic grades and T staging of rectal cancer 

compared with ADC33. Wen et al. applied NODDI to characterize gliomas at 7 Tesla66. 

Significant differences in NODDI parameters were observed between the tumor and normal 

appearing white matter. However, no significant differences were found across different 
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glioma grades66. Bai et al.34 compared the performance for glioma grading using mono-

exponential, bi-exponential, stretched exponential, and DKI models with b-value up to 5000 

s/mm2. Their results indicate that α in the stretched exponential model and mean K in the 

DKI model outperformed the conventional diffusion parameters such as ADC for glioma 

grading. The optimal parameters for tumor grading depend strongly on specific tumors. In 

another study on differentiating types I and II epithelial ovarian cancer (EOC) using high b-

value DWI with mono-exponential, bi-exponential and stretched exponential diffusion 

models67, ADC, D from the IVIM model, and DDC are all adequate for EOC differentiation, 

but there is no significant difference among these parameters. Yet another study by Roethke 

et al. reported no significant benefit of DKI for detecting and grading of prostate cancer as 

compared with ADC in the peripheral zone68. In all the studies outlined above, a common 

challenge is that physical or mathematical parameters from various diffusion models are 

attempted to improve tumor grading, staging, and characterization. The direct relationship 

between these parameters to intravoxel tissue microstructures has not been fully established 

or validated. In addition, the accuracies in some high b-value DWI studies may not be as 

high as those of conventional MRI. However, DWI can be combined with conventional 

sequences to improve the overall accuracy, as recently demonstrated by Chatterjee et al. in a 

technique known as hybrid multidimensional MRI69. Assessing the biological 

aggressiveness of tumors is another important aspect for cancer patient evaluation and 

management. With its correlation to cellularity, ADC can be an important marker for 

biological aggressiveness of tumors, as in the assessment of the NIH risk stratification of 

gastrointestinal stromal tumors (GIST)70. It is generally believed that the lower the ADC, the 

higher degree of malignancy and the poorer prognosis. Exceptions, however, do exist. Lee et 

al. reported that ADC of the mass-forming intrahepatic cholangiocarcinoma with poor 

prognosis was higher71, because of abundant fibrous stroma with scanty tumor cellularity. A 

similar exception can be found in mucinous cancer of gastrointestinal (GI) tract, which has 

poorer prognosis but higher ADC because of a large amount of the mucinous lake72. 

Exceptions can also be found in some primary brain tumors that have higher ADC than the 

surrounding tissue, likely due to the vasogenic edema associated with the tumor, which 

results in a relatively less net increase (or even decrease) in cellularity within a highly 

cellular brain tissue.

2.3 Evaluation and Prediction of Treatment Response

Over the recent years, a number of novel cancer treatment regimens have emerged. 

Neoadjuvant chemotherapy (NACT) has become the standard procedure for many advanced 

malignant tumors before surgery. Targeted therapy and PD-1/PDL-1 immunotherapy are 

emerging as an effective alternate to traditional chemotherapy, and have become even the 

first-line treatment under some situations73,74. Precise radiotherapy, as well as other non-

surgical local treatments (SBRT, TACE, IRA, SRS/SRT, etc.), has prompted cancer 

treatment to the era of minimal invasiveness. As the treatment options expand, early 

evaluation, or even prediction, of the treatment efficacy becomes increasingly crucial. 

Traditional response evaluation based on size or morphologic changes, as stipulated in the 

RECIST criteria, can no longer meet the need for personalized patient care75. This 

represents an excellent opportunity for DWI to become an additional surrogate to 

complement RECIST or other criteria such as RANO76. Together, they have great potential 
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to address the unmet need for treatment assessment and overcome the limitations of the 

existing criteria.

DWI for prediction of treatment response and prognosis—As for prediction, it is 

generally believed that the lower the pre-treatment ADC, the better of treatment 

responses77–80. A lower pre-treatment ADC typically indicates more active tumor 

parenchyma which supports a larger amount of blood supply (as opposed to necrotic tissues, 

for example) to facilitate easier transportation of anticancer agents to the targeted tumors77. 

Conversely, tumors with higher pre-treatment ADC can be hypoxic with a slower 

metabolism, making them insensitive to radiotherapies81. For other treatment methods, 

however, the results can be reversed. For example, Mannelli et al. found that HCCs with 

poor response to TACE had significantly lower pre-treatment ADC compared to HCCs with 

good response82. Very recently, IVIM model has also been applied to predicting response to 

neoadjuvant treatment of breast cancer83. It was reported that D* showed prognostic 

capabilities, whereas baseline ADC and D were not significant predictors of response.

DWI for assessment of early response—A major unmet need is whether treatment 

evaluation can be obtained earlier than what RECIST criteria can presently offer, i.e., 2–3 

months after the initiation of treatment. Some tumors may change rapidly in cellularity, 

vascularity, microstructures and heterogeneity in response to targeted agents, but these 

changes may not result in tumor size change that can be detected morphologically by CT or 

MRI. The sensitivity to cellularity, vascularity, microstructures and heterogeneity makes 

DWI an ideal candidate to capture these changes early.

DWI for early treatment evaluation was initially illustrated in brain tumors using 

ADC4,84,85. Moffat et al. showed that substantial ADC change can be observed 3 weeks 

during a 6-week course of radiation therapy84. This success was extended to a large number 

of studies where ADC was used for early evaluation of chemotherapy, targeted therapy, and 

immunothepary4,77. In many these studies, ADC change was observed as early as 1–2 weeks 

after the initiation of treatment77,86. Tang et al. have reported a marked ADC increase 

(44.8%) at 1 week after therapy which was associated with good response to imatinib 

mesylate in patients with GIST77. Figure 8 demonstrates a case of GIST which had distinct 

changes of ADCs just after three days of imatinib targeted therapy. The change in ADC 

continued for four weeks in the follow-up scans.

High b-values with or without non-Gaussian models have been used for early evaluation of 

cancer treatment. Using a Gaussian model with b-values up to 4000 s/mm2, Mardor et al. 

reported that pre-treatment ADC and a diffusion index R(D) can both correlation well (r = 

0.76–0.77) with brain tumor response to radiation therapy87. The strong correlation implies 

that tumors with low pretreatment diffusion values will respond better to radiotherapy than 

those with high diffusion values. Over the past few years, an increasing number of non-

Gaussian models have been applied to cancer treatment evaluation. McDonald et al. recently 

demonstrated that RSI with high b-values can be more immune to confounding factors such 

as edema and offers advantage over ADC in evaluating response of high-grade gliomas to 

bevacizumab88. This is an interesting example of how higher order DWI modeling can be 

useful when the primary effect of bevacizumab therapy is on edema and not tumor 
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cellularity. Using a FROC model with a combination of the pre-treatment β value and post-

treatment change of ADC at 2 weeks, Tang et al. demonstrated that GIST response to 

sunitinib second-line targeted therapy can be assessed at early as 2 weeks after the initiation 

of therapy14. Figure 9 shows an example illustrating the sensitivity of β from the FROC 

model to sunitinib targeted therapy. Parameters from Gaussian and non-Gaussian diffusion 

models can be also combined across a broad b-value range to improve the performance of 

response to chemotherapy, as recently demonstrated by Zhu et al., for locally advanced 

rectal cancer89.

DWI was also useful for evaluating response of non-surgical local treatment, such as 

irreversible electroporation (IRE) of pancreatic carcinoma90 and stereotactic body 

radiotherapy (SBRT) of lung cancer91. Kokabi et al. reported that ADC change 3 hours after 

TACE treatment could predict the response of unresectable HCC to doxorubicin drug-eluting 

beads transcatheter arterial chemoembolization (DEB-TACE)92. Attention should be paid to 

other pathologic changes, such as gelatinous necrosis and small abscess in tumor after 

treatment (especially after anti-angiogenic targeted therapy for brain tumor93) that may 

display high signal on DWI, mimicking recurrent (Figure 10). Thus, DWI must be used in 

combination with conventional images to avoid misinterpretation.

DWI as a supplement to RECIST criteria at regular evaluation time points—

Besides prediction and early evaluation, DWI can be also helpful at conventional evaluation 

time-points, i.e., 2–3 months after therapy, to complement the widely used RECIST criteria. 

The existing RECIST criteria have at least two limitations. First, RECIST is not suitable for 

evluating GI tract tumors because the variable shape of the GI wall precludes reliable 

measurement of the long lesion dimension. As such, RECIST defines the primary lesions of 

GI tract as non-targeted lesions, resulting in a dilemma for NACT evaluation. ADC and its 

non-Gaussian counterparts can provide quantitative indicators to help resolving this 

dilemma, as demonstrated in a rectal cancer study to evaluate response to chemoradiation 

therapy94 and a gastric cancer study to evaluate chemotherapy95. In addition, DWI also 

serves as an sensitive indicator for complete response of rectal cancer or to help clinical 

evaluation for patients under “wait-and-see” surveillance96.

Second, new palliative treatment agents such as targeted therapy and immunotherapy may 

cause the tumor size to increase but with tissue degenerations (e.g., cystic degeneration, 

necrosis, hemorrhage, and mucinous degeneration). Some of these tissue changes can be 

measured by DWI, as reported in the GIST response to imatinib and sunitinib 

treatments14,77, HCC to sorafenib treatment97, and lung cancer to antivascular targeted 

therapy98.

3. Practical Considerations

3.1 Selection of b-Values

Selection of b-values is one of the most important tasks in DWI, requiring a number of 

considerations. First, proper b-value selection is strongly coupled with the diffusion model 

to be used for image analysis. The typical range of b-values for some selected diffusion 

models is listed in Table 1. For example, when using the IVIM model, 6 b-values in the 
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range of 0–200 s/ mm2 are recommended to ensure reliability and reproducibility in 

extracting the IVIM parameters. When using the CTRW or FROC model, the upper bound 

of the b-values should typically exceed 3000 s/mm2. Second, the selection of b-values 

depends on the organ under study. For brain imaging, a nominal b-value of 1000 s/mm2 is 

often chosen for ADC calculations because the average diffusion coefficient of brain tissue 

is ~1×10−3 mm2/s, producing an average diffusion attenuation of e-1. For tissues in organs 

with a slower average diffusion coefficient, a higher b-value should be selected, and vice 

versa. Third, the SNR and diffusion contrast should be simultaneously considered. Although 

a higher b-value produces a better diffusion contrast, the SNR can be substantially reduced 

due to the increased diffusion-induced signal loss as well as T2-induced signal attenuation 

caused by a longer TE to support the higher b-value. The optimal balance between the SNR 

and image contrast is typically determined empirically. Lastly, a high b-value requires a 

strong diffusion gradient to be activated for a long time, which may exacerbate artifacts 

related to gradient-induced vibration and/or eddy currents.

3.2 Repeatability and Reliability of Diffusion Models

Repeatability and reliability are important for quantitative DWI applications, particularly in 

determining a diagnostic threshold. Several studies have reported good reliability or 

repeatability for ADC, slow D in IVIM, and stretched exponential parameters, whose 

coefficients of variance (CV) are within 20%99–102, but worse for f and D* in the IVIM 

model (30%−80%) in studies on lung cancer99, HCC100, and ovarian tumors101. A study on 

pediatric patients reported that parameters based on IVIM or DKI models had worse CV 

than those from the stretched exponential model102. Reproducibility on other high b-values 

model parameters has not been adequately reported in the literature. When advanced 

diffusion models are used, a higher b-value and/or larger number of diffusion gradient 

directions increases the vulnerability to noise and/or motion, which can compromise the 

reliability and reproducibility. A comprehensive understanding of reliability and 

reproducibility is needed to accomplish full clinical translation of advanced DWI techniques.

3.3 Motion Management during DWI

DWI is particularly sensitive to motion during image acquisition. The use of echo planner 

imaging (EPI) and other motion resilient pulse sequences such as PROPELLER can 

effectively avoid or manage the inter-shot motion within acquisition of an image. However, 

inter-image motion (e.g., for different b-values) must also be addressed, particularly for body 

imaging. Several methods have been used to control motion for body DWI, such as breath-

hold to freeze respiratory motion, respiratory triggering to synchronize with breathing, 

hypotonic agents to control peristalsis, and echocardiography triggeringto eliminate the 

influence of heartbeat. Selection of a proper motion management strategy is highly 

application dependent.

Chen et al. compared four motion management techniques: multiple breath-hold (MBH), 

free-breathing (FB), respiratory-triggered (RT), and navigator-triggered (NT) diffusion 

imaging on the liver, and recommended FB because of its superior reproducibility and 

shorter acquisition times103. Studies reported by Bernardin et al.104 and Weller et al.105 are 

also in favor of FB for DWI of the lung because it provides good intra- and inter-observer 
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repeatability in ADC measurements for malignant lung tumors. A general consensus, 

however, has not been reached. For example, for DWI of the liver, Kim et al. recommended 

BH106, whereas Lee et al. showed advantages of using echocardiography triggering which 

was more effective for decreasing regional variability of ADC and IVIM parameters than FB 

or RT and improved measurement repeatability by reducing cardiac motion-induced 

errors107.

In the literature, there appears to be a stronger preference to FB when using a single-shot 

EPI-based diffusion sequence. With this approach, it is important to ensure image co-

registration of tumors across multiple b-values or gradient directions. Otherwise, use of 

image co-registration software prior to DWI analysis is highly recommended to compensate 

for both rigid-body and non-rigid-body motions, especially for the liver and GI tract.

3.4 Influence of Contrast Agents on DWI Quantitative Measurements

Although DWI acquisitions are typically performed before administration of contrast agent, 

studies have shown that quantification of diffusion parameters does not exhibit significant 

difference before and after contrast agent administration (e.g., Gd-EOB-DTPA)108,109. This 

gives flexibility in adjusting the order of the pulse sequences in a protocol involving DWI. 

For example, the DWI can be performed during the enhancement delay after contrast 

injection to take advantage of the “dead time” and thus save the scan times.

3.5 ROI Selection for Quantitative Assessment

Selection of ROIs typically involves two steps. The first step is to determine the tumor-

containing slice or slices, comprising single-slice (SS) selection, selection of three 

predefined slices (PD), observer-based (OB) volume110, or whole tumor volume (WTV)111. 

The WTV method has the best repeatability and interobserver consistency, while the 

selective OB and SS methods can well approximate the WTV measurement and require 

significantly less measurement times, facilitating their adoption in a clinical setting110,111.

The second step involves determination of ROI contours encasing all tumor areas within the 

chosen slice(s). The contour selection should reflect the specific study purpose. If the study 

is to investigate the biological aggressiveness, for example, the most restricted diffusion area 

should be selected by including a relatively small ROI in the highest DWI signal area. If the 

study is to investigate treatment response, the features of the whole tumor should be 

analyzed, and a contoured single-slice or WTV is recommended96,112. However, when 

encountering the situation of “node-in-mass” recurrent lesions, a small ROI can be more 

sensitive than using WTV in evaluating progressive disease (Figure 11). Furthermore, non-

enhancing portions of lesion (e.g., hemorrhage or necrosis) should be excluded from the 

analysis as these areas can exhibit low ADC values, mimicking highly cellular portions of 

tumor.

3.6 Geometric Distortion

The majority of DWI studies are performed using single-shot EPI pulse sequences. As such, 

geometric distortion associated with EPI must be carefully considered. In diffusion-weighted 

EPI, image distortion arises from two primary sources: magnetic susceptibility and eddy 
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currents. The magnetic susceptibility can be particularly problematic for body imaging 

because of different tissue types. Distortion induced by magnetic susceptibility can be 

mitigated by using a high receiver bandwidth, parallel imaging, multi-shot sequences113, etc. 

Eddy currents in diffusion-weighted EPI are produced primarily by the diffusion gradient. 

As the b-value increases, diffusion gradient becomes stronger and/or TE becomes longer, 

both of which exacerbate image distortion. Pulse sequences resilient to eddy currents, such 

as twice-refocused spin echo, can be used for high b-value DWI to reduce image 

distortion114–116. Various commercial software is also available to reduce the distortion after 

image acquisition.

4. Limitations and Possible Future Directions

Despite active research with growing number of publications on DWI with b-values 

spanning a wide range (i.e., 0–5000 s/mm2), routine clinical use of DWI for cancer imaging 

is limited largely to qualitative assessment and quantification with ADC. Clinical adoption 

of many advanced high b-value DWI techniques with more sophisticated diffusion models is 

relatively slow. The low SNR, poor spatial resolution, and exacerbated image distortion at 

high b-values are among the technical impediments for clinical adoption. More importantly, 

the overlap in some quantitative diffusion parameters between benign and malignant lesions 

has limited their clinical utilization, despite the statistical differences observed in research 

studies. Because of these limitations, DWI must be interpreted in combination with 

conventional MR images and information from other advanced cancer imaging 

techniques29,71.

Another factor contributing to the slow clinical adoption is lack of standardization and 

consensus, analogous to the Babel Tower effect117. Standardized image acquisition 

protocols, analysis procedures, and thresholds of quantitative parameters for diagnosis or 

treatment evaluation are indispensable for clinical applications. They will help establishing 

guidelines that can be used widely to improve impact. Unfortunately, among the vast amount 

of publications on DWI for cancer imaging, reports on consensus and standardization are 

scarce4. While each published study provides an excellent “building block”, it is difficult to 

build a tower with blocks in different sizes and shapes.

Recent developments in two exciting areas may bring opportunities to resolve this dilemma 

and accelerate clinical translation of advanced DWI techniques. The first is radiomics with 

big data, which can potentially provide novel analysis tools of the existing data and lead to 

new insights into the best strategy for DWI standardization. This will greatly facilitate 

clinical trials to provide high evidence-based proofs of the values of advanced DWI for 

cancer care. The second is the multidisciplinary team (MDT) practice. This clinical practice 

model enhances the communication and understanding between radiologists, oncologists, 

and other clinicians not only during day-to-day patient care but also for conducting clinical 

trials. The oncologists’ strong desire for more robust and sensitive imaging-based cancer 

biomarkers, coupled with radiologists’ advanced quantitative DWI tools, will likely lead to 

fruitful efforts in standardization. Towards that end, the literature has already shown an 

encouraging progress on the validation of ADC as a cancer imaging marker in multicenter 

trials, through implementing standardized protocols across multivendor platforms together 
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with methods for quality assurance during the processes of data collection, archiving, 

curation, and analysis118.

Conclusion

In conclusion, after more than three decades of development, DWI has become an important 

technique with widespread applications in many areas of cancer imaging, from diagnosis, 

tumor grading to treatment evaluation and prediction. Although the majority of current 

cancer applications rely on ADC, the rapid development of high b-value DWI techniques 

coupled with resurgence of the IVIM model has shown a strong trend to considerably 

expand the scope of DWI applications far beyond what ADC offers. At the present stage, 

reports of these advanced DWI techniques for cancer imaging are predominantly limited to 

individual findings. With further development in standardization of image acquisition and 

analysis, additional efforts in well-organized multi-center clinical trials, and enhanced 

interactions between radiologists and oncologists, DWI across the entire b-value spectrum is 

well positioned to become a powerful surrogate in cancer imaging to reveal sub-voxel tissue 

cellularity, vascularity, heterogeneity and microstructures that are important in cancer 

progression and regression.
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Figure 1. 
Diffusion-induced signal attenuation as a function of b-value. Three regions are highlighted 

in the plot with low, intermediate, and high b-values, respectively, each corresponding to a 

specific tissue property that can be probed by DWI. The b-values on the horizontal axis are 

illustrating examples and can be varied depending on the applications.
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Figure 2. 
An image voxel in DWI, containing intra- and extra-cellular spaces and capillary vasculature 

as annotated.
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Figure 3. 
Examples of using DWI for tumor detection. Images in each row were acquired from the 

same patient. (a)-(b): On a patient with gastric cancer in antrum (arrow), the contrast 

between the lesion (arrow) and the background tissue was much higher on the DWI with 

b=1000 s/mm2 (b) than on the T2W image (a). (c)-(d): T1 enhancement was observed on a 

patient with esophagogastric junction cancer (arrow; (c)). However, the opposite larger 

curvature wall also displayed strong enhancement (double arrow), making it difficult to 

determine the tumor border. On the DWI with b=1000 s/mm2 (d), the normal wall signal was 

effectively suppressed, making the cancer easily detectable (arrow). (e)-(h): On a patient 
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with gastric cancer in antrum, the conspicuity of the tumor improved substantially when the 

b-value was increased from 300 s/mm2 in (e) to 1200 s/mm2 in (f). Similar improvement 

was observed on another patient when the b-value was increased from 500 s/mm2 in (g) to 

1200 s/mm2 in (h).
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Figure 4. 
Examples of using DWI to detect small tumors that are not easily visible in convention MRI. 

(a)-(b): A gastric malignancy in lesser curvature (double arrow) was seen in the T2W image 

(arrow in (a)). Using DWI with b=1000s/mm2, an additional small lesion (arrow in (b)) was 

detected and proven as a GIST by operational pathology. (c)-(d): DWI was effective in 

highlighting small metastatic lesions in the small lymph nodes (c) and in the liver (d). (e)-(f): 

In this patient with gastric cancer, no definite sign of metastasis on the T2W image was 

observed (e). However, diffuse dissemination in perihepatic peritoneum (arrow) and 

omentum (double arrows) were clearly seen on DWI with b=1000s/mm2 (f).
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Figure 5. 
Maps of D, α and β from a CTRW model demonstrating good contrasts between a 

medulloblastoma and its surrounding normal brain tissue from an 18-month old girl. These 

parameter maps should be used conjointly with conventional images based on T1, T2 and 

FLAIR contrasts to improve tumor detection and characterization.
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Figure 6. 
Contrast-enhanced T1W images (top row) and diffusion-weighted images (bottom row) of 

an HCC patient who received RFA treatment. No obvious enhancement was seen near the 

post-RFA area (arrow in (a)). However, small recurrent lesions were detected in DWI (arrow 

in (b)) with much improved contrast. These lesions were confirmed in both contrast-

enhanced T1W (c) and diffusion-weighted images (d) at one-month follow-up.
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Figure 7. 
FROC maps of a grade II glioma patient (upper row) and a grade IV glioblastoma patient 

(lower row). D, β, and μ are the FROC parameters defined in Eqs. [6] and [7] with their 

physical meanings explained in the text. In particular, β has been related to intra-voxel tissue 

heterogeneity. Differences between the two tumors can be seen in each of the three maps.
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Figure 8. 
Demonstration of DWI for quantitatively monitoring early change of GIST following 

imatinib targeted therapy in a patient with diffusely metastasis lesions in the abdomen. T2W 

and diffusion-weighted images are shown in the top and bottom row, respectively. Each 

column represents a time point: (a) and (e): pre-treatment; (b) and (f): three days; (c) and 

(g): one week; and (d) and (h): four weeks after initiation of the treatment. T2W images 

showed fused irregular tumors without appreciable change in tumor size until a later time 

point (d). In addition, the tumor size was difficult to measure because of the irregular shape. 

In contrast, the mean ADC exhibited a substantial increase only after 3 days of treatment 

(1.09 × 10−3 mm2/s in (e) versus 1.34 × 10−3 mm2/s in (f)). The mean ADC continued to 

increase for weeks during the treatment (1.83 × 10−3 mm2/s in (g) after one week and 1.96 × 

10−3 mm2/s in (h) after four weeks).
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Figure 9. 
Demonstration of FROC parameters for monitoring early changes of a GIST patient 

following sunitinib targeted therapy. Images of pre-treatment baseline and two weeks after 

initiation of treatment are displayed in the top and bottom row, respectively. The first two 

columns correspond to ADC ((a) and (f)) and T2W images ((b) and (g)). The remaining 

three columns show the D, β and μ color maps of a lesion superimposed on the T2W image, 

respectively. The color bars in these three columns display the quantitative scales for the 

respective parameter (D in units of x10−3 mm2/s, β between 0 and 1, and μ in units of μm). 

The tumor size measured from the T2W images ((b) vs. (g)) did not change. ADC ((a) vs. 

(f)) and D ((c) vs. (h)) showed minimal change. However, β decreased substantially ((d) vs. 

(i)), and μ increased moderately ((e) vs. (j)) two weeks after the initiation of sunitinib 

targeted therapy. The results may signify potentially good response of tumors to sunitinib, 

which may confirm the treatment decision more quickly.
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Figure 10. 
Demonstration of confounding pathologic changes during targeted therapy of liver 

metastasis. T2W and diffusion-weighted images are shown in the top and bottom row, 

respectively. Each column represents a time point: (a) and (e): pre-treatment; (b) and (f): one 

week; (c) and (g): one month; and (d) and (h): three months after initiation of treatment. 

Prior to treatment, a large tumor on the right liver lobe was clearly visible with mixed 

signals ((a) and (e)). One week after the treatment, no appreciable tumor size change was 

observed in the T2W image (b). The DWI showed decreased signal (f) with the 

corresponding increase in ADC (not shown). At the one-month time point, the tumor size 

decreased (c). However, hypersignal appeared on DWI in the center of tumor (arrow in (g)), 

which may signify progression. At the three-month time point, however, the tumor size 

continued to shrink (d), suggesting that the hypersignals in (g) and (h) were most likely 

inner degeneration or abscess that mimics recurrence, instead of recurrence.
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Figure 11. 
A case of diffuse metastasis tumors to demonstrate that a small ROI can be more sensitive 

than WTV to detecting progressive disease. T2W and diffusion-weighted images are shown 

in the top and bottom row, respectively. From left to right, each column represents a time 

point: pre-treatment baseline, three days, one week, two weeks, four weeks, and three 

months after treatment, sequentially. Throughout the time course, both the mean ADC 

(ADCmean) and minimum ADC (ADCmin) were measured from the tumors. The values of 

ADCmean were 0.91 × 10−3 (g), 1.19 × 10−3 (h), 1.39 × 10−3 (i), 1.72 × 10−3 (j), 1.38 × 10−3 

(k), and 0.96 × 10−3 mm2/s (l), whereas the values of ADCmin were 0.77 × 10−3 (g), 0.94 × 

10−3 (h), 1.02 × 10−3 (i), 0.91 × 10−3 (j), 0.85 × 10−3 (k), and 0.95 × 10−3 mm2/s (l). A 

quantitative analysis showed that ADCmin was more sensitive than ADCmean during the 

tumor response and recurrent processes, concurrent with the increase and decrease in ADC, 

respectively. This illustrates the benefit of using a small ROI to focus on high DWI signal 

regions in this specific example.

Tang and Zhou Page 36

J Magn Reson Imaging. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tang and Zhou Page 37

T
a
b

le
 1

.

S
u
m

m
ar

y
 o

f 
S

el
ec

te
d
 D

if
fu

si
o
n
 M

o
d
el

s 
fo

r 
C

an
ce

r 
Im

ag
in

g

M
od

el
P

ar
am

et
er

s
b-

V
al

ue
 r

an
ge

*  
(s

/m
m

2 )
T

yp
ic

al
 n

um
be

r 
of

 b
-v

al
ue

s
B

io
lo

gi
ca

l s
ig

ni
fi

ca
nc

e 
of

 t
he

 
pa

ra
m

et
er

s

m
o
n
o
-e

x
p
o
n
en

ti
al

A
D

C
0
–
1
0
0
0

2
ce

ll
u
la

ri
ty

co
m

p
ar

tm
en

ta
li

ze
d
 n

o
n
-G

au
ss

ia
n
 m

o
d
el

s
IV

IM
D

, 
D

*
, 
f

0
–
2
0
0
; 

6
0
0
–
1
0
0
0

3
–
1
2

ce
ll

u
la

ri
ty

, 
v
as

cu
la

ri
ty

b
i-

ex
p
o
n
en

ti
al

D
f,
 D

s,
 f

0
–
3
0
0
0

≥
 4

ce
ll

u
la

ri
ty

, 
v
o
lu

m
e 

fr
ac

ti
o
n
, 
ce

ll
 

m
em

b
ra

n
e

N
O

D
D

I
ν i

so
,ν

in
, 
ν e

x
, 
O

D
I,

 

p
lu

s 
D

T
I 

p
ar

am
et

er
s

0
; 

~
7
0
0
–
1
0
0
0
; 

~
2
0
0
0
–
3
0
0
0

3
m

ic
ro

st
ru

ct
u
re

s,
 n

eu
ri

te
 d

is
p
er

si
o
n
 

o
ri

en
ta

ti
o
n
 a

n
d
 d

en
si

ty

A
x
C

al
ib

er
f h

, 
f r

, 
p
lu

s 
q
-s

p
ac

e 

im
ag

in
g
 p

ar
am

et
er

s
0
–
4
0
0
0

*
*

m
u

lt
i-

sh
el

l 
q
-s

p
ac

e 
ac

q
u
is

it
io

n
*
*

m
ic

ro
st

ru
ct

u
re

s,
 f

ib
er

 d
ia

m
et

er
 

d
is

tr
ib

u
ti

o
n
, 
h
in

d
er

ed
 a

n
d
 r

es
tr

ic
te

d
 

st
ru

ct
u
re

s

R
S

I
co

m
p
o
n
en

t 
fr

ac
ti

o
n
s 

f i
0
–
1
0
0
0
 (

fo
r 

p
ro

st
at

e)
≥

 4
; 

m
u
lt

i-
sh

el
l 

q
-s

p
ac

e 
ac

q
u
is

it
io

n
m

ic
ro

st
ru

ct
u
re

s,
 h

in
d
er

ed
 a

n
d
 

re
st

ri
ct

ed
 s

tr
u
ct

u
re

s,
 c

el
lu

la
ri

ty
 m

ap

V
E

R
D

IC
T

v
o
lu

m
e 

fr
ac

ti
o
n
s:

 f
IC

, 

f E
E

S
, 
f V

A
S

C
,R

ce
ll

 

d
if

fu
si

o
n
 o

r 
p
se

u
d
o
 

d
if

fu
si

o
n
 c

o
ef

fi
ci

en
ts

0
–
3
0
0
0

~
9

m
ic

ro
st

ru
ct

u
re

s,
 c

el
l 

ra
d
iu

s 
in

d
ex

, 
v
o
lu

m
e 

fr
ac

ti
o
n
s 

o
f 

in
tr

ac
el

lu
la

r,
 

ex
tr

ac
el

lu
la

r-
ex

tr
av

as
cu

la
r,

 a
n
d
 

v
as

cu
la

r 
sp

ac
es

n
o
n
-c

o
m

p
ar

tm
en

ta
li

ze
d
 n

o
n
-G

au
ss

ia
n
 m

o
d
el

s
st

re
tc

h
ed

 e
x
p
o
n
en

ti
al

D
D

C
, 
α

0
–
4
0
0
0

≥
 3

ce
ll

u
la

ri
ty

 d
is

tr
ib

u
ti

o
n
, 
h
et

er
o
g
en

ei
ty

D
K

I
D

, 
K

0
–
4
0
0
0

≥
 3

g
en

er
al

 m
ic

ro
st

ru
ct

u
re

s

F
R

O
C

D
, 
β,

 μ
0
–
4
0
0
0

~
5
–
1
2

ce
ll

u
la

ri
ty

, 
in

tr
a-

v
o
x
el

 h
et

er
o
g
en

ei
ty

, 
m

ic
ro

sc
o
p
ic

 s
ca

le

C
T

R
W

D
, 
α

, 
β

0
–
4
0
0
0

~
6
–
1
8

ce
ll

u
la

ri
ty

, 
in

tr
a-

v
o
x
el

 
h
et

er
o
g
en

ei
ti

es
, 
m

ic
ro

en
v
ir

o
n
m

en
t

fr
ac

ti
o
n
al

 m
o
ti

o
n

D
, 
φ,

 ψ
0
–
4
0
0
0

~
6
–
1
8

m
ic

ro
st

ru
ct

u
re

s 
as

 m
ea

su
re

d
 b

y
 

d
if

fu
si

o
n
 v

ar
ia

n
ce

 a
n
d
 c

o
rr

el
at

io
n

*
T

h
e 

b
-v

al
u
e 

ra
n
g
e 

is
 f

o
r 

ty
p
ic

al
 c

li
n
ic

al
 a

p
p
li

ca
ti

o
n
s 

o
n
 c

o
m

m
er

ci
al

 s
ca

n
n
er

s.

*
*
T

h
is

 i
s 

a 
q
-s

p
ac

e 
im

ag
in

g
 t

ec
h
n
iq

u
e 

th
at

 r
eq

u
ir

es
 v

ar
y
in

g
 b

o
th

 d
if

fu
si

o
n
 g

ra
d
ie

n
t 

an
d
 d

if
fu

si
o
n
 t

im
e.

J Magn Reson Imaging. Author manuscript; available in PMC 2020 January 01.


	Abstract
	Introduction
	Diffusion Models and Their Biophysical Bases
	Diffusion-Weighted MR Signals
	b-Value “Spectrum”
	Mono-exponential Model and Cellularity
	IVIM Model and Vascularity
	Non-Gaussian Models and Microstructures

	Clinical Applications
	Detection and Diagnosis
	Classification, Grading, and Staging
	Evaluation and Prediction of Treatment Response
	DWI for prediction of treatment response and prognosis
	DWI for assessment of early response
	DWI as a supplement to RECIST criteria at regular evaluation time points


	Practical Considerations
	Selection of b-Values
	Repeatability and Reliability of Diffusion Models
	Motion Management during DWI
	Influence of Contrast Agents on DWI Quantitative Measurements
	ROI Selection for Quantitative Assessment
	Geometric Distortion

	Limitations and Possible Future Directions
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Table 1.

