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An appropriate mean force potential was utilized in Felderhof's Theory to derive simple analytical 
expressions for the concentration dependence of the collective and short time self diffusion coefficients, 
as well as for the sedimentation velocity of charged spherical particles. It is demonstrated theoretically 
that the osmotic viriat and the Oseen hydrodynamic terms play a dominant role. To check the theoretical 
model, the dependence of the collective diffusion coefficient on the volume fraction of latex particles 
was experimentally studied. Dynamic light scattering was used at several different concentrations of 
electrolyte. It turns out that our experimental results, as well as the results of other authors, are in very 
good agreement with the proposed theoretical model. The results show that the increase of the electrolyte 
concentration leads to increase of the particle charge, but almost does not change the particle surface 
potential. A minimum in the dependence of the diffusion coefficient of a single particle on the ionic 
strength was also obtained. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

The  first step in the quanti tat ive t rea tment  

o f  the Brownian  diffusion was made  by Ein- 

stein ( 1 ). He  expressed the diffusion coefficient 

o f  spherical particles through the well known  

Stokes-Einstein relation, 

K T  
DSE - 6~r~a ' [ 1.1 ] 

where DSE is the diffusion coefficient, K T  is 

the thermal  energy, n is the solvent shear vis- 

cosity, and a is the colloidal particle radius. 

This fo rmula  is valid for a single sphere, sub- 

jected to Brownian mot ion  when no other  

spheres are present. The latter is a severe re- 

striction, especially when the suspension is not  

infinitely diluted a n d / o r  long range interpar- 

ticle forces are acting. Even the short range 

hard sphere interactions m a y  affect the value 

o f  the diffusion coefficient, above a certain 

1 To whom correspondence should be addressed. 
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concentra t ion o f  colloidal particles. Further- 

more,  such situations lead to a distinction o f  

two types o f  diffusion coefficients: (i) self-dif- 

fusion coefficient, given by (2)  

f 0  ° 
1 ( V ( 0 ) .  V ( t ) ) d t ,  [1.21 Ds = 3  

where Ds is the self diffusion coefficient, V is 

the velocity o f  a single particle, and  t is time; 

(ii) collective diffusion coefficient, which is the 

quant i ty  that  multiplies the concentra t ion 

gradient in Fick's  Law, 

j = - D c  grad C. [1.31 

In Eq. [1.3], j is the particle flux, Dc is the 

collective diffusion coefficient, and  C is the 

particle concentrat ion.  W h e n  the suspension 

is infinitely diluted, the two coefficients Ds and 

Dc coincide. However,  they may  differ in the 

ease o f  finite concentra t ions  o f  Brownian par- 

ticles. For  example, if  hard sphere interactions 

are present, Ds decreases with the particle 
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concentration, while Dc increases, due to the 

excluded volume (see, e.g., (2)). 

A further step in generalization of the Ein- 

stein theory was done by Batchelor, who com- 

bined hydrodynamical with statistical methods 

to develop a general approach to the Brownian 

motion of interacting spherical particles (3). 

Applying these methods to colloidal systems 

with hard sphere interactions, he obtained the 

first order correction of the collective diffusion 

coefficient with respect to the volume fraction 

of the particles q5 (4), 

Dc = Dsz(1 + X~b), [1.4] 

with X = 1.45. X is the linear order coefficient, 

which in general depends on the interparticle 

interactions. 

An approach, similar to that of Batchelor 

(3, 4), was developed by Felderhof and co- 

workers (5-9), who expressed X as a sum of 

integrals, depending on the pair correlation 

function, and two particle hydrodynamic in- 

teractions (6). The final result, X = 1.454, for 

hard spheres with no slip boundary conditions 

on their surfaces, coincides with that of Batch- 

elor (see Eq. [1.4]). 

In the case of charged particles, however, 

the situation is much more complex due to 

the necessity of using a screened Coulomb po- 

tential, in superposition with the hard sphere 

potential. A detailed review on this subject is 

given by Pusey and Tough (2), examining a 

great amount of theoretical and experimental 

investigations. An attempt for examination of 

such systems, both theoretically and experi- 

mentally, was made by Anderson et al. (10, 

11 ). The experimental results in Ref. ( 11 ) 

showed a great increase of the collective dif- 

fusion coefficient with the decrease of the elec- 

trolyte concentration in the case of charged 

bovine serum albumin molecules. The theo- 

retical approach in Ref. (10), however, was 

criticized by Felderhof (5) for the way in which 

the hydrodynamic interactions were taken into 

account. Another theoretical approach was 

proposed by Phillies ( 12, 13). He considered 

the hydrodynamic interactions in a manner, 

alternative to that of Felderhof and co-workers 

(5-9), which led to different results for the 

collective diffusion coefficient of hard spheres. 

This discrepancy, however, seems to be insig- 

nificant when suspensions of charged particles 

with low concentrations of electrolyte are 

considered (see Table I in Ref. (13)). Nu- 

merical calculations for the collective and self 

diffusion coefficients of charged colloidal 

spheres, based on the theory of Felderhof (5) 

and using a screened Coulomb type of poten- 

tial, were performed by Ohtsuki and Okano 

(14). A simple analytical expression for the 

dependence of the collective diffusion coeffi- 

cient on some parameters of the system was 

used by Belloni and Drifford ( 15 ). It accounts 

for the osmotic virial term and for the influ- 

ence of the small ions but neglects the hydro- 

dynamic interactions, which have been proved 

to be important in most cases ( 14, 16). Hence, 

no complete analytical formula was suggested 

to give an explicit functional relation between 

the concentration dependence of the collective 

diffusion coefficient and the surface potential 

of the particles, dielectric constant of the dis- 

perse medium, concentration of low molecular 

electrolyte, and particle radius. It is preferable 

to use simple expressions, similar to those for 

hard spheres (see Eq. [1.4]), rather than in- 

tegrals, which need numerical evaluation. An 

alternative is to express Dc as a function of a 

parameter 7 which gives the ratio between an 

effective hard core repulsive radius aef~ and the 

actual hard sphere radius a (aefr > a) (see, e.g., 

(2)). A similar approach was used in a recent 

publication of Cichocki and Felderhof (16) 

for treatment of systems with interaction po- 

tentials, different from the hard sphere type. 

The effective hard core repulsive radius, in- 

troduced in (16), is not a quantity which can 

be measured independently. Besides, it has not 

been related in a simple way to the parameters 

which determine the actual electrostatic in- 

teractions. 

The particle charge and the ionic strength 

of the suspension can influence the Brownian 
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motion even of a single particle, because of 

deformation of the counterion atmosphere. 

The latter loses its spherical symmetry, thus 

creating an additional force, which decreases 

the particle velocity (17-19). This effect, 

however, is not due to the interparticle inter- 

actions and does not lead to dependence of 

the collective diffusion coefficient Dc on the 

particle volume fraction 4~. The polarization 

of the double layer can change the diffusion 

coefficient within 10-20% (19), while the pair 

electrostatic interactions can increase the dif- 

fusivity several times ( 11 ). Similar is the sit- 

uation when the viscosity of colloidal suspen- 

sions is examined. The secondary electrovis- 

cous effect, due to pair interactions, strongly 

dominates the primary one, due to deforma- 

tion of the particle electrical double layer (20). 

Using small ion-colloid particle coupled 

mode theory, Belloni and Drifford (15) 

showed that the small ions can also affect the 

particle concentration dependence of the col- 

lective diffusion coefficient. This effect is pro- 

portional to the ratio of the particle diffusion 

coefficient over that of the small ions and con- 

tributes much less significantly in comparison 

with the pair particle interactions. 

Our aim in this study is to obtain the coef- 

ficient X, defined by means of Eq. [1.4 ], as a 

simple function of some well defined quanti- 

ties such as particle radius, charge and surface 

potential, screening parameter of the Coulomb 

interaction, dielectric and viscous properties 

of the disperse medium, and temperature. 

The paper is organized as follows: Section 

2 deals with the derivation of analytical 

expressions for the collective and the short 

time self diffusion coefficients of charged col- 

loidal spheres as explicit functions of the sus- 

pension electrostatic properties; Section 3 

presents the light scattering experiments for 

measurements of the diffusion coefficient of 

well defined latex suspensions; Section 4 is de- 

voted to the comparison between our model 

and experimental results; a summary is given 

in Section 5; and some calculations are de- 

scribed in the Appendix. 

2. THEORY 

DERIVATION OF ANALYTICAL EXPRESSIONS 

FOR THE COLLECTIVE AND SELF DIFFUSION 

COEFFICIENTS OF CHARGED 

COLLOIDAL SPHERES 

We follow the approach of Felderhof (5), 

which is based on the linear Stokes equations 

for an incompressible fluid: 

7/V2v = Vp, V- v = 0. [2.1] 

Here v is the velocity field and p is the pressure. 

The Brownian motion of the spherical col- 

loidal particles is described with the N-particle 

Smoluchowski equation for the probability 

function PN in the configurational space (5), 

OPN _ V N  ° D" [VNPN 
Ot [ 

+-FT(VNWN)PN] ,  [2 .2]  

where D is the diffusion tensor and WN is the 

potential of interaction between N particles. 

In accordance with Ref. (5), the following 

simplifications are assumed: 

(i) the volume fraction of particles is low; 

(ii) the interaction potential is pair-wise 

additive, 

WN(rl, /'2 . . . . .  rN) 

=1  X X W(r~j); [2.31 
2 i j4=i 

(iii) the diffusion tensor is restricted to sin- 

gle particle, and pair contributions, 

D = D I +  ~ Z [ A ( i , j ) + B ( i , J ) ] .  [2.41 
i j 

Here, the tensors A(i, j) and B(i, j) account 

for two particle hydrodynamic interactions. I 

is the unit tensor. (For more details one may 

refer to the original papers ( 5, 6)); 

(iv) the deviations of the pair correlation 

function g(r) from its equilibrium shape are 

negligible; 
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(v) the local density gradients, due to con- 

centration fluctuations are small. 

Under  the above assumptions Felderhof 

derived (5) 

Ot~l -- DcV2~bl, [2.5 ] 
Ot 

where tbl is a small perturbation of the average 

volume fraction 4~. Dc is the collective diffu- 

sion coefficient, and can be expressed as fol- 
lows: 

Dc = Do(1 + Mb); 

)k : )k V "~- )kO "~ )ka ~- )kS ~- )kD. [2.6] 

Do is the diffusion coefficient of a single par- 

ticle (~b --~ 0). For charged colloidal particles 

Do may differ from the Stokes-Einstein value 

given by Eq. [ 1.1 ] (see, e.g., Refs. ( 17-19)). 

According to the theory of  Felderhof (5),  the 

coefficient )k consists of five contribution 
terms: 

)~v-  a3 [ g ( r ) -  1]r2dr [2.7] 

is the second osmotic virial coefficient; 

3f0  /to = ~ [g(r)  - 1]rdr [2.8] 

is the Oseen hydrodynamic interaction term; 

3 f0~ (~a6  5a4)  
)kA = ~-5 r 6 4 ~ g(r)r2dr [2.9] 

and 

75a 4 f ~  g(r) 
)ks = --~-- jo - ~ - d r  [2.10] 

account for the short range hydrodynamic in- 
teractions; and 

XD = 1 [2.11] 

is a force dipole part. For hard spheres these 
quantities are estimated as follows: 

)kv= 8, ) t o = - 6 ,  XA=--1.73,  

)kS = 0.29, XD = 1, or)k = 1.56. [2.12] 

It was shown recently (7-9)  that the integral 

)kA can be calculated with much better accu- 

racy by involving higher order terms in the 

expansion of the two particle mobility func- 

tions, thus yielding )kA = -1 .83  and )k = 1.45 

for hard spheres, which coincides with the re- 

sult of Batchelor (3, 4). As we show below 

(see the comments after Eq. [2.33]), this 

specification of the hydrodynamic interactions 

affects only the hard sphere contribution, but 

can be completely neglected in the electrostatic 

repulsive one. 

Equations [2.6]-[2.11] are the starting 

point for our treatment of  charged colloidal 

systems. We write the radial distribution 
function g(r )  in the form: 

g(r) = e x p ( -  -~-WHs]j [[ WELl 
e x p -  xr J 

K T J ] \  1 -  K T ] "  [2.131 

WHS and WEE are the hard sphere and electro- 

static parts of the total potential of mean force. 

For a justification of this splitting of  the in- 

teraction potential, see Ref. (21). Equation 

[ 2.13 ] implies the consideration of colloidal 

particles with low energy of pair electrostatic 

interaction, and allows one to split the integrals 

[ 2.7 ] -  [ 2.10 ] into hard sphere and electrostatic 

parts. The potential of  pair electrostatic inter- 

action we use is the one derived by Beresford- 
Smith et al. (22), 

(zoe) 2 e 2,a e-,r 
WEE -- - -  [2.14] 

(1 + Ka) 2 r ' 

where z0 is the number of charges per colloidal 

particle, e is the elementary charge, e is the 

dielectric constant, a is the particle radius, and 

r is the screening parameter. The original 

expression of Beresford-Smith et al. (22) in -  

cludes a multiplier ( 1 + qS):. Since we are in- 
terested only in the first order correction of 

the collective diffusion coefficient Dc with re- 

spect to the volume fraction q~ (which means 

zero order of the interaction potential), the 
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higher order terms stemming from this mul- 

tiplier can be omitted. The expression [2.14] 

was derived by means of  statistical mechanical 

considerations using the correlation function 

formalism. It should be noted that the linear- 

ized Poisson-Boltzmann equation was used 

when deriving Eq. [ 2.14 ], in combination with 

some specific closure approximations. This 

equation, in fact, resembles the known Debye-  

Huckel expression (21 ), but there are some 

very important differences. The screening pa- 

rameter ~ accounts for the presence of  coun- 

terions, besides the added low molecular elec- 

trolyte (see Ref. (22)): 

The first integral in the right hand side of 

[2. l 6], denoted below by )`v us, is responsible 

for the hard sphere contribution, 

)`v ns = 8. [2.17] 

The second integral in Eq. [2.16] deals with 

the electrostatic interactions and is equal to 

)`EvE= (z0e)2(1 + 2 ~ a )  3 [2.181 
eKTa (1 + Ka) 2 (Ka) 2" 

2.2. Calculation of  the Oseen Hydrodynamic 

Term )to 

47re 2 
K 2 -- - -  ~ niz 2 [2.151 

eKT 
i 

The summation in the fight hand side is car- 

fled out over all low molecular ionic species 

in the suspension (added low molecular salt 

together with the free counterions dissociated 

from the colloidal particles). The correspond- 

ing concentration and number of  charges per 

given ion are denoted by n~ and z~. This fact 

allows one to treat even suspensions with low 

concentration of  added electrolyte, when the 

concentration of the counterions dissociated 

from the particles cannot be neglected. An- 

other important property of  the potential 

[ 2.14 ] is that it is ensemble averaged over the 

configurations of  the remaining colloidal par- 

ticles and the small ions, hence, it is a potential 

of mean force. 

2.1. Calculation of  the Osmotic Virial 

Term Xv 

Combining [2.7], [2.13], and [2.14] we 

obtain 

)`v -- ~ r 2dr 

3 f2 ~ (zoe) 2 e 2~a 
+-~3 ~ eKT (1 + Ka) 2e-~rrdr" [2.16] 

Eqs. [2.81, [2.13], and [2.14] give 

3 fo ; a  3 f2~ (z0e)2 ?to= -~ rdr--~5 a ~KT 

e2Ka 

× (1 + ra) 2 e-~rdr" [2.19] 

Again, the first integral gives the hard sphere 

part, 

Xo "s = - 6 ,  [2.201 

and the second, the electrostatic contribution, 

xE L = _ (zoe) 2 1 3 [2.21] 
eKTa ( 1 + ~a) 2 (~a) " 

Equations [2.18] and [2.21] are obtained 

without imposing any restrictions on the value 

of ca. 
We can write 

_)`,~L/)`~L = (2 + 1/Ka). [2.22] 

Hence, I )EL I > ] )`~L ] and for extremely small 

~a the osmotic virial term )̀EVE is the only term 

to be kept. This approximation is exploited in 

some theoretical models (15) and the inter- 

pretation of light scattering experiments with 

charged suspensions (2). However, in most 

cases (14, 16) the Oseen part )`o should be 
accounted for. It is shown below that the other 

)`g and )`s are even less hydrodynamic terms EL EL 

important. 
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2.3. Calculation of  the Short Range Term hA 

In this case, Eqs. [2.9], [2.13], and [2.14] 

are used to yield 

)kA = ~ a r 4 4 d r  

3 o~ 9 a  6 5 

a 3 a 8 r 4 4 

(zoe) 2 e 2"a e-,~r 
- -  dr. [2.23] 

× eKT (1 +Ka) 2 r 

The first integral accounts for the hard sphere 

interactions, 

XA n s =  -- 1.73. [2.24] 

As we mentioned above, a more precise value 

x~s = _ 1.83 was obtained recently (7-9).  The 

second integral is the electrostatic term, 

X~c = (zoe) 2 e2"a 

eKTa (1 + Ka) 2 

× - ~-~ Es(2~a) + ~ E3(2Ka) , [2.25] 

where E~ (p ) i s  an integral exponent of nth 

order, and is defined by (23,24) 

~1 °e e - s p  E, (p )  = ~ ds. [2.26] 

It is not possible to solve analytically the 

integrals in [2.25 ] and [2.26] in the same way 

as for X,~c and Xg c. Still, an asymptotic expres- 

sions for the limiting cases Ka ~ 1, and Ka > 

1 can be derived (cf., Appendix and Refs. (23, 

24)): 

X[c_  (zoe) 2 

eKTa 
- - -  [0.42 - 1.73Ka + O(Ka) 2] 

for Ka ~ 1 [2.27] 

and 

x~L = (zoe) 2 0.363 [ 3.21 
eKTa (Ka) 3 / 1 Ka -- - - - t -  O(Ka)-21 

for Ka >> 1. [2.28] 

The coefficient X~c is also related to the short 

time self diffusion coefficient (2, 16). 

2.4. Calculation of  the Short Range 

Hydrodynamic Term Xs 

In the same way as in the preceding cases 

we obtain 

75 / ' ~  dr 75 (zoe) 2 

Ns = ~-  a 4 J2a r ---~ -- - 4  a4 t K T  

e 2Ka ~ e -Kr 

×(l_--~-a)  2 2a-~T-dr ,  [2.291 

where we have again the hard sphere part 

X~ s = 0.29 [2.30] 

and electrostatic part 

~ksEL_ (zoe) 2 e 2Ka 

eKTa (1 + Ka) 2 

l ×-~-~E6(ZKa/. [2.31] 

The coefficient X~ c gives a negligible contri- 

bution to the collective diffusion coefficient 

(see the next subsection) and does not con- 

tribute to the short time self diffusion coeffi- 

cient at all. It is a matter of simple mathe- 

matics to derive approximate expressions in 

the same manner as for Eqs. [ 2.27 ], and [ 2.28 ] 

(cf., Appendix and Refs. (23, 24)). 

2.5. First Order Correction of  the Diffusion 

Coefficients Dc, D s and Sedimentation S~ 

Velocity U 

Equations [ 2.18 ] and [ 2.21 ] can be summed 

up to yield 

XZvL + X~ L _ (zoe) 2 1 3 
eKTa (1 + Ka) (Ka) 2" [2.32] 
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Similarly, Eqs. [2.25 ] and [2.31] give 

)kA EL ~- )k EL = (zoe) 2 e 2ra 

eKTa (1 + ra)  2 

27 15 
× - 1-~ Es(2ra)  + ]-~ E3(ZKa) 

128 E6(2Ka) . [2.331 

The ratio (X~ L + x~L)/ X,~ L + Xg L) is plotted 

in Fig. 1 as a function of Ka. It is seen that this 

ratio passes through a maximum value at Ka 

~ 5, and tends to zero in the limit ~a ~ 0. 

At large values of Ka the curve tends to a con- 

stant equal to 0.023. The maximum of the 

ratio is 0.03, which means that the main elec- 

trostatic contribution to the collective diffu- 

sion coefficient (see Eq. [2.6]) is due to the 

virial and the Oseen terms for  all values o f  Ka. 

The other terms, )EL and X EL, can be entirely 

neglected, at the cost of an error not exceeding 

3%. In spite of following another approach, 

Cichocki and Felderhof (16) also came to the 

same conclusion that only the virial and the 

Oseen contributions are important for the de- 

termination of the collective diffusion coeffi- 

cient of charged Brownian spheres. 

Combining Eqs. [ 2.6 ] and [ 2.32 ] we finally 

obtain a simple expression for the interaction 

parameter: 

(zoe) 2 1 3 
X = 1.45 + ~K--~a (1 + Ka) (ra)  2" [2.34] 

~EL ~EL 

0.04 ~A +A~ ~EL+'3 EL 
V ~ 0  

0.03 

0.02 

0.01 

i i i i i L 

0 0.2 0.4 1.0 2,0 5.0 10 50 
KO, 

FIG.  1. P l o t  o f  t h e  r a t i o  ()kEA L -}- •sEL)/ ()k EL -}- ~kg L) VS. 

ga. 

The above results enable us to obtain in a 

similar manner a simple formula for the short 

time self diffusion coefficient D s. Indeed, by 

using the formula (2, 16), 

Ds s = D0(1 + Xa~b), [2.35] 

together with Eqs. [2.24] and [2.25], one ob- 

tains an expression for calculating D s. For es- 

timates, the asymptotic formulas [2.27] or 

[2.28] can be also used. 

Another useful expression that can be ob- 

tained from our simple model is that for the 

sedimentation velocity of colloidal particles. 

Following the concept of Batchelor (3), and 

Felderhof (5), and taking into account our 

results above, we can write 

U 
- - =  1 

u0 

+ (x~s + ~HS + x~S + XD + x~L)~ [2.36] 

o r  

U 
- - =  1 
Uo 

( (zoe)2 1 3 )  
- 6.54 + eK~aa (1 + Ka) 2 (ra)  ~b, 

[2.37] 

where Uo is the sedimentation velocity of an 

isolated particle and U is the particle mean 

velocity in the presence of other particles. The 
terms )EL and Xs zL in Eq. [2.36] are neglected 

because their contribution is less than 3% (cf. 

Fig. 1). 
Equation [2.34] is the basic result in our 

theoretical approach. The interaction param- 

eter X is expressed as a function of the surface 

charge (zoe). However, it is more convenient 

in some cases to use an expression which de- 

pends on the surface potential of the particles 

firs. Such expression is derived below. We start 

our considerations, using the expression for 

the total ion-colloid correlation function hlo, 

given by Beresford-Smith et al. (22),  

Z i z o e  2 e Ka e - r r  

hlo= , [2.38] 
~KT (1 + Ka ) r 
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where zl is the number of charges of the cor- 

responding microion. Hence, the potential 

distribution around the colloidal particle is 

(21) 

zoe e ~a e - x r  

q ( r )  - [2.39] 
e ( l + K a )  r 

The surface potential of  the particle is 

zoe 1 
qs  [2.40] 

ea (1 + Ka) 

Introducing [2.40 ] we obtain 

WE E '~t2 ~ 2  e2Ka e - ~ r  = s - - - ,  [2.41] 
r 

which in fact is the potential of mean force of 

Beresford-Smith et al. (22 ) ,  expressed in terms 

of the surface potential ~s .  Thus, for the in- 

teraction parameter X we get (cf., Eq. [2.34]) 

• ~ea ( 1 3 [2.42] = 1 . 4 5 + - ~ - ,  +Ka) (Ka)  2. 

When a system with a given constant charge 

is considered, according to Eq. [2.34], the 

electrostatic correction of X diverges for small 

~a as (Ka) -2 and tends to zero for large Ka as 

(Ka) -3. When the real physical situation cor- 

responds to a constant surface potential, Eq. 

[ 2.42 ] implies that the electrostatic correction 

of X diverges for small Ka as (Ka) -2 and tends 

to zero for large Ka as (Ka) - I. The experimental 

results, obtained in the next section, seem to 

favor the second case when the surface poten- 

tial is constant. There might be other cases, 

however, where the situation is different. 

We should like to emphasize that the 

asymptote at Ka --~ oe gives properly the hard 

sphere result of  Batchelor (3, 4) and Felderhof 

and co-workers ( 5-9 ). For real systems, how- 

ever, the increase in Ka leads to an increase of  

the importance of the Van der Waals attractive 

forces. Hence, they should be also included 

when Ka is large. We are interested in charged 

systems at low concentrations of electrolyte, 

and the attractive interactions can be entirely 

neglected. For example, Corti and Degiorgio 

(25) showed in their experiments with ionic 

micelles, that for Ka < 2.6 the Van der Waals 

attractive contribution is less than few per- 

cents. 
Another possible effect we are neglecting in 

the above consideration is the influence of the 

small ions on the concentration dependence 

of the collective diffusion coefficient. Taking 

into consideration the Belloni and Drifford 

model (15),  we can reformulate Eqs. [2.34] 

and [ 2.42] in order to include the correction 

stemming from the finite diffusivity of the 

small ions: 

(zoe)  2 1 3 
X = 1.45 + - -  

e K T a  (1 + Ka) (Ka) 2 

+AXs~ [2.43] 

or  

qZea 3 
X= 1 . 4 5 + ~ ( 1  + K a ) ( K a )  2 

+AXsi. [2.44] 

With AXsl we denoted the small ions correc- 

tion ( 15 ). In the terms of our model it reads, 

( zoe ) 2 1 3 Do 

AXsl = eK~T--a-a ( 1 + Ka) 2 (Ka) 2 Dsi '  [2.45] 

where Dsx is the small ions diffusion coefficient. 

We can estimate the relative contribution AXsI 

using 

A)kSI 1 Do 
X E ~  - (1 + Ka---------) Dsi" [2.46] 

The importance of AXSl decays monotonically 

with Ka. Furthermore, it is proportional to the 

ratio Do/Dsi. Hence, for most particular cases 

(latex particles, ionic micelles, microemul- 

sions) the correction AXsi is less than 10%. 

At the end of this section we compare our 

results for the hydrodynamic terms (Eqs. 

[2.21], [2.25 ], [2.31]) to those ofPhillies (12, 

13) who accounted for the hydrodynamic in- 

teractions in a somewhat different way. As 

Phillies pointed out, the difference between his 

approach and the approach of Felderhof for 
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charged particles is most pronounced for large 

Ka. For Ka < 2 this difference is less than 10%. 

3. LIGHT SCATTERING EXPERIMENTS 

For experimental verification o f  the theo- 

retical model formulated above, we performed 

dynamic light scattering measurements (DLS) 

of  the collective diffusion coefficient in latex 

suspensions at different volume fractions of  

particles and various concentrations of  elec- 

trolyte. 

3.1. Materials and Sample Preparation 

The polystyrene latex suspension was com- 

mercially supplied by Interfacial Dynamics 

Corporation. According to the accompanying 

certificate, the diameter of  the particles is d = 

19 n m +  20%, the number of ionizable sul- 

fonic groups per particle is z = 400, and the 

solid content is 6.29 wt%. The NaC1 (Merck),  

used as electrolyte, was heated for 6 h at 600°C 

for removal of  organic contaminants and hu- 

midity. The water was purified by a Milli-Q 

Organex system (Millipore). 

The residual electrolyte, present in the 

commercial latex suspension, was removed by 

multiple consecutive dilutions with deionized 

water, and concentrations by means of mem- 

brane filtration. The filtration procedure was 

performed in a stirred batch cell at low pres- 

sure, 50 kPa, and moderate stirring. The 

membrane, we used, was polysulfonic with 105 

Daltons molecular weight cut off. The con- 

ductivity of  the permeate was periodically 

measured and after achievement of  constant 

value (about 0.3 m S / m )  the suspension was 

finally filtered through a 0.22-/~m filter unit 

(Millipore) and diluted to 1.00 wt%. The con- 

centration of  latex was determined by drying 

and weighing a given volume of the suspen- 

sion. In order to check whether some coagu- 

lation had occurred during the procedures de- 

scribed above, we compared the pretreated 

suspension with the initial one by means of  

DLS. The measurements were performed in 

excess of  NaC1 in order to avoid any electro- 

static and interaction effects. The measured 

mean diffusion coefficients and polydispersi- 

ties were identical for both samples. 

Suspensions of different concentrations of  

latex particles and NaC1 were prepared without 

any further filtration, in order to avoid changes 

in the amounts of  solutes. 

3.2. Light Scattering Apparatus 

The measurements were performed on 

Malvern 4700 C system, supplied with K7032 

CE 8-Multibit correlator. The light source was 

an Argon laser (Innova 70, Coherent) oper- 

ating at 488 nm wavelength of  vertically plane 

polarized light. The scattering angle 0 was var- 

ied from 10 ° to 135 °. This range of angles 

corresponds to a variation in the magnitude 

of  the scattering vector q = (4zrn/A) s in(0 /2)  

between 3.00 × 1 0  4 c m  -1  and 3.17 X 105 

cm -1 . A is the wavelength of  the light in vacuo 

and n is the refractive index of  the suspension. 

The temperature of  the samples was auto- 

matically kept 25 + 0.1 °C. 

The concentration of  latex particles varied 

from 0.01 to 0.20 wt%. Such values are high 

enough to allow measurements at minimum 

laser power (about 15 roW). Thus, the results 

are not influenced by local heating of the sam- 

ples caused by the beam. O n  the other hand, 

these concentrations are low enough to avoid 

multiple light scattering. In all cases the beam 

passing through the suspensions was clear, 

without a halo of  secondary scattered light. 

The theoretical estimations also show that the 

multiple scattering is negligible for such small 

particles, at concentration below 0.3 wt%; see 

Ref. (2) ,  p. 129. 

3.3. Data Analysis 

Malvern 4700 C works in the homodyne 

mode of  operation. Hence, the photomulti- 

plier detects the light intensity autocorrelation 

function, 

g ( Z ) ( r )  = (E~( t )Es( t )  

× E*(ts + ~-)Es(t + ~_)>/(i>2, [3.1] 
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where Es is the scattered electric field, I is the 

intensity of  the scattered light, the angular 

brackets denote time averaging, and the as- 

terisks denote complex conjugation. For rel- 

atively free diffusing scatterers (as in our case), 

g ( Z ) ( r )  is related to the field autocorrelation 

function g(~)(r) via the Siegert relation (see, 

e.g., Ref. (2))  

g(Z)(r) = 1 + [g(l)(r)[2 [3.2] 

By definition 

g(~)(r) = (E*( t  + r )Es ( t ) ) / ( I ) ,  [3.3] 

and for noninteracting monodisperse particles 

is represented by a single exponential function. 

Hence, from the measured quantity g(2)(r) 

we can calculate the field autocorrelation 

function g( 1 )(r).  A typical plot of the latter is 

shown in Fig. 2 for concentration of latex 0.04 

wt% in 1 0  - 4  mol/1 NaC1 at scattering angle 0 

= 30 °. The logarithm of the correlation func- 

tion In g( ~ )(r ) vs r significantly deviates from 

straight line at long times. This deviation is 

due (2) to: (i) the electrostatic and hydrody- 

namic interactions between the particles; (ii) 

the polydispersity of the particles. Thedetailed 

analysis of  such complex correlation functions 

is a difficult and not entirely resolved problem. 

Nevertheless, some valuable information can 

be extracted from the initial decay of the au- 

tocorrelation function. A convenient analysis 

- 1  

E 

c 

-2 

- - . . .  

x 

i i i i I i i ~ i ] p i r i 

0.5 1.0 1.5 
eft xl03is} 

FIG. 2. Logarithm of the field autocorrelation function 
g(l) (q, r) vs r at 0.04 wt% latex with 10 -4 mol/1NaC1, 
at q = 8.90 × 10 4 c m  -1 . 

can be performed in terms of the cumulant 

expansion (2) 

In g(1)(r) = ~ Kn (-r)-----~, [3.4] 
n! 

n 

where the nth cumulant is determined as 

d - 
K ~ = ( - 1 )  n l i m - l n g ( 1 ) ( r ) .  [3.5] 

,-*0 d r  n 

For a system of noninteracting particles (2) 

Kl = DsEq 2, K z = K 3  . . . . .  0. [3.6] 

Hence the first cumulant is related to the 

Stokes-Einstein diffusion coefficient DsE. For 

a system of interacting particles, the first cu- 

mulant defines an effective diffusion coefficient 

(2, 16): 

DEVF =- Kl/q2. [ 3.7 ] 

The value of DEw depends on the scattering 

vector q and the volume fraction of particles 

4). Relations expressing DZFF as a function of 

q and 4) at low volume fractions and arbitrary 

scattering angles were given by several authors 

(2, 16 ). As known, in the small q-limit, DEw 

coincides with the collective diffusion coeffi- 

cient Dc defined by Eq. [2.6]: 

Dc(4)) = lim [Kl(q, 4))/q2]. [3.8] 
q ~ 0  

Hence De can be determined by extrapolating 

the experimental curve DZFF(q) for q --~ 0. Dc 

thus determined is to be compared to the 

theoretical value, calculated by means of Eqs. 

[2.6], [2.34], and [2.42]. 

The experimental data were obtained and 

treated in the following manner: 

(i) for given concentrations of latex parti- 

cles and electrolyte we measured the autocor- 

relation function g( 1 ) ( r )  at different scattering 

angles. Using the first cumulant we calculated 

the effective diffusion coefficient DEw(q, 4)) 
from each g(1)(r) curve; 

(ii) after extrapolation of the plot of DzvF 
vs q for q ~ 0 (see below for details), the 

collective diffusion coefficient Dc(4)) was de- 

termined; 
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(iii) in accordance with Eq. [2.6], the slope 

of  the plot of  Dc vs q~ determines the inter- 

action coefficient X at given concentration of 

low molecular electrolyte (i.e., at given value 

of  Ka). 

4. RESULTS A N D  DISCUSSION 

The experimentally determined dependence 

o f  DEFF on the scattering vector magnitude q 

is shown in Fig. 3 for four different volume 

fractions of particles and concentration of  

electrolyte equal to 10-4 mol / l  NaCI. The lines 

are drawn through the experimental points as 

described below. One sees that DEW gradually 

increases with the decrease o f q  (for given ~), 

and tends to constant value at low scattering 

angles. We need the limit values Dc = DEVF(q 

--* 0), and for that purpose a numerical ex- 

trapolation of  the experimental data was per- 

formed. The power expansion of the expres- 

sion for the angular dependence of DEVF for 

small q, given in Ref. (2),  contains only even 

powers of  q. A detailed analysis of  the depen- 

dence DEw(q) is performed in Ref. (26). It 

3.0 ¸ 

~o i ~ ~2.5 x~. -(31 
c~ (21" " , 

2.0 

1 . 5 ,  , , , , 0 1 2 3 
qxlo ~ (cm-1) 

FIG. 3. Plot of  DEw vs q at Ka = 0.422 and for four 

different particle vo lume fractions. The experimental  

points are fitted with smooth  curves, according to Eq. [4.1 ]: 

(1)  q~ = 1 × 10 -4, A = - 3 . 9 4  X 10 -19 cm4/s ,  B = 1.39 

× 10 -31 cm6/s;  (2)  q~ = 2 × 10 -4, A = - 7 . 3 7  × 10 -19 

cmr / s ,  B = 1.97 × 10 -30 cmr / s ;  (3)  ~b = 4 × 10 -4, A = 

- 1 3 . 9  × 10 -19 cm4/s ,  B = 5.06 × 10 -30 cmr / s ;  (4)  q~ = 

6 × 10 -4, A[ = - 1 7 . 8  × 10 -19 cm6/s ,  B = 6.19 × 10 30 

cm6/s.  The values of  Dc are shown in Fig. 4. 

was shown that a polynomial least square fit 

can be used: 

DEFF(q) = Dc + Aq 2 + Bq 4, [4.1] 

The coefficients Dc, A, and B are to be deter- 

mined by means of  the least square method. 

The respective curves are shown in Fig. 3. The 

experimental points are randomly distributed 

with respect to the smooth curves, and the rel- 

ative errors are less than 5%. Thus, we deter- 

mined four values of  De corresponding to dif- 

ferent particle volume fractions; see line 1 in 

Fig. 4. The electrolyte present in the suspen- 

sion w a s  l 0  -4  rnol/1 NaC1. The higher volume 

fraction 4~, the higher collective diffusion coef- 

ficient Dc. The lines in Fig. 4 are fitted ac- 

cording to the equation 

Dc(th) = Do(1 + k~b). [4.2] 

The intersection gives the diffusion coefficient 

of  a single particle at infinite dilution of  the 

latex spheres. It can depend on the electrolyte 

type and concentration (19). The other lines 

plotted in Fig. 4 correspond to 2.25 × 10 - 4 ,  

9.00 × 10 -4, and 10 -2 mol / l  NaC1, respec- 

tively. They were obtained by following the 

same procedure as for line 1. 
A substantial feature of  the results presented 

in Fig. 4 is that the intersection (the single 

particle diffusion coefficient Do) depends on 

the electrolyte concentration. This is a known 

electrokinetic effect, which was investigated 

both theoretically and experimentally by sev- 

eral authors (17-19) .  They found that Do 

passes through a minimum at Ka ~ 1. At Ka 

> 3, Schumacher and Van den Ven (19) 

showed experimentally and theoretically that 

Do coincides with the Stokes-Einstein diffu- 

sion coefficient DsE. In our case, ra  ~ 3 is 

reached at 10 -2 tool/1 concentration of elec- 

trolyte, so we supposed that the intersection 

of  line 4 in Fig. 4 gives the value Do = DSE. 

This allowed us to find the mean hydrody- 

namic radius of  the latex particles a = 12.7 

nm. Figure 5 presents the plot of the ratio Do/ 

DSE vs Ka. The curve shown there is similar 
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FIG. 4. Plot of Dc as a function of the volume fraction 
of latex particles 4~ at different electrolyte concentrations: 
( 1 ), Ka = 0.422; (2), Ka = 0.632; (3), Ka = 1.27; (4), Ka 
= 4.22. 

to that obtained from Schumacher and Van 

den Ven (19) (see their Fig. 7) for constant 

surface potential. The theoretical model given 

by Schurr ( 17 ) and Medina-Noyola and Viz- 

carra-Rendon (18) predicts similar behavior, 

but at constant surface charge. If the surface 

potential is kept constant, this theory ( 17, 18 ) 

predicts monotonous decrease of the single 

particle diffusion coefficient with Ka. Since the 

theories (17-19)  are known to be only in 

qualitative agreement with the experiments, 

we did not apply them to interpret quantita- 

tively the results shown in Fig. 5. 

Figure 6 shows the dependence of the in- 

teraction coefficient X (determined from the 

slope of the lines in Fig. 4) on the electrolyte 

concentration Ka. The points represent our 

experimental results, whereas the smooth line 

is drawn according to Eq. [2.42] at constant 

surface potential ~s  = 37.7 mV. The dashed 

line calculated by means of Eq. [2.40] shows 

the dependence of the particle charge number 

z0 on Ka. These results demonstrate that the 

constant potential hypothesis agrees much 

better with our data than the constant charge 

hypothesis. The particle charge z0 strongly in- 

creases with the increase of the electrolyte 

concentration (see also Table I). This means 

that the degree of dissociation of the surface 

ionizable groups also increases from 10% at 

Ka = 0.422 to 38% at Ka = 4.22. The value of  

the surface potential, e ~ s / K T  ~ 1.5, is too 

high for the linear theory to be strictly valid, 

but still it can be applied as demonstrated in 

Ref. (27).  

Our theoretical expression for X can be also 

checked by using the experimental results of 

Anderson et al. ( 11 ) for the diffusion coeffi- 

cient of bovine serum albumin at low ionic 

strengths. The points in Fig. 7 are the data of 

Anderson et al., whereas the smooth line is 

drawn in  accordance with formula [2.34]. 

Curve 2 in Fig. 7 represents the independently 

determined data for the particle charge z0 given 

in Ref. (8),  which were used to calculate the 

theoretical curve 1 in Fig. 7; see also Table II. 

Hence, z0 was not an adjustable parameter in 

this case. The agreement between our model 

(Eq. [2 .34] )and  the experiment of Anderson 

et al. ( 11 ) seems to be very good. 

By the end of  this section we discuss three 

additional problems, arising from the partic- 

ular system under consideration: 

(i) The real latex suspension is not perfectly 

monodisperse, and in fact the measured values 

of  DEW are averaged over the particle size dis- 

tribution. We believe this is the main reason 

for the difference between the hydrodynamic 

radius a = 12.7 nm, obtained by DLS, and 
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F IG .  5. P l o t  o f D o / D s E  vs  Ka. 
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FIG. 6. Plot of the interaction parameter X, and the 
particle charge Zo vs Ka for latex. The curves ( 1 ) and (2) 
are drawn through the experimental points at constant 
surface potential ~s = 37.7 mV by means of Eqs. [2.42] 
and [ 2.40 ], respectively. 

the certified one, a = 9.5 nm. The latter value 

was probably obtained by electron microscopy 

and was a number  averaged quantity, while 

the former was averaged over the intensity of  

the scattered light. This is known as intensity- 

averaging (2) and should lead to larger values 

for such small particles; 

(ii) As we already mentioned in Section 2, 

the screening parameter  K in the theory of  

Beresford-Smith et al. (22) includes both the 

added electrolyte and counterions dissociated 

from the colloidal particles. The numerical es- 

t imations showed that for the particle and 

electrolyte concentrations we used, the effect 

of  the dissociated counterions on t< is less than 

5%, so their presence can be neglected in this 

case. 

(iii) The linearization of  the correlation 

function (see Eqs. [2.13] and [2.14]) also 

needs some discussion. This approximation is 

applicable for colloidal systems of  small and 

weakly charged particles such as proteins and 

some ionic micelles. Hence, we can expect that 

the application of our theoretical model to the 

results of  Anderson et al. ( 11 ) is quite reason- 

able. For latex particles, however, the situation 

is different. Usually they have greater density 

of  the surface charge, compared to proteins. 

Hence, the linearization of the correlation 

function can be applied only for larger inter- 

particle distances, where the interaction energy 

has already sufficiently decreased, due to its 

specific form (Eq. [ 2.14 ] ). Still, we cannot 

claim that the particle charge of  the latex par- 

ticles calculated by u s  and shown with curve 

2 in Fig. 7 is the real one. Most probably it is 

an effective value. A rigorous procedure for 

treatment of  the diffusion in dilute suspensions 

of  strongly charged particles was developed 

recently (26).  By applying the Barker and 

Henderson perturbation theory (28),  and in- 

volving the nonlinear Poisson-Boltzmann 

equation, a straightforward relation between 

the actual particle charge (or  potential) and 

the correction parameter  k was obtained. 

5. CONCLUDING REMARKS 

We derived an expression for the electro- 

static contribution ~k EL to the interaction pa- 

rameter  X. The latter characterizes the linear 

dependence of  the collective diffusion coeffi- 

TABLE I 

Parameters of the Latex Suspension Used in the Dynamic Light Scattering Experiments 

e~tsa 

NaCI (tool/t) xa Do X 10 7 (cnl2/s) ~ K T  zo b 

1.0 × 10 -4 0.422 1.86 + 0.01 1000 + 20 1.51 +_ 0.02 39.3 + 0.4 
2.25 X 10 -4 0.632 1.86 + 0.03 520 + 20 1.52 _+ 0.05 45.6 +_ 2.0 
9.0 X 10 -4 t.270 1.75 _+ 0.02 206 + 6 1.63 + 0.05 68.0 -+ 2.0 
1.0 x 10 -2 4.220 1.93 + 0.02 40-+ 8 1.57 + 0.20 150.0 + 15.0 

a Dimensionless potential, calculated in the framework of the linear theory (see Eq. [2.42]). 
b Surface charge, determined from the interaction parameter (see Eq. [2.34]). 
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FIG. 7. Check of  our Eq. [2.341 (Curve 1 ) against the 

experimental data for X (O),  and zo (+ ) ,  taken from Ref. 

( 11 ). The data for z0 are used to calculate curve 1 without 

any adjustable parameter. 

cient Dc on the particle volume fraction ~ (see 

Eq. [ 2.6 ]). It was shown that the contributions 

of the short range hydrodynamic interactions 
)tEL and )tEL cannot exceed 3% of )tEL for any 

electrolyte concentration; see Fig. 1. Hence, 

in fact )tEL can be expressed as a sum of the 

osmotic virial term )t EL and the long range hy- 

drodynamic Oseen term )t(~L. The result is a 

simple formula--Eq. [2.34] or the equivalent 

Eq. [2.42]. The theoretical model predicts 

large values of the interaction parameter )t 

(about several hundreds) at low concentra- 

tions of electrolyte. 

Light scattering experimental investigations 

of well defined latex suspensions were per- 

formed in order to obtain the dependence of 

the effective diffusion coefficient DEF F o n  the 

scattering vector q, and the particle volume 

fraction q~ at different electrolyte concentra- 

tions (see Fig. 3 ). Using an adequate numer- 

ical extrapolation of the function D E F F ( q )  w e  

obtained the dependence of the collective dif- 

fusion coefficient Dc on the volume fraction 

and electrolyte concentration (see Fig. 4). A 

value )t = 1000 was reached at low electrolyte 

concentrations (cf., Fig. 6). The experimental 

points in Fig. 6 are in excellent agreement with 

the theoretical model Eq. [2.42] at constant 

surface potential qs  = 37.7 mV (curve 1 ). 

The particle charge (calculated from the ex- 

perimental values of ) t E L )  increases with Ka 

(curve 2 in Fig. 6). 

The experimental data of Anderson et al. 

( 11 ), for bovine serum albumin, are treated 

in a different manner. In this case the theo- 

retical curve (Fig. 7) was drawn without any 

adjustable parameter because independently 

measured values of the surface charge of the 

protein molecule were available in Ref. ( 11 ); 

see also Table II. The agreement between the 

theory and experiment turns out to be very 

good (see Curve 1 in Fig. 7). In this case, the 

surface charge increases several times with 

Ka, while the potential ~s  changes only with- 

in 30%. 

It was found that the values for the collective 

diffusion coefficient Dc taken at q5 = 0 could 

differ for different electrolyte concentrations, 

passing through a minimum at Ka ~ 1 (Fig. 

5 ). This result is in agreement with the theo- 

retical and experimental investigations of 

Schumacher and Van den Ven (19) concern- 

ing the influence of the electric double layer 

on the single particle diffusion. 

The effect of the electrostatic pair interac- 

tions on the short time self diffusion coefficient 

(see Eq. [2.25], combined with Eq. [2.35]) 

and the sedimentation velocity (Eq. [ 2.37 ] ) 

was also considered. 

TABLE I! 

Parameters of  the Bovine Serum Albumin Solutions 

used by Anderson et al. (11) 

exits e 

KCI (mol/l) ra  X ~ Xb Zo ~ K T  

5.0 X 10 4 0.27 224 272 6.0 0.93 

1.0 × 10 -3 0.37 122 133 6.3 0.90 

2.5 X 10 -3 0.60 46 31 6.8 0.84 

1.0 X 10 z 1.20 17 38 9.6 0.86 

1.0 × 10 i 3.70 2 0 15.1 0.63 

a Calculated with the help of  our model (Eq. [2.34]) and 

values of  the parameter z0 given by Anderson et al. (11). 

b Experimental results for bovine serum albumin taken 

from Ref. (11). 

c Values taken from Table II in Ref. (11). 
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The results obtained in the present paper 

are applicable to a wide range of colloidal sys- 

tems: suspensions, micellar, and microemul- 

sion solutions. They may render particular 

importance in studying solutions of globular 

proteins which have relatively low surface 

charge, and in this case, the assumptions im- 

plied in our model are mostly justified. 

The proposed model (Eqs. [2.34] and 

[ 2.42 ]) allows us to predict the diffusion coef- 

ficient if the colloidal particle size, charge (or 

potential), ion concentrations, and other pa- 

rameters are known. On the  other hand, the 

equations derived can be used to determine 

some of these parameters (e.g., surface charge 

or potential) by measuring the diffusion coef- 

ficient via light scattering or some other con- 

venient method. 

APPENDIX 

DERIVATION OF ASYMPTOTIC EXPRESSIONS 
FOR ~EL AND ~kS EL 

The problems for the explicit calculation of 
~A EL and ~k EL arise from the appearance of in- 

tegral exponents of different order n: 

~1 c~ e -sp 
~ . (p )  = - 7  ds, 

n = 1, 2, 3 . . . . .  [A.1] 

Every integral exponent of higher order can 

be reduced to an expression, depending on 

El (p), using the formula (23) 

f e~ x et~X 
- ~  dx (n - 1 )x "-1 

fie ~x 

(n - 1 )(n - 2 ) x  n - 2  

fln-Z e~x fin-1 
- -  , , .  q - - -  

( n -  1)!x ( n -  1)! 
e~(p) 

[A.2] 

f o r n >  1. 
Hence the mathematical difficulties are fo- 

cused in the integral E1 (p). 

A.1. Asymptotic Solutions for Ka ~ 1 

We can write (24) 

E1 ( p )  

= - C -  I n ( p ) -  ~ ( - 1 )  n(p)n [A.3] 
r/t/! ' n=l 

where C = 0.5772 is the Euler constant. For 

p = 2ra ~ 1 one obtains 

E l (2 ra )  ~ - C  - ln(2Ka). [A.4] 

In all expressions of interest, (see Eqs. [2.25], 

[2.31], and [A.2]), El(2ra) is multiplied by 

a factor of the type (2Ka) n, where n > 2. Using 

the l 'Htpital  rule, it can be shown that 

lim [(2Ka)nln(2ra)] = 0. [A.5] 
2xa--~O 

Using Eqs. [A.2], [A.4], and [A.5], and con- 

sidering terms linear with respect to 2ra, we 

can write 

E~(2ra) 

e - 2 ~ a (  2ra ) 
(n--- i ) ~ K a )  1 (n--- 2) " [A,6] 

Equation [A.6] can be introduced in the 

expressions [2.25] and [2.31] for estimating 
the terms xEL and k~ L when ra ~ 1. 

A.2. Asymptotic Solutions for Ka ~> 1 

In this limiting case we have (23, 24) 

En(p) 

e-P(  n n (n+  l) ) [A.7] 
- 1 - - +  p------Y~ • 

P P 

Hence 

e a a ( n )  
En(2Ka) ~ 2Ka 1 ~ . [A.8] 

The sum in the brackets is restricted to the 

term linear with respect to (2ra)--1. Introduc- 

ing Eq. [A.8] in the expressions [2.25] and 

[2.31], we obtain asymptotic expressions for 
),EL and ~kELs , this time for Ka ~> 1. 
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