DIFFUSION OF ELECTRONS BY COHERENT WAVEPACKETS*

V. Fuchst, v. Krapchev, A. Ramand A. Bers

PFC/JA-83-26 July 1983

*This work was supported in part by NSF Contract No. ESC 82-13430,
in part by DOE Contract No. DE~AC02-78ET-51013, and in part by
Hydro-Quebec Project No. 573-57592.




1.

DIFFUSION OF ELECTRONS BY COHERENT WAVEPACKETS
V. Fuchs
Projet Tokamak, Institut de Recherche d'ﬁfdro Qu&ﬁcc, Vhroﬁnca,
| Québec, Canada JOL 2P0 | |
‘and
V. Krapchev, A, Ram, and A, Bers
Plasaa Fusion Center, Mi.aachh.sctts Institute of Tbchnoldgy,

Cambridge, MA 02139, USA

The momentum tiansfér and velocity diffusion of electroas period-
ically interacting with a coherent longitudinal wavepacket is consid- |
ered. Applying the resonance overlap gri:prion,vwn'eotablish the thres—
hold for intrinsic stochasticity and the width ofvthn stochastic region

A in velocity space. Direct numerical integration of the single-

Vstoch
particle dynamics and an approximate discrete mapping are used to corro-
borate the resonance overlap results and to find the short-and long-term
momentum transfer and diffusion in the field. After the onset of sto-

chasticity, we find a net induced current j ~Av and in the weak-

stoch
field regime (autocorrelation time <« bounce time) an initial rate of
change of the variance'<6v2>/2t equal to the quasilinéar-theory diffusion
coefficient. In the strong- field regime momentum tfansfer and stochas-
ticity persist owing to non—adiabatic transitions between trapped.and un-
trappedsstates as the electron traverses the wavepacket. The diffusion‘
coéfficient substantially deviates from the ﬁuaailinear (~E%) as well as
from reéonance broadening ~E 2) scaling, while the scattering in velo-

locity space tends to lose the local, diffusive, nature characteristic of

weak fields.




I. INTRODUCTION

The understanding of electron velocity scattering by waves is
intimately related to the phenomenon of stochaotic,.as opposed to reg-
ular, motion in wave-particle interactions, a problem which has been the
subject of intense study in thc.paa: few years; A number of benchmark
works !* have laid the basis for the understanding of weakly perturbed
nonlinear oscillators, while others went on to emphasize and analyze the

effect of particle motion ccochasticiﬁy on plasma collective effects such

as h‘acings‘s and cutrcnt-drivelo‘ll, for example. The classical, and

probably the best understood nonlinear wave-particle problem is the non-
linear oscillator, perturbed by'one single wn-k wave. Many problems can
be reduced to thac parﬁicular model 6r to its topreiéntacion in the form

of a discrete map, the so-called s:andar& or Chirikbv nap.12

The problem we propogse to study in the present paper-electron
motion in a coherent longitudinal wavepackec = finds itself on the
extreme opposite side to the "standard” problem, since we are dealing
with particle motion in many waves, which are the Fourier components of
the wavepacket. Although adding more and more waves to the standard
problem makes it, in principle, less and less tractable, in the limit of
a very large number of waves we again recover a familiar situation, sim-
ilar to that encountered in the quasilinear t:hoory.13 The principal dif-
ference here is that we don't have to postulate random phases for the
waves. Rather, once the threshold for resonance overlap ié exceeded, the
effect of the coherent wave system is to induce intrinsic stochasticitylz

and decorrelation from initial data occurs automatically.




The ultimate gbal of this study is to understand the momentum
érancfnr and diffusion of electroms cycling around a torus and periodi-
cally interacting with a localized wavepacket of travelling electrostatic
waves. This situation is encountered in lower-hybrid heating and/or cur-
rent drive if the conditions are met for the existence of resonance
cones. The source of stochasticity'and long time—scale scattering
effects are the repeated particle-wavepacket interactions at each cycle
sround the torus. One particular point of interest is to clarify under
what conditions a scattering event is local in velocity space (by this we
mean that one can determine the effects on a velocity distribution func-
tion f by using derivatives no higher than 32£/3v2). Further, if diffu~
sion is chking place, we might ask whether it scaleé according to quasi-
linear theory. We will see that, in broad terms, diffusion occurs under
the familiar condition that the field autocorrelation time be much smal-~
ler than the particle trapping time, but that in general, this condition
falls short of being 'a complete one, since behavior in velocity space can
be mixed: particles might diffuselin one velocity range, but can strongly

scatter, or even reflect, in another.

The physical model we adopt as a basis for our study has been
discussed before to some extent by Stix’ in the study of stochastic
heating, by Matsuda!? in the study of stochastic current drive, and by
Fuchs et alll, we :ake further steps here in the analytic as well as
numerical treatment of the problem, and an important new contribution
consists in emphasizing and analyzing the nonuniform nature of velocity-

space for the interaction. In particular, we establish the stochastic




threshold, the width of the stochastic region in velocity-space, and the
associated induced long-term current and diffusion coefficient as func-
tions of the field amplitude, of the spectrum, and of the electron
cycling length. We derive for the interaction an explicit discrete map~-
ping using weakly perturbed particle trajectories for the diffusion
regime, and an impiicit mapping based on fully perturbed trajectories
valid for strong fields. In numerical 1nvesﬁigations of the scattering
in velocity-space we use a number of tools: standard surface of section
plots, phase-space plots, and a.new diagnostic we term the "scattering
matrix”., This last comnsists in plottiné the particle velocities after an
interaction with the wavepacket against the particle velocities just
before interaction. The resulting plot shows exactly the range of scat-

ter as a function of particle velocity.

The paper is organized as'follaws. In section II we introduce
the model, baéic concepts, and the resonance overlap condition. Momentum
transfer and current is discussed in section III, and sections IV deals

.with the mapping that approximates the dynamic problem. Section V dis~
cusses velocity—-space diffusion, and section VI presents some features of

the strong~field regime. Finally, our conclusions make up section VII.




II. BASIC CONCEPTS

We consider the scattering in velocity~space of electrons peri-
odically interacting with a coherent longitudinal wavepacket. The phys-
ical situation in question could be, for example, lower-hybrid current
drive where electrons orbiting around a torus of effective cycling length

L are subjected to repeated interactions with a uni-directional wave
E = Bo cos (wt - kx),

acting in a limited spatial region of extent 2d (Fig. l). Since the sys-
tem 1s periodic with %, the wave-spectrum is discrete. Typically &>d, so
that the wave k-spectrum 1s relatively broad, Ak = 1/d, and the wave-
packet is composed of a large number of modes, N = i/d. If, for the sake
of convenience, we center the interaction region at x = £/2 and assume a
smooth transition to the field-free region, the single-particle dynamics

can be represented by

@x By ~(x-1/2)2/42
 a °

cos(kx-wt). (1)

We will work with a normalized form of Eq. (1), such that space (time)
are dimensionless and normalized to the wavenumber k (frequency w) of the

wave., Velocities are consequently normalized to the central phase

velocity w/k. We thus have

X = a exp [-8(x=2/2)2 ]cos(x~t) =a, (2)




where

Wy is the particle bounce frequency at the bottom of the potential well

formed by the wave cos kx.. The accelerationka has the Fourier series

representation

o
as= %(g—)& mZ-M (-1)" exp(-n® /48M) coe(k-x-t), (3)
where M is the nearest integer to £/2r, and k, =1+ m/M. The represen-
‘tation in terms of Fourier modes is useful in a weak field, such that any

particular particle is predominantly affected by the Fourier component
whose phase-velocity " I/km_is the closest to the.particlc velocity v.
This weak-field stationary-phase concept applies under'the condition

that the field autocorrelation time be much sialler than tﬁe particle
trapping time. In our particular situation these two time scales have
very definite physical meanings. The autocorrelation time, by definition
the width of the field autocorrelation function, is Tee ® 2/w8, which is
simply the transit time of the particle through the wavepacket. It is
thus convenient, for our purposes, to define a trapping time Ty - 2n/mb -
o Na. 1If Tac<< Tp» then the particle transits the interaction region
before it can perform more than a small portion of a trapped orbit. Thus
Ty is the shortest trapping time scale in the problem; any of the Fourier

components has a longer trapping time. The condition Tae<< Ty effec-




tively implies that only the nearest Fourier modes contribute to the
resonant wave-particle interaction at a point in velocity-space. In
effect, this is a condition of weak resonance overlap. A typical overlap
situation in our wave-spectrum is illustrated in Fig. 2, where at each
position of pha;e velocity Vo e plotted at the appropriate height

(amplitude) the Fourier mode separatrix full width' (trapping width)

¢ (trap) _ 4(An/kn)* - s/t /et kj exp (—of /88M) (4)

In this particular example, the agplitude a = 0,05 is about 20 times
above threshold for stochasticity. The region of connected stochasticity
exggnds from about v = 0.6 to v = 2.3. The upper stochastic boundary on
the streched—out high-velocity side of the spectrum is due to vanishing
overlap, whereas the lower boundary is rather due to a rapidly vanishing
field on the low—velocity side. The limited extent of primary island
overlap seen here is characteristic of'a spatially limited wavepacket and
is the principal difference between this case and those which are repre-
sentable by the standard mapping, where the separation between all modes

is the same and where primary-island overlap engulfs the entire phase—-

space.
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The stochasticity associated with island overlap is best
evidenced in surface of scctiqn plots. In our £ - periodic configuration
we take the surface of section at x = 0 (equivalent to any other position
outside the interaction region) and we plot the canonically conjugate
: pair.of variables vz/2 versus t (mod 2v). The plot shown in FPig. 3a
corresponds to the parameters of Fig. 2 and is actually the plot v versus
t(mod 2w), which has the advantage of directly displaying the extent of
the stochastic region. The plot is produced with 10 particles all having
the same initial velocity Vo " 0.8 and 1nitia1 position x, = 0, but dis-
tinguished one from ano;hsr by different initial times to (an equivalent |
ensemble would be obtained by taking the same times :o but different
positions x, )e As expected, the particles are fairly uniformly distri-
buted within the region of overlap. The primary islands are completely
destroyed all the way from the sharply defined lowu£ stochastic boundary
up to where overlap vanishes. The upper stochastic boundary is less well
defined than the lower one, and cypicaily exhibits ; number of islands
since the Fourier mode énplitude converges to a non zero value as v
increases and resonance overlap ceases. At low velocity the overlap does
not end, rather there is no significant field. In contrast to the result
of Fig. 3a, we show in Fig. 3b a sub-threshold case of 10 particles
launched at the position of a primary island at vy ™ 0.8. Since the
- particles are launched with different phases (to), they occupy different
trapped orbits, and those near the separatrix develop secondary islands
and spread out in velocity, but not enough to reach the trapping region
of neighboring primary islands. We stress at this point that we need not
be concerned with the problem of formation of secondary islands, since
for our purposes primary island overlap gives a gimple and sufficiently

accurate estimate of the onset and extent of stochasticity.




Turning now to the formulation of the overlap-criterion, we refer

to Fig. 2 to see that two neighboring islands overlap if

-y (trap) o, (tTEP) )y (6)

vh m mtl mtl

where v = 1/(14+m/M) and the trapping width is given by Eq. (4). Upon
substitution we obtain the condition

(1+u)

. for the mode-number u = m/M ;t which overlap starts. Theﬁcdhdiﬁioﬁ((7)

yields both the stochasticity threahold,.and'the extent of the stochastic

region as a function of the excitation parameter S,

First, noting that the function f(u) has a minimum around u=1 (actually
somewhat below u=l, depending on B8), we immediately see that the thres—

hold for onset of stochasticity is
s =1, (9)
when S > 1, then the equation

S = £(u) (10)

& <1) > expW [28) o gy, SR S




10.

has two solutions, M) 2, wvhich determine the modes situated at the edges

of the stochastic region. The width of the stochastic region is there-

~ fore

Avntoch * T 1+up °* (in

The onset condition (9) as well as the wia:h (11) are in excellent agree-
ment with numerical results using the surface of section method. It is
interesting to note that Stix’ used a different means of finding a thres-
hold condition. He linearized the corresponding discrete mapping around
a primary resonance and obtained the standard mapping, for which the
threshold for stochasticity is known. The threshold condition thus
determined depends on velocity and amplitude of the primary island cho-

sen. Condition (9) indicates that the threshold is a global property of

the systen.




III. MAPPING

Before we proceed, in the following sections, with the applica-
tion of the preceding concepts to the analysis of momentum transfer and
diffusion, we will derive, in this section, a useful approximate discrete
mapping for the dynamic problem (2). The mapping is a valuable analytic
tool in the study of scattering in velocity-space, and its use in
computations achieves a typically hundred fold improvement in speed over

nmerical integration of Eq. (2).

By a mapping we understand the iterated first integrals of the
equation of motion (2), under some assumption about the particle
trajectory appearing in the phase of the acceleration. Let us therefore
assume that the particle trajectory is perturbed oniy weakly in the

interaction with the wavepacket and use for now the unperturbed :fajec-

tory
x=x + Vo (¢ - :n) (12)

to approximate the phase (x~t) in Eq. (2). (Later we will improve this
assumption). Here, we can take x, = 0 owing to the L-periodicity of the
the system, vn is the particle initial velocity for the (ntl)=-st colli-
sion with the wavepacket, and cn is th§ time at which the particle crosse
the location x = x = nZ., In the following, we will comnsistently use vin
for v Vout for vn+1(Fig.4), keeping in mind that Vin is continuously

updated upon entering a new interaction cycle. Upon substitution for

11.




12.

t from (12) into (2), and integration with respect to x from 0 to £, we

obtain
el ¥ -2
vfm ¢ = Vi, = 20(3/B)7 exp(-py /48) cos X, , (13)
where
Pin ™ 1/vin’ X4n ™ pinglz -t (14)

In deriving (13), we have used £>>1//8, respecting the original limita—
tions on the problem. The mapping is completed by approximating the

.integral of x = v by

tut = Stn ™ l(llvin + llvbut)/z . (15)
Keeping with the weak-field assumption of slightly perturbed orbits, we

can write (13) in the alternative form

[+ 3 ® * . 2
Vout = Vin = Av .';I; (§> exp (fpin /4B)cosx1n (16)

We are now in the position to examine whether the given mapping is cono~

sistent with the weak-field condition raé@:r The assumption of weakly-

b.
perturbed trajectories translates into requiring that Av« vin' Since

from (16),

+
Av > 2 (1'-) , (17)
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we see that the condition

t
L
= ) < s

must hold true in order that Av << Vin' The inequality (18) can,

however, be written as

} y
L (s 2. <<, (19)
vin ('E) vin ,

which is nothing else but

T (trap)
T‘c : <«<1. (20)
b in
. (trap) . R
Since for weak fields almost always vin.> v » We gsee that the weak-

field condition Tac<K rb is recovered. We also see that the converse
statement is true: Tae<< 'rb implies Av<< Vin? which states that the
scattering is local in velocity-space, implying further that the long

time-scale effect to expect is diffusion.

A further step toward the understanding of the weak-field mapping
(13) or (16) consists in showing that the mapping describes the inter-
action of a particle with just one resonant Fourier mode at a time. Let
us therefore consider the dynamics of a paiticle weakly interacting with

its resonant Fourier mode, i.e. the equation

. L |
v -.% (%) exp(-n2/4 8M?) cos(kmx-t). (21)




Integrating with respect to time over the unperturbed trajectory (12)

yields, after some straightforward algebra,

t 2
.S m 2 X1

- -— - - gin (= ¥ 22
Av = a (B) exp ( ZEEI> a °if (zvin cos¥, ( ?

where, with x = kh (xn - vintin)’

L9
Q= khvin -1, ¥=x+ toﬂ + 2'1 . (23)
n
Since preswmably vin = l/km’ we have Q + 0, so that further,
av = 2 (Z t exp(- -—-rmz ) cos X (24)
Vin B 48M

Since, however, m/M = km -1 =1 - I/Vin, we see that (24) is indeed
equivalent to (16). The result is not surprising since the integration
of Eq. (2) over an unperturbed trajectory automatically performs a

stationary-phase selection of the resonant mode.

The map (16) shoﬁs how a particle experiences less and less
acceleration, and is less scattered, as its velocity deviates from the
resonant value v = 1, As regards the effect of the phase Xp* after many
orbits it can be considered virtually random, so that the gsign of Av will
not be biased on its account. The map (16) reproduces the results of

numerical integration quite well but breaks down when one begins to

14,




violate the weak-field condition raé<< tb. The mapping then tends to
concentrate near the lower stochasticity boundary where the rapidly
vanishing acceleration in that region is handled badly. This tendency is
documented in Fig. 5, to be compared with the numerical integration
result of Fig. 3a.' A further limitation of the mapping (16) will become
evident from Figs. 6a,b, where Av is plotted against Vin® In this exam—
ple, as well as in the preceding one, the amplitude a is fairly iarge,

about 20 times the threshold value Gp " 2.19 x 10f3. and tac/'rb = 0.22.

The mapping result, Fig. 6a, is of course symmetric with
respect to the line Av = 0, whereas the result of numerical integration,
Fig. 6b, exhibits a certain degree of skewness, a lack of symmetry about
the line Av = 0. Evidently then, the map (16) which for any Via allows
Av and -Av to occur with equal probability is 1ncapéble of describing a

long-term evolution having a nonvanishing ensemble-average, <Av> = (,

The two shortcomings of the mapping (16) that we have just dis-
cussed originate in the assumption of unperturbed trajectories. We will
now remove this restriction. Instead of using Eq. (12) to approximate the
phase, we perform the integration in two parts, accounting for the accel-

eration effect on phases by using the two-~ step trajectories

x=v. (t - tin)’ 0<x 0<4/2

(25)

x= /2 + v (t-¢

out in - 2/2vin), /2 < x<he




16.

We thus obtain the mapping in implicit form

% -22
vV -yl =af= (e io e out) cosy
out in in

B
(26)
2a

+ 73'[D(zin) - D(zout)] sin Xin®

where z = (1 - 1/v)/2/8 and D(z) is Dawson's integral
2 .2

D(z) = e [ et de. (27)

To order az, a small-pertubation assumption now gives, upon Taylor -

expanding around Vin?

Ay = S ~I-& e ) in o8
vVES 8 CO8X4n

in
2
2 P p
-2—-!.3 (1 +-!.'P-) exp( -—'EE COSZX
28v Bv 28 ~in
in in
2
/1 ol “24n
- —r——] e sin 2 1 -2z D(z . . (28
4 82/ vin xin L in ( 1n)? (28)

The first term on the right hand side is the first approximation (16),
whereas the remaining terms represent the effect of a weakly perturbed

orbit.

The mapping (28) is much better approximation than is (16). It
tends much less to concentrate particles near the lower stochastic

boundary. This is clearly shown by the surface of section plot in Fig.

7a, produced from Eq. (28) under the same conditions as Fig. 5; Also,
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the Av versus Vin plot in Fig. 7b now reproduc‘es’“the skéﬁeSS seen in
Fig. 6b (with a slight excess at the highest Av). This is ’very good
considering the strength of the field in this case. The skewness of

mapping (28) yields a nonvanishing ensemble-average v , nmly,

o 2 | Py, P
in in « _
<Av> = =21 (1 + —— exp( - ——) . . . (29)
e TR PO ~

This is an inpbrtant property of the mapping, as can be fuil} ':appraeciate.d
by realizing that<Av > 1is the local measure of momentum transfer between
the waves and the particles. Equation (29) ess'entially tells us that
particles below resonance (v, <1 ) gain nouéntﬁﬂ, while particles above
resonance lose momentum. We wili show' later, in section V,thm:<Av >‘

in Eq. (29) is related to the friction COefficientbanlav.




IV. MOMENTUM TRANSFER, CURRENT

Results of the previous section show that there is a net non-
vanishing average acceleration acting on regonant particles. The long-
time-scale effect is thus sustained momentum transfer in a distribution
of electrons spread almost uniformly within the stochastic region given
by Eqs. (10) and (11). We are now interested in the net total momentum
transferred in the interaction. For the sake of definiteness, let us
therefore imagine thé field interacting with a Maxwellian plasma, in a
region of velocities much larger then the thermal velocity. Then most of
the electrons which are being pulled into the resonant region Avitoch
originate at the lower otochasticity boundary and, as a tesult, a net
total momentum is being continuously transferred from the field to the

particles. In order to calculate this momentum transfer, no details of

the acceleration process are required if the time—asymptotic behavior is

known.

Let us represent the situation just described by a resomant dis—
tribution of electrons which evolves in time under the influence of the
field, from on initial § - function to a time-asymptotic form which van—

ishes outside Av but is nonvanishing and uniform inside that inter-

stoch’
val, situated between v, and v;, say. The net current produced in the

transition from the initial (fo) to the time-asymptotic state (f) is, by

definition,

§ =] v (£~ fo) dv, (30)

18.
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subject to the constraint of particle comservation
[ (g - £) dv = 0. (31)

Hence

f=1/Av (32)

stoch ’

and since f (v) = §(v~wy ), we obtain

1% (m +w - 2%). | (33)

If the particles originate at y = vy, the current is waximum,

1
3 =7 %%¢toch. (34

The value of Av is plotted in Fig. 8 together with the numerically

stoch
det;ernined ensemble average<v - y>. In the numerical investigations,
typically 100 particles are all launched at an initial velocity vy inside
the stochastic region near the lower boundary v; , but having different.
initial phases (ty or xj). The ensemble is allowed to repeatedly collide
with the wavepacket until <v> reaches a steady-state. The net current

<v = vp> 1is seen to be in excellent agreement with the expected value

(34). Also plotted in Fig., 8 are the lower and upper stochasticity




boundaries. The values vl 2 were calculated independently using the

overlap criterion and surface of sections plots with excellent agreement

between the two methods.

As shown in Fig. 8 the behavior of j is somewhat different just above
stochastic threshold and well above threshold. Well above stochastic
threshold the induced current increases with electric field and with 8.
This is to be expected since the upper limit v, increases with 8 for a
given field. Since the field threshold for onset of stochasticity

increases ﬁith spectral width (since the wave energy is spread over

more modes) increasing B when near threshold will reduce the current .
These results explain those of Matsuda!® who found that electrous
transiting a "well-defined” resonance cone (larger B8) will carry a larger

current than those interacting with a "spread-out” one.

20.




V. DIFFUSION

If electron-wavepacket collisions are more frequent than
particle~particle collisioné and the electron trajectories are only
weakly perturbed in individual electron—wavepacket collisions, then on a
time scale longer than the autocorrelation time, the evolution of the
resonant particle distribution function f can be conveniently described

by the Fokker—Planck equation?“

Af L _3ve) 3% (Df) . (35)
at av Iv

If the diffusion coefficient D and the friction coefficient v are simply

related as
aD
v -5',;' ’ (36)
then Eq. (35) can be written in the form
] ) ]
AR TR (37)

known as the quasilinear diffusiomn equationls. This gimple model of the
effect of particle scattering, requiring just one coefficient, D(v), is a
strong motivation to formulate the D representing a particular wave-
particle interaction. The standard practice in the weak-field regime is
to calculate D(v) from the decay in time of the fluctuating field auto-
correlation function as seen by unperturbed electrons at velocity v.

This gives the so—-called quasilinear diffusion coefficient. Successive

21.
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iterations of the procedure15 with perturbed trajectories leads to the
resonance broadening theory result!®., There have also been attempts to
formulate a diffusion coefficient in the strong~field, trapping, regime.
For example, Flyun}7 supports, in numerical investigations, the notion of
a “trapping” diffusion coefficient as fornulgted by Dupreels, while

Graham and Fejerla contest such an idea.

The diffusion we are studying is limited in velocity space to the
stochastic region. If the step Av'thaﬁ the particle takes at every
crossing of the interaction domain is much smaller than the width of the
stochastic region, the diffusion coefficient depends on the velocity of
the particle between interactions. Therefore, for short times (a few
"drift times £ /v), the relevant quantity is D(v). In this respect,
because of the intrinsic stochasticity the interaction of electrons with
a coherent wavepacket resembles the one with a random phase wavepacket
for which agreement with quasilinear theory was established by Doveil and
Gresillon'®. After many interactions the particle has explored the whole
stochastic domain and then the meaningfull quantity is a diffusion
coefficient averaged over velocities in the stochastic region, D(v).

D(v) describes the long-time behavior of the system.

Let us begin with the standard quasilinear (QL) formulae. By

definition,

- <6v2> (38)




where

sv = [° a(r)dr. (39)
o]

a(t) is given in Eq. (2), the integration is performed along unperturbed
trajectories (12), and the pointed brackets signify ensemble-averaging.
We obtain

2 VIR
Do(™) = %E%?' exp [- 513%122'4 (40)

The same result is immediately obtained using the mapping (16), from

which, by definition,

<AV >

Dv,) =3 (41)

Tdrift

L/v

where T n is the electron drift time between two interaction

dreift = V4
events, and the averaging is performed over the phase. As regards the

associated friction coefficient, we have, from (36) and (40),

2 2
oL " -G ) em -5 . (42)

In order to recover this result from the discrete mapping, we take the
perturbed trajectory result (29) and we note that, by definition "
v -<:Av>/t°, where the appropriate time-scale to is here the electron

drift time zlvin.

23.




To what extent the system will really exhibit quasilinear behav-
ior in the sense given by the preceding coefficients D and v, can be ver-
ified by numerical experiments involving the evolution of the averages

<Av> and <AVZ> in a large ensemble of particles. Then, by definition!* R

y SAv> , D _<A$> (43)
t, 2t

We proceed as follows. Typically we launch a group of 1000 particles all
having the same velocity Vo but distinguished one from another by dif-

ferent initial times or positions. We let the ensemble transit the wave-
packet just once and evaluate (the initially vanishing) Av = <v-v > and

AV = <vz> - <v>2 » Where

1 1 ,
<w>=% I v, <w7'>--ﬁ2vn2. (44)

We repeat this procedure for‘a number of initial velocities v, within the
stochastic region, so that we obtain v and D as a function of Voo This
1s because in one transit through the wavepacket the particle loses
memory of its initial phase, while at the same time retaining memory of
the initial velocity condition. The results for one particular cholce of
a and B are shown in Fig. 9. Although Tac = 0.22 Ty which is just about
at the limit of the weak~field region, we see that the quasilinear
results hold very well indeed. Serious deviations from quasilinear
predictions develop, however, when the ratio Tac/Tb approaches

unity. A good appreciation of this tendency can be obtained from the

24.
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global results of Fig. 10, where D is plotted as a funétion of a. Each
of the Figs 10a,b show 4 curves, two of which represent computational
data (D and D), the other two being theory (DQL and EQL)‘ D and‘DQL are
local (velocity—depepdent) diffusion coefficients, whereas D and EQL are
average quantities. vThe corresponding pairs @, EbL) and (D, DQL) agree
in the weak-field regime, but otherwise the deviation of numerical from
quasilinear results is substantial. The scaling of D and D with « in

the strong-field regime also conside:ably deviates from that expected on
the basis of reso;ance—broadening theory16 (03/2). We will return to the
strong-field case in the next section, but now a few words about the sig-

nificance of the average quantities D and BQL are in order.

We were motivated to introduce D and BQL in order to describe the
long~time-scale diffusion. In our case, since the accessible region of
velocity-space is bounded, the variance <Av?> evéntually saturates as a
function of time and<AvP>/2t vanishés, although individual particles
continue to be scattered. In order to define a diffusion coefficient for
long times, we follow onme or more particles through a large number of

successive interactions with the wavepacket and we define Dt as the aver-

age over the number of cycles Nc’

oy
]

A-z-—‘t’2 , ot =gl , (45)
Cc

Z|
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where Av = v

out ~ Vin® taken at each interaction event. After many in-

teractions, the particle has lost ﬁembry of the initial conditions,band,
in particular, D tends to a value independent of Vo' This is demon-
strated in Figf 11, where D is calculated for 6 values of vo inside the
stochastic region. Hence, D represents a true ensemble as well as velo-

city-space average.

To describe theoretically the behavior of the system for long

times (many interactions) we define the average

-y AV ‘
D. = o> =<D . > , (46)
QL thrift XV4n QL Vin

where Av is given by (16) and the average is taken Qith respect to the
ensemble (x) and velocity-space (vin)’ Since Vin is presumably spread
uniformly over the stochastic region situated between, say, v; and v,, we
have

_ o2n 1 /) e-(l-IIV)2 /28

D -
QL 4L w -wm v1 v

dv, (47)




The interval (v;, %) is situated around the resonant value

v = 1, and excludes the point v = 0, so that D can be approximated by

- 2 1-1/w _2
Doy :BI 1 [ e /28 4g, (48)
2 1-1/w

In this fotm,'sbL is easily related to the rms field. Referring to the

Fourier series (3), we see that

2 1 o?n -u?/ZBB?
arms ” EIE' iy e‘ . (49)

If we keep in (49) only the overlapping modes and pass to the limit of an

integral, we obtain

2 -
2 (stoch) _% ZIWT MM e 2 /28 dz, (50)
rms U1

where y = m/M. Recalling that M= £/2r and that p = 1 -~ 1/v, we have

further

(stoch) _ o2 1-1/% -2 /2
azms - ZEB— 1"‘1/V1 e dz, (51)

whence it follows that Dv can be written in the form

BQL - éi;:toch) T;c(SCOCh)’ (52)
with
- (stoch)
T =n1/(vp -v;i) (53)

ac
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We stress that the autocorrelation time (53), has the appropriate form'®
for a spectrum broadened over an interval spanning from v; to v». The
equivalence of the velocity-space average BdL and the time-average D in

the weak-field regime is evident from Fig. 10,

To sum up, distinction must be made between short-term and long-
term temporal effects. On a short time scale of the order of one scat-
tering event (t = £/v) in the weak-field regime, diffusion is quasi-
silinear. On a long time scale, as particles fill the accessible bounded
region of velocity-space, diffusion in terms of the rate of change of the
velocity variance ceases, but the diffusion coefficient D defined by
Eq. (45) tends to the same non zero limit for all particles in the sto-
chastic region. Thus, D and its theory counterpart 5§L,formulated in

terms of the stochastic part of the spectrum, are the appropriate long-

time diffusion coefficients.




VI. STRONG-FIELD REGIME

In this section we present material, mostly numerical results,
that we consider essential to the understanding of the strong-field
interaction. let us recall that by the strong-field regime we understand
conditions violating the inequality rac<3: Tb’ so that scattering is no
longer necessarily local in velocity space. In addition to the change in
magnitude, there is also a change in the typical character of particle
trajectory pertubations. The rms weak-field effect is now superseded by
trapped-particle-orbit effects.

We wish to immediately point out that there exists, in the
strong-field case, an upper limit of allowable field strengths, imposed
by the lack of self-consistency in our model. This limit is a = 1, which
guarantees that no particles from the bulk of the distribution are
affected by the wavepacket. Under these conditions, we can- assume that
the wave maintained by the bulk particles remains unchanged, and we study
the nonlinear dynamics it induces oun the résonant particles. No electro-
static one~dimensional spatially modulated wave-exists in a plasma when
avphase/vfhermal
however, be shown in order to stress certain features of the strong~field
regime. The two characteristic strong—field. effects are here the
ponderomotive force acting on low-velocity nonresonant particles, and
non—adiabatic crossings of a separatrix as a resonant par;@cle is first

captured and subsequently escapes from a trapped orbit in the wavepacket.

> 1.7.1%  Some results of cdmputations with a 2 1 will,
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The most important class of particles affected by the pondero—

motive force are those which reside around v = 0, i.e. the bulk parti-

cles. Their trajectories are very weakly perturbed and can be written in

the form
x(t) = xo(t) + %(t), , (54)

where xo(t) [X¥(t)] gives the slow (fast) time~dependence. The equation

- of motion for the slowly varying part is

. -8(x, + % - 2/2)?
x =<ae cos(xo + X - t)>, (55)

where we average over t. If a<< 1, then we find to order o

-8(x_ - 2/2)?
X =~ ae ° o:os(xo -t) «<l1, (56)

which leads to

2 -28(x_ - £/2)?
o= = ° . (57)

The ponderomotive potential is therefore

- - 2
2 ZB(xo 2/2)

a
(bpond % ’ (58)




and particles incoming at velocities less than Vi " a//2 will be

reflected. Such a particle is seen, for example, in the surface of sec-
tion plot, Fig. 12, where 9 particles where launched within the stochas-
tic region and one outside at Vo " 0.2. The nonresonant particle obvi-

ously bounces back and forth on a constant energy surface.

The resonant interaction, in contrast to the ponderomotive
reflection, leads to a very complicated velocity-space structure. The
surface of section plot in Fig. 12a belies this fact to a large extent,
since the distribution of velocities appears fairly uniform. The first,
quite obvious, difference between the strong~field case of Fig. 12 and a
typical weak-field one, shown in Fig. 3a for example, is the appearance
in Fig. 12a of a stochastic band in the region of negative velocities.
This indicates that some of the resonant particles can now be reflec:ed;
and that this reflection 1s non~adiabatic, in contrast to the ponderomo~
tive case. The extent of the negativo stochastic region as a function of
a is indicated in Fig. 8 by the dashed~dotted line, mirrored onto the
positive side for the sake of convenience. Another, rather fundamental,
difference between the strong-and weak-field cases consists in the per-
ception by a particle of Fourier modes. Fig. 12b shows the resonance
overlap diagram for the éxample of Fig. 12a. The overlap is so strong
that a resonant particle sees a large number of PFourier modes at the same
time. As a result, the usual picture of stochasticity associated with
resonance overlap breaks doﬁn, and the stochasticity observed in Fig. 12a
must be of different origin. In effect, the particle now sees the wave-
packet as a whole, rather than its individual Fourier components. How

then does a particle become stochastic? The answer is that if the
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pgtticle is trapped, once inside the wavepacket, it had to cross a sepa-
ratrix, and will have to do so once again upon exiting.from the inter—
action region. The transitions from trapped to untrapped states and
vice-versa are, in general, non~adiabatic2!. The existence of trapped
particle orbits in the wavepacket can be detected usiqg stroboscopic and
direct v versus x phase-space plots. A sample of these is shown in Fig.
13. In contrast to a surface of section plot, where the state of a par—-
ticle is recorded just once during a cycle around the torus, the motion
is now monitored everywhere including the interaction region. The v ver—
sus x plot (Fig. 13a) shows 5 successive trangits of the interaction
region, and immediately indicates the following cha;acteris:ics of the
motion. First, the existence of an elliptic point situated at v = 1,
second, the nom-adiabicity of the interaction (vout # vin’ in general),
and finally the expected dependence of a trapped orﬁit ou initial phase
aﬁd velocity. In the stroboscopic plots, the velocity and corresponding
position are recorded in succession at times separated by the natural
period 27, for a large number of transits and/or particles, and thus give
a comprehensive phase~space picture. The first thing to realize 1is that
essentially all particle orbits are recorded in the process, and in par—
ticular also trapped orbits if such exist. The envelope of trapped
orbits is the separatrix. At peak amplitude the separatrix should span
the velocity interval 1 :_2/&, which is exactly what we see in both

Figs. 13b,c. For the very strong-amplitude case of a = 4 reflections

occur owing to the extension of trapped orbits into the region of nega-

tive velocities.




particle is trapped, once inside the wavepacket, it had to cross a sepa-

ratrix, and will have to do so once again upon leaving the interaction
region. The transitions from trapped to untrapped states and vice-versa
are, in general, nonrndiabaticzo. The existence of trapped particle
orbits in the wavepacket can be detected using stroboscopic and direct v
versus x phase-space plots. A sample of these is shown in Fig, 13. In
contrast to a surface of section plot, where the state of a particle is
recorded just once during a cycle around the torus, the motion is now
monitored everywhere including the interaction region. The v versus x
plot (Fig. 13a) shows 5 successive transits of the interaction region,
and immediately indicates the following characteristics of the motion.
First, the existence of an elliptic point situated at v = 1, second, the

non~adiabicity of the interaction (v'out # v. , in general), and finally

in
the expected dependence of a trapped orbit on initi#l phase and velocity.
In the stroboscopic plots, the velocity and correspondiné position are
recorded in successiouvat times separated by the natural period 2%, for a
large number of transits and/or particles, and thus give a comprehensive
phase-space picture. The first thing to realize is that essentially all
particle orbits are recorded in the process, and in particular #lso
trapped orbits if such exist. The envelope of trapped orbits is the
separatrix. At peak amplitude the separatrix should span the velocity
interval 1 :.2/0, which 18 exactly what we see in both Figs. 13b,c. For

the very strong-amplitude case of a = 4 reflections occur owing to the

extension of trapped orbits into the region of negative velocities.
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The phase-space plots of the preceding discussion are useful diagnostics
for probing the nature of particle orbits, but for information about the
_ structure in velocity-space of particle scattering we have to go to Av
versus v, plots, such as in Fig. 6b, for example. We prefer an alterna-
tive representation, in terms of Vout VEFSUS v, ., i.e. "scattering
matrices”. In the scattering matrix,.the indication of interaction 1is a
departure from the diagonal, i.e. from the identity line Vout " vin. The
sequence in Fig. 14 shows the progress in the magnitude of velocity-
scattering as the amplitude « i3 increased from a« = 0.1 to a = 0.5 and
thenia = 4, For a = 0.1, which is the limit of the weak-field regime
when 8 = 0,1, we see that everywhere Av<zvin, indicating that diffusion
is still a good approximation of the scattering in that case. For

a = 0.5 scattering is stronger aﬁd some structure has developed in the
scattering pattern. At a = 4 velocity-space has become very non—uniform:
reflections can occur in one region of velocity-space, while diffusion
persists elsewhere. Such a mixed phase-space is typica; of wide spectra,
characterized by a strechted-out high velocity side so that weak
resonance overlap is possible there. Fig. 15 shows the difference, in

this respect, between wide and narrow spectra.

In our next example of Fig. 16, showing the extremely intricate
structure of scattering in the deeply trapped regime of rac/Tb = 4,5, we
in one case (a) produce the plot by following one single particle for
5000 collisions with the wavepacket, whereas in the other (b) we launch
5000 particles spread uniformly between Vin ™ -2 and Vin ™ 4 and let the
ensemble collide with the wavepacket just once. The reason for doing 80

is two-fold. First we are thus able to demonstrate the two distinct
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classes of nonresonant particles. To the first class belong particles

which are virtually unperturbed by the field and hence occupy the iden-
tity line Vout = Vin® The other class is composed of pattiéles which
are adiabatically reflected by the ponderomotive force. In the plot
these form the segment perpendicular to the identity line. The non~
adiabatically reflected particles originating from trapped orbits are
seen to form a diffuse extension of the ponderomotive branch. The second
reason has to do with the general question of time-and-ensemble-averages.
Pig. 16 directly demonstrates that it makes no difference to the scatter—
ing pattern in what manner an interval dv'in 18 populated. Also obvious

is now the fact that the system requires no more than one interaction

time to fully establish its scattering characteristics.

We will close this section with a few remarks about momentunm
transfer and diffusion in strong fields. First, going back to Fig. 8, we
note that the current j petsisCs for l#rge a, and so does its correlation

with Av In Fig. 8b we observe, however; a change in the scaling of

stoch’
] with a, which we attribute to the doﬁinance of the wavepacket trapping
width over the proper spectrum width, as documented for example in Fig.
12b. The ﬁon—adiabatically reflected particles populating the band
delineated by the dashed—dotted line act as a counter-propagating beam,
but the pre-dominance of transiting particles caused by the bias in the
direction of the travelling wave, quarantees a net current in that
direction. A wider wave-spectrum will support a larger current because

the correspondingly larger number of Fourier modes on the stretched-out

high velocity side of the spectrum will form a wider region of overlap.
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In regard to diffusion, the preceding results indicate its lim-
ited validity as a means of describing the particle~velocity scattering
in the strong-field regime. If we are prepared, though, to sacrificé
local features in favor of a long-time global description of the scat-
tering process, it suffices to recognize that the interaction remains
non—adiabatic and that a certain region of velocity—-space is ultimately
almost uniformly populated regardless of particle initial conditions.
Hence a long-time, global, diffusive description survives in the form of
the average quantity D , defined by Eq. (45) agd computed in Fig. 10.
We right away note the substantial change in scaling with a that D ex-
periences as the strong—-field regime takes over. Such a change in
scaling can only be explained through the effect of a new velocity step-
size, replacing the weak-field expressionAv = a T . ~a/fB. A crude
estimate of the new scaling can be obtained as follows. Knowing that the
velocity jump under strong-field conditions is related to the width of a
trapped particle orbit, we have, on the average, Av = Ya. Consequently,
D= a/2¢, having taken a particle-wavepacket "collision” time &/v = 2.
| Let us now compare this result with the numerically established D. In
addition to the strong field data of Fig. 10, we show additional results
in Fig. 17, which collects all the strong field D of Figs 10a and 10b,
and also includes D for B = 0.001 (not shown previously). In terms of
magnitude, a/2¢ falls below D by about a factor of ten. Moreover, the
scaling is seen to depend on 8.In conclusion, more work is required in

order to interpret the strong-field results, the key point being an

analysis of action non-conservation during separatrix crossing.
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VII. CONCLUSION

Having analysed the scattering in velocity-space of électrons
repeﬁtedly interacting with a discrete spectrum of coherent waves, whose
~ extent is limited in configuration-, wavenumber-, and velocity-space, we
offer the fo;lowing general picture of the interaction. Above a certain
threshold, which depends on field strength, spectrum width and electron
cycling length, the interaction is non-adiabatic and particle motion is
stochastic within a bounded, not necessarily simply-connected, region of
velocity—~space. The nature of the 1ntegaction, and also the source of
stochasticity, depends-on the ratio of two basié time scales in the prob~-
iem: the particle transit time through the wavepacket which is also the
autocorrelatiog time Tac? and the particle bounce time Ty in the

wavepacket,

When'tac<< Ty the particle-velocity scattering is everywhere
local in velocity-space and the diffusion approximation holds. In this,
weak-field, regime the particle-wavepacket interaction is characterized
by weak resonance overlap, such that during one cycling time an electron
interacts exclusively with just one or two Fourier modes. The wandering,
or diffusion, through a region of non-zero extent in velocity space is
then a long-time-scale phenomenon induced by the nonlinear effect of
resonance overlap during many interactions with the wavepacket. This
long-term diffusion must be distinguished from the short-term, local,
effect, which is quasilinear in nature, by virtue of intrinsic stochas-

ticity having automatically replaced random phase waves. The quasi-
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linearity of the short-term interaction is shown directly by coméaring
the numerical short—-term evolution of the velocity mean and variance with
the quasilinear—theory friction and diffusion coefficients. Analyti-
cally, a discrete mapping representing the interaction with weakly pér-
turbed particle-trajectories also ylelds the exact quasilinear results,
and is easily generalized to an implicit form including the effect of
strongly perturbed trajectories. The long-term diffusion coefficient is
obtained by averaging the quasilinear expression over the stochastic
region of velocity-space. This average proves to be equivalent to the

time average taken for any resonant particle.

While the weak-field interaction can be generally characterized
by the effect of a rms field on a resonant particle acting for a period
of the autocorrelation time, the strong-field interaction is, in con-
trast, characterized by the existence of trapped particle orbits, the
bounce time now being smaller than the autocorrelation time. In addi-
tion, strong resonance overlap can occur, so that a resonant electron can
percieve many Fourier modes at a time. In other words, on the short
timescale a particle can no longer be thought of as interacting with
individual field coﬁponents, but rather, its interaction with the wave-
packet as a whole must be considered. For wide spectra, such that Ak/k
is not much less then unity, the situation becomes very complicated,
since strong overlap in the region around the phase-velocity combines

with the effect of weak overlap on the stretched-out branch of the




spectrum, vph‘<v +» Such a mixed velocity-space causes particles to
weakly acatter in one region, but to suffer large displacements, even
reflection in another. Either way, the observed long-term effect of the
interaction is to scatter the particles almost uniformly throughout a
bounded region in velocity-space, indicating a generally non-adiabatic
process. For the particles that are temporarily trapped in the wave~
packet the source of non—adiabaticity are the two crossings of a separa-
trix upon entering and leaving the wavepacket. Long-term momentum
transfer and diffusion therefore persist in the strong-field regime.

The numerically determined long-term diffusion coefficient deviates
substantially from its weak-field counterpart in terms of scaling with
':he field streugth E. Depending on the spectrum width, the scaling is

somewhere between E* and E.

A more detailed study of the strong-field regime, based on the
analysis of action non-conservation during separatrix crossing is in

preparation.
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FIGURES CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Geometric configuration of wave-particle interaction.

Spectrum in velocity-space. The full separatrix width of a
Pourier mode is indicated at the position of its phase-velocity
and amplitude.

Surface of section plot, velocity versus phase, taken half-way
between two interactions. (a) particles launched at v, " 0.08
are monitored for 500 cycles through the wave-packet.

(b) Sub-threshold conditions, otherwise as per (a).

Configuration for mapping. ¢ and x = 0 are initial

Vout® Cout
conditions for new cycle.

Surface of section plot from the mapping (16), at conditions of
Fig. 3a.

Av versus Vin® (a) From the mapping (16). (b) From numerical
integration.
(a) Surface of section plot from the mapping (28) at conditions

n:from the mapping (28),

of Fig. 3a and 5. (b) Av versus v,

conditions as per (a).

The lower (v)) and upper (v;) stochasticity boundaries and the
long-term current j, as functionmns 6f the field strength a. The
dashed-dotted line indicates the width of the stochastic region
of negative velocities (reflected particles). (a) 8 = 0.1,

(b) B8 = 0.01.




Fig. 9:

Figo 10:

Fig. 11:

Fig. 12:

Figo 13:

Fig. 14:

44.

The short-term diffusion (D) and friction (dD/dvy) coefficients
as a function of particle velocity. The solid lines are from
quasilinear theory, the points are from numerical integrations.
The diffusion coefficient as a function of field strength a.

DQL is the quasilinear value at v = 0.8, D is from numerical
integrations of an ensemble of particles, BQL is velocity-space
averaged DQL’ and D is the time~average from numerical inte-
gration of ome particle. (a) 8 = 0.1, (b) 8 = 0.01.

The particle diffusion coefficient D as a function of the
number of successive cycles, for 6 values of particle initfial
velocity in the stochastic region.

(a) Surface of section plot. 9 particles launched at v, = 0,8
and 1. particle launched outside the stochastic. region at

Vo " 0.2; 500 cycles. (b) Corresponding resonance overlap
diagram.

Phase-space plots, velocity versus position. (a) 5 successive
transits of a resonant particle through the wavepacket.

(b) Stroboscopic plot. v and x are recorded at t = t, + 2rn,
n=0,l,..., for 5000 cycles; a = 0.4. (c) Stroboscopic plot,
a = 4,

Scattering diagrams, vout
(b) a = 0.5, (c) a =4,

versus v, ; g = 0.1. (a) a = 0.1,




Fig. 15:

Fig. 16:

Fig.A17:

45.

Resonance overlap diagrams for a = 0.4, (a) Wide\spectrum,-

B = 0.1. (b) Narrow spectrum, 8 = 0.01.

Scattering diagrams. (a) One part;cle, 5000 cycles.

(b) 5000 particles distributed uniformly between Vin ™ =2 and
4, one cycle.

The diffusion coefficient D as a function of ¢ in the strong-
field regime for 8= 0.1, 0.01 and 0.001. Different point-

types correspond to different particle initial conditioms.
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