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The momentum transfer and velocity diffusion of electrons period-

ically interacting with a coherent longitudinal wavepacket is consid-

ered. Applying the resonance overlap criterion, we -establish the thres-

hold for intrinsic stochasticity and the width of the stochastic region

AVstoch in velocity space. Direct numerical integration of the single-

particle dynamics and an approximate discrete mapping are used to corro-

borate the resonance overlap results and to find the short-and long-term

momentum transfer and diffusion in the field. After the onset of sto-

chasticity, we find a net induced current j ~Av stoch and in the weak-

field regime (autocorrelation time< i bounce time) an initial rate of

change of the variance <6 v>/2t equal to the quasilinear-theory diffusion

coefficient. In the strong- field regime momentum transfer and stochas-

ticity persist owing to non-adiabatic transitions between trapped and un-

trapped states as the electron traverses the wavepacket. The diffusion

coefficient substantially deviates from the quasilinear (~LE ) as well as

from resonance broadening (~E3 /2) scaling, while the scattering in velo-

locity space tends to lose the local, diffusive, nature characteristic of

weak fields.
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I. INTRODUCTION

The understanding of electron velocity scattering by waves is

intimately related to the phenomenon of stochastic, as opposed to reg-

ular, motion in wave-particle interactions, a problem which has been the

subject of intense study in the past few years. A number of benchmark

works 1 have laid the basis for the understanding of weakly perturbed

nonlinear oscillators, while others went on to emphasize and analyze the

effect of particle motion stochasticity on plasma collective effects such

as heating5-9 and current-drive o-11, for example. The classical, and

probably the best understood nonlinear wave-particle problem is the non-

linear oscillator, perturbed by one single weak wave. Many problems can

be reduced to that particular model or to its representation in the form

of a discrete map, the so-called standard or Chirikov map.12

The problem we propose to study in the present paper-electron

motion in a coherent longitudinal wavepacket - finds itself on the

extreme opposite side to the "standard" problem, since we are dealing

with particle motion in many waves, which are the Fourier components of

the wavepacket. Although adding more and more waves to the standard

problem makes it, in principle, less and less tractable, in the limit of

a very large number of waves we again recover a familiar situation, sim-

ilar to that encountered in the quasilinear theory.1 3 The principal dif-

ference here is that we don't have to postulate random phases for the

waves. Rather, once the threshold for resonance overlap is exceeded, the

effect of the coherent wave system is to induce intrinsic stochasticity1 2

and decorrelation from initial data occurs automatically.



The ultimate goal of this study is to understand the momentum

transfer and diffusion of electrons cycling around a torus and periodi-

cally interacting with a localized wavepacket of travelling electrostatic

waves. This situation is encountered in lower-hybrid heating and/or cur-

rent drive if the conditions are met for the existence of resonance

cones. The source of stochasticity and long time-scale scattering

effects are the repeated particle-wavepacket interactions at each cycle

around the torus. One particular point of interest is to clarify under

what conditions a scattering event is local in velocity space (by this we

mean that one can determine the effects on a velocity distribution func-

tion f by using derivatives no higher than a2 f/av2 ). Further, if diffu-

sion is taking place, we might ask whether it scales according to quasi-

linear theory. We will see that, in broad terms, diffusion occurs under

the familiar condition that the field autocorrelation time be much smal-

ler than the particle trapping time, but that in general, this condition

falls short of being -a complete one, since behavior in velocity space can

be mixed: particles might diffuse in one velocity range, but can strongly

scatter, or even reflect, in another.

The physical model we adopt as a basis for our study has been

discussed before to some extent by Stix9 in the study of stochastic

heating, by Matsuda" in the study of stochastic current drive, and by

Fuchs et al . We take further steps here in the analytic as well as

numerical treatment of the problem, and an important new contribution

consists in emphasizing and analyzing the nonuniform nature of velocity-

space for the interaction. In particular, we establish the stochastic

3.
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threshold, the width of the stochastic region in velocity-space, and the

associated induced long-term current and diffusion coefficient as func-

tions of the field amplitude, of the spectrum, and of the electron

cycling length. We derive for the interaction an explicit discrete map-

ping using weakly perturbed particle trajectories for the diffusion

regime, and an implicit mapping based on fully perturbed trajectories

valid for strong fields. In numerical investigations of the scattering

in velocity-space we use a number of tools: standard surface of section

plots, phase-space plots, and a new diagnostic we term the "scattering

matrix". This last consists in plotting the particle velocities after an

interaction with the wavepacket against the particle velocities just

before interaction. The resulting plot shows exactly the range of scat-

ter as a function of particle velocity.

The paper is organized as follows. In section II we introduce

the model, basic concepts, and the resonance overlap condition. Momentum

transfer and current is discussed in section III, and sections IV deals

with the mapping that approximates the dynamic problem. Section V dis-

cusses velocity-space diffusion, and section VI presents some features of

the strong-field regime. Finally, our conclusions make up section VII.
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II. BASIC CONCEPTS

We consider the scattering in velocity-space of electrons peri-

odically interacting with a coherent longitudinal wavepacket. The phiys-

ical situation in question could be, for example, lower-hybrid current

drive where electrons orbiting around a torus of effective cycling length

A are subjected to repeated interactions with a uni-directional wave

E 9 0, coo (Nt - kW)

acting in a limited spatial region of extent 2d (Fig. 1). Since the sys-

tem is periodic with 1, the wave-spectrum is discrete. Typically t>d, so

that the wave k-spectrum is relatively broad, Ak a I/d, and the wave-

packet is composed of a large number of modes, N w i/d. If, for the sake

of convenience, we center the interaction region at x - 1/2 and assume a

smooth transition to the field-free region, the single-particle dynamics

can be represented by

d2 eE -(x-Lt/2) 2 /-d2

d - e cos(kx-wt). (1)
dt

We will work with a normalized form of Eq. (1), such that space (time)

are dimensionless and normalized to the wavenumber k (frequency w) of the

wave. Velocities are consequently normalized to the central phase

velocity w/k. We thus have

x - a exp [-6(x-X/2) 2 Jcos(x-t) (2)

I
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where

dZk w 22
S0k M b I Ak\

Wb is the particle bounce frequency at the bottom of the potential well

formed by the wave cos kx. The acceleration a has the Fourier series

representation

a = -2 (-1) a ex(-a2/46B?2) coo(k x-t), (3)
A ( a=- a

where M is the nearest integer to 1 /2ff, and k3 - 1 + u/M. The represen-

tation in terms of Fourier modes is useful in a weak field, such that any

particular particle is predominantly affected by the Fourier component

whose phase-velocity va - 1/k is the closest to the particle velocity v.

This weak-field stationary-phase concept applies under the condition

that the field autocorrelation time be much smaller than the particle

trapping time. In our particular situation these two time scales have

very definite physical meanings. The autocorrelation time, by definition

the width of the field autocorrelation function, is Tac = 2/v/0, which is

simply the transit time of the particle through the wavepacket. It is

thus convenient, for our purposes, to define a trapping time T b - 2w/wb 

2w //a. If T ac<< T b, then the particle transits the interaction region

before it can perform more than a small portion of a trapped orbit. Thus

T b is the shortest trapping time scale in the problem; any of the Fourier

components has a longer trapping time. The condition T ac« Tb effec-
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tively implies that only the nearest Fourier modes contribute to the

resonant wave-particle interaction at a point in velocity-space. In

effect, this is a condition of weak resonance overlap. A typical overlap

situation in our wave-spectrum is illustrated in Fig. 2, where at each

position of phase velocity v 3 we plotted at the appropriate height

(amplitude) the Fourier mode separatrix full width (trapping width)

v (trap) - 4(A /k ) - 4(a/Z)f ( / k- exp (4 /801 2 ) (4)
a a aa

In this particular example, the amplitude a - 0.05 is about 20 times

above threshold for stochasticity. The region of connected stochasticity

extends from about v - 0.6 to v - 2.3. The upper stochastic boundary on

the streched-out high-velocity side of the spectrum is due to vanishing

overlap, whereas the lower boundary is rather due to a rapidly vanishing

field on the low-velocity side. The limited extent of primary island

overlap seen here is characteristic of a spatially limited wavepacket and

is the principal difference between this case and those which are repre-

sentable by the standard mapping, where the separation between all modes

is the same and where primary-island overlap engulfs the entire phase-

space.
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The stochasticity associated with island overlap is best

evidenced in surface of section plots. In our L - periodic configuration

we take the surface of section at x - 0 (equivalent to any other position

outside the interaction region) and we plot the canonically conjugate

pair of variables v2/2 versus t (mod 2). The plot shown in Fig. 3a

corresponds to the parameters of Fig. 2 and is actually the plot v versus

t(mod 2w), which has the advantage of directly displaying the extent of

the stochastic region. The plot is produced with 10 particles all having

the same initial velocity v0 - 0.8 and initial position x0 - 0, but dis-

tinguished one from another by different initial times to (an equivalent

ensemble would be obtained by taking the same times to but different

positions x ). As expected, the particles are fairly uniformly distri-

buted within the region of overlap. The primary islands are completely

destroyed all the way from the sharply defined lower stochastic boundary

up to where overlap vanishes. The upper stochastic boundary is less well

defined than the lower one, and typically exhibits a number of islands

since the Fourier mode amplitude converges to a non zero value as v

increases and resonance overlap ceases. At low velocity the overlap does

not end, rather there is no significant field. In contrast to the result

of Fig. 3a, we show in Fig. 3b a sub-threshold case of 10 particles

launched at the position of a primary island at v0 - 0.8. Since the

particles are launched with different phases (to), they occupy different

trapped orbits, and those near the separatrix develop secondary islands

and spread out in velocity, but not enough to reach the trapping region

of neighboring primary islands. We stress at this point that we need not

be concerned with the problem of formation of secondary islands, since

for our purposes primary island overlap gives a simple and sufficiently

accurate estimate of the onset and extent of stochasticity.



Turning now to the formulation of the overlap-criterion, we refer

to Fig. 2 to see that two neighboring islands overlap if

V - v (trap)/ 2 < 3 + (trap)/2,
a a =>1 i+

(6)

where va - 1/(14u/M) and the trapping width is given by Eq. (4). Upon

substitution we obtain the condition

4I
> CM 02/20

IS8 (-+y
(7)

for the mode-number p - m/M at which overlap starts. The' condition (7)

yields both the stochasticity threshold, and the extent of the stochastic

region as a function of the excitation parameter S,

4al
S-

I
(iAw8 (8)

First, noting that the function f(P) has a minimum around u-1 (actually

somewhat below P-1, depending on 8), we immediately see that the thres-

hold for onset of stochasticity is

S = 1. (9)

when S > 1, then the equation

S - f(u)

9.

(10)
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has tvo solutions, P1 2, which determine the modes situated at the edges

of the stochastic region. The width of the stochastic region is there-

fore

stoch Pi IU

The onset condition (9) as well as the width (11) are in excellent agree-

ment with numerical results using the surface of section method. It is

interesting to note that Stix9 used a different means of finding a thres-

hold condition. He linearized the corresponding discrete mapping around

a primary resonance and obtained the standard mapping, for which the

threshold for stochasticity is known. The threshold condition thus

determined depends on velocity and amplitude of the primary island cho-

sen. Condition (9) indicates that the threshold is a global property of

the system.
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III. MAPPING

Before we proceed, in the following sections, with the applica-

tion of the preceding concepts to the analysis of momentum transfer and

diffusion, we will derive, in this section, a useful approximate discrete

mapping for the dynamic problem (2). The mapping is a valuable analytic

tool in the study of scattering in velocity-space, and its use in

computations achieves a typically hundred fold improvement in speed over

numerical integration of Eq. (2).

By a mapping we understand the iterated first integrals of the

equation of motion (2), under some assumption about the particle

trajectory appearing in the phase of the acceleration. Let us therefore

assume that the particle trajectory is perturbed only weakly in the

interaction with the wavepacket and use for now the unperturbed trajec-

tory

x - x + vn (t - t ) (12)

to approximate the phase (x-t) in Eq. (2). (Later we will improve this

assumption). Here, we can take x a 0 owing to the I-periodicity of the

the system, v is the particle initial velocity for the (n+1)-st colli-

sion with the wavepacket, and t is the time at which the particle crosse

the location x - xn - ui. In the following, we will consistently use vi

for v, vout for v 1 (Fig.4), keeping in mind that vin is continuously

updated upon entering a new interaction cycle. Upon substitution for
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t fran (12) into (2), and integration with respect to x from 0 to I, we

obtain

V2 - 2 2a /O) e4-p2 /48) con x (13)
out in in

where

P in -/V in* Xin Pin/ 2 -t in *(14)

In deriving (13), we have used t'1//S, respecting the original limita-

tions on the problem. The mapping is completed by approximating the

integral of x - v by

tout -t in (1/vin + 1/v out)/2 . (15)

Keeping with the weak-field assumption of slightly perturbed orbits, we

can write (13) in the alternative form

V - V - Av - a exp (-p /4B)cos (16)
in r

We are now in the position to examine whether the given mapping is con-

sistent with the weak-field condition T <<b. The assumption of weakly-

perturbed trajectories translates into requiring that AV<< v .in Since

from (16),

Av 2 - , (17)
Vin ( i

i



we see that the condition

V-- << Vin (18)

mst hold true in order that Av << v . The inequality (18) can,

however, be written as

1 f

Vin
<<I ,

which is nothing else but

ac
Tb

(19)

(20)
V«(trap)

Tin

Since for weak fields almost always in> V(trap) we see that the weak-

field condition Tac b is recovered. We also see that the converse

statement is true: Tac Tb implies Av<< v , which states that the

scattering is local in velocity-space, implying further that the long

time-scale effect to expect is diffusion.

A further step toward the understanding of the weak-field mapping

(13) or (16) consists in showing that the mapping describes the inter-

action of a particle with just one resonant Fourier mode at a time. Let

us therefore consider the dynamics of a particle weakly interacting with

its resonant Fourier mode, i.e. the equation

exp(-m 2 /40M2 ) cos(k ax-t).

13.

4.2 - (21)



Integrating with respect to time over the unperturbed trajectory (12)

yields, after some straightforward algebra,

AV - a exp sin )COS, (22)
40MT)JW 2vin

where, withXin k x t ),

S- kv - 1, - x + t + . (23)
a in0 2vin

Since presumably vi 1/kM, we have Q + 0, so that further,

a f 2
AV exp(- ) Cos X. (24)

yin 4HM

Since, however, m/M - k 1 - 1 - i/yin, we see that (24) is indeed

equivalent to (16). The result is not surprising since the integration

of Eq. (2) over an unperturbed trajectory automatically performs a

stationary-phase selection of the resonant mode.

The map (16) shows how a particle experiences less and less

acceleration, and is less scattered, as its velocity deviates from the

resonant value v - 1. As regards the effect of the phase xM, after many

orbits it can be considered virtually random, so that the sign of Av will

not be biased on its account. The map (16) reproduces the results of

numerical integration quite well but breaks down when one begins to

14.
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violate the weak-field condition T « b . The mapping then tends to
ac b

concentrate near the lower stochasticity boundary where the rapidly

vanishing acceleration in that region is handled badly. This tendency is

documented in Fig. 5, to be compared with the numerical integration

result of Fig. 3a. A further limitation of the mapping (16) will become

evident from Figs. 6a,b, where Av is plotted against Vin. In this exam-

ple, as well as in the preceding one, the amplitude a is fairly large,

about 20 times the threshold value ath - 2.19 x 10-3, and T /T - 0.22.

th ad b

The mapping result, Fig. 6a, is of course symmetric with

respect to the line Av - 0, whereas the result of numerical integration,

Fig. 6b, exhibits a certain degree of skewness, a lack of symmetry about

the line Av - 0. Evidently then, the map (16) which for any v in allows

Av and -Av to occur with equal probability is incapable of describing a

long-term evolution having a nonvanishing ensemble-average, <Av> - 0.

The two shortcomings of the mapping (16) that we have just dis-

cussed originate in the assumption of unperturbed trajectories. We will

now remove this restriction. Instead of using Eq. (12) to approximate the

phase, we perform the integration in two parts, accounting for the accel-

eration effect on phases by using the two- step trajectories

x. - Vin (t - t ), O<x 0<1/2

(25)

x - 4/2 + vout (t - t - 1/2vi ), 1/2 < x<t.
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We thus obtain the mapping in implicit form

2t -2 + (e i+

-X2
out) coaX

(26)

+ -[D(zi) - D(zout)] sin Xi,

where z - (1 - 1/v)/2/8 and D(z) is Dawson's integral

D(z) - e- 2 fz
t2

edt. (27)

To order a , a small-pertubation assumption now gives, upon Taylor -

expanding around v ,

Av - a
Vi

28v,
in

-

4

-Z2

e COSXin

in ~in 2
(1+--) exp( - -- ) cos x

8vin 20 in

2
a2  in

S 4 e-i sin 2X [1 - z D(z ) .
in in in

(28)

The first term on the right hand side is the first approximation (16),

whereas the remaining terms represent the effect of a weakly perturbed

orbit.

The mapping (28) is much better approximation than is (16). It

tends much less to concentrate particles near the lower stochastic

boundary. This is clearly shown by the surface of section plot in Fig.

7a, produced from Eq. (28) under the same conditions as Fig. 5. Also,
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the Av versus v plot in Fig. 7b now reproduces the skewness seen in

Fig. 6b (with a slight excess at the highest Av). This is very good

considering the strength of the field in this case. The skewness of

mapping (28) yields a nonvanishing ensemble-average v , namely,

2 PP2
T, I in ex,( in

<A>(1+ ) exp(- ) . (29)
X 40v In Ov int

This is an important property of the mapping, as can be fully appreciated

by realizing that<Av is the local measure of momentum transfer between

the waves and the particles. Equation (29) essentially tells us that

particles below resonance (vin< 1) gain momentum, while particles above

resonance lose momentum. We will show later, in section V9 that <AV>

in Eq. (29) is related to the friction coefficient aD/3v.

I
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IV. MDMENTUM TRANSFER, CURRENT

Results of the previous section show that there is a net non-

vanishing average acceleration acting on resonant particles. The long-

time-scale effect is thus sustained momentau transfer in a distribution

of electrons spread almost uniformly within the stochastic region given

by Eqs. (10) and (11). We are now interested in the net total momentum

transferred in the interaction. For the sake of definiteness, let us

therefore imagine the field interacting with a Maxwellian plasma, in a

region of velocities such larger then the thermal velocity. Then most of

the electrons which are being pulled into the resonant region Av
stoch

originate at the lower stochasticity boundary and, as a result, a net

total momentum is being continuously transferred from the field to the

particles. In order to calculate this momentum transfer, no details of

the acceleration process are required if the time-asymptotic behavior is

known.

LAt us represent the situation just described by a resonant dis-

tribution of electrons which evolves in time under the influence of the

field, from on initial 6 - function to a time-asymptotic form which van-

ishes outside a stoch' but is nonvanishing and uniform inside that inter-

val, situated between v, and v2 , say. The net current produced in the

transition from the initial (fo) to the time-asymptotic state (f) is, by

definition,

J - f v (f - fo) dv, (30)



19.

subject to the constraint of particle conservation

f (fo - f) dv - 0. (31)

Hence

f - l/Avstoch , (32)

and since fo (v) m6 (v-vo ), w obtain

1 (V1 + V2 - NO (33)

If the particles originate at t - v1 , the current is maximum,

j - Avstoch.

The value of A vetoch is plotted in Fig. 8 together with the numerically

determined ensemble average<v - Nb>. In the numerical investigations,

typically 100 particles are all launched at an initial velocity vo inside

the stochastic region near the lower boundary v1 , but having different.

initial phases (to or ib). The ensemble is allowed to repeatedly collide

with the wavepacket until <v> reaches a steady-state. The net current

<v - v0> is seen to be in excellent agreement with the expected value

(34). Also plotted in Fig. 8 are the lower and upper stochasticity
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boundaries. The values v1 2 were calculated independently using the

overlap criterion and surface of sections plots with excellent agreement

between the two methods.

As shown in Fig. 8 the behavior of j is somewhat different just above

stochastic threshold and well above threshold. Well above stochastic

threshold the induced current increases with electric field and with 8.

This is to be expected since the upper limit v2 increases with 8 for a

given field. Since the field threshold for onset of stochasticity

increases with spectral width (since the wave energy is spread over

more modes) increasing 8 when near threshold will reduce the current .

These results explain those of Matsuda' 0 who found that electrons

transiting a "well-defined" resonance cone (larger 8) will carry a larger

current than those interacting with a "spread-out" one.
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V. DIFFUSION

If electron-wavepacket collisions are more frequent than

particle-particle collisions and the electron trajectories are only

weakly perturbed in individual electron-wavepacket collisions, then on a

time scale longer than the autocorrelation time, the evolution of the

resonant particle distribution function f can be conveniently described

by the Fokker-Planck equation

af _ 3Qf + a2 (Df) (35)
at av a

If the diffusion coefficient D and the friction coefficient v are simply

related as

V - a (36)

then Eq. (35) can be written in the form

a D )f (37)at av (D 37

known as the quasilinear diffusion equation13 . This simple model of the

effect of particle scattering, requiring just one coefficient, D(v), is a

strong motivation to formulate the D representing a particular wave-

particle interaction. The standard practice in the weak-field regime is

to calculate D(v) from the decay in time of the fluctuating field auto-

correlation function as seen by unperturbed electrons at velocity v.

This gives the so-called quasilinear diffusion coefficient. Successive
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iterations of the procedure15 with perturbed trajectories leads to the

resonance broadening theory result
16 . There have also been attempts to

formulate a diffusion coefficient in the strong-field, trapping, regime.

For example, Flynn17 supports, in numerical investigations, the notion of

a "trapping" diffusion coefficient as formulated by Dupree
16 , while

Graham and Fejer" contest such an idea.

The diffusion we are studying is limited in velocity space to the

stochastic region. If the step Av that the particle takes at every

crossing of the interaction domain is much smaller than the width of the

stochastic region, the diffusion coefficient depends on the velocity of

the particle between interactions. Therefore, for short times (a few

drift times I/v), the relevant quantity is D(v). In this respect,

because of the intrinsic stochasticity the interaction of electrons with

a coherent wavepacket resembles the one with a random phase wavepacket

for which agreement with quasilinear theory was established by Doveil and

Gresillon15 . After many interactions the particle has explored the whole

stochastic domain and then the meaningfull quantity is a diffusion

coefficient averaged over velocities in the stochastic region, D(v).

D(v) describes the long-time behavior of the system.

Let us begin with the standard quasilinear (QL) formulae. By

definition,

D - d <6 (38)
QL t*0dt 2
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where

6v - ft a(T)dT. (39)
0

a(t) is given in Eq. (2), the integration is performed along unperturbed

trajectories (12), and the pointed brackets signify ensemble-averaging.

We obtain

D [ (1_1/v)
2

DQL (v) -40tv20 J()

The same result is immediately obtained using the mapping (16), from

which, by definition,

<,&v2>

D(v) - 2T(41)
drift

where T drift - X/vin is the electron drift time between two interaction

events, and the averaging is performed over the phase. As regards the

associated friction coefficient, we have, from (36) and (40),

0L(1 ) exp (- ) . (42)

In order to recover this result from the discrete mapping, we take the

perturbed trajectory result (29) and we note that, by definition14

v -<Av>/t0 , where the appropriate time-scale t is here the electron

drift time I/vin'



24.

To what extent the system will really exhibit quasilinear behav-

ior in the sense given by the preceding coefficients D and v, can be ver-

ified by numerical experiments involving the evolution of the averages

<Av> and<A > in a large ensemble of particles. Then, by definition14,

V jq , D = & 2> (43)to D 2t0

We proceed as follows. Typically we launch a group of 1000 particles all

having the same velocity v0 , but distinguished one from another by dif-

ferent initial times or positions. We let the ensemble transit the wave-

packet just once and evaluate (the initially vanishing) Av - <v-v 0> and

A v2  <v> - <v>2 , where

<V>V , <v2> v 2  (44)N nN n

We repeat this procedure for a number of initial velocities v within the

stochastic region, so that we obtain v and D as a function of v0 . This

is because in one transit through the wavepacket the particle loses

memory of its initial phase, while at the same time retaining memory of

the initial velocity condition. The results for one particular choice of

a and 0 are shown in Fig. 9. Although T ac - 0.22 T b which is just about

at the limit of the weak-field region, we see that the quasilinear

results hold very well indeed. Serious deviations from quasilinear

predictions develop, however, when the ratio T ac Tb approaches

unity. A good appreciation of this tendency can be obtained from the
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global results of Fig. 10, where D is plotted as a function of a. Each

of the Figs 10a,b show 4 curves, two of which represent computational

data (D and D), the other two being theory (DQL and "QL). D and DQL are

local (velocity-dependent) diffusion coefficients, whereas D and D are
QL

average quantities. The corresponding pairs (D, D QL) and (D, DQL) agree

in the weak-field regime, but otherwise the deviation of numerical from

quasilinear results is substantial. The scaling of D and D with a in

the strong-field regime also considerably deviates from that expected on

the basis of resonance-broadening theory1 6 (3 12 ). We will return to the

strong-field case in the next section, but now a few words about the sig-

nificance of the average quantities D and D are in order.

We were motivated to introduce 5 and DQL in order to describe the

long-time-scale diffusion. In our case, since the accessible region of

velocity-space is bounded, the variance <Av2> eventually saturates as a

function of time and<Av2 >/2t vanishes, although individual particles

continue to be scattered. In order to define a diffusion coefficient for

long times, we follow one or more particles through a large number of

successive interactions with the wavepacket and we define Dt as the aver-

age over the number of cycles NcS

D AV, - t =x/v (45)
N 2t c in'

c c
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where Av - vout - vin, taken at each interaction event. After many in-

teractions, the particle has lost memory of the initial conditions, and,

in particular, D tends to a value independent of v. 0 This is demon-

strated in Fig. 11, where P is calculated for 6 values of v inside the

stochastic region. Hence, D represents a true ensemble as well as velo-

city-space average.

To describe theoretically the behavior of the system for long

times (many interactions) we define the average

D - 2t <D > , (46)
drift in vQin

where Av is given by (16) and the average is taken with respect to the

ensemble (X) and velocity-space (vin ). Since v in is presumably spread

uniformly over the stochastic region situated between, say, v, and v2 , we

have

_ 2w 2 e-(1-1/v) 
2 /28

Det i- 1 -______dv. (47)QL VE ~2 V1 I
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The interval (v1 , vZ) is situated around the resonant value

v - 1, and excludes the point v - 0, so that D can be approximated by

QL 41-
1

V2 1
(48)-z/ /20 dz.

In this form, DQL is easily related to the rms field. Referring to the

Fourier series (3), we see that

2 1 41
2

T
a - -
ras 2 01 m

e
4 /20 D?

(49)

If we keep in (49) only the overlapping modes and pass to the limit of an

integral, we obtain

a2(stoch) . 1 a MP12

rus 2 U 1i

-z2 /20 dz,e (50)

where P -

further

m/M. Recalling that M £ i/2ir and that p - I - 1/v, we have

a(stoch) . a
rug 4.10 f1-1/v1

e dz,

whence it follows that D can be written in the form

Q 2 - a(stoch) (stoch)
DQL ' rms Tac

with

S(stoch) . 7 /(V2 -viac -r( 2 - 1

(51)

(52)

(53)
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We stress that the autocorrelation time (53), has the appropriate form16

for a spectrum broadened over an interval spanning from v, to v2 . The

equivalence of the velocity-space average DQL and the time-average 5 in

the weak-field regime is evident from Fig. 10.

To sun up, distinction most be made between short-term and long-

term temporal effects. On a short time scale of the order of one scat-

tering event (t m £/v) in the weak-field regime, diffusion is quasi-

silinear. On a long time scale, as particles fill the accessible bounded

region of velocity-space, diffusion in terms of the rate of change of the

velocity variance ceases, but the diffusion coefficient F defined by

Eq. (45) tends to the same non zero limit for all particles in the sto-

chastic region. Thus, F and its theory counterpart F ,formulated in
QL

terms of the stochastic part of the spectrum, are the appropriate long-

time diffusion coefficients.
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VI. STRONG-FIELD REGIME

In this section we present material, mostly numerical results,

that we consider essential to the understanding of the strong-field

interaction. let us recall that by the strong-field regime we understand

conditions violating the inequality Tac b, so that scattering is no

longer necessarily local. in velocity space. In addition to the change in

magnitude, there is also a change in the typical character of particle

trajectory pertubations. The rms weak-field effect is now superseded by

trapped-particle-orbit effects.

We wish to immediately point out that there exists, in the

strong-field case, an upper limit of allowable field strengths, imposed

by the lack of self-consistency in our model. This limit is a = 1, which

guarantees that no particles from the bulk of the distribution are

affected by the wavepacket. Under these conditions, we can assume that

the wave maintained by the bulk particles remains unchanged, and we study

the nonlinear dynamics it induces on the resonant particles. No electro-

static one-dimensional spatially modulated wave-exists in a plasma when

av /v > 1.7.19 Some results of computations with a ;> 1 will,
phase thermal

however, be shown in order to stress certain features of the strong-field

regime. The two characteristic strong-field effects are here the

ponderomotive force acting on low-velocity nonresonant particles, and

non-adiabatic crossings of a separatrix as a resonant particle is first

captured and subsequently escapes from a trapped orbit in the wavepacket.
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The most important class of particles affected by the pondero-

motive force are those which reside around v - 0, i.e. the bulk parti-

cles. Their trajectories are very weakly perturbed and can be written in

the form

(54)

where x (t) W(t) ] gives the slow (fast) time-dependence. The equation

of motion for the slowly varying part is

-8(x + T - 4/2)2

0 - cos(x0 + S - t)>, (55)

where we average over t. If a << 1, then we find to order a

x = -ae

-O(x 0- 1/2)2

cos(xz - t) <<1, (56)

which leads to

2 d
x - - - e

0

-20(x - X/2)2

(57)

The ponderomotive potential is therefore

a
2

0 pond - e

-20(x 0- X/2)2
0

(58)

x(t) - x 0 ) + T(t),
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and particles incoming at velocities less than v - a//'2 will be

reflected. Such a particle is seen, for example, in the surface of sec-

tion plot, Fig. 12, where 9 particles where launched within the stochas-

tic region and one outside at v0 - 0.2. The nonresonant particle obvi-

ously bounces back and forth on a constant energy surface.

The resonant interaction, in contrast to the ponderomotive

reflection, leads to a very complicated velocity-space structure. The

surface of section plot in Fig. 12a belies this fact to a large extent,

since the distribution of velocities appears fairly uniform. The first,

quite obvious, difference between the strong-field case of Fig. 12 and a

typical weak-field one, shown in Fig. 3a for example, is the appearance

in Fig. 12a of a stochastic band in the region of negative velocities.

This indicates that some of the resonant particles can now be reflected,

and that this reflection is non-adiabatic, in contrast to the ponderomo-

tive case. The extent of the negative stochastic region as a function of

a is indicated in Fig. 8 by the dashed-dotted line, mirrored onto the

positive side for the sake of convenience. Another, rather fundamental,

difference between the strong-and weak-field cases consists in the per-

ception by a particle of Fourier modes. Fig. 12b shows the resonance

overlap diagram for the example of Fig. 12a. The overlap is so strong

that a resonant particle sees a large number of Fourier modes at the same

time. As a result, the usual picture of stochasticity associated with

resonance overlap breaks down, and the stochasticity observed in Fig. 12a

must be of different origin. In effect, the particle now sees the wave-

packet as a whole, rather than its individual Fourier components. How

then does a particle become stochastic? The answer is that if the
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particle is trapped, once inside the wavepacket, it had to cross a sepa-

ratrix, and will have to do so once again upon exiting from the inter-

action region. The transitions from trapped to untrapped states and

vice-versa are, in general, non-adiabatic
20 . The existence of trapped

particle orbits in the wavepacket can be detected using stroboscopic and

direct v versus x phase-space plots. A sample of these is shown in Fig.

13. In contrast to a surface of section plot, where the state of a par-

ticle is recorded just once during a cycle around the torus, the motion

is now monitored everywhere including the interaction region. The v ver-

sus x plot (Fig. 13a) shows 5 successive transits of the interaction

region, and immediately indicates the following characteristics of the

motion. First, the existence of an elliptic point situated at v - 1,

second, the non-adiabicity of the interaction (v Out vi , in general),

and finally the expected dependence of a trapped orbit on initial phase

and velocity. In the stroboscopic plots, the velocity and corresponding

position are recorded in succession at times separated by the natural

period 2w, for a large number of transits and/or particles, and thus give

a comprehensive phase-space picture. The first thing to realize is that

essentially all particle orbits are recorded in the process, and in par-

ticular also trapped orbits if such exist. The envelope of trapped

orbits is the separatrix. At peak amplitude the separatrix should span

the velocity interval 1 + 2a, which is exactly what we see in both

Figs. 13b,c. For the very strong-amplitude case of a - 4 reflections

occur owing to the extension of trapped orbits into the region of nega-

tive velocities.
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ratrix, and will have to do so once again upon leaving the interaction

region. The transitions from trapped to untrapped states and vice-versa

are, in general, non-adiabatic20 . The existence of trapped particle

orbits in the wavepacket can be detected using stroboscopic and direct v

versus x phase-space plots. A sample of these is shown in Fig. 13. In

contrast to a surface of section plot, where the state of a particle is

recorded just once during a cycle around the torus, the motion is now

monitored everywhere including the interaction region. The v versus x

plot (Fig. 13a) shows 5 successive transits of the interaction region,

and immediately indicates the following characteristics of the motion.

First, the existence of an elliptic point situated at v - 1, second, the

non-adiabicity of the interaction (vout * vin in general), and finally

the expected dependence of a trapped orbit on initial phase and velocity.

In the stroboscopic plots, the velocity and corresponding position are

recorded in succession at times separated by the natural period 2:, for a

large number of transits and/or particles, and thus give a comprehensive

phase-space picture. The first thing to realize is that essentially all

particle orbits are recorded in the process, and in particular also

trapped orbits if such exist. The envelope of trapped orbits is the

separatrix. At peak amplitude the separatrix should span the velocity

interval 1 + 2Va, which is exactly what we see in both Figs. 13b,c. For

the very strong-amplitude case of a - 4 reflections occur owing to the

extension of trapped orbits into the region of negative velocities.

33.
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The phase-space plots of the preceding discussion are useful diagnostics

for probing the nature of particle orbits, but for information about the

structure in velocity-space of particle scattering we have to go to Av

versus v plots, such as in Fig. 6b, for example. We prefer an alterna-

tive representation, in terms of vout versus in' i.e. "scattering

matrices". In the scattering matrix, the indication of interaction is a

departure from the diagonal, i.e. from the identity line v - Vin * The

sequence in Fig. 14 shows the progress in the magnitude of velocity-

scattering as the amplitude a is increased from a - 0.1 to a - 0.5 and

then a - 4. For a - 0.1, which is the limit of the weak-field regime

when 8 - 0.1, we see that everywhere Av< in, indicating that diffusion

is still a good approximation of the scattering in that case. For

a - 0.5 scattering is stronger and some structure has developed in the

scattering pattern. At a - 4 velocity-space has become very non-uniform:

reflections can occur in one region of velocity-space, while diffusion

persists elsewhere. Such a mixed phase-space is typical of wide spectra,

characterized by a strechted-out high velocity side so that weak

resonance overlap is possible there. Fig. 15 shows the difference, in

this respect, between wide and narrow spectra.

In our next example of Fig. 16, showing the extremely intricate

structure of scattering in the deeply trapped regime of Tac b - 4.5, we

in one case (a) produce the plot by following one single particle for

5000 collisions with the wavepacket, whereas in the other (b) we launch

5000 particles spread uniformly between vin - -2 and v i 4 and let the

ensemble collide with the wavepacket just once. The reason for doing so

is two-fold. First we are thus able to demonstrate the two distinct
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classes of nonresonant particles. To the first class belong particles

which are virtually unperturbed by the field and hence occupy the iden-

tity line v - . The other class is composed of particles which

are adiabatically reflected by the ponderomotive force. In the plot

these form the segment perpendicular to the identity line. The non-

adiabatically reflected particles originating from trapped orbits are

seen to form a diffuse extension of the ponderomotive branch. The second

reason has to do with the general question of time-and-ensemble-averages.

Fig. 16 directly demonstrates that it makes no difference to the scatter-

ing pattern in what manner an interval dv is populated. Also obvious

is now the fact that the system requires no more than one interaction

time to fully establish its scattering characteristics.

We will close this section with a few remarks about momentum

transfer and diffusion in strong fields. First, going back to Fig. 8, we

note that the current j persists for large a, and so does its correlation

with Avstoch . In Fig. 8b we observe, however, a change in the scaling of

j with a, which we attribute to the dominance of the wavepacket trapping

width over the proper spectrum width, as documented for example in Fig.

12b. The non-adiabatically reflected particles populating the band

delineated by the dashed-dotted line act as a counter-propagating beam,

but the pre-dominance of transiting particles caused by the bias in the

direction of the travelling wave, quarantees a net current in that

direction. A wider wave-spectrum will support a larger current because

the correspondingly larger number of Fourier modes on the stretched-out

high velocity side of the spectrum will form a wider region of overlap.
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In regard to diffusion, the preceding results indicate its lim-

ited validity as a means of describing the particle-velocity scattering

in the strong-field regime. If we are prepared, though, to sacrifice

local features in favor of a long-time global description of the scat-

tering process, it suffices to recognize that the interaction remains

non-adiabatic and that a certain region of velocity-space is ultimately

almost uniformly populated regardless of particle initial conditions.

Hence a long-time, global, diffusive description survives in the form of

the average quantity B , defined by Eq. (45) and computed in Fig. 10.

We right away note the substantial change in scaling with a that D ex-

periences as the strong-field regime takes over. Such a change in

scaling can only be explained through the effect of a new velocity step-

size, replacing the weak-field expression Av = am T ac ' a//. A crude

estimate of the new scaling can be obtained as follows. Knowing that the

velocity jump under strong-field conditions is related to the width of a

trapped particle orbit, we have, on the average, Av -/a. Consequently,

D - a/21, having taken a particle-wavepacket "collision" time £/v 1.

Let us now compare this result with the numerically established 5 . In

addition to the strong field data of Fig. 10, we show additional results

in Fig. 17, which collects all the strong field D of Figs 10a and 10b,

and also includes 5 for 8 * 0.001 (not shown previously). In terms of

magnitude, a/2Z falls below D by about a factor of ten. Moreover, the

scaling is seen to depend on $ .In conclusion, more work is required in

order to interpret the strong-field results, the key point being an

analysis of action non-conservation during separatrix crossing.
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VII. CONCLUSION

Having analysed the scattering in velocity-space of electrons

repeatedly interacting with a discrete spectrum of coherent waves, whose

extent is limited in configuration-, wavenumber-, and velocity-space, we

offer the following general picture of the interaction. Above a certain

threshold, which depends on field strength, spectrum width and electron

cycling length, the interaction is non-adiabatic and particle motion is

stochastic within a bounded, not necessarily simply-connected, region of

velocity-space. The nature of the interaction, and also the source of

stochasticity, depends on the ratio of two basic time scales in the prob-

lem: the particle transit time through the wavepacket which is also the

autocorrelation time Tac, and the particle bounce time Tb in the

wavepacket.

When T ac Tb, the particle-velocity scattering is everywhere

local in velocity-space and the diffusion approximation holds. In this,

weak-field, regime the particle-wavepacket interaction is characterized

by weak resonance overlap, such that during one cycling time an electron

interacts exclusively with just one or two Fourier modes. The wandering,

or diffusion, through a region of non-zero extent in velocity space is

then a long-time-scale phenomenon induced by the nonlinear effect of

resonance overlap during many interactions with the wavepacket. This

long-term diffusion must be distinguished from the short-term, local,

effect, which is quasilinear in nature, by virtue of intrinsic stochas-

ticity having automatically replaced random phase waves. The quasi-
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linearity of the short-term interaction is shown directly by comparing

the numerical short-term evolution of the velocity mean and variance with

the quasilinear-theory friction and diffusion coefficients. Analyti-

cally, a discrete mapping representing the interaction with weakly per-

turbed particle-trajectories also yields the exact quasilinear results,

and is easily generalized to an implicit form including the effect of

strongly perturbed trajectories. The long-term diffusion coefficient is

obtained by averaging the quasilinear expression over the stochastic

region of velocity-space. This average proves to be equivalent to the

time average taken for any resonant particle.

While the weak-field interaction can be generally characterized

by the effect of a rms field on a resonant particle acting for a period

of the autocorrelation time, the strong-field interaction is, in con-

trast, characterized by the existence of trapped particle orbits, the

bounce time now being smaller than the autocorrelation time. In addi-

tion, strong resonance overlap can occur, so that a resonant electron can

percieve many Fourier modes at a time. In other words, on the short

timescale a particle can no longer be thought of as interacting with

individual field components, but rather, its interaction with the wave-

packet as a whole must be considered. For wide spectra, such that Ak/k

is not much less then unity, the situation becomes very complicated,

since strong overlap in the region around the phase-velocity combines

with the effect of weak overlap on the stretched-out branch of the
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spectrum, vph <v . Such a mixed velocity-space causes particles to

weakly scatter in one region, but to suffer large displacements, even

reflection in another. Either way, the observed long-term effect of the

interaction is to scatter the particles almost uniformly throughout a

bounded region in velocity-space, indicating a generally non-adiabatic

process. For the particles that are temporarily trapped in the wave-

packet the source of non-adiabticity are the two crossings of a separa-

trix upon entering and leaving the wavepacket. Long-term momentum

transfer and diffusion therefore persist in the strong-field regime.

The numerically determined long-term diffusion coefficient deviates

substantially from its weak-field counterpart in terms of scaling with

the field streugth E. Depending on the spectrum width, the scaling is

somewhere between Ef and E.

A more detailed study of the strong-field regime, based on the

analysis of action non-conservation during separatrix crossing is in

preparation.



40.

ACKNOWLEDGMENTS

We would like to thank G. Thibaudeau for computational assis-

tance, T.W. Johnston for valuable comments and particularly the sug-

gestion of using scattering matrices, and M. Lieberman for an illumi-

nating discussion about area-preserving maps. This work was supported in

part by NSF contract No. ESC 82-13430, in part by DOE contract No.

DE-AC02-78ET-51013 and in part by Hydro-Quibec Project No. 573-57592.



41.

REFERENCES

1) G.M. Zaslavokii and N.N. Filonenko, Sov. Phys. JETP 25, 851 (1968).

2) G.M. Zaslavskii and B.V. Chirikov, Sov. Phys. Usp. 14, 549 (1972).

3) A.B. Rechester and T.H. Stix, Phys. Rev. A19 1656 (1979).

4) M.N. Rosenbluth, R.Z. Sagdeev, J.B. Taylor, and G.M. Zaslavskii,

Nucl. Fusion 6, 297 (1966).

5) G.R. Smith and A.N. Kaufman, Phys. Rev. Lett. 3, 1613 (1975), also

Phys. Fluids 21, 2230 (1978).

6) C.F.F. Karney and A. Bers, Phys, Rev. Lett. 39, 550 (1977).

7) C.F.F. Karney, Phys. Fluids 21, 1584 (1978); 22, 2188 (1979).

8) J.Y. Hsu, K. Matsuda, M.S. Chu, and T.H. Jensen, Phys. Rev. Lett.

43, 203 (1979).

9) T.H. Stix, in Proceedings of the Third Symposium .on Plasma Heating

in Toroidal Devices, edited by F. Sindoni (Editrice Compositori,

Bologna, 1976), p. 159.

10) K. Matsuda, in Proceedings of the Fourth Topical Conference of

Radio-Frequency Heating in Plasma., Austin, Texas, 1981, paper BIO;

also Stochastic Current Drive by Plasma Waves, General Atomic

Company Report GA-A16303, July 1981.

11) V. Fuchs, V. Krapchev, A. Ram, and A. Bers, in Proceedings of the

Fifth Topical Conference on Radio-Frequency Heating in Plasmas,

Madison, Wisconsin, 1983, paper B-L.1.

12) B.V. Chirikov, Phys. Reports 52, 263 (1979).



42.

13) N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics

(Mc Graw-Hill, New-York, 1973), Chap. 10.

14) S. Ichimaru, Basic Principals of Plasma Physics: A Statistical Ap-

proach (W.A. Benjamin, Inc., Reading, Massachusetts, 1973), Chap.

10.

15) F. Doveil and D. Gresillon, Phys. Fluids 25, 1396 (1982).

16) T.H. Dupree, Phys. Fluids, 9, 1773 (1966).

17) R.W. Flynn, Phys, Fluids 14, 956 (1971).

18) K.N. Graham and J.A. Fejer, Phys. Fluids 19, 1054 (1976).

19) V. Krapchev and A. Ram, Phys. Rev. A22, 1229 (1980).

20) R.E. Aamodt and E.F. Jaeger, Phys. Fluids 17, 1386 (1974).



43.

FIGURES CAPTIONS

Fig. 1: Geometric configuration of wav-particle interaction.

Fig. 2: Spectrum in velocity-space. The full separatrix width of a

Fourier mode is indicated at the position of its phase-velocity

and amplitude.

Fig. 3: Surface of section plot, velocity versus phase, taken half-way

between two interactions. (a) particles launched at v0 - 0.08

are monitored for 500 cycles through the wave-packet.

(b) Sub-threshold conditions, otherwise as per (a).

Fig. 4: Configuration for mapping. v out* tout and x - 0 are initial

conditions for new cycle.

Fig. 5: Surface of section plot from the mapping (16), at conditions of

Fig. 3a.

Fig. 6: Av versus vin. (a) From the mapping (16). (b) From numerical

integration.

Fig. 7: (a) Surface of section plot from the mapping (28) at conditions

of Fig. 3a and 5. (b) Av versus i from the mapping (28),

conditions as per (a).

Fig. 8: The lower (vj) and upper (v2 ) stochasticity boundaries and the

long-term current j, as. functions of the field strength a. The

dashed-dotted line indicates the width of the stochastic region

of negative velocities (reflected particles). (a) 8 - 0.1,

(b) 0 - 0.01.
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Fig. 9: The short-term diffusion (D) and friction (dD/dv0 ) coefficients

as a function of particle velocity. The solid lines are from

quasilinear theory, the points are from numerical integrations.

Fig. 10: The diffusion coefficient as a function of field strength a.

DQL is the quasilinear value at v - 0.8, D is from numerical

integrations of an ensemble of particles, DQL is velocity-space

averaged DQL, and " is the time-average from numerical inte-

gration of one particle. (a) 0 - 0.1, (b) 8 - 0.01.

Fig. 11: The particle diffusion coefficient B as a function of the

number of successive cycles, for 6 values of particle initial

velocity in the stochastic region.

Fig. 12: (a) Surface of section plot. 9 particles launched at v - 0.8

and 1.particle launched outside the stochastic. region at

v - 0.2; 500 cycles. (b) Corresponding resonance overlap

diagram.

Fig. 13: Phase-space plots, velocity versus position. (a) 5 successive

transits of a resonant particle through the wavepacket.

(b) Stroboscopic plot. v and x are recorded at t - to + 2rn,

n - 0,1,..., for 5000 cycles; a - 0.4. (c) Stroboscopic plot,

a - 4.

Fig. 14: Scattering diagrams, vout versus v ; - 0.1. (a) a - 0.1,

(b) a - 0.5, (c) a - 4.
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Fig. 15: Resonance overlap diagrams for a - 0.4. (a) Wide spectrum,

8 - 0.1. (b) Narrow spectrum, 8 - 0.01.

Fig. 16: Scattering diagrams. (a) One particle, 5000 cycles.

(b) 5000 particles distributed uniformly between v - -2 and

4, one cycle.

Fig. 17: The diffusion coefficient 5 as a function of a in the strong-

field regime for 8- 0.1, 0.01 and 0.001. Different point-

types correspond to different particle initial conditions.
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