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Diffusion of “Following” Links in Microblogging
Networks
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Abstract—When a “following” link is formed in a social network, will the link trigger the formation of other neighboring links?

We study the diffusion phenomenon of the formation of “following” links by proposing a model to describe this link diffusion

process. To estimate the diffusion strength between different links, we first conduct an analysis on the diffusion effect in 24 triadic

structures and find evident patterns that facilitate the effect. We then learn the diffusion strength in different triadic structures by

maximizing an objective function based on the proposed model. The learned diffusion strength is evaluated through the task of

link prediction and utilized to improve the applications of follower maximization and followee recommendation, which are specific

instances of influence maximization. Our experimental results reveal that incorporating diffusion patterns can indeed lead to

statistically significant improvements over the performance of several alternative methods, which demonstrates the effect of the

discovered patterns and diffusion model.

Index Terms—Link diffusion, Triad formation, Social network

✦

1 INTRODUCTION

In a microblogging network such as Twitter, users’ “fol-

lowing” behaviors form the “following” links, which is

fundamental to the formation of a network structure. The

“following” links are observed to be correlated. For exam-

ple, when a user A follows another user C, this creates

a chance for A’s follower B to discover C, where A, B
and C form a basic triadic structure1. We show the link

correlations in five different triadic structures in Figure 1,

where the observations are based on the dataset described

in Section 3. Given the preexisting link between A and

B and the new link from A to C added at time t′, we

present the ratio of new link from B to C, created within

time frame δ after t′ for each triadic structure. Time t′

and t are constrained by 0 ≤ t − t′ ≤ δ, where δ is

a time delay parameter indicating that the formation of

one link can trigger the formation of another link within

a short time interval and is empirically set as 7 in units

of days. From the figure, we can see that when there is a

preexisting link between A and B, the ratio of B following

C triggered by A following C will be improved by at
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1. Though Twitter does not explicitly provide a function to display such
a “following” message to B, B could still have a chance to discover C via
browsing A’s retweets of C’s messages, directly checking the followee list
of A, or being recommended of C through the recommendation function
of Twitter.

least 500 times (Figure 1(c),1(d) and 1(e) vs. 1(a)). The

ratios with the neighboring links shown in Figures 1(c),1(d)

and 1(e) also present at least 1.54 times of that in a one-

hop away link structure shown in Figure 1(b) (We selected

the one-hop away link structure with the maximal ratio).

Furthermore, a two-way relationship between two users

positively affects how likely the new link will propagate

(Figure 1(e) vs. 1(c) and 1(d)). The example implies that

the formation of A following C influences the formation

of B following C. Understanding the diffusion mechanism

for such links can give us insight into how a network

evolves over time. This can benefit many applications,

such as friend recommendation and “word-of-mouth” in-

fluence maximization to attract more links in a network.

Specifically, there are two potential applications, follower

maximization and followee maximization, of link diffusion

phenomenon. The two applications aim at activating more

links in a network. The requirement is derived from the

discussion with real social network companies, who would

like to improve user stickiness through encouraging users’

behaviors. Even though only 1-2% of triads form new links,

given the large scale of the real social network, it still leads

to a significant amount of link additions if we can utilize

link diffusion in a smart way.

Although the study of link diffusion is related to a

number of areas extensively researched, such as link pre-

diction [23], [26], [30], [43], network formation [3], [31],

[29], [45] and social influence analysis [1], [6], [10], [18],

[24], [27], [49], its objective and methodology are different

from these areas of work. The diffusion effect between

links influences the evolution of the network structure,

while network structure also affects the diffusion strength

between links. Existing research on link prediction usually

focuses on finding different factors that affect a link to be

formed. Network formation models the network evolution

to satisfy macroscopic properties such as heavy tails and
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Fig. 1. The ratio of B following C under different triadic

configurations. In each triad, the black edge represents

a preexisting link; the solid red edge represents a link

added at time t′, and the dashed red edge represents

a possible link created at time t, with 0 ≤ t− t′ ≤ δ.

small diameters. Both of them do not consider the dynamic

diffusion effect between links (i.e., one link triggers another

link in a short time interval). Social influence analysis

either aims to verify the existence of social influence [1],

[6] or tries to quantify the strength of the influence [18],

[27], [49]. However, they focus on studying the influence

between users, while we aim to study how the formation

of links are influenced and propagated.

In this paper, we study the diffusion phenomenon of

“following” links in microblogging networks. In particular,

we try to answer the following questions: How to model the

diffusion of the links in a network? What are the evident

patterns that facilitate such diffusion process? How to

quantitatively learn the diffusion strength between links in

different patterns? How can the study of link diffusion help

real applications? Properly addressing these questions is not

an easy task. Although the links are generated by users’

behaviors, the diffusion of these links cannot be directly

modeled like other actions (e.g., purchase of a product)

because the link diffusion process is closely correlated to

the dynamic network structure. Thus a principled method-

ology to model the diffusion process is necessary. We

address these issues in this paper and make the following

contributions:

1) We propose a “following” link cascade model to

depict the link diffusion process through considering

the time delay and different diffusion patterns.

2) We find significant triadic structures that affect the

diffusion process. For example, a two-way relation-

ship between two users can better (+1%) trigger the

propagation of new links than a one-way relationship.

3) We learn the diffusion strength in different triadic

structures by maximizing an objective function based

on the “following” link cascade model.

4) We consider two specific influence maximization

applications, follower maximization and followee

maximization, to demonstrate the usefulness of the

proposed model.

5) We conduct experimental evaluations using a large

twitter dataset and a weibo dataset2. The results

2. The most popular Chinese microblogging service.

indicate that our method is able to model the dy-

namic formation of links in microblogging networks

more closely than other link prediction or network

formation methods.

Organization Section 2 proposes the link diffusion model.

Section 3 introduces the dataset and analyzes the link

diffusion patterns in different triadic structures. Then, in

Section 4, we present how to learn the diffusion strength

by maximizing an objective function based on the link

diffusion model. Section 5 introduces two applications of

the link diffusion model. In Section 6, we show experi-

mental results that validate the effectiveness of our model.

Section 7 reviews the related work and Section 8 concludes

the paper.

2 “FOLLOWING” LINK CASCADE MODEL

In this paper, we only focus on network structure and

ignore user profile features. We propose a “following” link

cascade model (FCM) to simulate the diffusion process

from one link to its neighboring links in a network. If

two links share a common end point, we say that they are

neighboring links of each other. We ignore the diffusion

between links without adjacent relationship because the dif-

fusion between neighboring links is more natural. Figure 1

shows that the two links without direct adjacent relationship

(Figure 1(a)1(b)) present an insignificant diffusion effect

compared to the neighboring links, i.e., two links in a triadic

structure. In addition, the triadic closure is a fundamental

concept in social network theory. This was made popular

by Grannovetter et al. [19] when studying weak ties and

treated by Easley et al. [15] as a useful simplification of

reality for understanding and predicting networks. We can

therefore safely say that the triad is a basic structure in

studying networks.

We first represent a dynamic microblogging network as

G = (V,E, t), where each node v ∈ V represents a user

and each directed edge euv ∈ E represents a “following”

link pointing from user u to v. For each link e pointing

from A to B, we call A the follower end point and B the

followee end point. Function t : E → N∪{⊥} labels each

edge with the timestamp at which the link was formed.

Notation t(euv) = n ∈ N indicates that euv was formed

at timestamp n, where time is counted in units of days.

Notation t(euv) =⊥ represents the fact that euv has been

formed a long time ago, and its exact formation day is not

captured. Henceforth, we abbreviate t(euv) as te. We use

e′ to represent the link from A to C, and use e to represent

the potential link from B to C.

Assumption 1: Diffusion effect between links decays

over time.

To model the decay assumption, we use a discovery

probability ge′e to model how early B discovers that the

link of A following C is formed, and a diffusion probability

he′e to describe how likely it is that A following C
affects the formation of B following C after the discovery.

Thus, the diffusion strength is represented by discovery

probability and diffusion probability together.
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Fig. 2. Diffusion process of “following” links.

The diffusion process of the FCM model unfolds in

discrete steps according to the following stochastic rule.

When a link e′ is added at time t′, at each time slot

from time t′ to t′ + δ, the follower end point of e may

discover the link e′ with discovery probability ge′e, and

once discovered, there is one chance at that time that e′

influences the formation of e with the diffusion probability

he′e. If failed, e′ will have no chance to activate e again.

In other words, the time delay λ for discovery follows

a geometric distribution with parameter ge′e and after

discovery there is one chance at time t′ + λ that e′ could

activate e. The reason we put an upper bound δ on the delay

distribution is to follow the observation made in Section 3

that after some time slots (e.g. δ = 7 days), the influence

effect almost diminishes. When multiple links activate e, e
is activated at the time of the first successful attempt.

Even though our FCM model only allows one chance

of activation of a link at the time of the discovery of a

neighboring link e′, the discovery event allows different

interpretations, which compensate the seemingly restricted

one-time activation attempt. The discovery of e′ by B (the

follower end user of e) could mean either that B logs in

and first notices that A follows C, or it could also mean

that B already notices A following C and already reads

some tweets A retweeted from C. The latter can be viewed

as B learning more about C before she really “discovers”

the value of C and decides whether to follow C. Moreover,

the meeting probability between two persons proposed in

[1] can be also explained as the discovery probability in

our paper. In summary, there can be several interpretations

on the discovery mechanism. Essentially, all of them can

be understood as a delay on the diffusion process.

Figure 2 shows an example of link diffusion process.

eAC is formed at time t, the follower end point B of eBC

discovers eAC at t + 1 and then eAC affects eBC to be

formed at t+1. Subsequently, eBC affects eDC to be formed

at time t + 2. Similarly, the follower end point A of eAE

discovers eAC at time t + 1 and then eAC affects eAE to

be formed at t+ 1.

The model can be viewed as a variant of the time-delayed

independent cascade (IC) model [20], [24], [27]. The IC

model diffuses the influence between users in a static

network, while our model diffuses the influence between

links, which causes the evolution of the network structure.

We use the word “influence” for convenience, however, one

should not interpret it directly as social influence between

users in a social network.

Our goal is to investigate how likely the formation of

one link influence the formation of the neighboring links

in a short time period. Specifically, we aim at measuring

the diffusion strength, i.e., the discovery probabilities and

the diffusion probabilities in our model. We categorize the

diffusion in a triadic structure into two main categories:

Follower diffusion: If a link of A following C is

formed at time t′, and this link triggers the formation of B
following C at time t with t′ ≤ t ≤ t′ + δ, where B is A’s

follower or followee by time t′−1, we say that there exists

an influence of the formation of eAC on the formation of

eBC . Since this influence generates further followers of C
from a new user, we call it follower diffusion3.

Figure 3(a) shows a typical example of the follower

diffusion in the triad (A,B,C) with a preexisting link eBA

by time t′−1. Later, we will consider other triadic structures

of follower diffusion, e.g. by time t′ − 1, B was already

a followee of A, or C was already a follower of B, etc.

Symmetrically, we define followee diffusion:

Followee diffusion: If a link of B following A is

formed at time t′, and this link triggers the formation of B
following C at time t with t′ ≤ t ≤ t′ + δ, where C is A’s

followee or follower (by time t′−1), we say that there exists

an influence of the formation of eBA on the formation of

eBC . Since this influence generates further followees of B
from a new user, we call it followee diffusion. Figure 3(b)

shows a typical example of followee diffusion.

The two categories are different. In follower diffusion,

the two newly added links share the same followee end

point, which results in different users “following” the same

user. In followee diffusion, the two newly added links share

the same follower end point, which results in different

users being followed by the same user. According to the

difference, we can design different applications for the two

categories. For example, follower diffusion can be used

by a user to target a small set of potential followers in

order to attract more followers. Followee diffusion, on the

other hand, can be naturally used to enhance followee

recommendation. Traditional recommender systems mainly

consider how likely it is that the recommended users will

be accepted by the target user. Based on followee diffusion,

the system can instead recommend users who can trigger

the maximal number of users the target user will follow

subsequently. Traditional recommender systems only focus

on encouraging users to follow the one-step recommended

followees, while the followee diffusion-based recommenda-

tion focuses on triggering more than one step acceptances

by the target user. In summary, both follower diffusion and

followee diffusion create opportunities of generating more

links, which is important for the healthy growth of social

networks.

Note that there also exists some other categories of link

diffusion patterns, e.g., the diffusion of link eAC to link

eCB . However, the physical meanings of those categories

are not natural to be understood and explained. Therefore,

3. To be exact, what is described here is one step of follower diffusion,
while we also allow multiple steps of follower diffusion, such as D
“following” C triggered by B “following” C. Followee diffusion is
equally allowed to have multiple steps.
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Fig. 3. Two categories of “following” diffusion patterns.

TABLE 1

Triad statistics in Twitter.

Follower Diffusion Followee Diffusion

△ |C△||C+

△
| r△ △ |C△| |C+

△
| r△

1

A

B	
   C	
  

	
  	
   t'	
  

t	
   22870 233
0.0102

***
13

A

B	
   C	
  

t’	
   	
  	
  

t	
   24162 2298
0.0951

***

2

A

B	
   C	
  

	
  	
   t’	
  

t	
   22527 246
0.0109

**
14

A

B	
   C	
  

t’	
   	
  	
  

t	
   62411 2293
0.0367

***

3

A

B	
   C	
  

	
  	
   t’	
  
	
  	
  

t	
   33122 642
0.0194

***
15

A

B	
   C	
  

t’	
   	
  	
  

	
  	
  

t	
   63092 3985
0.0632

***

4

A

B	
   C	
  

	
  	
   	
  	
  t’	
  

t	
   29830 100 0.003416

A

B	
   C	
  

t’	
   	
  	
  
	
  	
  

t	
   23099 2314
0.1002

***

5

A

B	
   C	
  

	
  	
   t’	
  

	
  	
  

t	
   2370 3 0.001317

A

B	
   C	
  

	
  	
   	
  	
  t’	
  

t	
   25049 324
0.0129

***

6

A

B	
   C	
  

	
  	
  
	
  	
  

t’	
  

t	
   7283 76
0.0104

*
18

A

B	
   C	
  

t’	
   	
  	
  

	
  	
   	
  	
  

t	
   65219 3469
0.0532

***

7

A

B	
   C	
  

	
  	
   t’	
  

	
  	
  

t	
   116 3 0.025919

A

B	
   C	
  

t’	
   	
  	
  

	
  	
  

t	
   428 315
0.7360

***

8

A

B	
   C	
  

	
  	
   t’	
  

	
  	
  

t	
   883 77 0.087220

A

B	
   C	
  

t’	
   	
  	
  

	
  	
  

t	
   5729 2300
0.4015

***

9

A

B	
   C	
  

	
  	
   t’	
  
	
  	
  

	
  	
  

t	
   730 71 0.097321

A

B	
   C	
  

t’	
   	
  	
  
	
  	
  

	
  	
  

t	
   4372 3427
0.7839

***

10

A

B	
   C	
  

	
  	
   t’	
  

t	
   666 46
0.0691

**
22

A

B	
   C	
  

t’	
   	
  	
  
	
  	
  

	
  	
  

t	
   3889 3267
0.8401

***

11
B	
  

	
  	
  

A

C	
  

t’	
  

	
  	
  

t	
   389 42
0.1080

***
23

A

B	
   C	
  

	
  	
  t’	
  

t	
   8145 3280
0.4027

***

12

A

B	
   C	
  

	
  	
   t’	
  

t	
   970 180
0.1856

**
24

A

B	
   C	
  

t’	
   	
  	
  
	
  	
   	
  	
  

	
  	
  

t	
   2707623310
0.8609

***
Notes: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001

we only consider the two defined diffusion categories.

3 DATA AND OBSERVATIONS

In this section, we employ Twitter to analyze the diffusion

effects in the two defined diffusion categories in Section

2. We provide basic observations on the significance of

the diffusion patterns and diffusion decay phenomenon.

These observations both provide intuitive understanding on
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Fig. 4. Statistics of the crawled Twitter dataset.

the diffusion mechanism, and help guiding learning the

parameters in our model.

3.1 Data Collection

We use the Twitter dataset from [41] in our study. Specifi-

cally, the dataset is crawled in the following way. To begin

with the collection process, we selected the most popular

user in Twitter, i.e., “Lady Gaga”, and randomly collected

10,000 of her followers. We took these users as seed users

and collected all followers of these users by traversing

“following” links, which produced in total 13,442,659 users

and 56,893,234 links. We then monitored the change of the

network structure from 10/12/2010 to 12/23/2010. From the

crawled data, we extract a complete subnetwork, in which

the links between all users are recorded. The complete

subnetwork consists of 112,044 users and 443,399 links

between them, in which there are 25,530 dynamic links

from 10/12/2010 to 12/23/2010 .

Figure 4 shows the follower distribution and followee

(the users being followed) distribution of the crawled com-

plete subnetwork. Both the distributions are drawn in log-

log scale. We can see that the two statistics both follow the

power law distribution.

3.2 Observations

For both follower and followee diffusion, we define 12

respective categories of different triad structures. Table 1

lists the 24 triads and their statistics in the above Twitter

network. Triads 1 to 12 represent follower diffusion and

triads 13 to 24 represent followee diffusion.

Each triad structure contains links with different direc-

tions and timestamps: (a) the black edge without timestamp

represents a preexisting link; (b) the solid red edge with

timestamp t′ represents a link added at time t′, and is

the cause of the link diffusion under investigation; and

(c) the dashed red edge with timestamp t represents the

effect of the diffusion to be observed, and it may or may

not be presented in an actual triad. The timestamps satisfy

0 ≤ t−t′ ≤ δ (δ is set as 7 days according to the following

observations).

In Table 1, notation C△ denotes the actual triadic in-

stances with triadic structure △, where C+
△ are the instances

with B following C within [t′, t′+δ]. |C△| is the number of

triadic instances with regard to △. Notation r△ represents
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the rate of B following C in a specific triad, which is

calculated as :

r△ =
|C+

△|

|C△|
. (1)

We analyze the diffusion effects in different triadic

structures via the following two types of statistics:

• Pattern significance: Are the patterns in Table 1

significant or not?

• Diffusion decay: Is the diffusion effect between links

decay over time?

Pattern significance We conduct a randomization test to

demonstrate the significance of the triadic patterns in Table

1. Randomization test is a model-free, computationally

intensive statistical technique for hypothesis testing [17],

[44]. The key idea is to define a null hypothesis and

a test statistic. The main steps include: firstly, compute

some test statistic using the set of original observations;

secondly, carry out the random shuffle according to the

null hypothesis a large number of times, and compute the

test statistic for each random data; finally, by the law of

large numbers, the permutation p-value is approximated by

the proportion of randomly generated values that exceed

or equal the observed value of the test statistic. If p-value

≤ 0.05, the null hypothesis is rejected. In our setting, the

null hypothesis is defined as: the formation of neighboring

links is temporally independent of one another. Under this

null hypothesis, we randomly shuffle the formation times

of all the newly formed links, and use the test statistic as

the rate defined in Eq. (1).

For each triadic structure, we set δ as 7 days and conduct

random shuffle 10000 times. In followee diffusion category,

the calculated p-values are all 0, which indicate that the

followee diffusion patterns are significant. In follower dif-

fusion category, the calculated p-values for triads 4, 5, 7,

8, 9 are larger than 0.05, which denote these patterns are

insignificant. The p-values are shown in table 1. In triads

7, 8, 9, the most probable reason of B “following” C is C
“following” B before and B “following” back, rather than

the influence from A “following” C. However, triads 9, 10,

11, 12 are more significant because there are more two-way

links in a triadic closure, which can strengthen the diffusion

effect from eAC . In triads 4, 5, 6, the most probable reason

why A follows C is “following” back, and thus C is more

likely to be an ordinary user. Therefore, the diffusion effect

of allowing C to be followed by others is relatively week.

However, triad 6 is more significant because it has more

two-way links. In triads 1, 2, 3, the link eAC is formed most

probably due to the “following” behavior from ordinary

user to celebrity user. Thus the diffusion effect in triads

1,2,3 are much stronger. Henceforth, we ignore triads 4, 5,

7, 8, 9 in the following analysis and experiments.

Diffusion decay To observe the effect of link diffusion

over time, we vary the value of δ as 1, 2, 3, 5, 7 and 10
days. For each value of δ, we average the observed r△ in

follower diffusion category and followee diffusion category

respectively, and show the results in Figure 10(a). From the
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r
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△
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Fig. 5. Diffusion decay in Twitter. X-axis: δ (1,2,3,5,7

and 10 days)

results, we can see that the increasing rate of r△ becomes

slower over time. When δ is larger than 7 days, r△ almost

stops increasing, which implies that the diffusion effect

persists for about 7 days. We also notice that compared

with follower diffusion, the rate r△ in followee diffusion

is high in the first day and later it increases very slowly.

This is because, in follower diffusion (Figure 3(a)), there

should be some mechanism for B to discover A following

C, such as via browsing A’s retweets of C’s messages.

While in followee diffusion (Figure 3(b)), although B
may discover A following C according to the system

recommendation after a period of time, B can also discover

C immediately after following A via browsing A’s retweets

of C’s messages. Thus, the formation of B following C in

followee diffusion is easier than that in follower diffusion.

For simplicity, we uniformly choose δ as 7 days in the later

analysis and experiments.

We further conduct another analysis to show that the

diffusion effect decays over time. For each triad, we cal-

culate r△ with δ as 7 days. For comparison, we change

the solid red edge to a preexisting link (i.e., t =⊥),

instead of a newly formed link, and recalculate r△. We

select 3 representative triads for each category and report

the comparative results in Figure 6. From the results, we

can see that in both categories, r△ in the original triads

(neighboring links are formed within a short period) are

significantly higher than those in the comparative triads

(neighboring links are formed a long period from each

other), which indicates that the diffusion effect between

neighboring links decays over time. Moreover, Figure 6(b)

presents a higher rate difference than Figure 6(a), which

also indicates that the decay effect in followee diffusion is

more significant than that in follower diffusion.

Other observations In the category of follower diffusion,

we discover that the diffusion strength is more significant

when there is a two-way relationship between A and B. We

divide triads in this category into four groups (triads 1-3,

triads 10-12). In each group, the first triad only has a one-

way relationship eBA, the second triad only has a one-way

relationship eAB , and the third triad has both eAB and eBA.

The statistics in Table 1 show that the triads with a two-way

relationship between A and B exert a stronger effect on the

formation of B following C than those with only a one-

way relationship between A and B (about +1%). This can
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Fig. 6. Diffusion decay in Twitter. ’W/o time’ denotes

the results with solid red edges being changed to

preexisting links.

TABLE 2

Notations.

SYMBOL DESCRIPTION

E the links with observed formation times

Se the neighboring links of e added within [te − δ, te]
Re the neighboring links of e not added before te + δ

p(e|Se) the probability of e being formed at te given Se

xe′e the probability of e′ activating e successfully at te
ye′e the probability of e′ not activating e within [te′ , te]
△ the triadic structure

h△ the diffusion probability of triadic structure △
g△ the discovery probability of triadic structure △
C+

△
the activated triadic instances with structure △

C−

△
the inactivated triadic instances with structure △

be explained by the intuition that two-way relationships are

much more likely to be actual “social” relationships, rather

than “celebrity following”, and thus can better facilitate the

diffusion of “following” links.

In the category of followee diffusion, we discover that

the diffusion effect is more significant when there exists

a one-way relationship from A to C. We also divide the

triads in this category into four groups (triads 13-15, triads

16-18, triads 19-21, triads 22-24) similar to the division for

follower diffusion category. We see that for all the groups,

the triads with a one-way relationship from A to C exert

a stronger effect on the formation of B following C than

those with only a one-way relationship from C to A (+3-

40%). This can be explained as a user discovery process:

when a link of B following A is formed, this may trigger B
to discover A’s followee C through immediately browsing

A’s retweets of C’s messages, and A’s interest in C may

indicate that B would be also interested in C.

Summary We have seen that firstly, the formation of two

links in some triads is temporally dependent; secondly, the

diffusion effect between two links decays over time; thirdly,

a two-way relationship between two users can trigger more

links (+1%) than a one-way relationship and a relationship

directed from A to C improves the diffusion likelihood

from A following C to B following C (+3-40%).

4 MODEL LEARNING

In this section, we learn the diffusion strength in different

triadic structures in Table 1. We define an objective function

based on FCM and propose an EM algorithm to solve it.

Likelihood function Based on the FCM model, we define

a likelihood function to describe the generative probability

of all the links in the network. The objective is to estimate

the parameters θ = {he′e, ge′e} through maximizing the

likelihood function. Actually, any link only forms once and

there is no more than one instance associated to one pair

(e′, e). Directly estimating the diffusion probability he′e

and discovery probability ge′e for (e′, e) therefore results

in trivial solution (If e is activated, he′e = 1 and ge′e = 1;

if e is inactivated, ge′e = 0). Instead, according to the

observations in Section 3.2, we classify all pairs {(e′, e)}
into the 24 triadic categories (see Table 1). Specifically,

a newly added link e at time t and one of its potential

neighboring links e′ (may form at time t′ or not) must

satisfy one kind of triadic structures in Table 1. In this way,

the parameters θ = {he′e, ge′e} to be estimated are reduced

to 24 parameters θ = {h△, g△}, where h△ is the diffusion

probability and g△ is the discovery probability of a triadic

structure △. Therefore, the problem of link activating link

can be viewed as triad activating link.

The difference between our likelihood function and pre-

vious IC model-based likelihood function is that, the influ-

ence diffuses from one link to another link instead of the

diffusion between nodes in the network. We incorporate the

triadic structures between links into the likelihood function

and estimate the diffusion strength associated with different

triadic structures, which is different from estimating the

diffusion strength between two nodes. The symbols used

in the section are summarized in Table 2.

We derive the likelihood function based on FCM:

L =
∏

e∈E

{

p(e|Se)
∏

e′∈Re

yee′

}

. (2)

In Eq (2), we formalize the formation of each newly

added link e ∈ E , where E is the set of links with observed

formation times. The formation of a link is correlated with

all its recently added neighboring links. As shown in Figure

7, the formation of eBC is jointly influenced by multiple

neighboring links eBA1
, eBA2

, · · · , eAnC . We denote the

formation probability of e at time te as p(e|Se), where Se

is the set of neighboring links of e added within [te−δ, te].
Notice that e being formed at te implies that the first time

of a link e′ ∈ Se activating e is te.

The formation probability p(e|Se) is calculated by the

joint influence from Se. A link e is successfully added if

at least one of its recently added neighboring links e′ ∈ Se

successfully activated it. However, we do not know which

link actually succeeds. Thus, when e is activated (i.e.,

added), we represent the statuses of e’s recent neighboring

links by a latent binary vector ~αSe
= {αe′}e′∈Se

, with

each element αe′ = 1 denoting e′ tried to activate e and

succeeded, and αe′ = 0 denoting e′ failed to activate e
within [te′ , te]. For every possible assignment of ~αSe

, there

is at least one element αe′ equaling 1. There is a total of

2|Se|−1 possible assignments. According to the law of the

total probability, we write p(e|Se) as:
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Fig. 7. Diffusion from multiple neighboring links. One

link eBC added at time t is jointly influenced by eBA1
,

eBA2
, · · · , eAnC added at time t1, t2, · · · , tn, where tri-

ads BA1C and BA2C satisfy followee diffusion pattern,

and triad BAnC satisfies follower diffusion pattern.

p(e|Se) =
∑

~αSe

p(e|~αSe
)p(~αSe

), (3)

Since the actual activation statuses cannot be observed,

we assume p(~αSe
) to be uniformly distributed under the

assumption of maximal entropy, and focus on calculating

conditional probability p(e|~αSe
). Following the assumption

of the IC model [20], [24], [27], each neighboring link

e′ ∈ Se activates e independently. Thus, the joint proba-

bility p(e|~αSe
) under one possible assignment of ~αSe

is

represented as :

p(e|~αSe
) =

∏

e
′∈Se

x
αe′

e′e y
1−αe′

e′e , (4)

where xe′e denotes the probability of e′ activating e at

time te successfully. As described in Section 2, when e′

is formed at te′ , the time delay for the follower end point

of neighboring link e to discover e′ follows a geometric

distribution with parameter g△
4. After discovery there is

one chance at that time that e′ could activate e. According

to the model, xe′e is defined as follows:

xe′e = h△g△(1− g△)te−te′ . (5)

The notation ye′e denotes the probability of e′ not activating

e within [te′ , te], which means that at each time slot from

te′ to te, e′ does not activate e successfully. In other words,

ye′e is the probability that e′ activates e after te
5:

ye′e = 1− h△g△

te
∑

t=te′

(1− g△)t−te′

= h△(1− g△)te−te′+1 + (1− h△).

(6)

For each newly added link, we also formalize its effect

on its unformed neighboring links. A newly added link

e ∈ E has a chance to activate its unformed neighboring

4. To be exact, the subscript notation △ should be △(e′, e), denoting
the particular triadic structure constructed by e′ and e. For simplicity, we
use notation △ instead of △(e′, e), since it is clear from the context.

5. For the sake of argument, if e′ does not activate e, we can say it
activates e at infinity, which is still after te.

links within the next δ time interval. It fails to activate a

neighboring link e′ with probability yee′ if e′ ∈ Re, where

Re is the set of neighboring links of e not added before

te+δ. The probability yee′ is also calculated using Eq. (6),

while replace te′ and te with te and te + δ respectively.

Finally the log-likelihood function can be rewritten as:

logL =
∑

e∈E

{

log
∑

~αSe

∏

e
′∈Se

x
αe′

e′e y
1−αe′

e′e +
∑

e′∈Re

log yee′

}

.

EM algorithm We use an EM algorithm to learn the model

parameters.

We introduce a posterior distribution q(e|~αSe
) =

p(e|~αSe )
p(e|Se)

and use Jensen’s inequality to find a lower bound

of the log-likelihood function:

logL =
∑

e∈E

{

log
∑

~αSe

q̂(e|~αSe
)
p(e|~αSe

)

q̂(e|~αSe
)
+

∑

e′∈Re

log yee′

}

≥
∑

e∈E

{

∑

~αSe

q̂(e|~αSe
) log

p(e|~αSe
)

q̂(e|~αSe
)
+

∑

e′∈Re

log yee′

}

,

where the notations withˆare the parameters of last itera-

tion. The expression q̂(e|~αSe
) log q̂(e|~αSe

) is only related

to the parameters of last iteration, which can be viewed as

a constant and ignored when maximizing the lower bound.

We use Q(θ, θ̂) to denote the simplified lower bound:

Q(θ, θ̂) =
∑

e∈E

{

∑

~αSe

q̂(e|~αSe
) log p(e|~αSe

) +
∑

e′∈Re

log yee′

}

.

By plugging Eq. (4) into the above equation, we obtain:

Q(θ, θ̂) =
∑

e∈E

{

∑

~αSe

q̂(e|~αSe
)
∑

e
′∈Se

(

αe′ log xe′e

+(1− αe′) log ye′e
)

+
∑

e′∈Re

log yee′

}

.

(7)

By moving
∑

~αSe
q̂(e|~αSe

) into the inner summation

operation and replacing q̂(e|~αSe
) with

p(e|~αSe )
p(e|Se)

, we get:

Q(θ, θ̂) =
∑

e∈E

{

∑

e
′∈Se

(

Âe′e log xe′e

+(1− Âe′e) log ye′e
)

+
∑

e′∈Re

log yee′

}

,

(8)

where Ae′e is defined as:

Ae′e =
xe′e

∏

d∈Se\{e′}
(xde + yde)

p̂(e|Se)
. (9)

In our implementation, p(e|Se) is actually calculated as

p(e|Se) =
∏

e′∈Se

(xe′e + ye′e)−
∏

e′∈Se

ye′e, (10)
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instead of Eq. (3) to reduce the time complexity from

O(2|Se|) to O(|Se|). In Eq (10), the first product
∏

e′∈Se
(xe′e + ye′e) is the probability that all edges in

Se activate e at or after time te, which indicates none of

e′ ∈ Se activating e before time te. The second product
∏

e′∈Se
ye′e is the probability that all edges in Se activate

e after time te, which indicates none of e′ ∈ Se activating

e before or at time te. Therefore, their difference is at least

one e′ ∈ Se activates e at time te while all activate e at

or after te, i.e., te is the first time of e being activated by

e′ ∈ Se.
Although log xe′e is a linear combination of log h△,

log g△ and log(1 − g△), log ye′e can not be expressed
as such (see Eq. (6)). Therefore, we introduce another
posterior distribution Be′e defined in (11) and find a lower
bound for log ye′e:

log ye′e ≥ B̂e′e log h△(1−g△)te−t
e′

+1+(1−B̂e′e) log(1−h△),

where Be′e is as defined as:

Be′e =
h△(1− g△)te−te′+1

h△(1− g△)te−te′+1 + (1− h△)
. (11)

By plugging Eqs. (5) and (11) into Eq.(8), we obtain the

final lower bound of the original log-likelihood function.

Q(θ, θ̂) =
∑

e∈E

{

∑

e
′∈Se

{

Âe′e log h△g△(1− g△)te−te′

+ (1− Âe′e)
{

B̂e′e log h△(1− g△)te−te′+1

+ (1− B̂e′e) log(1− h△)
}

}

+
∑

e′∈Re

{

B̂ee′ log hee′(1− g△)δ+1

+ (1− B̂ee′) log(1− hee′)
}

}

.

We differentiate Q(θ, θ̂) with respect to each parameter
h△ and g△ and set the partial differential to zero. The link
pairs {(e′, e)} associated with a same triadic structure △
are aggregated together. The parameters are calculated as
follows:

h△ =

∑

(e′,e)∈C
+

△

D̂e′e +
∑

(e′,e)∈C
−

△

B̂e′e

|C△|
, (12)

g△ =

∑

(e′,e)∈C
+

△

Âe′e

∑

(e′,e)∈C
−

△

B̂ee′(δ + 1) +
∑

(e′,e)∈C
+

△

D̂e′e(te − te′ + 1)
.

(13)

In Eqs. (12) and (13), C+
△ and C−

△ are defined in

Table 2. Notations Ae′e, Be′e and De′e are the intermediate

variables for easy description, where Ae′e and Be′e are

defined in Eqs. (9) and (11), and De′e is defined as follows:

De′e = Be′e +Ae′e −Ae′eBe′e. (14)

We summarize the algorithm in Algorithm 1.

Algorithm 1: Model Learning.

Input: A dynamic network G = (V,E, t)
Output: θ = {h△, g△}
Initialize h△ and g△ with random value within (0,1);1

repeat2

E-step : foreach e ∈ E do3

foreach e′ ∈ Se do4

Calculate xe′e using Eq. (5);5

Calculate ye′e using Eq. (6);6

foreach e′ ∈ Se do7

Calculate Ae′e using Eq. (9);8

Calculate Be′e using Eq. (11);9

Calculate De′e using Eq. (14);10

foreach e′ ∈ Re do11

Calculate Bee′ using Eq. (11);12

M-step: for △ = 1 to 24 do13

Calculate h△ using Eq. (12);14

Calculate g△ using Eq. (13);15

until Convergence;16

5 APPLICATIONS

In this section, we introduce how to use the learned diffu-

sion strength into two applications, follower maximization

and followee maximization. The two applications aim at

activating more links in a network. We mainly describe

how to calculate the expected number of activated links

under the assumption of FCM model.

Follower maximization Given a target user v, the goal

of follower maximization is to find k initial followers S
of v such that the number of new followers is maximized.

We use a greedy algorithm [24] to solve the problem. The

basic idea is to select the user in round i that maximizes

the incremental followers of v. For each user u /∈ S, the

number of activated followers is estimated with R repeated

simulations of FCM(S ∪ {u}) (Lines 3-8 in Algorithm 2),

where FCM(S) returns the set of followers activated by

users in S. FCM is a simulated link diffusion process (cf.

Section 2 for details), where the links are diffused from

the links pointing from the initial users in S to v according

to the follower diffusion patterns. In FCM, the probability

of e′ activating another e is calculated by Eq. (5). After

we get the optimal seed set S, the expected number of

followers activated by S is estimated by running FCM(S)

R times. In the application, we make an assumption that

everyone in the seed set will accept the recommendation

to follow the target user v with probability 1.06. Although

the assumption is not very practical, it does not affect the

objective of verifying the effectiveness of our model in the

application of influence maximization.

Followee maximization Followee maximization can be

6. The setting is only for the two applications, not for the link prediction
task in the experimental section.
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Algorithm 2: Follower/Followee Maximization.

Input: A network G = (V,E), user v, seed size k
Output: Initial follower/followee S

Initialize S = ∅ and R = 10000;1

for i = 1 to k do2

foreach u ∈ V \S do3

su = 0;4

for r = 1 to R do5

su+ = |FCM(S ∪ {u})|;6

su = su/R;7

S = S ∪ {argmaxu∈V \Ssu};8

generally considered to be an extension of friend recom-

mendation. The difference is that friend recommendation

mainly focuses on the successes of one-step recommen-

dations, while followee maximization tries to recommend

initial one-step followees as seeds to maximize the total

number of subsequent followees after the process of fol-

lowee diffusion ends. Thus, followee maximization can ease

the sparsity problem of the network. Specifically, given one

target user v, the goal is to recommend k initial followees to

v such that the total number of new followees accepted by v
is maximized. This application uses the followee diffusion

patterns and similar algorithm as follower maximization.

6 EXPERIMENTS

In this section, we evaluate the proposed FCM in two

dynamic networks of Twitter and Sina weibo7 through the

tasks of link formation and influence maximization.

6.1 Experimental Setup

We use two datasets. One is the twitter dataset described in

Section 3. Another is a Sina Weibo dataset, which, similar

to Twitter, allows users to follow each other. The Weibo

dataset is crawled in the following way. To begin with, 10

random users were selected as seed users, and then their

followees and followees followees were collected, which

produced in total 96,882 users and 1,391,432 links. Then

we monitored the dynamic changes of the links for the

96,882 users from 8/28/2012 to 9/29/2012 and obtained

30,562 new links.

For each dataset, we construct positive and negative

instances from it. The links to be probabilistically generated

are the dashed red edges with timestamp t in Table 1.

These links may or may not be presented in actual triads.

Links presented on the actual dataset are labeled as positive

instances, while the others are treated as negative instances.

Each positive or negative instance is associated with a

list of features based on the empirical counts of the 24

triadic structures in Table 1. Diffusion strength, including

the discovery and diffusion probabilities, can be learned

from our model. Given the difficulty of directly evaluating

7. The most popular Chinese microblogging service.

the obtained values, we suggest to use the task of link

prediction to verify the effectiveness.

We also incorporate diffusion strength into the applica-

tions of follower maximization and followee maximization

to verify the effectiveness of our model. The goal is not to

compare the efficiency of the algorithm of influence maxi-

mization, however, we can easily improve the efficiency if

applying the methods proposed in [9], [10].

Evaluation metrics To quantitatively evaluate the pro-

posed FCM for estimating the likelihood of a new “follow-

ing” link, we divide the constructed positive and negative

instances from the dataset into training and test set. Since

the time dependence only exists between one instance and

the neighboring links in its corresponding triadic features,

the instances are independent with each other. Thus, we

can perform 5-fold cross validation in terms of several

alternative metrics. We use FCM to learn {h△} and {g△}
in training data, and then estimate the formation probability

p(e|Se) under the influence of recently added neighboring

links Se using Eq.(10) in test set. We first cast the task as

a classification problem. The aim is to classify whether a

given link e will be formed or not. FCM classifies that e will

be formed if p(e|Se) > τ . We use Precision, Recall, F1-

measure and AUC as evaluation measures, where Precision,

Recall and F1-measure are set as the optimal values by

enumerating different values of τ from 0 to 1 with an

interval 0.1, and AUC is obtained by considering all the

values of τ . We also cast the task as a ranking problem.

The aim is to rank the candidate followee end points for

each follower end point. We set candidate followee end

points as those two hops away from the given follower end

point. We use P@1 (Precision for the top 1 ranking result),

P@2, P@5, P@10 and MAP (Mean Average Precision) for

evaluating the ranking followee list for a given follower

end point and average the metrics for all the follower

end points together. The ranking task is to find which

followee candidates have the highest probabilities to be

followed. FCM naturally calculates a formation probability

p(e|Se) for each candidate link and can easily apply the

probabilities for ranking.

Comparison methods We compare our model with several

alternative methods. The first category of methods we

compare with is based on classification.

Basic: Determines that a link will be definitely formed if

it is the edge to be predicted in the 24th triadic structure in

Table 1 (i.e, all the three links will become two-way links

if the link is formed).

SVM: Uses the same 24 kinds of triadic structures as

features and employs SVM-light to train and predict the

formation of links.

LRC: Uses the same 24 kinds of triadic structures as

features and leverage a logistic regression classification

model [30] to train and predict the formation of links.

The second category of methods we compare with is

based on ranking.

Collaborative Filtering(CF): Leverages the existing

collaborations to make the prediction. Given a follower end
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point u, we need to find the most possible users that u will

make links to them. The basic idea is that if a user u has the

similar tendency as a user w, u is then likely to follow the

same user as w. We employ a memory-based collaborative

filtering algorithm [12], in which the score of u following

v is calculated using the following formula:

CF score(u, v) =
∑

w

I(w, v)sim(w, u),

where sim(w, u) is the similarity between the users w and

u, e.g., cosine similarity based on common followees; the

indicator variable I(w, v) is 1 if user w has followed v and

0 otherwise. We rank all the candidates {v} to a query user

u based on CF score(u, v).

SimRank: Calculates the similarity between the given

follower end point u and the candidate followee end point

v by averaging the similarity between all pairs of their

followees [22]. Then the candidates {v} to a query follower

end point u are ranked based on the similarity.

Katz:: Calculates the similarity between the given fol-

lower end point u and the candidate followee end point v
by summing over all possible paths from u to v. To improve

the efficiency, we only consider the paths with length less

than 4. Katz is mentioned as the best link predictor in [35].

Random-random model(RR): Generate networks by

proposing a triangle-closing model [29]. The generative

process is, when a given follower end point u decides to

add a link to some candidate followee v, u first selects

a neighbor w uniformly at random, and w then selects

a neighbor v uniformly at random. The link euv is then

created and the triangle (u,w, v) is closed. According to

the link generation model, the score of u following v is

calculated by:

RR score(u, v) =
1

|F (u)|

∑

w

I(u,w)I(w, v)
1

|F (w)|
,

where |F (u)| means the number of users being followed

by user u, and I(u,w) is 1 if user u has followed w and 0

otherwise. We rank all the candidates {v} to a query user

u based on RR score(u, v).

Preferential attachment with communities (PAC):

Generate networks by proposing a directed closure pro-

cess [45]. When a given follower end point u decides

to add a link to some candidate followee end point v,

with probability β, user u will choose to follow a user

from the same community as u; with probability 1 − β,

u will choose to follow a random user. With probability

α, user v will be followed preferentially (i.e., at random

from a probability distribution which weights nodes by their

current indegree) and with probability 1 − α, user v will

be followed uniformly at random. According to the link

generation model, the score of u following v is calculated

by:

PAC score(u, v) = β
(

α
|N(v)|

∑

v∈C(u) |N(v)|
+ (1− α)

1

|C(u)|

)

+ (1− β)
(

α
|N(v)|

∑

v∈V
|N(v)|

+ (1− α)
1

|V |

)

,

where |N(v)| means the number of followers of user v.

C(u) is the collection of users belonging to the same

community of user u, where the communities are detected

initially by the algorithm [11]. V is the collection of

followee candidates of user u, which is set as the followees

two hops away from user u. MAP is set as the optimal value

by enumerating different values of α and β from 0 to 1 with

an interval 0.1.

Our work is targeted more general than the recommenda-

tion task. So we include baseline methods and evaluation

metrics related to link prediction and network formation

beyond those typically used for recommendation tasks.

For example, several researchers use SVM [21], logistic

regress [30], SimRank [35], Katz [35], [52], or preferential

attachment [35], [52] to predict links. The two baselines

RR and PAC are two advanced preferential attachment

models, which consider the formation of triadic closures

and perform better than the original preferential attachment

as reported in [29], [45].

In addition, we evaluate whether the discovery and diffu-

sion probabilities estimated by our model can improve the

performance of link prediction on top of existing features.

We adopt the same features and method used in [37]: The

features are out-degree based common neighbors, Jaccard’s

coefficient, Adamic/Adar measure, preferential attachment,

unweighted Katz and PropFlow, and the method is random

forest. We treat p(e|Se) output by our model as an ad-

ditional feature of random forest. In this comparison, we

remove the constraint in the previous comparisons that each

link to be predicted should be in some triadic structure.

Then positive instances are defined as all the newly added

links and negative instances are changed to unformed links

two-hops away from the positive links [2], [53]. We change

the experimental setting to prove the effectiveness of our

model on top of existing features in a more general setting.

6.2 Performance Analysis

Table 3, Table 4 and Table 5 show the performance of link

formation.

Higher performance From Table 3, we can see that the

proposed FCM method clearly outperforms the baseline

methods (+1-2% in terms of F1, +3-15 % in terms of AUC).

The basic method only considers the 24th triadic structure,

and thus under-performs our method because other triadic

structures are ignored, though the 24th triadic structure

is most significant (r△ = 86% in Table 1). SVM and

LRC also under-perform our model, which indicate that our

model can better estimate the weights of different triadic

structures. We explain why our method outperforms SVM

and LRC in Figure 8.
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TABLE 3

Performance of link prediction by different

classification methods on Twitter. (%)

Model Precision Recall F1-measure AUC

Basic 74.09 54.66 62.90 77.00
SVM 73.54 56.18 63.69 75.28
LRC 63.37 63.51 63.43 88.67
FCM 70.58 60.04 64.88 91.95

TABLE 4

Performance of link prediction by different ranking

methods on Twitter. (%)

Model P@1 P@2 P@5 P@10 MAP

CF 47.69 44.24 35.78 30.26 61.55
SimRank 27.44 30.11 28.90 27.53 46.11

Katz 50.46 45.38 36.22 30.16 62.54
RR 54.57 46.87 36.11 29.99 64.53
PAC 47.69 40.85 33.36 28.99 59.68
FCM 75.54 60.43 40.37 31.17 79.66

As shown in Table 4, FCM also outperforms the base-

line ranking methods (+15-33% in terms of MAP). CF,

SimRank, and Katz only consider the static structure in-

formation (e.g., the common neighbors between two users

u and v) and ignore the dynamic evolution of the network

structure (e.g., a new link added at time t′ is more likely

to trigger its neighboring links to be formed within a

short time frame after t). FCM captures the diffusion

effect from neighboring links added shortly before, and

thus obtains better performance. The network formation

methods RR and PAC are proposed to fit the distributions of

some macroscopic properties such as clustering coefficient

and closure ratio. Besides, they also do not consider the

temporal dependence between two links, and thus under-

perform our approach.

Table 5 shows the prediction results of random forest

with and without the output of our model FCM, on top

of existing features, on two datasets. We can see that

the performance is significantly improved by adding the

prediction result of FCM as a feature. This is because all

the basic features only capture static structures and ignore

temporal dependence between neighboring links.

On Weibo dataset, the number of triads is very rare

except triad 1, 2, 3, 13, 14, and 15. These six triads are the

ones containing much more one-way relationships than the

other triads. This phenomenon reflects that, in Weibo, most

of the links are formed because of “celebrity following”

rather than actual “social” activity. While the discovery and

diffusion effects in triad 13, 14, and 15 are stronger than

those in triad 1, 2, and 3, which is almost consistent with the

parameters learned on Twitter dataset. The experiments of

comparing with the predefined classification and ranking-

based methods on Weibo dataset present the similar results

as on Twitter dataset, which are simply ignored in the paper.

We only present the improvement on top of existing features

on Weibo dataset.

Per-triad analysis We take a close look at the triadic

structures individually to gain a better understanding of

TABLE 5

Performance of link prediction on top of existing

features on Twitter and Weibo. (%)

Dataset Model Precision Recall F1-measure AUC

Twitter
W/o FCM 83.33 60.25 69.93 90.48
W FCM 97.82 79.67 87.82 95.50

Weibo
W/o FCM 97.20 63.62 76.90 90.97
W FCM 95.68 69.68 80.64 92.15
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Fig. 8. Performance analysis in different triadic struc-

tures on Twitter. X-axis: triadic structure index. Y-axis:

F1-measure

which factors affect performance, because as shown in

Table 1, different triadic structures occupy different pro-

portions and present different diffusion effects. Figure 8

shows the performances of per-triad breakdown on Twitter

dataset. We aggregate the links associated with the same

triadic structure together and show the F1-measure in each

triad in Table 1 respectively. From the results, we can see

that the performances of FCM on most triads are better

than SVM and LRC. SVM and LRC perform as well as

FCM on the triads presenting strong diffusion effects, such

as triads 19-24. However, they perform poorer than FCM

on the other triads presenting relatively weak diffusion

effects, and the difference is most significant in triads 1,

2, 3, and 6, whose diffusion effects are weakest. SVM and

LRC are both discriminative classification methods. Their

performances are particularly affected by the distinguishing

features, which may dominate the effects from the sta-

tistically insignificant triads. FCM is a generative model,

which smooths the effects on the formation of links from

different factors, and thus improves the performances on

the statistically insignificant triads.

Model parameter analysis We report the learned discov-

ery and diffusion probabilities in Figure 9, where the red

bars represent the parameters learned for follower diffusion

patterns, and the blue bars represent those learned for

followee diffusion patterns. We can see from Figure 9(a)

that the discovery probabilities learned for followee diffu-

sion patterns are generally higher than follower diffusion

patterns, which indicate that the discoveries in followee

diffusion are easier than those in follower diffusion. The

learning results are consistent with the observation of

diffusion decay in Section 3, which shows that in followee

diffusion, the link diffusion happens in almost the first day,

while in follower diffusion, the link diffusion decays rela-

tively slowly. Figure 9(b) also shows the learned diffusion

probabilities are consistent with the rates r△’s in Table
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Fig. 9. Learned model parameters on Twitter. X-

axis: triadic structure index. Y-axis: Discovery/Diffusion

probability.

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
1

δ

 

 

Followee diffusion
Follower diffusion

(a) Parameter analysis

0 5 10 15
0.634

0.636

0.638

0.64

0.642

0.644

0.646

0.648

0.65

F
1

#Iterations

(b) Convergence analysis

Fig. 10. Performance analysis on Twitter.

1, which suggests that the diffusion effects in followee

diffusion are stronger than those in follower diffusion.

Delay analysis The time delay δ is the time interval

between the formation of two links. We study how the

parameter δ in FCM affects the performance of link pre-

diction. Figure 10(a) plots the F1-measure of FCM by

varying the value of δ in follower and followee diffusion

categories respectively. We find that in both categories, the

performance becomes relatively stable until the 7th day.

This suggests that the diffusion effect persists for about

7 days, which is also consistent with the observations in

Section 3. Therefore, we select δ as 7 days in most of the

experiments and analysis in this paper.

Convergence analysis We further investigate the con-

vergence of FCM. Figure 10(b) shows the convergence

analysis results. We can see that FCM converges within

about 13 iterations. This fast convergence property makes

the algorithm efficient in large scale dataset.

6.3 Application Improvement

To further verify the effectiveness of the proposed model,

we apply the learned discovery and diffusion probabilities

to facilitate two applications: follower maximization and

followee maximization as described in Section 5. Follower

maximization is to select k initial followers to a target

user v to maximize the number of subsequent triggered

followers to v. Followee maximization is to recommend k
initial followees to a target user v to maximize the number

of subsequent triggered followees of v.

Our method uses the greedy algorithm in [24]. At each

step, the algorithm selects a new follower/followee that

can activate maximal number of followers/followees. We
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Fig. 11. Results for “following” influence maximization
on Twitter. X-axis: the number of initial users. Y-axis: the
number of newly activated users.

compare with two baselines: High degree and Uniform

influence. High degree chooses initial followers/followees

in order of decreasing degrees (in-degree and out-degree

are considered respectively). Uniform influence also use

the greedy algorithm in [24] to select the initial fol-

lower/followee except that the diffusion probabilities are set

uniformly as 0.01. After the initial k followers/followees

are selected, we simulate the diffusion process in the

network starting from the seeds based on FCM.

From Figure 11, we can see that by using 50 seeds,

FCM clearly activates much more followers/followees than

the baseline methods (+43-250%). High degree may se-

lect the users that can not trigger many diffusions. Uni-

formly configured diffusion probabilities cannot accurately

reflect the correlation between links, and thus weakens the

maximization performance. Our method selects the initial

followers/followees based on the learned discovery and

diffusion probabilities. This demonstrates that distinguish-

ing the diffusion effects in different triadic structures can

effectively activate the followers/followees based on the

diffusion process of FCM.

7 RELATED WORK

Diffusion model and influence maximization SIR

model [25] and SEIR model [33] are two well-known

epidemic models that describe the transmission of com-

municable disease through individuals. To model how users

influence each other in a social network, two diffusion mod-

els, namely Linear Threshold (LT) Model and Independent

Cascade (IC) Model [24], are proposed. Recently, several

new diffusion models considering different factors have

been proposed, such as time-decayed Independent Cas-

cade Model [8], [27], topic sensitive Independent Cascade

Model and Linear Threshold Model [4], diffusion model

considering positive and negative opinions together [7],

and diffusion model considering friend and foe relation-

ships together [34]. Corresponding algorithms have been

designed to efficiently solve the influence maximization

problem. The objective is to find k seeds in a network

with maximal influence. Domingos and Richardson [14] are

the first to study influence maximization as an algorithmic

problem. Kempe et al. [24] take the first step to formulate

influence maximization as a discrete optimization problem.

Leskovec et al. [32] and Chen et al. [9], [10] make efforts
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to improve the efficiency of influence maximization. In this

paper, we propose a time-decayed link diffusion model,

which is different from previous node diffusion models. We

use the model in two applications of influence maximization

to verify the effectiveness of our model. We do not target

at the efficiency of the algorithm and simply leverage the

well-known greedy algorithm.

Influence learning Influence learning is to quantify influ-

ence. From the perspective of the measured objects, we

can classify the studies into: quantifying influence from

topic level [39], [49] or sentiment level [48], quantifying

the indirect influence using the theory of quantum cogni-

tion [47], measuring the external influence out-of-network

sources [42] and measuring the individual, peer and group

influence [50].This paper essentially quantifies the pairwise

influence between two links.

Link prediction There are both unsupervised and su-

pervised methods for link prediction. Liben-Nowell and

Kleinberg [35] survey the unsupervised methods, including

preferential attachment [43], random walk with restart [51]

, SimRank [22] and Katz [23]. The intuition is that the

more similar two users are, the more likely they will be

linked. Supervised methods include local Markov Random

Field [52], logistic regression [30], and supervised random

walk [2]. Lichtenwalter et al. [36] propose a supervised

framework to incorporate all the existing unsupervised

methods as features and present significant improvement

over other methods. The main differences between existing

work and our work lie in three aspects. First, existing

methods focus on the static reasons (such as common

neighbors, social status, and structural balance) that may

trigger a link, while we consider dynamic factor of link

formation. Lee et al. [28] also predict links based on the

temporal information. However, they mainly consider the

two-way temporal information between node pairs, and

ignore the temporal correlation in a triadic structure. Sec-

ondly, most existing work handles undirected links while

we address the directed ones. Although Lou et al. [41] also

study the directed links, which is only one special case

of our patterns. Finally, link prediction mainly focuses on

predicting whether a link will be formed or not without

caring about how links are diffused under certain effects,

while we study the diffusion mechanism of links.

Network formation Network formation aims at propos-

ing network evolution models to generate networks [45],

[3], [31], [29]. Barabasi et al. [3] propose preferential

attachment to generate scale free networks. Leskovec et

al. [31] discover densification powerlaw and shrinking

diameters and propose forest fire models to obey these

patterns. Leskovec et al. [29] propose a triangle-closing

model and Romero et al. [45] propose a variant preferential

attachment model to fit their discovered two properties

for directed closures. They focus on modeling networks

to satisfy macroscopic properties such as heavy tails and

small diameters, while we discover microscopic patterns

that affect the formation of a network and learn the strength

of different patterns.

8 CONCLUSION

We study the diffusion mechanism of links in microblog-

ging networks, which is also proposed as a challenge

in [16], [40]. In the experiment of Twitter, we demon-

strate that “following” links propagate according to the

triadic structures with different diffusion strength. We

mainly study two diffusion categories: follower diffusion

and followee diffusion. In follower diffusion, a two-way

relationship between the follower end points of two links

can better trigger the diffusion of links than a one-way

relationship. In followee diffusion, a relationship directed

from A to C improves the likelihood that B follows C
triggered by B following A. Incorporating the patterns,

we propose a generative model to depict the diffusion

process of the links and automatically learn the diffusion

strength associated with different patterns. Experimental

results show that our method by leveraging the learned

diffusion strength is superior to alternative baselines.

For future work, it is intriguing to study other triadic

structures in addition to those in Table 1, e.g., the triads

with C “following” A at time t and the triads with A “fol-

lowing” B at time t. Those triads may represent negative

influence between links. Designing and implementing ran-

domized controlled experiments would also be an important

direction to validate the causal relationship in the formation

of links.
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