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In this paper we present a canonical setting that illustrates the need for explicitly modeling interactions between manufacturing and
marketing/sales decisions in a firm. We consider a firm that sells an innovative product with a given market potential. The firm may not be
able to meet demand due to capacity constraints. For such firms, we present a new model of demand, modified from the original model of
Bass, to capture the effect of unmet past demand on future demand. We use this model to find production and sales plans that maximize
profit during the lifetime of the product in a firm with a fixed production capacity. We conduct an extensive numerical study to establish
that the trivial, myopic sales plan that sells the maximal amount possible at each time instant is not necessarily optimal. We show that a
heuristic “build-up” policy, in which the firm does not sell at all for a period of time and builds up enough inventory to never lose sales once
it begins selling, is a robust approximation to the optimal policy. Specializing to a lost-sales setting, we prove that the optimal sales plan is
indeed of the “build-up” type. We explicitly characterize the optimal build-up period and analytically derive the optimal initial inventory and
roll-out delay. Finally, we show that the insights obtained in the fixed capacity case continue to hold when the firm is able to dynamically
change capacity.

(Production/scheduling, planning: optimal sales plans. Marketing, new products: modifying Bass model for supply constraints. Dynamic
programming/optimal control, application: application of maximum principle.)
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1. INTRODUCTION

We consider situations in which the rapid growth of
demand for a product due to positive word of mouth spread-
ing from past sales outstrips the firm’s capacity to pro-
duce and supply the product. Examples include Apple’s
PowerMac G4 (New York Post 1999) where Motorola (the
supplier of the G4 chips) was overwhelmed by the rapid
growth of demand for the popular computer. In order to
avoid such problems, companies may delay rolling out
the product to build-up initial inventory. Examples include
Sony delaying roll-out until it had one million units at
launch of its new Playstation 2 (Agence France Presse
1999) and ID Four Ltd.’s increase of initial inventory of its
software product in anticipation of rapid demand growth
under supply constraints (Business Wire 1999). Such sit-
uations provide the motivation for modeling marketing-
manufacturing interactions, in general, and the impact
of supply constraints in the presence of word-of-mouth
effects, in particular. In this paper, we study a single firm
that sells an innovative product with a fixed market poten-
tial. The firm may be unable to supply the product at times
due to capacity constraints. The objective of the firm is to
maximize total profit during the lifetime of the product. We
are interested in resolving when it is beneficial for the firm
to delay roll-out and build-up inventory.
Among others, Bass (1969) proposed a diffusion model

for adoption of new products by customers. In that
model (and many subsequent models) the adoption of
an innovative product by customers is driven by two

sources: (a) direct communication from manufacturers or
advertisers, and (b) word of mouth spreading from previous
users. In a setting where the product is made by a monop-
olist, the demand as seen by the firm would be the same
as the number of adoptions of the product by customers. In
the Bass model, the instantaneous demand rate up to time
t is given by n�t� = �p+ �q/m�N�t���m−N�t��, where
N�t� = ∫ t

0 n�s�ds is the cumulative demand up to time t,
m is the market potential, and p, q are constants (positive
and between 0 and 1) that represent the relative effects of
mass media and word of mouth on the population.
A shortcoming of the Bass model is its inability to

capture supply constraints. While supply constraints are
less relevant when considering adoption of a product cat-
egory by customers (the primary motivation for the Bass
model), they are quite relevant in our setting, where the
attempted adoption of the product immediately translates
into demand on the sole producer. In this case, the assump-
tion that everyone who attempted to purchase the product
in the past would have been successful and, as a result,
would spread positive word of mouth about the product,
need not be valid. Under supply constraints, it is possible
that when some customers attempt to purchase the prod-
uct, the product may be unavailable. Thus, the cumulative
sales up to time t, S�t�, may be quite different from the
cumulative demand, N�t�. In this setting, one needs to take
into account the fact that customers who have tried to buy
but have been unsuccessful have no motivation to spread
positive word of mouth about the product. We propose
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a modification of the Bass model that takes into account
supply constraints and the resulting unmet demand which
may be either backlogged or lost. In proposing this modifi-
cation, we strive to retain one very desirable feature of the
Bass model: a parsimonious mathematical description. In
our model, the instantaneous demand at time t is given by
n�t� = �p+ �q/m�S�t���m−N�t��� where the cumulative
sales S�t� satisfies the supply constraint. The key feature of
our model is that future demand depends not only on past
demand but also on past realized sales.
Using this model of demand, we begin by describing

an optimal control problem that determines the production
and sales plans that maximize the discounted profits over
the product lifetime for a firm with fixed production capac-
ity. The setup is general enough to allow for any degree of
backlogging. That is, some fraction of customers who have
asked for, but were not sold, a product join and continue
to stay in a backlog queue. This fraction may vary from 0
(representing the case of lost sales) to 1 (representing the
case of complete backlogging). Utilizing Pontryagin’s max-
imum principle, we prove that the optimal sales plan either
sells as much as possible or nothing at all at any given
instant of time, in this very general model. Since explic-
itly characterizing the optimal policy is not analytically
tractable, we numerically solve the control problem, by dis-
cretization, for a wide variety of parameter choices (result-
ing in nearly 450 distinct cases). This extensive numerical
study establishes that the notion of a “sales plan” is not
vacuous in this general setting. That is, one does not merely
sell whatever is available. Rather, one sells according to a
careful prescription. Our numerical study indicates that a
heuristic policy which builds up inventory by not selling
at all over an initial period and then switches to selling as
much as possible (hereafter referred to as the build-up pol-
icy) is robust and very close to optimal (an average error
of 0.3% over 432 experiments). Further, the myopic policy
that always sells as much as possible can be far from opti-
mal in some cases.
We then restrict attention to a stylized lost-sales setting.

Using interchange arguments, we show the structure of the
optimal sales plan is always of the build-up type in the
lost-sales setting. We characterize precisely the duration of
the build-up period and, consequently, provide a means to
explicitly compute the optimal sales plan. We also consider
the case in which the firm may choose not to advertise or
even inform the market about the existence of the prod-
uct during the inventory build-up period, and thus prevent
generation of any demand. We compute the resulting opti-
mal build-up period, which is better termed roll-out delay
in this case. Taking the impact of supply constraints on
demand into account affects not only operational decisions
like sales plans but also strategic decisions like production
capacity choice. With a numerical example, we show how
using a sales plan derived from a traditional Bass model
could lead to incorrect decisions about capacity sizing. The
reader may be tempted to believe that the complexity of
the sales plan is an artifact of fixing production capacity.

To dispel this notion, we study the case when the firm can
choose any production level, albeit at a convex increasing
production cost, and show that the insights obtained in the
fixed-capacity setting continue to be relevant in this more
general setting.
The rest of the paper is organized as follows. In §2, we

discuss relevant literature. In §3, we present the Bass model
and introduce our modification of the Bass model when all
demand cannot be met due to supply constraints. In §4,
we present a general normative model for determining the
optimal sales plan. We provide a theoretical result on the
structure of the optimal sales plan using Pontryagin’s max-
imum principle. In §5, we present the results of an exten-
sive numerical study of the general model and compare the
performance of alternative heuristic sales plans. In §6, we
consider the lost-sales case and prove the optimality of the
build-up policy. We also solve the related problem of cal-
culating the optimal roll-out delay and discuss the choice
of optimal fixed capacity. In §7, we discuss the case when
production is unrestricted but the cost of production is con-
vex increasing. We show that the insights obtained from the
fixed-capacity case carry over. In particular, we show that
the concept of a sales plan is not vacuous in this setting.
We provide some concluding remarks in §8.

2. RELATED LITERATURE

Eliashberg and Steinberg (1993) provide an overview of the
research that integrates marketing and manufacturing deci-
sions. They indicate that researchers have in the past tried
to address issues in two different ways—either by consid-
ering centralized control of both units or through mecha-
nism design (incentive and penalties) for the two units. Our
approach in this paper is to assume that a central unit has
control over both the units, and we introduce and analyze
models where the demand occurs as a diffusion process.
In the economics literature, Griliches (1957) and

Mansfield (1961) have proposed diffusion models for the
spread of technological innovation. These models have
been adopted in the marketing literature by Bass (1969),
among others, to model the adoption of innovative prod-
ucts. They have then been used to determine optimal tim-
ing for product introduction, pricing, and advertisement,
among other issues (see Mahajan et al. 1990 for a survey
of related papers). Several researchers in marketing have
worked on modifying the Bass model to incorporate adver-
tising, changes in market potential, multistage and flexible
diffusion, among others. Table 3 of Mahajan et al. (1990)
provides an extensive review of such modifications of the
Bass model.
Bass (1969) and subsequent, related diffusion models

were meant to model the adoption of a product cate-
gory (such as washing machines) rather than a particu-
lar product (such as one model of a Kenmore washing
machine). So, their inability to model supply constraints
is not surprising. However, supply constraints have been
indirectly acknowledged as far back as Griliches (1957).
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Figure 1 of Griliches (1957) shows that adoption of hybrid
corn in states is delayed because of the time it takes to grow
a sufficient number of generations of hybrid corn. In other
cases such as Mansfield (1961), the authors have been care-
ful to assume that patents or other such limitations did not
constrain the spread of the innovation. However, one could
easily conceive of a situation where a particular innova-
tion considered by Mansfield (1961), such as a high-speed
bottle filler, is made by a single monopolist protected by
patents and is capacity constrained. In the marketing lit-
erature, Simon and Sebastian (1987) note in their paper
that supply constraints may have distorted the parameter
estimates they obtained by using the Bass model. How-
ever, most of the research on the Bass model has avoided
explicit modeling of supply-side constraints (such as capac-
ity restrictions, inventory handling capabilities, etc.).
Jain et al. (1991) consider supply constraints and present

a modified Bass model where customers wait for future
delivery in a queue if they do not get the product. This
is often referred to as backlogging in the operations man-
agement literature, where customers wait if inventory is
not available and are provided with the product when the
inventory becomes available. Most of the modifications of
the Bass model (including those above) are for forecasting
or parameter estimation purposes and not for the design of
optimal policies as studied in this paper. Horsky (1990),
for one, does carry out optimal pricing policy design using
his variant of the Bass model, and our paper is written
in the same spirit as the implications section of Horsky
(1990). Earlier papers like Dolan and Jeuland (1981) and
Kalish (1985) also study optimal pricing in diffusions, but
they too fail to consider supply constraints. Finally, we use
optimal control framework which has been used by other
researchers as well (see Feichtinger et al. 1994). How-
ever, the above papers do not study our particular set-
ting and, further, the results proven in this paper (using
interchange arguments) go beyond the standard optimal
control methods.
There have been very few papers in operations manage-

ment where the underlying demand is modeled using the
Bass model. Kurawarwala and Matsuo (1996) consider a
problem where the underlying demand is given by a Bass
model but the parameters of the model are unknown. They
study the problem of minimizing the total expected hold-
ing and stock-out costs during the horizon. El Ouardighi
and Tapiero (1998) consider the impact of product quality
on the diffusion and solve the problem of optimal qual-
ity. However, these papers do not take into account any
supply constraints. Ho et al. (2002) study a Bass model
with supply constraints, assert that a myopic sales plan is
always optimal in their setting, and analyze performance
under myopic sales plans. In this paper we consider a set-
ting more general than that considered by Ho et al. (2002):
Our model is capable of handling a variety of scenarios for
backlogging unmet demand, ranging from complete back-
logging to lost sales. We show that myopic sales plans need
not be optimal in our setting, compare the performance of

the myopic sales plans against other sales plans such as
build-up plans, and prove that build-up plans are optimal
in the lost-sales case.

3. MODIFYING THE BASS MODEL FOR
UNMET DEMAND

As mentioned in the introduction, the demand seen by a
monopolist selling an innovative product can be considered
to be given by the Bass model,

n�t� = p�m−N�t��+ q

m
N�t��m−N�t��� (1)

The model is influenced by two parameters p and q, where
p represents the impact of mass-media influences (also
called the coefficient of innovation), and q represents the
impact of the cumulative fraction who have already pur-
chased the product (also called the coefficient of imitation).
Thus, in a market with a fixed size m, the instantaneous
demand for the product at time t, n�t� expressed as a frac-
tion of the remaining potential adopters (m−N�t�) has two
components: one proportional to the constant contribution
of mass media and the other proportional to the cumulative
number of adopters up to time t, N�t�, representing the
word-of-mouth effect. This model assumes that there are
no repeat purchases by the adopters and that price does not
affect adoption. For further details on the Bass model and
its variants in marketing literature, see the survey paper by
Mahajan et al. (1990). We will call (1) the “classical Bass
model of demand” in the sequel. The classical Bass model
gives rise to instantaneous and cumulative demand curves
as shown in Figure 1. The parameter choices for the curves
plotted in Figure 1 are m = 3�000, p = 0�03, q = 0�4. The
instantaneous demand starts off due to the effect of innova-
tors. Then it rapidly grows as the effect of imitators kicks
in, reaches a maximum value, then decreases and finally
tends to zero. The following lemma summarizes some use-
ful properties related to the classical Bass model.

Figure 1. Cumulative and instantaneous demand in the
classical Bass model.
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Lemma 1. (i) The cumulative demand N�t� and instanta-
neous demand n�t� are given by

N�t� = m

{
1− exp�−�p+q�t�

1+ �q/p� exp�−�p+q�t�

}

and

n�t� = m

{
p�p+q�2 exp�−�p+q�t�

�p+q exp�−�p+q�t��2

}
�

(ii) The maximum value of demand is reached at time t∗

where t∗ = −�1/�p+q�� lnp/q.
(iii) The maximum value of demand at t∗ is given by

n�t∗� = �m�p+q�2�/4q.

Proof. See Mahajan et al. (1990). �

An assumption of the classical Bass model is that there
are no supply constraints and, hence, there are no limits on
the firm’s ability to meet demand. We propose a modifica-
tion that attempts to relax this assumption. In light of the
rapid growth of demand (as seen in Figure 1), it is possi-
ble that a large number of consumers may attempt to buy
the product, but may be unsuccessful due to supply con-
straints. It is unreasonable to assume that these customers
would continue to spread word about the product. It is far
more reasonable to assume that any positive word-of-mouth
effect would be due to only those customers who actually
purchased a product. That is, the number of people who
attempt to purchase a product by imitation at a given time t
is influenced by the number of people who have success-
fully bought the product up to time t, and not necessarily by
all the people who demanded the product up to time t. The
word-of-mouth effect is better represented as being propor-
tional to the cumulative sales S�t�. Therefore, we propose
the following modification to the Bass model.

n�t� = p�m−N�t��+ q

m
S�t��m−N�t��� (2)

Note that (2) is valid regardless of whether unmet demand
N�t�−S�t� is lost or is backlogged for eventual fulfilment.
In deriving (2) we have attempted to retain one of the
most useful features of the classical Bass model: a parsimo-
nious analytical representation. Also note that in the mod-
ified Bass model, the firm’s past sales, and consequently,
its production and sales plans, directly impact the future
demand for the product. This is a mixed blessing. It indeed
connects production, sales, and inventory, that are usually
operational issues in a firm, with future demand, usually
a marketing issue. Thus, it provides a canonical model of
marketing/manufacturing coordination. The flip side is that
it makes the problem of finding the optimal production and
sales plans much more challenging. We will attempt this in
the sequel.

4. SALES AND PRODUCTION PLANS UNDER
THE MODIFIED BASS MODEL

We begin by specifying a continuous-time model in which
demand is given by the modified Bass model (2), there is a

fixed production capacity c, and unmet demand is partially
backlogged. Lost sales and complete backlogging are spe-
cial cases of this model. The model assumes a fixed unit
production cost � � 0, a fixed unit selling price � > 0, a
waiting cost w � 0 per unit backlogged per unit time, and
a holding cost h � 0 per unit inventoried per unit time.
Given a discount rate � � 0, the objective is to maximize
the discounted profit of the firm over the life cycle of the
product. The resulting optimization problem that needs to
be solved is

max
s�t�� x�t��0�t�T

J

=
∫ T

0
e−�t ��s�t�−�x�t�−wL�t�−hI�t��dt (3)

s�t� Ṅ �t� = n�t� (4)

Ṡ�t� = s�t� (5)

ṅ�t� =−pn�t�

+ q

m

[−n�t�S�t�+ �m−N�t��s�t�
]

(6)

İ �t� = x�t�− s�t� (7)

L̇�t� = !�n�t�− s�t��− �1−!�L�t� (8)

along with the inequality constraints

L�t� � 0 and L�0� = 0� (9)

I�t� � 0 and I�0� = 0� (10)

0� s�t�� and (11)

0� x�t� � c for all t � 0� (12)

As before, S�t��N �t�, and n�t� are defined to be the
cumulative sales, cumulative demand, and instantaneous
demand. s�t� denotes the instantaneous sales at time t and
x�t� denotes the instantaneous production at time t. I�t�
denotes the inventory of products that have been produced
but not sold at time t and L�t� denotes the number of back-
logged orders at time t. The parameters c and T denote the
production capacity and time horizon of the problem.1

The parameter ! ∈ �0�1� denotes the fraction of unmet
demand that is backlogged. Equation (8) describes the
dynamics associated with the backlogging process in the
following manner. A fraction ! of unmet demand is instan-
taneously backlogged and a fraction 1− ! of the current
backlogged customers instantaneously abandon the queue
and never return. When ! = 1 we have complete backlog-
ging and when ! = 0 we have complete lost sales. For all
other choices of ! we have partial backlogging. The con-
straints (4)–(8) define the dynamics of the system, with
(6) being a convenient representation of (2). The inequal-
ity constraints (9)–(12) are natural. The following theorem
characterizes all optimal policies. The use of an asterisk
with a quantity denotes that the quantity is optimal. Proofs
can be found in the appendix.
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Theorem 1. At every instant of time t, an optimal sales
plan s∗�t� in (3)–(12) is of the following form. Either

s∗�t� = 0 (13)

or

s∗�t�

=




x∗�t� if I∗�t� = 0 and L∗�t� > 0�

n∗�t� if L∗�t� = 0 and I∗�t� > 0� and

min�x∗�t�� n∗�t�� if I∗�t�+L∗�t� = 0�

(14)

Furthermore, I∗�t�L∗�t� > 0 only if S∗�t� = 0. To put it
another way, the optimal sales plan either sells nothing at
all or as much as possible.

In order to obtain insights on the optimal production
and sales policy, we numerically solve the finite dimension
optimization problem obtained by considering the follow-
ing discrete-time version.

max
s�t�� x�t�� t=0�1�����N

J

=
N∑

t=0
"t
[
�s�t�−�x�t�−wL�t�−hI�t�

]
(15)

s.t. N�t+1�−N�t� = n�t� (16)

S�t+1�−S�t� = s�t� (17)

n�t� = p�m−N�t��+ q

m
S�t��m−N�t�� (18)

I�t� =
t∑

s=0
x�s�−S�t� (19)

L�t+1� = !�L�t�+n�t�− s�t�� (20)

along with the inequality constraints

L�t� � 0 and L�0� = 0� (21)

I�t� � 0 and I�0� = 0� (22)

0� s�t�� and (23)

x�t� � c for all t � 0� (24)

In the above formulation, we pick N to be large enough
that the market potential m has been almost entirely
exhausted, and we translate the discount rate � to a suitable
analog " ∈ �0�1� in the discrete case. For all the numerical
investigations in this section, we assume that the parame-
ters of the Bass model are given by m = 3�000, p = 0�03,
q = 0�4, c= 100, and the per-unit cost �= 1. We now illus-
trate the various forms that an optimal sales plan can take.
The optimal sales plan seen in Figure 2 can be explained

as follows.2 Initially, there are no sales, all production
is used to build inventory, and all customers are back-
logged. When there is a critical number of backlogged cus-
tomers, the built-up inventory is used to “flush out” the
backlog queue, instantaneously. From then on, the firm

Figure 2. Example 1: " = 0�995, h = 0�005, � = 1�3,
w = 0�001, and ! = 0�8.
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sells as much as possible: It meets all demand as long
the inventory lasts, then it sells up to production capacity
until demand falls below production capacity, after which
it meets demand. In the presence of discounting and partial
backlogging, it may appear counterintuitive that the firm
chooses to deliberately avoid sales in the first few periods
in order to build inventory. However, avoiding sales delib-
erately in the initial periods enables the firm to control the
rate of demand growth. If the firm sold as much as pos-
sible initially, the consequent demand growth could cause
excessive backlogging. This may lead to higher costs in
the future, both due to waiting costs incurred by backlog-
ging, as well as lost sales due to abandonment from the
queue. The benefits of earlier sales may be outweighed by
these costs. When the inventory on hand is sufficiently large
and the number of backlogged customers is high, it is no
longer beneficial for the firm to avoid sales. From that time
onwards, the firm chooses to sell as much as possible. Note
that when the firm starts selling as much as possible, the
remaining market potential m−N�t� is smaller than at the
beginning, and hence the demand growth tends to be more
manageable, resulting in smaller backlogs.
For the choice of parameters in Figure 2, the optimal

policy is of the build-up variety. That is, the optimal policy
does not sell at all for an initial period (building inventory)
and then sells as much as possible. Clearly, this need not
always be optimal. Figure 3 illustrates a case where the
myopic sales plan which always sells as much as possi-
ble is optimal. To illustrate another possibility, we present
Figure 4, where the optimal sales plan first sells as much
as possible and then starts building inventory by not selling
at all, and finally sells as much as possible once there is
sufficient inventory. Figures 2–4 indicates the rich possibil-
ities for optimal policies. Computing optimal plans explic-
itly is quite difficult in general. Build-up and myopic plans
have simple, intuitive structures. Therefore, the firm could
use build-up, myopic, or a combination merely as heuristic
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Figure 3. " = 0�99, h = 0�01, � = 1�3, w = 0, and
! = 0.
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plans. It is necessary to quantify the deviation from opti-
mality of these heuristics over a wide range of parameters
in order to justify their use. In the next section, using a
numerical study, we compare build-up, myopic, and opti-
mal plans and provide insights.

5. NUMERICAL INVESTIGATION
OF HEURISTICS

We initially investigate two heuristics that are consistent
with Theorem 1. They are the myopic policy, which always
sells as much as possible, and the build-up policy, which
builds up inventory in the first few periods (hereafter
referred to as the build-up period) and then starts selling
as much as possible. In picking the build-up heuristic, we
search among all integer build-up periods and choose the
best alternative. Note that the myopic policy is a special
case of the build-up heuristic where the build-up period is
zero. However, whenever we use the term build-up we are

Figure 4. "= 0�99, h= 0�001, � = 1�3, w= 0�005, and
! = 0.
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restricting attention to the case where the build-up period
is strictly positive.
It is desirable to use appropriate parameter choices

in our detailed numerical study of the discrete model
(15)–(24). Empirical studies of the Bass model report a
wide range for the parameters p and q. Based on meta-
analysis of 213 data sets drawn from a wide variety of set-
tings (from 15 articles), Sultan et al. (1990) report mean
values of p and q to be 0.03 and 0.38, respectively. There-
fore, we use p = 0�03 and q = 0�4 in our study to serve
as representative values for potential applications. We set
m = 3�000, a scale parameter, which results in the market
being exhausted in approximately 30 periods (i.e., T = 30).
Therefore, we choose production capacity to be the average
demand per period, i.e., c = 100. If each period is two to
four weeks, this corresponds to a product whose life cycle
ranges from one to two years.
We normalize per-unit cost at � = 1. We consider three

options for the selling price � = 1�1, 1�2, and 1�3. We con-
sider high, medium, and low values for holding costs h =
0�01, 0�005, and 0�001, respectively, representing values
ranging from 1% to 0.1% of unit production cost every two
weeks. Similarly, we choose three values for the waiting
cost, w = 0�01, 0�005, and 0�001. We study full backlog-
ging (! = 1), lost sales (! = 0), and two partial-backlogging
scenarios (! = 0�5, 0�8). Finally, all the above settings are
studied for four different discount rates " = 0�99, 0�995,
0�997, and 1�0, capturing a wide range from 1% every two
weeks to no discounting at all. This results in 432 cases.
Table 1 lists the maximum and average deviation of

myopic and build-up heuristics from the optimal pol-
icy. The maximum deviation from optimality of build-up
is less than 3.5% and the average deviation (across all
432 instances) is 0.30%. Although the average deviation of
the myopic heuristic is 3.5%, the maximum deviation could
be as high as 25%. Table 2 shows the improvement in terms
of the percentage of cases where build-up outperforms the
myopic heuristic (out of 108 cases for each choice of "),
the maximum length of the build-up period, the maximum
and average percentage improvement in profit using the
build-up rather than myopic heuristic. In a total of 225 out
of 432 cases, i.e., 52% of the cases, the build-up heuristic
performs better than the myopic heuristic. Note that the
maximum length of the build-up period can be as high

Table 1. Percentage deviation from optimality of build-
up and myopic heuristics.

" = 0�99 " = 0�995 " = 0�997 " = 1�0

Average deviation 0�04 0�14 0�28 0�73
of build-up

Average deviation 0�08 1�69 3�45 7�77
of myopic

Max deviation 0�84 1�59 2�32 3�32
of build-up

Max deviation 2�09 9�78 14�86 25�62
of myopic
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Table 2. Comparison of myopic and build-up heuristics.

Max % (Average %)
% Build-Up Max Build-Up Improvement

" >Myopic Period Over Myopic

0�99 12 5 1�26 �0�04�
0�995 49 10 9�63 �1�57�
0�997 64 10 14�86 �3�20�
1 83 12 25�62 �7�14�

as 12 (which is nearly 40% of the horizon), illustrating a
significant prescriptive difference from the myopic policy.
Furthermore, when the performance of the myopic policy
is inferior to that of the build-up policy, it can be signifi-
cantly worse.
The following excerpts from our numerical study illus-

trate the relative performance of the two heuristics as
parameters of the model change. Tables 3–8 show the dom-
inant heuristic for a representative set of parameters. Of
course, neither heuristic need be optimal. The build-up
policy trades off stimulating the market and having cus-
tomers wait in the backlog queue (or losing customers
altogether due to abandonment) against building inven-
tory and discounting due to delayed sales. Therefore, one
expects improvement in the performance of the build-up
policy relative to the myopic policy when the holding cost
h decreases, when the discount factor " increases, or the
waiting cost w increases. The build-up policy also avoids
disappointing customers by not overstimulating the market.
Thus, when the cost of disappointing the customer (i.e.,
the profit lost due to abandonment from the queue or the
cost of waiting) is high, the build-up heuristic is prefer-
able. These insights are reflected in Tables 3–8. For exam-
ple, when " = 0�99, there is no benefit to using a build-up
policy, except when the margins (�) are high and holding
costs are low. However, when " = 1 the build-up policy
outperforms the myopic policy, except when margins are
low or the customers are infinitely patient. For intermedi-
ate values of " the relative performance of the policies is
determined by the holding cost, with high holding costs
favoring the myopic policies, and vice versa. Finally, one
would expect that the relative performance of the build-up
policy increases as the capacity of the firm decreases. We
will have more to say on this issue in §7.
As is common in optimal control, Theorem 1 prescribes

extreme solutions such as the myopic and build-up heuris-
tics analyzed above. It is conceivable that the firm would
moderate such a prescription. The firm may choose to build

Table 3. Dominant heuristic when ! = 0�8, � = 1�2,
and h = 0�01.

" w = 0�001 w = 0�005 w = 0�01

0�99 Myopic Myopic Myopic
0�995 Myopic Myopic Myopic
0�997 Myopic Myopic Build-up
1 Build-up Build-up Build-up

Table 4. Dominant heuristic when ! = 0�8, � = 1�2,
and h = 0�001.

" w = 0�001 w = 0�005 w = 0�01

0�99 Myopic Myopic Myopic
0�995 Build-up Build-up Build-up
0�997 Build-up Build-up Build-up
1 Build-up Build-up Build-up

up some inventory for the future while continuing to serve
part of the market. The firm would also be loath to let the
backlog become too large. We study the performance of
such a plan, where the firm serves a fraction 0 < $ < 1 of
the current demand if possible (i.e., s�t� � $n�t�) until the
backlog reaches�L, (the maximum backlog that the manager
is willing to suffer as a consequence of deliberately deny-
ing sales), after which the policy switches to the myopic
rule. Table 9 shows the performance of this heuristic for
three values of $ and a fixed choice of �L= 50 across a rep-
resentative subset of 48 instances. The performance of this
heuristic is inferior to both myopic and build-up heuristics
when " = 0�99, but improves with respect to the myopic
policy as " increases. Such behavior is plausible given that
the moderate heuristic behaves as a combination of myopic
and build-up heuristics.
In a recent paper, Ho et al. (2002) analyze a model sim-

ilar to ours and assert that a myopic sales plan is always
optimal for their model. Theorem 1 does allow for the
myopic sales plan to be optimal, but the numerical results
described in this section indicate that the myopic plan may
be far from optimal. Although the models considered in
Ho et al. (2002) and (3)–(12) are different, it is unlikely
that the differences in the models alone account for the con-
trasting results. Resolving this issue is the subject of future
work.
Given that the performance of the build-up heuristic

improves when the holding cost is small and the cost of
disappointing customers is high, we focus our attention on
the special case of lost sales and prove that the build-up
policy is indeed optimal for this special case.

6. THE SPECIAL CASE OF LOST SALES

In this section, we restrict attention to the case where "= 1,
h = 0, w = 0, ! = 0, and � = 0. In this stylized setting,
we can analytically obtain the optimal policy. Under these
assumptions, with a fixed market potential, the problem of
maximizing profits over the product life cycle is equivalent

Table 5. Dominant heuristic when ! = 0�8, w = 0�005,
and h = 0�01.

" � = 1�1 � = 1�2 � = 1�3

0�99 Myopic Myopic Myopic
0�995 Myopic Myopic Build-up
0�997 Myopic Myopic Build-up
1 Myopic Build-up Build-up
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Table 6. Dominant heuristic when ! = 0�8, w = 0�005,
and h = 0�001.

" � = 1�1 � = 1�2 � = 1�3

0�99 Myopic Myopic Build-up
0�995 Build-up Build-up Build-up
0�997 Build-up Build-up Build-up
1 Build-up Build-up Build-up

to minimizing lost sales over the life cycle of the prod-
uct. Since there are no inventory holding costs, and no
costs to wasting inventory, one optimal production plan is
to produce the entire market potential as soon as possible,
that is, in m/c time units, by producing at capacity c until
the m units are produced. The optimal sales plan, however,
is not trivial. The problem of determining the optimal sales
plan now becomes

min
s�t��0�t��

J = N���−S��� (25)

s�t� Ṅ �t�=n�t� (26)

Ṡ�t�=s�t� (27)

ṅ�t�=−pn�t�

+ q

m

[−n�t�S�t�+�m−N�t��s�t�
]

(28)

along with the inequality constraints

s�t� � n�t�� (29)

s�t� � 0� (30)

S�t� � ct for all t � 0� (31)

6.1. Optimality of the Build-Up Policy

In this subsection, we will prove the optimality of the build-
up policy when there is no initial inventory in the system.
As before, use of the asterisk �∗� with a quantity indicates
that the quantity is optimal.

Theorem 2. When demand is given by the modified Bass
model (2), and when there is no initial inventory in the
system, the optimal selling plan (specified by the optimal
cumulative sales process S∗�·�) is a build-up plan. That
is, there exists a time t0, which can be computed from the
values of the market potential m, the coefficient of inno-
vation p, the coefficient of imitation q, and the produc-
tion capacity c, such that the optimal cumulative sales
S∗�t0� = 0. Furthermore, S∗�t� = N ∗�t�−N ∗�t0� for all
t > t0. That is, all lost sales are incurred only in �0� t0�.

Table 7. Dominant heuristic when � = 1�2, w = 0�005,
and h = 0�01.

" ! = 0 ! = 0�5 ! = 0�8 ! = 1

0�99 Myopic Myopic Myopic Myopic
0�995 Myopic Myopic Myopic Myopic
0�997 Myopic Myopic Myopic Myopic
1 Build-up Build-up Build-up Myopic

Table 8. Dominant heuristic when � = 1�2, w = 0�005,
and h = 0�001.

" ! = 0 ! = 0�5 ! = 0�8 ! = 1

0�99 Myopic Myopic Myopic Myopic
0�995 Build-up Build-up Build-up Myopic
0�997 Build-up Build-up Build-up Build-up
1 Build-up Build-up Build-up Build-up

We will use optimal control theory and novel interchange
arguments to establish this result via a sequence of lemmas.
As mentioned earlier, proofs of all the lemmas are post-
poned to the appendix. We will first establish in Lemma 2
that in an optimal selling plan, the only acceptable choices
for the instantaneous sales s�t� are 0, c, or the instanta-
neous demand n�t�, and that an optimal policy switches
between these choices only finitely many times. We do this
by setting up the Hamiltonian for the optimal control prob-
lem and by arguing that it is affine in the control s�t�, in
Lemma 2. This result is similar to Theorem 1. Next, in
Lemma 3 we show that after some time the optimal pol-
icy is guaranteed to meet all future demand. Using this,
we argue in Lemma 4 that an optimal policy could have
only been selling s∗�t�= 0 just before it begins meeting all
future demand. Lastly, we argue that the beginning of this
period over which the optimal policy was selling s∗�t�= 0
before meeting all future demand is in fact at t = 0 in
Lemma 5. Thus, we establish that an optimal policy is of
the build-up type. Finally, the switch over time (when the
policy switches from selling nothing to meeting all future
demand) is explicitly computed in Lemma 6.

Lemma 2. The only possible choices for the optimal instan-
taneous sales s∗�t� are 0, c, or the instantaneous demand
n∗�t�. Furthermore, there are only finitely many switches
between these choices.

Having computed the Hamiltonian, we could attempt
to explicitly compute the co-state trajectories and hence
resolve how the switches between these choices occur.
Rather than carry out this nearly intractable computation,
we resort to an indirect interchange argument that rules out
all switches except one from s∗�t� = 0 to s∗�t� = n∗�t�.
We do this as follows. First, we argue that under an opti-
mal selling plan, after some finite time the instantaneous
demand falls below the production capacity and stays below
it forever in Lemma 3.

Table 9. Percentage deviation from optimality averaged
over w and ! with �L = 50, � = 1�2, and
h = 0�005.

" = 0�99 " = 0�995 " = 0�997 " = 1�0

$ = 0�4 0�19 0�34 1�96 6�80
$ = 0�6 0�18 0�34 1�96 6�81
$ = 0�8 0�11 0�35 2�01 6�88

Build-Up 0�01 0�08 0�06 0�30
Myopic 0�01 0�36 2�06 6�99
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Lemma 3. Under any optimal selling plan, there exists a
time t′f such that for all t � t′f , n

∗�t� < c. Therefore, for all
t � t′f , s

∗�t� = n∗�t�.

Thus, any optimal plan eventually switches to s∗�t�= n∗�t�.
In the sequel we will use the following definition of tf
under any given optimal policy.

tf = inf�s& n∗�t� < c� for all t � s�� (32)

Next, we argue that a switch from s∗�t�= c to the even-
tual s∗�t� = n∗�t� is not optimal in Lemma 4. The basic
idea of the proof is that a small perturbation of a policy that
makes this switch results in a policy whose performance is
no worse than that of the original policy. However, since
the perturbed policy sells at levels other than 0, c, or n�t�, it
cannot be optimal by Lemma 2. Thus, the c to n�t� switch
is ruled out.

Lemma 4. Consider an optimal policy, and the correspond-
ing tf as specified by (32). Let t0 = inf�t � tf & s∗�t� =
n∗�t��. Then either t0 = 0 or for every $ sufficiently small,
s∗�t0−$� = 0�

Next, in Lemma 5 we rule out switches of the form
s�t� = x, where x can be either c or n∗�t�, followed by a
switch to s∗�t�= 0 and then to s∗�t�= n∗�t�, as established
above in Lemma 4.

Lemma 5. Consider an optimal policy, and the correspond-
ing t0 as specified by Lemma 4. Then,

t1 &= inf�t � t0& s∗�t� = 0� = 0�

Lemma 5 above establishes that any optimal policy is a
“build-up” policy. That is, there are no sales up to a time t0
after which all the demand is met. The last unresolved issue
in specifying an optimal policy is to give a procedure for
explicitly computing the t0 as specified by Lemma 4. We
could reduce this to a one-parameter search problem, but
we have a simpler way of doing this, as described in the
following lemma.

Lemma 6. If the parameters p, q, m, and c satisfy

ct > m

[
1− e−�p+q��t�

1+ �q/p�e−�p+q��t�

]
� for all t > 0� (33)

then t0 = 0� Otherwise, the optimal time to build-up, t0,
and the time tf defined in (32) satisfy the simultaneous
equations

ctf = m̄

[
1− e−�p+q̄��tf −t0�

1+ �q̄/p�e−�p+q̄��tf −t0�

]
� (34)

c = m̄

[
p�p+ q̄�2e−�p+q̄��tf −t0�

�p+ q̄e−�p+q̄��tf −t0��2

]
� (35)

where

m̄ = me−pt0� (36)

and

q̄ = qe−pt0 � (37)

Thus, we have to solve a set of simultaneous nonlin-
ear equations to obtain both t0 and tf . Alternately, one can
consider a class of policies parameterized by t0 and opti-
mize the objective function N�tf �− S�tf � over this one
parameter.

6.2. Initial Inventory and Delayed Roll-Out

The optimal solution obtained for the special case can
also be interpreted as a delayed roll-out strategy. Basically,
under such a strategy a firm may wait to accumulate enough
inventory before bringing the product to market, while pos-
sibly losing some of the total potential market m because
of the delay. Note that in our optimal policy derived in the
previous subsection, during the build-up period of length
t0, the market potential reduces exponentially from m to
m̄ = m�1− e−pt0�. So, one can interpret the build-up time
in the optimal policy, derived in the previous subsection,
as the optimal roll-out delay in a setting where the mar-
ket potential decreases in an exponential manner during the
roll-out delay.
In our model, we assumed that the firm does not have

any inventory on hand at time t = 0. An alternative prob-
lem could be posed as to how much inventory a firm should
have at time t = 0 in order to avoid any lost sales during
the product life. This inventory level also determines the
optimal inventory build-up period during which the firm
chooses not to advertise or even inform the market about
the existence of the product. It is more descriptive to label
this build-up period the optimal roll-out delay. We can char-
acterize this explicitly based on the following lemma.

Lemma 7. The minimum amount of initial inventory i0
required in order to avoid any lost sales during the life-
time of a product whose demand follows the Bass model is
given by the solution to the following equation:

i0+ ct2 = m

{
1− exp�−�p+q�t2�

1+ �q/p� exp�−�p+q�t2�

}
� (38)

where t2 is the larger root of

c = m

{
p�p+q�2 exp�−�p+q�t2�

�p+q exp�−�p+q�t2��
2

}
� (39)

Furthermore, the optimal roll-out delay is given by i0/c.

6.3. Choosing the Optimal Capacity

In our previous analysis, we assumed that the capacity c
was given. In general, one would expect that the firm would
utilize some estimate of demand in order to determine what
capacity level to install. In the modified Bass model, such
capacity decisions will depend on the sales plan that is
employed, since the sales plan determines demand. The
capacity decision may be made assuming either that the
sales plan that will be used is myopic, or that the opti-
mal sales plan, which is a build-up sales plan for the lost-
sales model by Theorem 2, is used. We conducted a limited
computational study (using the parameters described in the
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Figure 5. Effect of selling plan on capacity sizing deci-
sion when p = 0�03 and m = 3�000.
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last subsection) to see how capacity decisions are different
in these two settings. We assume that the cost of per-unit
capacity is $10 and the profit per sale is $1 in Figure 5. The
optimal capacity sizing decisions could be quite different
depending on whether one used a myopic sales plan or the
build-up plan which is optimal at each fixed capacity. For
the case when q = 0�6, the optimal capacity choice under
the myopic sales plan is smaller than the optimal capacity
choice under the optimal build-up sales plan. The opposite
is true when q = 0�4. The explanation for this effect is that
the marginal benefit of a unit of additional capacity is dif-
ferent in the build-up plan than in the myopic plan. From a
managerial standpoint, this indicates that if a firm utilizes a
myopic sales plan, not only will it end up with lower sales
for the product at a given capacity, but also that it could end
up choosing an inappropriate level of production capacity,
further exacerbating the negative effects of the choice of
sales plans.

7. UNRESTRICTED PRODUCTION WITH
CONVEX PRODUCTION COST

In §4, we assumed that the production capacity c is fixed
throughout the life cycle of the product. An alternative set-
ting is one in which a firm might be able to increase pro-
duction using overtime or outsourcing, albeit at a higher
production cost. In this section, we model such a setting. To
be specific, we assume that if the firm chooses to produce
at level x�t� at time t, it incurs a production cost C�x�t��
where C�·� is a nonnegative, convex, increasing function.
Such a model captures both endogenous capacity changes
as well as the ability to outsource production and the asso-
ciated costs. Our goal is to explore whether the insights
obtained in the fixed capacity setting are valid in this more
general setting. To be precise, we consider the following
variant of the optimal control problem (3)–(12). The key
changes from (3)–(12) are the inclusion of the production

cost function in the objective function and the relaxation of
the capacity constraint (12)–(49).

max
s�t��x�t��0�t�T

J

=
∫ T

0
e−�t

[
�s�t�−C�x�t��−wL�t�−hI�t�

]
dt (40)

s.t. Ṅ �t�=n�t� (41)

Ṡ�t�=s�t� (42)

ṅ�t�=−pn�t�

+ q

m

[−n�t�S�t�+�m−N�t��s�t�
]

(43)

İ �t�=x�t�−s�t� (44)

L̇�t�=!�n�t�−s�t��−�1−!�L�t� (45)

along with the inequality constraints

L�t��0 and L�0�=0� (46)

I�t��0 and I�0�=0� (47)

0�s�t�� and (48)

0�x�t� for all t�0� (49)

In order to numerically compute optimal strategies
using a nonlinear programming routine, we discretize the
problem in the usual way, as in (15)–(24). The details are
omitted for brevity. As before, for all the numerical investi-
gations in this section, we assume that the parameters of the
Bass model are given by m=3�000, p=0�03, and q=0�4.
We set the unit selling price at �=1�2. We assume that
the production cost function C�x� is given by C�x�=axb

where a>0 and b>1 are constants. This function is convex
increasing for all a�x>0 and b>1, and by changing a, b
we can control the shape of the function.
Figures 6–8 illustrate the three types of policies observed

by us in our numerical investigations. In each of these
figures, we set the waiting cost w=0�005, the holding cost
h=0�005, the selling price �=1�2, the degree of backlog-
ging !=0�8, and the discount rate "=0�995. We vary the
shape of the production cost function C�x�=axb by suc-
cessively choosing b=1�05, 1�1, and 1�15, while keeping
a fixed at 0.6.3

When b=1�05 (Figure 6), the marginal cost of produc-
tion does not increase too much with the production level
x. In this case, it is optimal to sell as much as the demand
(i.e., s∗�t�=n∗�t�) at all times. There is never any backlog-
ging and, consequently, there are no lost sales. When b is
increased to 1.1, the marginal cost of production increases
with x more rapidly, and hence, the optimal sales plan
avoids increasing the production level x excessively. In this
case, it is no longer optimal to set s∗�t�=n∗�t� and, conse-
quently, there is backlogging. The optimal sales plan turns
out to be a build-up plan, as illustrated in Figure 7. In
Figure 7, until Period 5, there are no sales and inventory
is built up. Beyond the point the firm sells as much as
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Figure 6. C�x�=0�6x1�05: Myopic sales plan without
backlogging.
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possible—initially meeting demand until inventory runs out
and then selling as much as produced. When b is increased
even further to 1�15, the marginal cost of production is
so large that the production levels chosen are very small.
Consequently, the ability to build-up inventory is limited.
Hence, the optimal sales plan is myopic (i.e., it sells as
much as is produced, with s∗�t�=x∗�t� for all t�0), and
it incurs a large number of lost sales.
Table 10 illustrates the general pattern of the observed

optimal sales plans for 20 cases with different values of a
and b when w=h=0�005, "=0�995, �=1�2� and !=0�8.
A myopic sales plan with no resulting backlog (denoted
MWB) is optimal when the marginal cost of production is
low. When the marginal production cost is increased via
either a or b, the optimal sales plan is a build-up plan
(denoted BU). When the marginal production cost becomes
very high, the optimal sales plan is dictated by the produc-

Figure 7. C�x�=0�6x1�1: Build-up sales plan.
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Figure 8. C�x�=0�6x1�15: Myopic sales plan with
backlogging.
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tion policy and is a myopic plan that builds up no inven-
tory and incurs backlogging and lost sales (denoted MB).
The above experiments demonstrate that the optimal sales
plan need not be myopic and that the build-up plan may be
optimal, albeit over a limited range of cost parameters even
when there are no capacity constraints and the firm incurs
convex production costs. However, when production capac-
ity tends to be relatively cheap (as when b=1�05) and the
firm is less capacity constrained, the myopic sales plan is
optimal.

8. CONCLUSIONS

We have presented a canonical model of marketing-
manufacturing interaction that captures the effect of supply
constraints on the demand for innovative products. In exten-
sive numerical studies, we have used this model to compute
the optimal sales plans for monopolistic firms. We have
established that build-up sales plans, which have a simple
intuitive structure, are robust heuristics over a wide range
of parameter settings. We also have rigorously proved that
build-up sales plans are optimal when the firm is interested
in minimizing lost sales. We have provided a brief illustra-
tion of the effect of relaxing capacity constraints and have
shown that the shape of the production cost function can
influence the choice of sales plans in a nontrivial way. We
believe that the model and analysis in this paper bring out

Table 10. Form of the optimal sales plan when pro-
duction cost C�x�=axb and w=h=0�005,
"=0�995, �=1�2, and !=0�8.

b a=0�4 a=0�5 a=0�6 a=0�7 a=0�8
1�05 MWB MWB MWB MWB MWB
1�1 MWB MWB BU BU BU
1�15 BU BU MB MB MB
1�2 BU MB MB MB MB
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some of the key characteristics of marketing-manufacturing
interplay within a firm at the tactical as well as the strategic
level.
We have assumed that the parameters that specify the

effect of mass media as well as word of mouth, and the
market potential, are known and fixed. This is a restric-
tive assumption, especially in light of the fact that our pro-
posed policy requires the knowledge of these parameters.
We have also assumed that there is no randomness in the
system. In the case when the parameters that determine
demand generation are unknown, especially in the setting
where the realized demand observed by the firm is cor-
rupted by some stochastic noise, we will need to build
adaptive versions of our policy that are able to learn the
parameters while attempting to optimally control the sys-
tem. On a more minor note, we have assumed that the sin-
gle product that the firm produces and sells is not discrete
in nature, but is infinitely divisible, and perform our theo-
retical analysis in continuous time. We admit that analytical
tractability is a consideration in the choice of assumptions.
The analysis is considerably challenging even in this simple
setting, and since the purpose of the analysis is to serve as
a stepping stone towards the development of a more com-
plete theory of marketing-manufacturing interaction, we
feel that these assumptions are justified. Relaxing several of
the assumptions in this paper will be the subject of future
research.

APPENDIX

Proof of Theorem 1. We will apply the maximum prin-
ciple to prove this result. The reader is advised to refer to
Sethi and Thompson (2000), §4.1 and §3.3, for the results
we use. Denote the state vector �N �t��S�t��n�t��I�t��L�t��′

by x�t�, the control vector �s�t��x�t��′ by u�t�, and the
running cost �s�t�−�x�t�−wL�t�−hI�t� by +�x�u�. We
can then write (3)–(12) as max

∫ T

0 e−�t+�x�u�dt subject
to the constraints ẋ�t�=f �x�u� (corresponding to (4)–(8))
with the inequality constraints g�u��0 (corresponding to
(11)–(12) and x4, x5�0 (corresponding to (9)–(10)). Define
the Hamiltonian of the system as H�x�u�.�=+�x�u�+
.′f �x�u�. From §4.1 and §3.3 of Sethi and Thompson
(2000), we have

H�x∗�t��u∗�t��.∗�t��

�H�x∗�t��u�t��.∗�t��� for all t∈ �0�T �

for the optimal state x∗�t� and optimal Lagrange multiplier
.∗�t�. The control s�t� enters linearly into the Hamiltonian
for fixed x∗�t� and .∗�t�. Hence, an extremal choice is
optimal for s∗�t�. When the coefficient multiplying s∗�t�
is negative, it is optimal to choose s∗�t�=0, arrving at
(13). When the coefficient is positive, the choice of s∗�t�
is not bounded above by an explicit constraint. How-
ever, when I∗�t�=0 we must have İ∗�t��0 for the con-
trol to be admissible. Hence, we have the implicit con-
straint s∗�t��x∗�t�. Similarly, when L∗�t�=0 we have the

implicit constraint s∗�t��n∗�t�. Since a maximal choice
is optimal for s∗�t� when the coefficient multiplying it in
the Hamiltonian is positive, we arrive at the choices listed
in (14). Finally, consider the case when I∗�t�L∗�t�>0 and
s∗�t�>0. The implicit constraints listed above do not apply
to s∗�t�. Hence s∗�t� is unbounded. If this condition per-
sists for any interval of time �t�t+$�, with $>0, it will
lead to an infinite profit. Since profit is bounded above by
�m, the only sustainable condition is that s∗�t�=0 when
I∗�t�L∗�t�>0. �

Proof of Lemma 2. This follows immediately from
Theorem 1 because L∗�t�≡0 for all t�0. The continuity of
the Hamiltonian yields the result that there are only finitely
many switches. �

Proof of Lemma 3. Note that under any policy, since 0�
S�t��m for all t�0, we must have

p�m−N�t��� Ṅ �t�=n�t���p+q��m−N�t���

for all t�0� (50)

Thus, we have two exponential bounds on the cumulative
demand under any policy,

m�1−e−pt��N�t��m�1−e−�p+q�t�� (51)

From the left-hand inequality of (51), we know that under
any policy there exists a time t′f such that

N�t��m− c

p+q
� for all t>t′f �

Then, from the right-hand inequality of (50), we obtain the
result. �

Proof of Lemma 4. Consider an optimal policy that sells
at the capacity c from t1 to t0. We will construct another
policy for which s�t�=0 for t1� t� t2. Further, s�t�=c for
t2� t� t3 and s�t�=n�t� for t� t3, where t3 is the small-
est time beyond which the modified policy can sell all the
demand. We show that such a sales plan is better than the
supposedly optimal sales plan s∗�t� for which s∗�t�=c for
t1� t� t0. Thus, a policy that makes the c to n transition
in its instantaneous sales cannot be optimal.
Consider t2 sufficiently small such that a feasible sales

plan s�t� can be developed so that s�t�=0 for t1� t� t2
and N ∗�t2�>N�t2�. Now we prove the existence of such
a t2. From the definition of t1 and the constraints on the
control, we know that S�t1�=S∗�t1�=ct1. Since the new
policy sells zero amount from t1 to t2 the feasibility of the
policy directly follows. Consider, N�t�=N ∗�t�−N�t� in
the interval �t1�t2�.

/�N
/t

=
(
p+ q

m
S∗
)
�m−N ∗�−

(
p+ q

m
S
)
�m−N�

=−p�N +q�S∗−S�− q

m
�S∗N ∗−SN�

=−p�N +qc�t−t1�−
q

m
c�tN ∗−t1N�
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and

/2�N�t�

/t2
=−p�n∗−n�+qc− q

m
c�N ∗+tn∗−t1n��

At t= t1, we have �/�N//t�=0 and �/2�N�t��//t2>0 since
N ∗�m. Therefore, there exists a t2= t1+$ such that
�/�N//t�>0 in the interval t1� t� t2. Thus, �N�t2�>0.
Consider t3 such that s�t�=n�t� for t� t3. Now, consider

t5� t3 such that S�t5�=ct5. Such a t5 must exist because,
if not, it would be possible to meet all future demand at a
point earlier than t3. By definition, S�t5��S∗�t5� because
S∗�t5��ct5. Note that t3� t0 because there is more inven-
tory on hand in the modified policy (after time t1), the
time from which all demand is sold must be earlier. As a
result, S�t3�<S∗�t3�. Therefore, there must exist a point t6,
t3� t6� t5 such that S�t6�=S∗�t6�. If N ∗�t6��N�t6�, then
we are done because then N ∗�t6�−S∗�t6��N�t6�−S�t6�,
and since no lost sales occur in the modified policy beyond
t3, this implies that S

∗ cannot be optimal.
Consider t7, t2� t7� t6 where N�t7�=N ∗�t7� and N�t�<

N ∗�t� for all t∈ �t2�t7�. Note if no such t7 existed, then
N ∗�t6�>N�t6�, since �N�t2�>0. Now,

/�N
/t

=
(
p+ q

m
S∗
)
�m−N ∗�−

(
p+ q

m
S
)
�m−N��

At t= t7

/�N
/t

=q�S∗−S�− q

m
�N��S∗−S�=q�S∗−S�

(
1−N

m

)
�0�

However, �N�t2�>0. Therefore, no such t7 exists and,
hence, S∗ is not optimal as argued above. �

Proof of Lemma 5. We prove the result by contradiction.
Suppose that t1>0 for an optimal policy. Now consider
a modification of this supposed optimal policy as follows.
Consider a t2<t1 sufficiently close to t1 (exactly how close
will be made explicit in what follows), and a policy (labeled
without the ∗ superscript) that has s�t�=0 for all t2� t� t1
and that sells s�t�=n�t� as soon as it possibly can. Let
t3 &= inf�s& s�t�=n�t� for all t�s�. Now, there must exist
a t5>t3 under the modified policy such that S�t5�=ct5.
If no such time existed, then it would be possible to start
selling s�t�=n�t� before t3 (since we did not have to build
up as much inventory as we did), leading to a contradiction.
Now, if N�t5�<N ∗�t5�, then the supposed optimal policy
cannot be optimal because S∗�t5��ct5=S�t5� and, hence,

N���−S���

=N�t5�−S�t5�<N ∗�t5�−S∗�t5��N ∗�t0�−S∗�t0�

=N ∗���−S∗����

In order to complete the proof, we establish the following
claim that

N�t�<N ∗�t� for all t� t3� (52)

First we claim that N�t3�<N ∗�t3�. If not, there exists
a t∈ �t1�t3� such that �N�t�=0 where, as before, �N�t� &=
N ∗�t�−N�t�. As before, we have

/�N
/t

=−p�N +q�S∗−S�− q

m
�S∗N ∗−SN��

Now �N�t1�>0 because at t= t+2 , we have �N�t�=0,
/�N//t=0 and
/2�N
/t2

>0�

Hence, if we pick t2 sufficiently close to t1, we must have�N�t1�>0. So if we define t4 &= inf�t∈ �t1�t3�& �N�t�=0�, we
must have at t= t4

/�N
/t

=q

(
1−N ∗�t4�

m

)
�S∗�t4�−S�t4��<0�

Note that t3� t0 because there is more inventory on hand
in the modified policy (after time t2) and as a result, the
time from which all demand is sold must be earlier. There-
fore, if * is optimal, then S∗�t4��S�t4� which contradicts
above inequality. So, we must have N�t3�<N ∗�t3�. Now,
as before consider �N�t� for t>t3. Suppose (52) does not
hold. Then there exists a t>t3 such that �N�t�=0. Let
t6 &= inf�t>t3& �N�t�=0�. At t= t6, since �N�t3�>0, we
must have

/�N
/t

=q

(
1−N ∗�t6�

m

)
�S∗�t6�−S�t6��<0�

which implies that S∗�t6�<S�t6�, which contradicts the
optimality of the supposed optimal policy because N�t6�=
N ∗�t6� and, hence,

N���−S���=N�t6�−S�t6�<N ∗�t6�−S∗�t6�

�N ∗�t0�−S∗�t0�=N ∗���−S∗����

Thus (52) holds, and hence, as argued before, the supposed
optimal policy cannot be optimal if t1>0. This establishes
the result. �

Proof of Lemma 6. If (33) is satisfied, then in the unmod-
ified Bass model we must have N�t�<ct for all t>0.
Hence, there is always sufficient capacity to meet the
demand. Hence, there is no reason to avoid selling and
S∗�t�=N�t� for all t>0.
Now consider systems that violate (33) at some t>

0. In this case, there will be lost sales, and the mod-
ified Bass model applies. We know from the modified
Bass model Equation (2) that N ∗�t0�=m�1−e−pt0�� If we
define �N�t� &=N ∗�t+t0�−N ∗�t0�, the fact that for all t�
tf , S

∗�t�=N ∗�t�−N ∗�t0� and simple algebra yield

d�N
dt

=n∗�t+t0�=
(
p+ q̄

m̄
�N�t�

)
�m̄−�N�t���

where m̄ and q̄ are given by (36) and (37), respectively.
Now, the optimal choice of t0 is one such that the inventory
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resulting from the build-up period is just depleted at the
time when it is no longer needed. That time, of course, is
tf , the time after which demand never exceeds production
capacity. That is, we require that

S∗�tf �=N ∗�tf �−N ∗�t0�=ctf �

Also, note that at tf , n∗�tf �=c. Recognizing that the
dynamics of �N are the same as the unmodified Bass model,
and thus using Lemma 1, we obtain the result. �

Proof of Lemma 7. Since there are no lost sales, the
demand process follows the classical Bass model. The min-
imum amount of initial inventory required is such that at
the time at which the firm runs out of inventory, the instan-
taneous demand falls to c and remains below c thereafter.
That is, the firms cease to need inventory just as it is
depleted. From Lemma 1, the time t2 at which the instanta-
neous demand falls to c and remains below c from thereon
is given by the larger root of the equation

c=m

{
p�p+q�2exp�−�p+q�t2�

�p+qexp�−�p+q�t2��
2

}
�

since n�t�=c at potentially two time instants in the classi-
cal Bass model (see Figure 1). Further, the optimal amount
of initial inventory chosen should be such that total produc-
tion plus this inventory up to time t2, i0+ct2, should equal
the cumulative demand until that time, which is given by

N�t2�=m

{
1−exp�−�p+q�t2�

1+�q/p�exp�−�p+q�t2�

}

from Lemma 1. �

ENDNOTES

1. For any 0>0, we can choose T to be so large that
m�1−e−pT ��0 and, thus, ensure that the remaining market
potential is smaller than 0 at time T and, hence, can be
ignored.
2. To make the figure easier to understand, inventory and
production are not shown in Figure 2. However, they can
be inferred from the sales, demand, and waiting customers.
3. As an aside, we note that the choices result in unit
production costs being less than the unit selling price for
production levels less than 104,740; 1,023.22; and 101.1,
respectively.
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