
Physica 126A (1984) 349-370
North-Holland, Amsterdam

DIFFUSION OF SPHERES IN A CONCENTRATED
SUSPENSION II

CWJ BEENAKKER and P MAZUR
Instituut-Lorentz, Rijksunwersiteit te Leiden, Nieuwsteeg 18 2311 SB Leiden, The Netherlands

Received 17 January 1984

We evaluate the wavevector dependent (short-time) diffusion coefficient D(k) for sphencal
particles m Suspension, by extendmg a previous study of selfdiffusion (which corresponds to the
case of large fe) Our analysis is vahd up to high concentrations and fully takes into account the
many-body hydrodynamic interactions between an arbitrary number of spheres, äs well äs the
resummed contnbutions from a special class of correlations Results obtamed which agree well with
available expenmental data

1. Introduction

In a previous paper1) (hereafter referred to äs I) we calculated the concen-
tration dependence of the (short-time) selfdiffusion coefficient for sphencal
particles suspended in a fluid This quantity, denoted by Ds, is the large-/c limit
of the wavevector dependent diffusion coefficient D(k), which describes the
initial decay of the dynamic structurefactor measured by melastic light- or
neutron-scattermg23) In our analysis1) we resummed the contnbutions due to
hydrodynamic interactions between an arbitrary number of spheres By mclud-
ing at most two-pomt correlations between the spheres, we obtamed in paper I
a reasonable agreement with expenmental results4) for Ds for volume fractions
φ =ε Ο 3 At higher concentrations the calculated values were too large, indicat-
ing the importance of higher order correlations

The extension to paper I presented here m twofold (i) we extend the
formalism to diffusion at arbitrary values of the wavevector (n) we resum to
all orders the contnbutions from a special class of correlations

The (short-time) wavevector dependent diffusion coefficient D(k) may be
expressed in terms of the mobilities of the spheres2) To linear order m the
density only two-sphere hydrodynamic interactions need to be considered and
results for D(k) to this order have been obtamed by Rüssel and Glendinning5)
and by Fijnaut6) In a Suspension which is not dilute, however, it is essential to
fully take into account the many-body hydrodynamic interactions between an
arbitrary number of spheres The importance of non-additive hydrodynamic
interactions was demonstrated theoretically in our calculation7) of the diffusion-
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coefficient to second order in the density, and experimentally by Pusey and van

Megen's measurements4) of £>s.
Using general expressions for many-sphere mobilities obtained by Mazur and

van Saarloos8)*, we shall give in section 2 a formula for the diffusion coefficient
which is a convenient starting point for the calculation of D(k) in a concen-
trated Suspension. In the limit A: ->°°, this formula reduces to the expression for
Ds given in paper I.

In sections 3, 4 and 5 we proceed to evaluate D(k} through an expansion in
correlationfunctions of higher and higher order. Such a "fluctuation expan-
sion", in which the many-sphere hydrodynamic interactions are resummed
algebraically, was employed in paper I also. However, here we resum-in
addition - to all Orders the contributions from a special class of correlations, the

socalled "ring-selfcorrelations". Resultst for the concentration and wavevector
dependence of D(k} are given in section 6, and are compared to experimental

data4-11-12).
We conclude the paper in section 7 with an Interpretation of our results in

terms of an effective pair-mobility.

2. An operator expression for D(k)

As in paper I we study a System of N spherical particles with radius α and
positionvectors R, ( / = 1,2,. . . , N), suspended in a l iquid with viscosity 17.
Whilc in our previous analysis we restricted ourselves to the self-diiTusion
coefficient Ds of the suspended particles, we shall consider here the wavevector
dependent diffusion coefficient D(k), given by (see e.g. ref. 2)

D(k) = kBT[NG(k)]~1 Σ (k · μ, · k e'*-*«>. (2.1)
',;=i

Here k is the wavevector with magnitude k and direction k Ξ= k/k, G(k) is the
static structure factor, μν is a mobility tensor, /?,,=/?,-jR„ and kB and T

denote Boltzmann's constant and the temperature, respectively. The angular ·<
brackets denote an average over the configurations of the spheres in a volume
V. '*

The quantity defined in eq. (2.1) describes diffusion of the spheres on a
timescale over which their positions are essentially constant2). It can be

* In this connection wc mention that general expressions for many-sphere fnction tensors were
previously denved by Yoshizaki and Yamakawa9), by an analysis similar to that of ref 8.

t These results have been published previously in ref 10
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measured by light-scattering, and is called in this context the "effective"
diffusion coefficient3). The (short-time) selfdiflfusion coefficient Ds, studied in
paper I, is given by

(2.2)
1=1

It is the large wavevector limit of D(k)

D,= l imD(fc) , (2.3)

äs can be understood by noting that

lim G(k) = l (2.4)
k->x

and that in the limit k ->°° only the terms with i = / contribute to the average in
eq. (2.1). Note furthermore that, in an isotropic Suspension, the average in eq.
(2.2) is proportional to the unit tensor 1.

General expressions for the many-sphere mobility tensors μν were derived
by Mazur and van Saarloos8). It is convenient to write these results in the
compact operator notation used in paper I. To this end we express the
mobilities in terms of an operatorkernel /t(r|r'), by

6-πηαμ,, = 18, + J dr J dr' 8 (r - R,)S(r' - Ä,)/t(r | r') . (2.5)

We further define the microscopic number density n(r) of the spheres

Α1). (2.6)
ι=1

Eq. (2.1) then takes the form

G(k)D(k)IDQ = l + N~l J dr &~Λ'Γ J dr' e'k""(k · n(r)/t(r | r')n(r') · k) ,

(2.7)

or, defining the operators μ with kernel yti(r | r') and n with kernel n(r)8(r' - r),

G(k)D(k)ID0 = l + N-\k-^n}(k\k) · k) . (2.8)

In this last equation we have defined the Fourier transform of an operator-
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kernel O(r r'} = {ημη}(τ r') äs

O(k \ k') = i dr e '* r f Ar' e'* r O(r r') (2 9)

The Stokes-Emstein diffusion coefficient is denoted by

D0= kBT(6^a) l (210)

Adopting the notation of paper I we may wnte (see below) for the operator μ

μ = Pstf(l-nQ@~^)-lP, (211)

and we thus finally obtain for the diffusion coefficient the expression

G(k)D(k)/D0 = l + N~\k · {Pnsd(l - nQ<%~} ~Μ)~λ nP}(k \ k} · k) (2 12)

We shall now show that expression (2 11) for the operator μ is mdeed
equivalent to the general expressions for the mobihty tensors given in ref 8
We shall first bnefly recall the meanmg of the Symbols si, Sß ', P and O used
in eqs (2 11) and (2 12), cf section 3 in paper l The matnces M and <%~l have
elements

i of\ — Λΐηιη) ίΰβ~1\ =δ /?(""")' ("213")l·** /n m ~ " ι 1·Λ» In m υηιη° > V.̂ · i j/

which are tensors of rank n + m (n, m = l, 2, 3, ), the projection matnces P
and Q = l — P have elements

}„ ,„ = 8nm - 8nl8m ! (2 14)

The tensor Ä(nm) is a convolution operator with kernel

ÄC- ""(r r') = Λ«« »V - r) = {° („ M)(r/ _ r) f f ^= ̂  ' (2 15)

Convement expressions for the constant tensor ß< m m >~' and for the Founer
transform of A(n m\r),

A(n m)(fc) = i dr e'k rA(" m\r) , (2 16)

are given in eqs (1-2 15) and (1-2 22)*

* The tensors X" "° = Ä1·" m)(Äv) and B'"1 m) ' were mtroduced by Mazur and van Saarloos8) These
so-cal!ed "connectors" correspond to the "hydrodynamic mteraction tensors" used previously by
Yoshizaki and Yamakawa9), in order to discuss many-sphere fnction tensors
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With these notations we may write e.g.,

=° N

~ 2-i 2^ "i* US'"·"1 ü A k, , (2-17)
m = 2 k=\

k* i,,

where Α(η·'η) = Ä('l-m\R, - R,) and the dot Θ prescribes an m-fold contraction.
By expanding the inverse operator in eq. (2.11) in powers of n, we obtain (after
Substitution into eq. (2.5)) the expression for μ,, derived in ref. 8 and given in

eq. (1-2.2).
The expression (2.12) for the diffusion coefficient D(k) is exact and ful ly

contains the many-body hydrodynamic interactions between the N spheres. It
is the required extension of the formula for the selfdiffusion coefficient Ds

given in paper I, eq. (1-3.16). As we have shown there-and will see again in
the next section - such formal operator expressions are very useful in a study of
concentrated suspensions.

3. Renormalization of the connectors

Let y[)'"'m) (m = l, 2, 3,.. .) be an arbitrary constant tensor of rank 2m. We
denote by y0 the diagonal matrix with elements

(3.1)

A matrix of renormalized connectors sij(i is defined-for each γο-as

-sO'1 . (3.2)

The n, m element of the matrix stij(i is a renormalized connector A("^"\ which in
turn is a convolution operator with kernel A^m\r).

We now choose γ*,"1·"1) to be a function of the average numberdensity of the

spheres na= N/ V,

(3.3)
(-,,m) _ r(».,m) 0 ß(m,m)-i Q A^m\r = 0) = MO 1 (m-m) , m ̂ 2.
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The tensor i<m·'") used in this equation is a generalized unit tensor of rank 2m,

1 (2.2) = 4P.2) ^ -f(m,m) — £(m-l,id,m-\) (m 5? 3) (34)

where the 4-tensors are defined in eqs. (1-2.9) and (1-2.19). The renormalized
"density" y(r), with average γ0, is given by

y(/-) = y0«öXr); (3.5)

the corresponding diagonal operator γ has kernel y(r)<5(r'— r). The renor-
malized density and connectors defined above wil l be explicitly evaluated in
section 4.

In paper I we defined renormalized connectors si^ according to eq. (3.2),
with γ0 replaced by n0, and used the identity

Λ?(1 - nQ®-ls£)-ln = jtfjl - SnO^d^n , (3.6)

where δη = n — n0 denotes the density fluctuations. If one substitutes this
identity into eq. (2.12) and expands the operator between braces in this
equation in powers of δη, one obtains an expansion for D(k) in correlation-
functions of higher and higher order (a so-called fluctuation expansion). For the
case of selfdiffusion, this expansion was evaluated to second order in paper I.
The renormalized connectors s&^ account for a füll resummation of the
many-body hydrodynamic interactions in the absence of correlations, and in
this way for the fact that (in some averaged sense) spheres interact hydro-
dynamically via a Suspension with density n0, rather than through the pure
fluid. As we shall shortly see, the renormalization of the density, defined in eq.
(3.3), will moreover account for a partial resummation of correlations.

The following identity will prove very useful in our analysis

s4(l - nQm-^)~ln = ̂ (1 - 8yQ^~lsly)-
ly . (3.7)

This formula differs from the previous one (eq. (3.6)) in that it contains the
renormalized density γ, density fluctuations δγ = y - γ0 and cut-out connectors

with kernels

if r = r' and n = m ,

A proof of eq. (3.7) is given in the appendix. Substituting this identity into
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expression (2 12) for D(k) one finds

G(k)D(k)/D0 =1 + N l(k· {Ρη^Ύο(1 - δγΟ3ΤΧο)
 lnP}(k \ k) · k) , (3 9)

where use has been made of the fact that yP = nP, in view of definitions (3 3)
and (3 5)

If one expands the operator between braces in eq (3 9) in poweis of δγ one
obtains agam an expansion for D(k) in density correlationfunctions, since
δγ = γ0ηοιδη (cf eq (3 5)) is linear in the density fluctuations δη The δγ-
expansion differs however from the δη-expansion considered m paper I, m that
the contnbutions from a special class of correlations (which we call rmg-
selfcorrelations) are m the former expansion included in the lowest order term
Indeed each term in the δγ-expansion may be obtamed by partial resummation
of the δη -expansion

The difference between these two expansions of the diffusion coefficient may
be understood äs follows An s-point correlation (dn^^dnfa) Sn(rs)) con-
tains many terms which are proportional to deltafunctions 8(rk - r,) (k, l =
1,2, , s, k ¥· /) For 5 = 2 one has e g

<5n(r,)5n(r2)> = η0δ(Γ2- n)+ ng[g(|r2- rt|)- 1] , (3 10)

where the deltafunction term represents the selfcorrelation and g(r) is the pair
distnbutionfunction As a consequence of selfcorrelations, an expression of the
form ((δη^)5) contams a class of contnbutions with factors A(n"0

k\r = Q)
(m, k = 1,2,3, ) Refernng to a diagrammatic representation, this factor is
called a nng-selfcorrelation We remark that a contnbution from these nng-
selfcorrelations is most important when the upper mdices m and k of the factor
A^ k\r = 0) are equal* In this case we speak of diagonal nng-selfcorrelations

Similarly, an sth order correlation between renormahzed density fluctuations
<(δγ^7ο)

5} would contain terms with factors A("^k\r = 0) However, in view of
definition (3 8) of the cut-out connectorfield, these terms are zero, unless
m ¥· k For this reason the vanous terms in the δγ-expansion do not contain
diagonal nng-selfcorrelations The contnbutions of these have been resummed
algebraically by the renormahzation of the density through eq (3 3)

To conclude this section we give the expression for the selfdiffusion
coefficient Ds, which follows from eq (1-3 16), with the use of identity (3 7),

1DJD0 = 1 + n-0\{P^ya(l - 8yQ®~lsly^nP}(r r)) (3 11)

* For example, the contnbution (of second order in δη) to the selfdiffusion coefficient from the
term with the factor A^0

2\r = 0) is -0 084D0, at the highest density considered in paper I (cf table
II in paper I) At the same density, the term with the factor A^(r = 0) contnbutes only -0 002£>o
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Note that, due to translational invariance, the r.h.s. of this equation is in-
dependent of r. We recall that, äs indicated in section 2, Ds is also the large
wavevector limit of D(k), given by eq. (3.9). One must realize, however, that if
one first expands the r.h.s. of eq. (3.9) in correlationfunctions of δη of higher
and higher order, this Seriesexpansion is not equal term by term, in the limit
fc-»°°, to the corresponding Seriesexpansion of eq. (3.11). We shall return to
this point in section 5.

4. Evaluation of the renormalized connectors

In order to solve eq. (3.3) for γ0 we shall make the following "Ansatz"

y(m,m) = y(m)l(m,n,) ^ m^2, (4.1)

where yf,"° is a scalar function of the density n0. As we shall see, this is indeed
the form of the solution. The generalized unit tensor ?("'·'"> was defined in eq.
(3.4) and has the property that

The evaluation of the renormalized connectorfield A^m\r), defined in sec-
tion 3, then proceeds entirely äs the evaluation of A^m\r) in paper I, section 6,
and gives

dk e - " [ - r A < o

(4.3)

Here φ = (4/3)πα3η0 is the volumefraction of the spheres and the function
S7a(ak) is given äs an infinite sum of Bessel functions

Syo(ak) = Σ e„y^n-0\2p - l)2 y (a/c)-3/2_1/2(a/c) . (4.4)

We have defined ε 2 =5/9, ερ = l (p 5^3). The case considered in paper I
corresponds to γ^ = η0 for all p. The series in eq. (4.4) can then be summed
analytically and gives the function S(ak) defined in eq. (1-6.6).

To calculate the density dependence of y0, given by eq. (3.3), we need the
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In r-representation the two-point correlation in this equation can be written äs
the sum of a seif- and a pair-correlation (cf. eq. (3.10))

({8nA^8n}(r \ r')) = n0A^\r = 0)S(r' - r) + nlA^\r' - r)(g(\r' - r]) - 1] ,

(5.4)

where g(r) is the pair distributionfunction. Transforming to wavevector
representation according to eq. (2.9) one therefore finds for D(k) to lowest
order

G(k)D(k)ID0 = l + k · A^\r = 0) · k + n0 J dr e1*" k · A^l\r] · k[g(r) - 1] .

(5.5)

To evaluate this expression we used (äs in paper I, cf. appendix D) the
Percus-Yevick approximation for the Fourier transform of the pair cor-
relationfunction

re^[g(r)-l]. (5.6)

The structurefactor G(k), defined äs

G(k}= 1 + noKfc), (5·7)

was calculated in the same approximation*.
The first two terms on the r. h. s. of eq. (5.5) are wavevector independent;

from eq. (4.6) one finds

l + k · A<$U(r = 0) · k = ̂  i dx(sin x/x)2[l + φ8Ύο(χ)]^ . (5.8)

The function Sy()(x) was discussed in the last section. The third term on the
r.h.s. of eq. (5.5) is, according to eq. (4.3)t, given by

«o f dr ei*'r k · A^}\r) · k[g(r) - 1] = η0(2ττγ3 J dk'k · A^l\k'} · k

x t l + ̂ S^afcOr'Kl*-*'!), (5.9)

* For the value of G(/c) at k = 0, however, we used the slightly more accurate formula of
Carnahan and Sterling13).

t Cf. also the first footnote of this section.



DIFFUSION OF SPHERES IN A CONCENTRATED SUSPENSION II 361

where (cf. eq. (1-2.15))

naAV-l\k) = ~ 4>(ak sm2(ak)(1 - kk) . (5.10)

The results from a numerical Integration of these equations will be given in the
next section. We note that for large wavevectors k the integral (5.9) goes to
zero and only the contribution (5.8) to the diffusion coefficient remains, which
in this l i m i t represents the selfdiffusion coefficient.

From eq. (5.2) one sees that the first correction to the result (5.3) for D(k) is
due to three-point correlations between renormalized density fluctuations. In
general this correction wil l therefore contain the three-sphere correlation-
function and is difficult to evaluate. Nevertheless, an indication of the accuracy
of our lowest order result for D(k) can be obtained by calculating the
self-diffusion coefficient Ds to higher order. Indeed Ds contributes to D(k) at
all wavevectors,

G(k)D(k) = Ds+ /cB77V-' Σ (k · μ,, · k e"*») (5.11)
>*i

(cf. eqs. (2.1) and (2.2)), and is in fact the largest of the two terms on the r. h. s.
of eq. (5.11), over the whole ränge of wavevectors and densities. For this
reason we shall in the remaining part of this section focus our attention on the
selfdiffusion coefficient, given by eq. (3.11).

Upon expansion of expression (3.11) for Ds in correlations of renormalized
density fluctuations, one finds for the zeroth order term Df}

1DWfD0 = 1 + A§»(r = 0) . (5.12)

The r. h. s. of this equation is identical to eq. (5.8); the lowest order term
therefore in the expansion of formula (3.11) for Ds is equal to the limit k -> °° of
the lowest order term in the expansion of eq. (3.9) for D(k). This cor-
respondence, however, does not exist term by term for higher order terms. See
in this connection the remark after eq. (3.11). The values of Df' (resulting from
a numerical Integration of the integral in eq. (5.8)*) are shown in table III, for
various volume-fractions up to φ = 0.45.

The lowest order correction D^ to Df results from two-point correlations:
it is given by (cf. eq. (3.11))

1D<P/D0 = nölP({^08yQ@~l
yo8n + j ^ 5 y Q & - 5 y Q & - n 0 } ( r | r)>P,

(5.13)

With the approximation of Syo by S^, cf. section 4.
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TABLE III
Results from the evaluation of the
fluctuation expansion of the selfdiffusion
coefficient Ds to second order The con-
tnbutions from the zeroth order term
D^ and the lowest order correction Dp'

thereto are specified separately

DP/DO = DS/DO

005
0 10
015
020
025
030
035
040
045

0887
0781
0685
0598
0521
0454
0397
0348
0307

+ 0012
+ 0012
+ 0007
- 0000
- 0008
- 0014
- 0020
- 0023
- 0025

090
079
069
060
051
044
038
033
028

or, written out explicitly (cf. eqs. (3.5), (3.8), (3.10), (4.1) and (4.2))

ySW^ir = 0)O B^^lOA^\r = 0)

2 Σ yMm+2

+ Σ y
m = 2

+ Σ Σ riTM*0 f dr l dr'
m = 2 / t = 2 J Jm = 2 / t = 2

0 B^~l 0 **'>(- r')[g(| r' - r|) - 1] . (5.14)

To simplify this expression we have also used eqs. (4.7) and (4.8). The above
equations (5.12)-(5.14) are the analoga of eqs. (1-5.7), (1-5.9) and (1-7.3), which

give the first two terms of the expansion of Ds in correlations of un-

renormahzed density fluctuations. Note however that the present expression

for Dp' does not contain terms with factors 4(

y"
>m)(r = 0), since these diagonal

ring-selfcorrelations are here already accounted for in the zeroth order term
Df\ cf. the discussion in section 3. This is in contrast to the expansion given in
paper I, where correspondmg factors did occur in the second order term (eq.

(1-7.3)).
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The above lowest order correction Df> may be evaluated using the results of
section 4 (cf. the similar calculation in paper I, appendix D). As in paper I, we
have restricted ourselves to a numerical evaluation of those terms in eq. (5.14)
which do not contain connectors A^m) with n or m larger than 2. This amounts
to a restriction to corrections from rnonopole-dipole and dipole-dipole hydro-
dynamic interactions between density fluctuations. The results can be found in
table III.

6. Results and discussion

In the previous sections we have calculated the concentration dependence of
the wavevector dependent (short-time) diffusion coefficient D(k) for spherical
particles in Suspension. For this purpose we derived the exact expression (5.2),
from which one can obtain D(k) äs an expansion in correlationfunctions of
higher and higher order. The lowest order term in this expansion (eq. (5.5))
fully contains the many-body hydrodynamic interactions between an arbitrary
number of spheres. Moreover, the contributions from a special class of cor-
relations, the so-called (diagonal) ring-selfcorrelations, are included in this
term.

For the particular case of the (short-time) self-diffusion coefficient Ds (which
is the large wavevector limit of D(k) and is given by eq. (3.11)) we were able to
calculate not only the zeroth order term D(°~> (eq. (5.12)), but also the lowest
order correction D^ thereto (eq. (5.14)), which is due to two-point correlations.
In fig. l we have plotted Df>/D0 and (Df> + D^)/D0 äs a function of the

o
o

02 03 04 05

Fig 1. Results for the selfdiffusion coefficient Ds from the first two terms of the expansion in
correlationfunctions considered here (curve c correspondmg to DP, curve d to DP + D<2)) and
from the expansion of paper I (curve a correspondmg to Df>(I), curve b to Df > (I) +
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volumefraction φ (from table III). In the same figure we have also shown the
corresponding results from the alternative expansion of Ds considered in paper
I: there the zeroth Order term £>i0)(I) contained no contributions due to
correlations. If one compares the zeroth order results Df and £>^0)(Ι) from
these two alternative expansions (the two dotted curves in fig. 1), one sees that
due to the inclusion of contributions from ring-selfcorrelations the values for
Ds in the absence of correlations decrease by almost 40% at the highest
volumefractions. Moreover, the lowest order correction D^ is in the present
expansion at most 8% of Df\ whereas the corresponding term DfJ(I) in the
expansion considered in paper I was 20% of Df\l), at the highest volumefrac-
tions.

We conclude therefore, that the present expansion - resulting from an (al-
gebraic) resummation of a special class of correlations - provides a more
reliable zeroth order result for the diffusion coefficient than the expansion of
paper I. We note that to linear order in the density these two expansions are,
however, identical*.

As argued in section 5, one may use an error estimate for Ds to obtain an
indication of the accuracy of our lowest order result for D(k). Indeed DJG(k)
(where G(k) is the structurefactor) gives at all wavevectors the largest con-
tribution to D(k), which may also be written äs (cf. eq. (5.11))

G(k)D(k) = Ds+ kBTN~l ^ (k - H j - k e1*'*»). (6.1)
'*;

To lowest order the r.h.s. of the above equation is given by eq. (5.5) and contains
Df> (cf. eq. (5.12)). It is found that adding the correction D(? to £>10) changes this
lowest order result for D(k) by less than 10% for wavevectors ak ^ 3 (where a is
the radius of the suspended spheres). This remains the case for all values of the
wavevector if the volumefraction φ does not exceed 0.3. However, at small
wavevectors and the highest densities considered, our lowest order results for
D(k) become increasingly less accurate due to a near cancellation of the two terms
on the r.h.s. of eq. (6.1).

In figs. 2 and 3 we have plotted for five values of the volumefraction φ the
resultst for D(k)G(k)/D0 (which is the longitudinal part of the wavevector
dependent Sedimentation velocity, relative to its value at infinite dilution) and
for D0/D(k). Note that in the absence of hydrodynamic interactions the first
quantity is identically l and the second quantity equals the structurefactor

* This results from the fact - observed in section 4 - that the renormalized density differs from
the real density by terms of order φ2.

t The values plotted contain the lowest order values calculated from eq. (5.5) to which the
correction D^2) (given in table III) has been added. In this way the values for Ds given in fig. 4 are
obtained from figs. 2 and 3 in the limit k -»°°.
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Fig 2 Wavevector dependence of D(k)G(k)/Do for five values of the volumefraction φ

G(k). A comparison with experiments is possible for the large and small
wavevector limits of D(k),

. = l imD(fc), = limD(k), (6.2)

which are the (short-time) seif- and collective diffusion coefficients respectively.
In fig. 4 we have plotted the theoretical values for these two coefficients,
together with experimental results4·11·12).

The diffusion coefficient at small wavevectors has been measured, by means
of dynamic light-scattering, by Cebula, Ottewill, Ralston and Pusey11) for

Fig 3 Wavevector dependence of Do/D(k) for five values of the volumefraction φ
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microemulsion droplets and by Kops-Werkhoven and Fijnaut12) for silica
particles. These experiments both indicate that the collective diffusion
coefficient is rather insensitive to changes in the concentration over a large
ränge of volumefractions. This remarkable result is confirmed by our cal-
culations of Dc, shown in fig. 4 for volumefractions φ «s 0.3 (äs we remarked
above, at higher concentrations our small wavevector results become less and
less reliable due to cancellations). One should keep in mind, however, that on
the timescale* of these experiments11'12) a particle diffuses over a distance of
several radii, whereas our results are-strictly speaking - valid only for short
times in which the configuration of the particles remains essentially constant.

Pusey and van Megen4) measured the diffusion coefficient of latex particles of
radius a = 600 nm, at large wavevectors k ~ 18/a for which D(k) has attained
its large-fc limit. The timescale of these measurements is such that a particle
diffuses over a distance of about a/10. For the densities considered one may
therefore assume that the configuration of the particles is essentially constant
on this timescale and that the measured quantity is indeed, äs argued by Pusey
and van Megen, the short-time selfdiffusion coefficient. One sees from fig. 4
that the theoretical results for Ds agree with the measurements up to the
highest volumefractions. We recall that in paper I good agreement was
obtained only for φ =ε 0.3.

ο
α

0.8

0.4

0.1 0.2 0.3 0.4

Fig. 4. Density dependence of the (short-time) seif- and collective diffusion coefficients, DJDo and
DJDii respectively. The solid curves correspond to the values given in fig. 3, in the two limits of
large and small wavevectors. Experimental data for Ds are taken from ref. 4 (lower dots); the data
for Dc are taken from refs. 11 (triangles) and 12 (upper dots).

* This timescale is the decay-time of the electric field autocorrelation function, which is of the

Order of (Do/c2)'1·
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7. Interpretation in terms of an eff ective pair-mobility

Our Iowest order result (5.5) for the diffusion coefficient can be written in a
form similar to eq. (2.1)

D(k) = kBT[NG(k)]'1 Σ (k · /tf · k e'*-*<;> , (7.1)
w=i

with jtf given by (cf. eqs. (5.8)-(5.10))

dk e-""K"(1 - kk)(ak)~4 sm2(ak)

(7.2)
J

This quantity depends only on R, and Rt and may therefore be interpreted äs
an effective pair-mobility. The renormalization factor [l + «/^(a/c)]""1 in this
expression accounts for the many-body hydrodynamic interactions between an
arbitrary number of spheres, including contributions from (diagonal) ring-
seif correlations.

For small values of ak, Sya(ak) behaves äs

Syo(ak) = ly^/n0+Ü(akY, (7.3)

äs follows from expansion of definition (4.4). Since the largest contribution to
the integral in eq. (7.2) arises from small values of ak, one may approximate
Sy<)(ak) in the integrand by its small- k limit (the numerical consequences of this
approximation for D(k) are discussed below). One then has for the effective
pair-mobility the simple expression (cf . the evaluation of the connector A^ in
ref. 8)

/tf « (οπή *α)-1[ίδ,; + (l - S,;)(!(a/#v)(f + f,/„) + |(α/Κ,,)3(ί - 3f,/„))] ,
(7.4)

with the definition

(7.5)

The vector Rv = Rj - R, has magnitude R^ and direction fv = R,JR„. The
renormalized density yff is given äs a function of n0 in table I.

If one calculates D(k) from eq. (7.1), with the approximation (7.4) (using the
Percus-Yevick pair correlationfunction), one finds values for D(k) which are
smaller than the results* shown in fig. 3, especially at small wavevectors. For

* We recall that these values result from eqs. (7.1) and (7.2), with the addition of the correction
£>!2)/G(fc), from table III.
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ak^3, however, the diflference is less than 10%, over the whole ränge of
volumefractions For selfdiffusion m particular, one finds from eq (7 4) that (cf
eq (22))

Ds~ksT(6irv*a}-1 (76)

This formula differs from our füll result (fig 4) by at most 7%
The expression (7 4) for the effective pair-mobihty has a simple physical

Interpretation it is the mobihty tensor-up to terms of order (a/R,j)4-of two
spheres, in a fluid with viscosity η* It can be shown14) that, within the order of
approximation of eq (7 1), η* equals the effective viscosity of the Suspension
To linear order in the density this Identification is m fact exact*, since
γ[,2) = rc0 + ®(Φ2} (cf remark after eq (4 9)), so that

η* = 77(1 + ̂  + ί7(</»2)), (77)

which is Emstem's result for the effective viscosity
We stress the fact (noted also in paper I) that the hydrodynamic interaction

between two particles in a Suspension is not screened by the presence of the
other particles By this we mean that the effective pair-mobihty discussed
above is of long ränge (it falls off äs I I R ) In contrast, Snook, van Megen and
Tough15) recently proposed an empincal screened pair-mobihty to repioduce
the expenmental data for the diffusion coefficient In view of the above, there
does not appear to be a physical motivation for their choice

To avoid misunderstanding, it should be mentioned that screening of hydro-
dynamic interactions does occur in a different System, viz in a porous medium
consistmg of immobile particles in a viscous fluid (see e g ref 16) The
properties of such a medium-which are different from those of a Suspension,
in which the particles may move freely-were studied (in particular for large
concentrations of the particles) by Muthukumar17), mcluding also the effect of
many-body hydrodynamic interactions
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* This was essentially observed already in paper I eq (8 2)
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Appendix

Proof of eq. (3.7)

We start from the identity

Λ ·$#(! ~~ nQ£ß~^M)~ln = ^7o[l — (n — jo)QSK'lMy}~ln, (A.l)

where siya has been defined in eq. (3.2). It is convenient to define an operator 7
with kernel

ff r ΐ r' (A·2)

and a matrix <35ro with elements

{%0km = 8nmA^m\r = 0). (A.3)

With these notations we can write

Λ 0=Λο+ 3ν> (A·4)
o

where MJo is defined in eq. (3.8). In the same compact notation we have for

cf. eqs. (3.1) and (3.3).
We note that äs a consequence of the fact that si7ol = 0, one has the identity

Upon Substitution into the r.h.s. of eq. (A.l) and repeated use of definition
«, (A.4) one then finds

= ̂ To(l - (l - nOa-1®^/)-1^ -
(A.7)

We now use the identity

(l - ηΟϋ-^/ΓγοΟ^-Χο = ToOSS'1^, (Α.8)
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O

which follows from Is£yfj = 0, and another identity

(l - nQÖä-1^/)-'« =- n(l - Q® l®y)~
l = y, (A 9)

(cf eq (A 5)) Eq (A 9) is a consequence of the fact that nln = n
Substituting eqs (A 8) and (A 9) mto eq (A 7), one then finds

yy-y , (A 10)

where δγ = γ - γ0 This is the reqmred formula (3 7)
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