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We evaluate the wavevector dependent (short-time) diffusion coeffictent D(k) for spherical
particles 1n suspension, by extending a previous study of selfdiffusion (which corresponds to the
case of large k) Our analysis 1s valid up to high concentrations and fully takes into account the
many-body hydrodynamic interactions between an arbitrary number of spheres, as well as the
resummed contributions from a special class of correlations Results obtained which agree well with
available experimental data

1. Introduction

In a previous paper') (hereafter referred to as I) we calculated the concen-
tration dependence of the (short-time) selfdiffusion coefficient for spherical
particles suspended 1n a fluid This quantity, denoted by D, 1s the large-k limut
of the wavevector dependent diffusion coefficient D(k), which describes the
initial decay of the dynamic structurefactor measured by inelastic light- or
neutron-scattering®®) In our analysis') we resummed the contributions due to
hydrodynamic interactions between an arbitrary number of spheres By includ-
1ng at most two-point correlations between the spheres, we obtained 1n paper 1
a reasonable agreement with experimental results*) for D; for volume fractions
¢ <03 At higher concentrations the calculated values were too large, indicat-
g the importance of higher order correlations

The extension to paper I presented here in twofold (1) we extend the
formalism to diffusion at arbitrary values of the wavevector (i1) we resum to
all orders the contributions from a special class of correlations

The (short-time) wavevector dependent diffusion coefficient D(k) may be
expressed 1n terms of the mobilities of the spheres?) To linear order in the
density only two-sphere hydrodynamic interactions need to be considered and
results for D(k) to this order have been obtamned by Russel and Glendinning®)
and by Fynaut®) In a suspension which 1s not dilute, however, it 1s essential to
fully take into account the many-body hydrodynamic interactions between an
arbitrary number of spheres The importance of non-additive hydrodynamic
interactions was demonstrated theoretically in our calculation’) of the diffusion-
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coefficient to second order in the density, and experimentally by Pusey and van
Megen’s measurements®) of D;.

Using general expressions for many-sphere mobilities obtained by Mazur and
van Saarloos®)*, we shall give in section 2 a formula for the diffusion coefficient
which is a convenient starting point for the calculation of D(k) in a concen-
trated suspension. In the limit k — oo, this formula reduces to the expression for
D, given in paper 1.

In sections 3, 4 and 5 we proceed to evaluate D (k) through an expansion in
correlationfunctions of higher and higher order. Such a “fluctuation expan-
sion”, in which the many-sphere hydrodynamic interactions are resummed
algebraically, was employed in paper I also. However, here we resum-in
addition — to all orders the contributions from a special class of correlations, the
socalled “ring-selfcorrelations™. ResultsT for the concentration and wavevector
dependence of D(k) are given in section 6, and are compared to experimental
data®12),

We conclude the paper in section 7 with an interpretation of our results in
terms of an effective pair-mobility.

2. An operator expression for D(k)

As in paper 1 we study a system of N spherical particles with radius a and
positionvectors R, (i=1,2,...,N), suspended in a liquid with viscosity 7.
While in our previous analysis we restricted ourselves to the self-diffusion
coefficient Dj of the suspended particles, we shall consider here the wavevector
dependent diffusion coeffictent D(k), given by (see e.g. ref. 2)

D(k) = ks TINGUO S (k- o, - K ey 2.1)

=1

Here k is the wavevector with magnitude k and direction k = k/k, G(k) is the
static structure factor, m, is a mobility tensor, R,=R,—R,, and kg and T
denote Boltzmann’s constant and the temperature, respectively. The angular
brackets denote an average over the configurations of the spheres in a volume
V.

The quantity defined in eq. (2.1) describes diffusion of the spheres on a
timescale over which their positions are essentially constant?). It can be

* In this connection we mention that general expressions for many-sphere friction tensors were
previously derived by Yoshizaki and Yamakawa®), by an analysis similar to that of ref 8.
T These results have been published previously n ref 10

-
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measured by light-scattering, and is called in this context the ‘“‘effective”
diffusion coefficient®). The (short-time) selfdiffusion coefficient D,, studied in
paper 1, is given by

D1 = kyTN~! i () . 2.2)

=1

It is the large wavevector limit of D(k)

D,=lim D(k), 2.3)

as can be understood by noting that

lim G(k) = 1 2.4

ko

and that in the limit k — o only the terms with i = j contribute to the average in
eq. (2.1). Note furthermore that, in an isotropic suspension, the average in eq.
(2.2) is proportional to the unit tensor 7.

General expressions for the many-sphere mobility tensors u, were derived
by Mazur and van Saarloos?). It is convenient to write these results in the
compact operator notation used in paper 1. To this end we express the
mobilities in terms of an operatorkernel u(r|r'), by

6mmap, = 19, +J dr J dr’ 8(r — R)S(r' — R)pu(r|r’). 2.5)

We further define the microscopic number density n(r) of the spheres

n(r)= i 8(r—R). 2.6)
Eq. (2.1) then takes the form
GK)D(k)Dyg=1+ N} j dr e f dr’ ek - n(ryu(r| rn(r) - k),
2.7

or, defining the operators u with kernel u(r|r’) and n with kernel n(r)é(r' - r),
G(k)D(k)/ Dy =1+ Nk -{nun}(k|k)- k). (2.8)

In this last equation we have defined the Fourier transform of an operator-
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kernel O(r|r')y = {nun}(r|r’) as
O(k]k’)EJ dre *r j dr'e* " O(r|r) 29

The Stokes—-Einstein diffusion coefficient 1s denoted by
Dy= kgT(67ma) ! (2 10)
Adopting the notation of paper I we may wiite (see below) for the operator u
pn=PoA(l1-nOB AP, 211)
and we thus finally obtain for the diffusion coefficient the expression
G(k)D(k)/Dy= 1+ NNk -{Pnsd(1 — nOB 'Ly 'nP}(k |k)- k) (2 12)

We shall now show that expression (2 11) for the operator p 15 indeed
equivalent to the general expressions for the mobility tensors given in ref 8
We shall first briefly recall the meaning of the symbols &, % !, P and Q used
in eqs (2 11) and (2 12), cf section 3 1n paper I The matrices &f and B~' have
elements

{m = AC™ , {B Yy = 8B (213)

which are tensors of rank n+m (n,m =1,2,3, ), the projection matrices P
and Q = 1— P have elements

{P}nm = 8n18ml ) {Q}nm = 8nm - 6:116:711 (2 14)
The tensor A”™ 1s a convolution operator with kernel

0 fr=1r",

AC( —r) it @15

ACm(p|ry= ACm(p — r)= {

Convenient expressions for the constant tensor B™™™' and for the Fourier
transform of A" ™)(r),

A(n m)(k) — j dr e]k rA(n m)(r) , (2 16)

are given m eqs (I-2 15) and (I-2 22)*

* The tensors A" ™ = A®™(R,) and B™™ ' were mtroduced by Mazur and van Saarloos®) These
so-called “‘connectors” correspond to the “hydrodynamic interaction tensors” used previously by
Yoshizaki and Yamakawa®), in order to discuss many-sphere friction tensors
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With these notations we may write e.g.,

(PstnQB PYR | R) = 3, [ dr" AL = R)n(r") © B
m=2

@ A(m,l) (R/ —r"
= Y (1,m) —1 (m.,1)
= 2 Z Azk’ @B(m,m) ®Ak1‘ , (217)
m=2 If:ﬂlj

where Afj"'"')EA"""‘)(R, — R) and the dot © prescribes an m-fold contraction.
By expanding the inverse operator in eq. (2.11) in powers of n, we obtain (after
substitution into eq. (2.5)) the expression for m, derived in ref. 8 and given in
eq. (1-2.2).

The expression (2.12) for the diffusion coefficient D(k) is exact and fully
contains the many-body hydrodynamic interactions between the N spheres. It
is the required extension of the formula for the selfdiffusion coefficient D
given in paper I, eq. (I-3.16). As we have shown there —and will see again in
the next section —such formal operator expressions are very useful in a study of
concentrated suspensions.

3. Renormalization of the connectors

Let y§"m™ (m =1,2,3,...) be an arbitrary constant tensor of rank 2m. We
denote by vy, the diagonal matrix with elements

{yo}n,m = 5nmy(()m,m) . (31)
A matrix of renormalized connectors o, is defined —for each yo—as
Ay, = A (1= QB " A) . (3.2)

The n, m element of the matrix &, is a renormalized connector A(y’:;"'), which in
turn is a convolution operator with kernel Ay™(r).

We now choose y{™™ to be a function of the average numberdensity of the
spheres ng= N/ V,

Yi = nod,
(3.3)
,ygn,m) _ ,ygm,m)Q B(m,m)‘1 @ A(yr;l,m)(r — 0) — n01(m,m) , m=2.
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The tensor 7¢»™ used in this equation is a generalized unit tensor of rank 2m,
102 = g0 Fonm) — A (m-Lidm-1) (m =3), (3.4)

where the A-tensors are defined in egs. (I-2.9) and (I-2.19). The renormalized
“density” y(r), with average y,, is given by

¥(r)=yona'n(r); (3-5)

the corresponding diagonal operator y has kernel y(r)é(r'— r). The renor-
malized density and connectors defined above will be explicitly evaluated in
section 4.

In paper I we defined renormalized connectors #,, according to eq. (3.2),
with 1y, replaced by ny, and used the identity

AA—nQB ' A)'n=oA,(1-6nQB ' 4,) 'n, (3.6)

where 8n=n—n, denotes the density fluctuations. If one substitutes this
identity into eq. (2.12) and expands the operator between braces in this
equation in powers of 8n, one obtains an expansion for D(k) in correlation-
functions of higher and higher order (a so-called fluctuation expansion). For the
case of selfdiffusion, this expansion was evaluated to second order in paper 1.
The renormalized connectors &f, account for a full resummation of the
many-body hydrodynamic interactions in the absence of correlations, and in
this way for the fact that (in some averaged sense) spheres interact hydro-
dynamically via a suspension with density no, rather than through the pure
fluid. As we shall shortly see, the renormalization of the density, defined in eq.
(3.3), will moreover account for a partial resummation of correlations.
The following identity will prove very useful in our analysis

A1~ nQB 'y 'n = o, (1- 5yQB ', )"y . (3.7)

This formula differs from the previous one (eq. (3.6)) in that it contains the
roenormalized density v, density fluctuations 8§y = y — v, and cut-out connectors
AGm = {sf, },,, with kernels

0 fr=randn=m

AG(r|r)y= AGM(r' —r)= {A(y';"‘)(r’— ry ifr#rorn#m. , 8

A proof of eq. (3.7) is given in the appendix. Substituting this identity into
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expression (2 12) for D(k) one finds
G(K)D(k)/Do= 1+ N "k - {Pnst, (1~ 3yQB'sby) 'nPYk|k)-K), (39)

where use has been made of the fact that yP = nP, in view of definitions (3 3)
and (3 5)

If one expands the operator between braces in eq (3 9) in powets of 8y one
obtams again an expansion for D(k) i density correlationfunctions, since
8y = yoni'dn (cf eq (35)) 1s linear in the density fluctuations én The &y-
expansion differs however from the én-expansion considered n paper I, in that
the contributions from a special class of correlations (which we call ring-
selfcorrelations) are 1n the former expansion included n the lowest order term
Indeed each term 1n the §y-expansion may be obtained by partial resummation
of the dn-expansion

The difference between these two expansions of the diffusion coefficient may
be understood as follows An s-point correlation (dn(r\)én(r,)  én(r,)) con-
tains many terms which are proportional to deltafunctions 8(r, — 1) (k, [ =
1,2, ,8, k#1) Fors=2onehaseg

(Sn(r)dn(ry)) = ned(ra— r)+ n3g(r.—r)—11, (3 10)

where the deltafunction term represents the selfcorrelation and g(r) 1s the pair
distributionfunction As a consequence of selfcorrelations, an expression of the
form ((8nsf,)) contamns a class of contributions with factors A§®(r = 0)
(m k=1,2,3, ) Referring to a diagrammatic representation, this factor is
called a ring-selfcorrelation We remark that a contribution from these ring-
selfcorrelations 1s most important when the upper indices m and k of the factor
A" B(r = 0) are equal* In this case we speak of diagonal ring-selfcorrelations

Similarly, an sth order correlation between renormalized density fluctuations
<(87J70)S> would contain terms with factors A(;g ©(r =0) However, 1n view of
definition (3 8) of the cut-out connectorfield, these terms are zero, unless
m # k For this reason the various terms in the §y-expansion do not contain
diagonal ring-selfcorrelations The contributions of these have been resummed
algebraically by the renormalization of the density through eq (3 3)

To conclude this section we give the expression for the selfdiffusion
coefficient D, which follows from eq (I-3 16), with the use of 1dentity (3 7),

1D,/Dy = 1+ ng"{Pst, (1— 8yQB ', Y 'nP}(r|r)) G 11)

* For example, the contribution (of second order 1n 8n) to the selfdiffusion coefficient from the
term with the factor AZ3(r = 0) 1s —0 084Dy, at the highest density considered in paper I (cf table
I1 1n paper ) At the same density, the term with the factor A%?(r = 0) contributes only —0 002Dy
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Note that, due to translational invariance, the r.h.s. of this equation is in-
dependent of r. We recall that, as indicated in section 2, D; is also the large
wavevector limit of D(k), given by eq. (3.9). One must realize, however, that if
one first expands the r.h.s. of eq. (3.9) in correlationfunctions of én of higher
and higher order, this seriesexpansion is not equal term by term, in the limit
k —» o, to the corresponding seriesexpansion of eq. (3.11). We shall return to
this point in section 5.

4. Evaluation of the renormalized connectors

In order to solve eq. (3.3) for y, we shall make the following “Ansatz”
,y(()m,m) — ,ygm)-’(m,m) , m=2 , (41)

where y{™ is a scalar function of the density n,. As we shall see, this is indeed
the form of the solution. The generalized unit tensor 7¢™ was defined in eq.
(3.4) and has the property that

1nm @ Bemmyt = Blnmy! 4.2)

The evaluation of the renormalized connectorfield Ay:™(r), defined in sec-
tion 3, then proceeds entirely as the evaluation of A%™)(r) in paper 1, section 6,
and gives

AG(r) = Aem(r)— Q) J dk ¢ T AT (k)pS, (ak)[1 + ¢S, (ak)] ™.
4.3)

Here ¢ = (4/3)ma’n, is the volumefraction of the spheres and the function
S,,(ak) is given as an infinite sum of Bessel functions

%9
Si(ak)= 3 5 e;{Pns'@p = 11 5 (ak)*J3-ip(ak) . “.4)
p=2

We have defined &,=5/9, ¢,=1 (p=3). The case considered in paper I
corresponds to y{ = n, for all p. The series in eq. (4.4) can then be summed
analytically and gives the function S(ak) defined in eq. (I-6.6).

To calculate the density dependence of vy, given by eq. (3.3), we need the
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result
Binm 1 A(y'(')"'")(r =0)= 1¢*™2m — 1)J dk k“J%,,_l/z(k)¢SyO(k)
0
X[1+ ¢S, (k)™ m=2, “.5)

and for later use also

AL = 0)= =1 [ dk k" T7a(k)6S, ()1 + 8, ()T @)

+2,m 3 m+1,m+
AGmid(r = 0)= AG2m(r = 0) = =5 (m + 1)1(2m — 11140 1D

% [ A k) snR)6S, () [1+ 68,0, (@.7)

AGm(r=0)=0, iftnmandn#m=2. 4.8)

Here C2m —D!'=1-3-5-...-(2m —3)- 2m — 1); the A-tensors are defined in
eq. (I-2.9). The equations (4.5)(4.8) are the analoga of eqgs. (1-6.11)~(1-6.14) for
A™(r =0), and are obtained by performing the angular integration in eq.
(4.3), using the explicit expressions for A®")(k).

Substitution of formula (4.5) into eq. (3.3) shows that v, is indeed of the form
(4.1) and gives for the scalar functions y{™ the equations

780 = 3§ @m = 1) [ dk kT3 RIS, (L + B8, KT = o,
0

m=23.... (4.9)

One sees that y{™ differs from ngy by terms of order ¢2.
In order to solve the infinite set of coupled equations (4.9) to a sufficient
accuracy we approximate the function S, (k) by

N0

L
S§U)= S0+ 2 5 e~ oy @p = 17 5 K J3alh), (4.10)

for a given number L =2,3,.... From the definition of S(k) (eq. (I-6.6)) and
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S, (k) (eq. (4.4)) it follows that
lng SP(k) = S, (k). (4.11)

With the above approximation the L — 1 equations for y{™ (m =2,3,...,L)in
(4.9) decouple and may be solved numerically*. We give in table I, for
volumefractions ¢ up to 0.45, the values of ¢y§™/ny (m = 2,3, 4, 5) obtained by
this procedure with L = 5.

To calculate the diffusion coefficient D(k) we shall in the next section use
these values for y{™; also, in expression (4.3) for AG:"™)(r), we shall approximate
S,(ak) by S§)(ak), as defined in eq. (4.10). An estimate of the error resulting
from this approximation can be obtained by repeating the calculation of 7,
described above to a lower order. In table II we give for ¢ = 0.40 the values of
dy§Ing 2=<m <L) and 1+ A§D(r = 0), obtained from this calculation with L
ranging from 2 to 5. One finds, in particular, that by increasing the order L
from 4 to 5, the change in y{™ (m = 2, 3, 4) is smaller than 3%, while the value
of 1+ A(yl(;‘)(r = 0) changes by even less. This last quantity is equal to the large
wavevector limit of D(k), to lowest order in the expansion in correlation-
functions, cf. section 5. Moreover, it has been checked that also for smaller
wavevectors use of S instead of S§) would change the (lowest order) results
for D(k) by not more than 2%.

We thus conclude that the approximation made by replacing S, by SQ
(defined in eq. (4.10)) is for present purposes sufficiently accurate.

TABLE 1
Values of the scalar functions ¢y{™/ny (m =2, 3, 4
and 5) for nine different volumefractions ¢

¢778")/n0

3
I
w
3
[
ESN
3
I
%]

¢ m=2

0.05 0.0553 0.0542 0.0533 0.0525
0.10 0.1228 0.1177 0.1135 0.1104
0.15 0.2048 0.1918 0.1813 0.1738
0.20 0.3038 0.2777 0.2574 0.2432
0.25 0.4224 0.3766 0.3423 0.3186
0.30 0.5627 0.4895 0.4364 0.4005
0.35 0.7267 0.6172 0.5402 0.4888
0.40 0.9157 0.7601 0.6538 0.5839
0.45 1.1310 0.9183 0.7776 0.6856

* Use was made of numerical algorithms from the NAG library (Oxford).
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TABLE 11
Values of ¢y{"/ny 2<m <L) for ¢ =0.40, obtained by
solving eq. (4.9) with the approximation of S, by S (eq.
(4.10)). The order L of this approximation is increased from 2
to 5, the value L =15 giving the results presented in the
previous table for the whole range of volumefractions. Also
shown, for ¢ =0.40, is the convergence of the quantity
1+ A(Q‘;l)(r =0), as the order of the approximation increases.

¢y /ngy (¢ = 0.40)

L m=2 m=3 m=4 m=5 1+Ar=0)

2 0.783 0.397 1
3 0.868  0.711 0.363 1
4 0901 0.745  0.637 0353 1
5 0916 0760 0.654 0584 0.348 1

5. Expansion of D(k) in correlations of renormalized density fluctuations

We now return to the formal expression (3.9) for the wavevector dependent
diffusion coefficient. We first note that we may replace the two density
operators n in this expression by their fluctuations 8n = n —ny. The terms
containing the average ny, do not contribute, in view of the fact that

k- f dr e AG(r' — r) = J' dr e* AC™(r—r')- k=0. G.1

Indeed these integrals are proportional to either k - A™(k) or to A™O(k)-k
(cf. eq. (4.3)%), both of which quantities are zero for all m, as follows from eq.
(I-2.15). The resulting exact expression for the diffusion coefficient D(k)

G(k)D(k)/Do = 1+ NXK - {Pénst, (1~ SyQB sk, 5nP}(k | k)- k),
.2)

is the starting point for an expansion of this quantity in correlationfunctions of
the renormalized density fluctuations 8y of higher and higher order.
To lowest order in 8y one has

G(k)D(k)/Do=1+ N-Xk - {8nAL05n} (k| k) - k) . (5.3)

*Note that if the expression (4.3) for A{t")(r) is substituted into eq. (5.1), one may replace the
connectorfield A®")(r) in this expression by A®™(r), since these two connectorfields differ by a
finite amount in a single point only (cf. eq. (2.15)).
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In r-representation the two-point correlation in this equation can be written as
the sum of a self- and a pair-correlation (cf. eq. (3.10))

({8nAG én}(r|r)) = noAY(r = 0)5(r' — r)+ ngASO(r — rg(r —rh—1],
(5.4)

where g(r) is the pair distributionfunction. Transforming to wavevector
representation according to eq. (2.9) one therefore finds for D(k) to lowest
order

G(k)D(k)/Dy=1+k - AL0(r = 0)- k + nof dre* k- ALO(r) - k[g(r)—1].
(5.5)

To evaluate this expression we used (as in paper I, cf. appendix D) the
Percus-Yevick approximation for the Fourier transform of the pair cor-
relationfunction

v(k)= I dre*r[g(n)—1]. (5.6)
The structurefactor G(k), defined as

G(k)= 1+ nov(k), (5.7)
was calculated in the same approximation®.

The first two terms on the r.h.s. of eq. (5.5) are wavevector independent;
from eq. (4.6) one finds

1+ K- ALY(r = 0)- £ = % f dx(sin x/x)[1+ §S, (V)] . .8)
0

The function S, (x) was discussed in the last section. The third term on the
r.h.s. of eq. (5.5) is, according to eq. (4.3)1, given by

1o f dr e k - ALD(r) - k[g(r)— 1] = no(2m)3 f dk'k - Ak - k
X [1+ ¢S, (ak)] ' v(k - k'), (5.9)

*For the value of G(k) at k =0, however, we used the slightly more accurate formula of
Carnahan and Starling™).
t Cf. also the first footnote of this section.
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where (cf. eq. (1-2.15))
noALD() = 5 (ak ) sin?(ak)(1 — KK) (5.10)

The results from a numerical integration of these equations will be given in the
next section. We note that for large wavevectors k the integral (5.9) goes to
zero and only the contribution (5.8) to the diffusion coefficient remains, which
in this limit represents the selfdiffusion coefficient.

From eq. (5.2) one sees that the first correction to the result (5.3) for D(k) is
due to three-point correlations between renormalized density fluctuations. In
general this correction will therefore contain the three-sphere correlation-
function and is difficult to evaluate. Nevertheless, an indication of the accuracy
of our lowest order result for D(k) can be obtained by calculating the
self-diffusion coefficient D; to higher order. Indeed D; contributes to D(k) at
all wavevectors,

G(k)D(k)= D,+ ks TN"' 3 (k + p, - k ) (5.11)

1#]

(cf. egs. (2.1) and (2.2)), and is in fact the largest of the two terms on the r.h.s.
of eq. (5.11), over the whole range of wavevectors and densities. For this
reason we shall in the remaining part of this section focus our attention on the
selfdiffusion coefficient, given by eq. (3.11).

Upon expansion of expression (3.11) for D; in correlations of renormalized
density fluctuations, one finds for the zeroth order term D®

1DO/Dy = 1+ AL(r = 0). (5.12)

The r.h.s. of this equation is identical to eq. (5.8); the lowest order term
therefore in the expansion of formula (3.11) for Dy is equal to the limit k — o of
the lowest order term in the expansion of eq. (3.9) for D(k). This cor-
respondence, however, does not exist term by term for higher order terms. See
in this connection the remark after eq. (3.11). The values of D (resulting from
a numerical integration of the integral in eq. (5.8)*) are shown in table III, for
various volume-fractions up to ¢ = 0.45.

The lowest order correction D@ to DO results from two-point correlations:
it is given by (cf. eq. (3.11))

1D®/Dy = ny' P{{st, 5yQB b, 6n + od, 5yQRB ', S5yQB o, no}(r | )P,
(5.13)

* With the approximation of S, by S$), cf. section 4.
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TaBLE 111
Results from the evaluation of the
fluctuation expansion of the selfdiffusion
coefficient D to second order The con-
tributions from the zeroth order term
D® and the lowest order correction D@
thereto are specified separately

¢ DOIDy + DO/Dy = DD,
005 087 + 0012 090
010 0781 + 0012 079
015 0685 + 0007 069
020 0598 — 0000 060
025 0521 — 0008 051
030 0454 — 0014 044
035 0397 - 0020 038
040 0348 — 0023 033
045 0307 - 0025 028

or, written out explicitly (cf. egs. (3.5), (3.8), (3.10), (4.1) and (4.2))
1D®/Dy = yPny' AL3(r = 0)O BCY' O AGN(r = 0)

+2 3 5yl ong' [ drAGmE)© B O A (e = 0)
m=2

0} Bm+2 m+2)y1 O] A%wz 1)(_ r)

8

+3 o0 [ dr A © B © A nlg() - 1]
2

m

Il

+3 5 v [ dr [ dragr) 0 Bt © AgRGr - 1)
m=2 k=2
© B4 © Al g(r )~ 1]. (5:14)

To simplify this expression we have also used egs. (4.7) and (4.8). The above
equations (5.12)-(5.14) are the analoga of eqs. (I-5.7), (1-5.9) and (I-7.3), which
give the first two terms of the expansion of D in correlations of un-
renormalized density fluctuations. Note however that the present expression
for D@ does not contain terms with factors A{")(r = 0), since these diagonal
ring-selfcorrelations are here already accounted for in the zeroth order term
DO, cf. the discussion in section 3. This is in contrast to the expansion given in
paper 1, where corresponding factors did occur in the second order term (eq.
(1-7.3)).
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The above lowest order correction D® may be evaluated using the results of
section 4 (cf. the similar calculation in paper I, appendix D). As in paper I, we
have restricted ourselves to a numerical evaluation of those terms in eq. (5.14)
which do not contain connectors A{>™ with n or m larger than 2. This amounts
to a restriction to corrections from monopole—dipole and dipole—dipole hydro-
dynamic interactions between density fluctuations. The results can be found in
table III.

6. Results and discussion

In the previous sections we have calculated the concentration dependence of
the wavevector dependent (short-time) diffusion coefficient D(k) for spherical
particles in suspension. For this purpose we derived the exact expression (5.2),
from which one can obtain D(k) as an expansion in correlationfunctions of
higher and higher order. The lowest order term in this expansion (eq. (5.5))
fully contains the many-body hydrodynamic interactions between an arbitrary
number of spheres. Moreover, the contributions from a special class of cor-
relations, the so-called (diagonal) ring-selfcorrelations, are included in this
term.

For the particular case of the (short-time) self-diffusion coefficient D; (which
is the large wavevector limit of D(k) and is given by eq. (3.11)) we were able to
calculate not only the zeroth order term D® (eq. (5.12)), but also the lowest
order correction D@ thereto (eq. (5.14)), which is due to two-point correlations.
In fig. 1 we have plotted D®/Dy and (DQ+ D@)/D, as a function of the

o
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0 ! | | | |
0O o1 02 g O3 o4 05

Fig 1. Results for the selfdiffusion coefficient D from the first two terms of the expansion in
correlationfunctions considered here (curve ¢ corresponding to D, curve d to DO+ D®) and
from the expansion of paper I (curve a corresponding to DP(1), curve b to DO(D) + DP(1))
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volumefraction ¢ (from table IIT). In the same figure we have also shown the
corresponding results from the alternative expansion of D, considered in paper
I: there the zeroth order term D®(I) contained no contributions due to
correlations. If one compares the zeroth order results DO and D®(I) from
these two alternative expansions (the two dotted curves in fig. 1), one sees that
due to the inclusion of contributions from ring-selfcorrelations the values for
D, in the absence of correlations decrease by almost 40% at the highest
volumefractions. Moreover, the lowest order correction D@ is in the present
expansion at most 8% of D®, whereas the corresponding term D®(1) in the
expansion considered in paper I was 20% of D®(I), at the highest volumefrac-
tions.

We conclude therefore, that the present expansion —resulting from an (al-
gebraic) resummation of a special class of correlations—provides a more
reliable zeroth order result for the diffusion coefficient than the expansion of
paper 1. We note that to linear order in the density these two expansions are,
however, identical*.

As argued in section 5, one may use an error estimate for D; to obtain an
indication of the accuracy of our lowest order result for D(k). Indeed D,/ G(k)
(where G(k) is the structurefactor) gives at all wavevectors the largest con-
tribution to D(k), which may also be written as (cf. eq. (5.11))

G(k)D(k)= D,+ kTN (k - p; - k %) . 6.1
i#j

To lowest order the r.h.s. of the above equation is given by eq. (5.5) and contains
DO (cf. eq. (5.12)). It is found that adding the correction D@ to D® changes this
lowest order result for D(k) by less than 10% for wavevectors ak = 3 (where a is
the radius of the suspended spheres). This remains the case for all values of the
wavevector if the volumefraction ¢ does not exceed 0.3. However, at small
wavevectors and the highest densities considered, our lowest order results for
D(k)become increasingly less accurate due to a near cancellation of the two terms
on the r.h.s. of eq. (6.1).

In figs. 2 and 3 we have plotted for five values of the volumefraction ¢ the
resultst for D(k)G(k)/D, (which is the longitudinal part of the wavevector
dependent sedimentation velocity, relative to its value at infinite dilution) and
for Do/D(k). Note that in the absence of hydrodynamic interactions the first
quantity is identically 1 and the second quantity equals the structurefactor

* This results from the fact—observed in section 4 —that the renormalized density differs from
the real density by terms of order ¢2.

T The values plotted contain the lowest order values calculated from eq. (5.5) to which the
correction D@ (given in table III) has been added. In this way the values for D; given in fig. 4 are
obtained from figs. 2 and 3 in the limit k — oo,
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D 6 [ Dg

aK
Fig 2 Wavevector dependence of D(k)G(k)/D, for five values of the volumefraction ¢

G(k). A comparison with experiments is possible for the large and small
wavevector limits of D(k),

D,=limD(k),  D.=lim D(K), 6.2)
k—o -

which are the (short-time) self- and collective diffusion coefficients respectively.
In fig. 4 we have plotted the theoretical values for these two coefficients,
together with experimental results*!12),

The diffusion coefficient at small wavevectors has been measured, by means
of dynamic light-scattering, by Cebula, Ottewill, Ralston and Pusey") for

aKk
Fig 3 Wavevector dependence of Dy/D(k) for five values of the volumefraction ¢
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microemulsion droplets and by Kops-Werkhoven and Fijnaut'?) for silica
particles. These experiments both indicate that the collective diffusion
coefficient is rather insensitive to changes in the concentration over a large
range of volumefractions. This remarkable result is confirmed by our cal-
culations of D., shown in fig. 4 for volumefractions ¢ <0.3 (as we remarked
above, at higher concentrations our small wavevector results become less and
less reliable due to cancellations). One should keep in mind, however, that on
the timescale* of these experiments'®'?) a particle diffuses over a distance of
several radii, whereas our results are —strictly speaking —valid only for short
times in which the configuration of the particles remains essentially constant.

Pusey and van Megen*) measured the diffusion coefficient of latex particles of
radius a = 600 nm, at large wavevectors k = 18/a for which D(k) has attained
its large-k limit. The timescale of these measurements is such that a particle
diffuses over a distance of about a/10. For the densities considered one may
therefore assume that the configuration of the particles is essentially constant
on this timescale and that the measured quantity is indeed, as argued by Pusey
and van Megen, the short-time selfdiffusion coefficient. One sees from fig. 4
that the theoretical results for D, agree with the measurements up to the
highest volumefractions. We recall that in paper I good agreement was
obtained only for ¢ <0.3.
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o} [ON 0.2 0.3 0.4 05
¢

Fig. 4. Density dependence of the (short-time) self- and collective diffusion coefficients, D/Djy and
D./D, respectively. The solid curves correspond to the values given in fig. 3, in the two limits of
large and small wavevectors. Experimental data for D; are taken from ref. 4 (lower dots); the data
for D, are taken from refs. 11 (triangles) and 12 (upper dots).

* This timescale is the decay-time of the electric field autocorrelation function, which is of the
order of (Dok?) L.
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7. Interpretation in terms of an effective pair-mobility

Our lowest order result (5.5) for the diffusion coefficient can be written in a
form similar to eq. (2.1)

D(k)= ks TING(R)" 3, (K - - K ) o1

1,7=1

with pst given by (cf. egs. (5.8)—(5.10))

pi = (6ma)’ % (% 7Ta3)(27r)"3 f dk e7*Ry(1 — kk)(ak)* sin*(ak)
X [1+ ¢S, (ak)]™. (7.2)

This quantity depends only on R, and R, and may therefore be interpreted as
an effective pair-mobility. The renormalization factor [1+ ¢S, (ak)]™ in this
expression accounts for the many-body hydrodynamic interactions between an
arbitrary number of spheres, including contributions from (diagonal) ring-
selfcorrelations.

For small values of ak, S, (ak) behaves as

Sy(ak) =3yP/no+ O(aky (73)

as follows from expansion of definition (4.4). Since the largest contribution to
the integral in eq. (7.2) arises from small values of ak, one may approximate
S,,(ak) in the integrand by its small-k limit (the numerical consequences of this
approximation for D(k) are discussed below). One then has for the effective
pair-mobility the simple expression (cf. the evaluation of the connector Af]“) in
ref. 8)

I‘f}ﬁ ~(6m*a)'[15,+ (1 - 8*1)(%(‘1/1211)(1 + )+ %(a/Rtl)3(1 — 3771,
(7.4)

with the definition

n*=n(1+3¢yP/no). (7.5)

The vector R,=R,— R, has magnitude R, and direction 7,=R,/R,. The
renormalized density y$ is given as a function of n, in table L

If one calculates D(k) from eq. (7.1), with the approximation (7.4) (using the
Percus—Yevick pair correlationfunction), one finds values for D(k) which are
smaller than the results* shown in fig. 3, especially at small wavevectors. For

* We recall that these values result from eqs. (7.1) and (7.2), with the addition of the correction
D®/G(k), from table III.
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ak =3, however, the difference 1s less than 10%, over the whole range of
volumefractions For selfdiffusion 1n particular, one finds from eq (7 4) that (cf

eq (22)
Dy~ kg T(67m*a)™ (7 6)

This formula differs from our full result (fig 4) by at most 7%

The expression (7 4) for the effective pair-mobility has a simple physical
interpretation 1t 1s the mobility tensor —up to terms of order (a/R,)*-of two
spheres, n a flurd with viscosity n* It can be shown') that, within the order of
approximation of eq (7 1), n™* equals the effective viscosity of the suspension
To linear order in the density this identification 1s 1 fact exact”, since
v9 = nog+ 0(¢?) (cf remark after eq (4 9)), so that

n*=n(l+3p+0($%), (77

which 1s Einstein’s result for the effective viscosity

We stress the fact (noted also 1n paper I) that the hydrodynamic interaction
between two particles 1n a suspension 18 not screened by the presence of the
other particles By this we mean that the effective pawr-mobility discussed
above 1s of long range (it falls off as 1/R) In contrast, Snook, van Megen and
Tough'®) recently proposed an empirical screened pair-mobility to reproduce
the experimental data for the diffusion coefficient In view of the above, there
does not appear to be a physical motivation for their choice

To avoid misunderstanding, it should be mentioned that screening of hydro-
dynamic interactions does occur 1n a different system, viz n a porous medium
consisting of ummobile particles 1n a viscous fluid (see eg ref 16) The
properties of such a medium —which are different from those of a suspension,
m which the particles may move freely —were studied (in particular for large
concentrations of the particles) by Muthukumar!”), mcluding also the effect of
many-body hydrodynamic interactions
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Appendix
Proof of eq. (3.7)
We start from the identity
A(1—nQB Ay 'n = of,[1-(n~ y)OB ', ] 'n, (A.D)

where o, has been defined in eq. (3.2). It is convenient to define an operator I
with kernel

r 1’ 'f = ! 2
o=y 4 r2

and a matrix %, with elements
{%yo}n,m = SnmAgy'g‘m)(r = O) . (A.3)
With these notations we can write

sty = sy + B, T (A.4)

Yoo ?

where &1070 is defined in eq. (3.8). In the same compact notation we have for
Y =7yono'n,

y=n(l- QB'%B,)", (A.5)

cf. eqs. (3.1) and (3.3).
We note that as a consequence of the fact that o, I = 0, one has the identity

oy = sty (1— QB B, I)™" . (A.6)

Upon substitution into the r.h.s. of eq. (A.1) and repeated use of definition
(A.4) one then finds

A1~ nQB Ly 'n = o, (1 - nQB s, + yQB ' sd, )y 'n
= ol (1= (1~ OB B, Iy (n — 7)) QB "y Y (1~ nQB B, Iy 'n.
(A7)

We now use the identity

(1- nQB~'B, I 1yyQB 'k, = 7,0B s, (A.8)

0
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which follows from I&f;): 0, and another identity
(1-nOB~'B, Iy 'n=n(1- 0B 'B,) "' =v, (A9)

(cf eq (A5)) Eq (A9)1s a consequence of the fact that nln =n
Substituting eqs (A 8) and (A 9) into eq (A 7), one then finds

A1 - nQB sy 'n = s, (1— SyQB by ) 'y, (A 10)

where 8y =y — v, This 1s the required formula (3 7)
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